the_nilfs.c 19.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * the_nilfs.c - the_nilfs shared structure.
 *
 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 *
 * Written by Ryusuke Konishi <ryusuke@osrg.net>
 *
 */

#include <linux/buffer_head.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/backing-dev.h>
28
#include <linux/crc32.h>
29 30 31 32 33 34 35 36
#include "nilfs.h"
#include "segment.h"
#include "alloc.h"
#include "cpfile.h"
#include "sufile.h"
#include "dat.h"
#include "segbuf.h"

37

38 39
static int nilfs_valid_sb(struct nilfs_super_block *sbp);

40 41 42 43 44 45 46
void nilfs_set_last_segment(struct the_nilfs *nilfs,
			    sector_t start_blocknr, u64 seq, __u64 cno)
{
	spin_lock(&nilfs->ns_last_segment_lock);
	nilfs->ns_last_pseg = start_blocknr;
	nilfs->ns_last_seq = seq;
	nilfs->ns_last_cno = cno;
47 48 49 50 51 52 53 54 55 56

	if (!nilfs_sb_dirty(nilfs)) {
		if (nilfs->ns_prev_seq == nilfs->ns_last_seq)
			goto stay_cursor;

		set_nilfs_sb_dirty(nilfs);
	}
	nilfs->ns_prev_seq = nilfs->ns_last_seq;

 stay_cursor:
57 58 59 60
	spin_unlock(&nilfs->ns_last_segment_lock);
}

/**
61
 * alloc_nilfs - allocate a nilfs object
62 63 64 65 66
 * @bdev: block device to which the_nilfs is related
 *
 * Return Value: On success, pointer to the_nilfs is returned.
 * On error, NULL is returned.
 */
67
struct the_nilfs *alloc_nilfs(struct block_device *bdev)
68 69 70 71 72 73 74 75 76 77
{
	struct the_nilfs *nilfs;

	nilfs = kzalloc(sizeof(*nilfs), GFP_KERNEL);
	if (!nilfs)
		return NULL;

	nilfs->ns_bdev = bdev;
	atomic_set(&nilfs->ns_ndirtyblks, 0);
	init_rwsem(&nilfs->ns_sem);
78
	INIT_LIST_HEAD(&nilfs->ns_dirty_files);
79
	INIT_LIST_HEAD(&nilfs->ns_gc_inodes);
80
	spin_lock_init(&nilfs->ns_inode_lock);
81
	spin_lock_init(&nilfs->ns_last_segment_lock);
82 83
	nilfs->ns_cptree = RB_ROOT;
	spin_lock_init(&nilfs->ns_cptree_lock);
84 85 86 87 88
	init_rwsem(&nilfs->ns_segctor_sem);

	return nilfs;
}

89
/**
90 91
 * destroy_nilfs - destroy nilfs object
 * @nilfs: nilfs object to be released
92
 */
93
void destroy_nilfs(struct the_nilfs *nilfs)
94 95 96
{
	might_sleep();
	if (nilfs_init(nilfs)) {
97 98
		brelse(nilfs->ns_sbh[0]);
		brelse(nilfs->ns_sbh[1]);
99 100 101 102
	}
	kfree(nilfs);
}

103 104
static int nilfs_load_super_root(struct the_nilfs *nilfs,
				 struct super_block *sb, sector_t sr_block)
105 106 107
{
	struct buffer_head *bh_sr;
	struct nilfs_super_root *raw_sr;
108
	struct nilfs_super_block **sbp = nilfs->ns_sbp;
109
	struct nilfs_inode *rawi;
110 111 112 113
	unsigned dat_entry_size, segment_usage_size, checkpoint_size;
	unsigned inode_size;
	int err;

114
	err = nilfs_read_super_root_block(nilfs, sr_block, &bh_sr, 1);
115 116 117 118
	if (unlikely(err))
		return err;

	down_read(&nilfs->ns_sem);
119 120 121
	dat_entry_size = le16_to_cpu(sbp[0]->s_dat_entry_size);
	checkpoint_size = le16_to_cpu(sbp[0]->s_checkpoint_size);
	segment_usage_size = le16_to_cpu(sbp[0]->s_segment_usage_size);
122 123 124 125
	up_read(&nilfs->ns_sem);

	inode_size = nilfs->ns_inode_size;

126 127 128
	rawi = (void *)bh_sr->b_data + NILFS_SR_DAT_OFFSET(inode_size);
	err = nilfs_dat_read(sb, dat_entry_size, rawi, &nilfs->ns_dat);
	if (err)
129 130
		goto failed;

131 132 133
	rawi = (void *)bh_sr->b_data + NILFS_SR_CPFILE_OFFSET(inode_size);
	err = nilfs_cpfile_read(sb, checkpoint_size, rawi, &nilfs->ns_cpfile);
	if (err)
134 135
		goto failed_dat;

136 137 138 139
	rawi = (void *)bh_sr->b_data + NILFS_SR_SUFILE_OFFSET(inode_size);
	err = nilfs_sufile_read(sb, segment_usage_size, rawi,
				&nilfs->ns_sufile);
	if (err)
140 141 142 143 144 145 146 147 148 149
		goto failed_cpfile;

	raw_sr = (struct nilfs_super_root *)bh_sr->b_data;
	nilfs->ns_nongc_ctime = le64_to_cpu(raw_sr->sr_nongc_ctime);

 failed:
	brelse(bh_sr);
	return err;

 failed_cpfile:
150
	iput(nilfs->ns_cpfile);
151 152

 failed_dat:
153
	iput(nilfs->ns_dat);
154 155 156 157 158 159 160 161 162 163 164 165 166 167
	goto failed;
}

static void nilfs_init_recovery_info(struct nilfs_recovery_info *ri)
{
	memset(ri, 0, sizeof(*ri));
	INIT_LIST_HEAD(&ri->ri_used_segments);
}

static void nilfs_clear_recovery_info(struct nilfs_recovery_info *ri)
{
	nilfs_dispose_segment_list(&ri->ri_used_segments);
}

168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
/**
 * nilfs_store_log_cursor - load log cursor from a super block
 * @nilfs: nilfs object
 * @sbp: buffer storing super block to be read
 *
 * nilfs_store_log_cursor() reads the last position of the log
 * containing a super root from a given super block, and initializes
 * relevant information on the nilfs object preparatory for log
 * scanning and recovery.
 */
static int nilfs_store_log_cursor(struct the_nilfs *nilfs,
				  struct nilfs_super_block *sbp)
{
	int ret = 0;

	nilfs->ns_last_pseg = le64_to_cpu(sbp->s_last_pseg);
	nilfs->ns_last_cno = le64_to_cpu(sbp->s_last_cno);
	nilfs->ns_last_seq = le64_to_cpu(sbp->s_last_seq);

187
	nilfs->ns_prev_seq = nilfs->ns_last_seq;
188 189 190 191 192 193 194 195 196 197 198
	nilfs->ns_seg_seq = nilfs->ns_last_seq;
	nilfs->ns_segnum =
		nilfs_get_segnum_of_block(nilfs, nilfs->ns_last_pseg);
	nilfs->ns_cno = nilfs->ns_last_cno + 1;
	if (nilfs->ns_segnum >= nilfs->ns_nsegments) {
		printk(KERN_ERR "NILFS invalid last segment number.\n");
		ret = -EINVAL;
	}
	return ret;
}

199 200 201 202 203 204 205 206 207 208 209 210 211 212
/**
 * load_nilfs - load and recover the nilfs
 * @nilfs: the_nilfs structure to be released
 * @sbi: nilfs_sb_info used to recover past segment
 *
 * load_nilfs() searches and load the latest super root,
 * attaches the last segment, and does recovery if needed.
 * The caller must call this exclusively for simultaneous mounts.
 */
int load_nilfs(struct the_nilfs *nilfs, struct nilfs_sb_info *sbi)
{
	struct nilfs_recovery_info ri;
	unsigned int s_flags = sbi->s_super->s_flags;
	int really_read_only = bdev_read_only(nilfs->ns_bdev);
213
	int valid_fs = nilfs_valid_fs(nilfs);
214
	int err;
215

216 217 218 219 220 221 222
	if (!valid_fs) {
		printk(KERN_WARNING "NILFS warning: mounting unchecked fs\n");
		if (s_flags & MS_RDONLY) {
			printk(KERN_INFO "NILFS: INFO: recovery "
			       "required for readonly filesystem.\n");
			printk(KERN_INFO "NILFS: write access will "
			       "be enabled during recovery.\n");
223 224 225
		}
	}

226 227
	nilfs_init_recovery_info(&ri);

228
	err = nilfs_search_super_root(nilfs, &ri);
229
	if (unlikely(err)) {
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
		struct nilfs_super_block **sbp = nilfs->ns_sbp;
		int blocksize;

		if (err != -EINVAL)
			goto scan_error;

		if (!nilfs_valid_sb(sbp[1])) {
			printk(KERN_WARNING
			       "NILFS warning: unable to fall back to spare"
			       "super block\n");
			goto scan_error;
		}
		printk(KERN_INFO
		       "NILFS: try rollback from an earlier position\n");

		/*
		 * restore super block with its spare and reconfigure
		 * relevant states of the nilfs object.
		 */
		memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
		nilfs->ns_crc_seed = le32_to_cpu(sbp[0]->s_crc_seed);
		nilfs->ns_sbwtime = le64_to_cpu(sbp[0]->s_wtime);

		/* verify consistency between two super blocks */
		blocksize = BLOCK_SIZE << le32_to_cpu(sbp[0]->s_log_block_size);
		if (blocksize != nilfs->ns_blocksize) {
			printk(KERN_WARNING
			       "NILFS warning: blocksize differs between "
			       "two super blocks (%d != %d)\n",
			       blocksize, nilfs->ns_blocksize);
			goto scan_error;
		}

		err = nilfs_store_log_cursor(nilfs, sbp[0]);
		if (err)
			goto scan_error;

		/* drop clean flag to allow roll-forward and recovery */
		nilfs->ns_mount_state &= ~NILFS_VALID_FS;
		valid_fs = 0;

		err = nilfs_search_super_root(nilfs, &ri);
		if (err)
			goto scan_error;
274 275
	}

276
	err = nilfs_load_super_root(nilfs, sbi->s_super, ri.ri_super_root);
277 278 279 280 281
	if (unlikely(err)) {
		printk(KERN_ERR "NILFS: error loading super root.\n");
		goto failed;
	}

282 283 284 285
	if (valid_fs)
		goto skip_recovery;

	if (s_flags & MS_RDONLY) {
286 287
		__u64 features;

288
		if (nilfs_test_opt(nilfs, NORECOVERY)) {
289 290 291 292
			printk(KERN_INFO "NILFS: norecovery option specified. "
			       "skipping roll-forward recovery\n");
			goto skip_recovery;
		}
293 294 295 296 297 298 299 300 301 302
		features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
			~NILFS_FEATURE_COMPAT_RO_SUPP;
		if (features) {
			printk(KERN_ERR "NILFS: couldn't proceed with "
			       "recovery because of unsupported optional "
			       "features (%llx)\n",
			       (unsigned long long)features);
			err = -EROFS;
			goto failed_unload;
		}
303 304 305 306 307
		if (really_read_only) {
			printk(KERN_ERR "NILFS: write access "
			       "unavailable, cannot proceed.\n");
			err = -EROFS;
			goto failed_unload;
308
		}
309
		sbi->s_super->s_flags &= ~MS_RDONLY;
310
	} else if (nilfs_test_opt(nilfs, NORECOVERY)) {
311 312 313 314
		printk(KERN_ERR "NILFS: recovery cancelled because norecovery "
		       "option was specified for a read/write mount\n");
		err = -EINVAL;
		goto failed_unload;
315 316
	}

317
	err = nilfs_salvage_orphan_logs(nilfs, sbi, &ri);
318 319 320 321
	if (err)
		goto failed_unload;

	down_write(&nilfs->ns_sem);
322 323
	nilfs->ns_mount_state |= NILFS_VALID_FS; /* set "clean" flag */
	err = nilfs_cleanup_super(sbi);
324 325 326 327 328 329
	up_write(&nilfs->ns_sem);

	if (err) {
		printk(KERN_ERR "NILFS: failed to update super block. "
		       "recovery unfinished.\n");
		goto failed_unload;
330
	}
331
	printk(KERN_INFO "NILFS: recovery complete.\n");
332

333 334 335 336 337
 skip_recovery:
	nilfs_clear_recovery_info(&ri);
	sbi->s_super->s_flags = s_flags;
	return 0;

338 339 340 341
 scan_error:
	printk(KERN_ERR "NILFS: error searching super root.\n");
	goto failed;

342
 failed_unload:
343 344 345
	iput(nilfs->ns_cpfile);
	iput(nilfs->ns_sufile);
	iput(nilfs->ns_dat);
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363

 failed:
	nilfs_clear_recovery_info(&ri);
	sbi->s_super->s_flags = s_flags;
	return err;
}

static unsigned long long nilfs_max_size(unsigned int blkbits)
{
	unsigned int max_bits;
	unsigned long long res = MAX_LFS_FILESIZE; /* page cache limit */

	max_bits = blkbits + NILFS_BMAP_KEY_BIT; /* bmap size limit */
	if (max_bits < 64)
		res = min_t(unsigned long long, res, (1ULL << max_bits) - 1);
	return res;
}

364 365
static int nilfs_store_disk_layout(struct the_nilfs *nilfs,
				   struct nilfs_super_block *sbp)
366
{
R
Ryusuke Konishi 已提交
367 368
	if (le32_to_cpu(sbp->s_rev_level) < NILFS_MIN_SUPP_REV) {
		printk(KERN_ERR "NILFS: unsupported revision "
369 370 371 372 373 374 375
		       "(superblock rev.=%d.%d, current rev.=%d.%d). "
		       "Please check the version of mkfs.nilfs.\n",
		       le32_to_cpu(sbp->s_rev_level),
		       le16_to_cpu(sbp->s_minor_rev_level),
		       NILFS_CURRENT_REV, NILFS_MINOR_REV);
		return -EINVAL;
	}
376 377 378 379
	nilfs->ns_sbsize = le16_to_cpu(sbp->s_bytes);
	if (nilfs->ns_sbsize > BLOCK_SIZE)
		return -EINVAL;

380 381 382 383 384
	nilfs->ns_inode_size = le16_to_cpu(sbp->s_inode_size);
	nilfs->ns_first_ino = le32_to_cpu(sbp->s_first_ino);

	nilfs->ns_blocks_per_segment = le32_to_cpu(sbp->s_blocks_per_segment);
	if (nilfs->ns_blocks_per_segment < NILFS_SEG_MIN_BLOCKS) {
385
		printk(KERN_ERR "NILFS: too short segment.\n");
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
		return -EINVAL;
	}

	nilfs->ns_first_data_block = le64_to_cpu(sbp->s_first_data_block);
	nilfs->ns_nsegments = le64_to_cpu(sbp->s_nsegments);
	nilfs->ns_r_segments_percentage =
		le32_to_cpu(sbp->s_r_segments_percentage);
	nilfs->ns_nrsvsegs =
		max_t(unsigned long, NILFS_MIN_NRSVSEGS,
		      DIV_ROUND_UP(nilfs->ns_nsegments *
				   nilfs->ns_r_segments_percentage, 100));
	nilfs->ns_crc_seed = le32_to_cpu(sbp->s_crc_seed);
	return 0;
}

401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
static int nilfs_valid_sb(struct nilfs_super_block *sbp)
{
	static unsigned char sum[4];
	const int sumoff = offsetof(struct nilfs_super_block, s_sum);
	size_t bytes;
	u32 crc;

	if (!sbp || le16_to_cpu(sbp->s_magic) != NILFS_SUPER_MAGIC)
		return 0;
	bytes = le16_to_cpu(sbp->s_bytes);
	if (bytes > BLOCK_SIZE)
		return 0;
	crc = crc32_le(le32_to_cpu(sbp->s_crc_seed), (unsigned char *)sbp,
		       sumoff);
	crc = crc32_le(crc, sum, 4);
	crc = crc32_le(crc, (unsigned char *)sbp + sumoff + 4,
		       bytes - sumoff - 4);
	return crc == le32_to_cpu(sbp->s_sum);
}

static int nilfs_sb2_bad_offset(struct nilfs_super_block *sbp, u64 offset)
{
	return offset < ((le64_to_cpu(sbp->s_nsegments) *
			  le32_to_cpu(sbp->s_blocks_per_segment)) <<
			 (le32_to_cpu(sbp->s_log_block_size) + 10));
}

static void nilfs_release_super_block(struct the_nilfs *nilfs)
{
	int i;

	for (i = 0; i < 2; i++) {
		if (nilfs->ns_sbp[i]) {
			brelse(nilfs->ns_sbh[i]);
			nilfs->ns_sbh[i] = NULL;
			nilfs->ns_sbp[i] = NULL;
		}
	}
}

void nilfs_fall_back_super_block(struct the_nilfs *nilfs)
{
	brelse(nilfs->ns_sbh[0]);
	nilfs->ns_sbh[0] = nilfs->ns_sbh[1];
	nilfs->ns_sbp[0] = nilfs->ns_sbp[1];
	nilfs->ns_sbh[1] = NULL;
	nilfs->ns_sbp[1] = NULL;
}

void nilfs_swap_super_block(struct the_nilfs *nilfs)
{
	struct buffer_head *tsbh = nilfs->ns_sbh[0];
	struct nilfs_super_block *tsbp = nilfs->ns_sbp[0];

	nilfs->ns_sbh[0] = nilfs->ns_sbh[1];
	nilfs->ns_sbp[0] = nilfs->ns_sbp[1];
	nilfs->ns_sbh[1] = tsbh;
	nilfs->ns_sbp[1] = tsbp;
}

static int nilfs_load_super_block(struct the_nilfs *nilfs,
				  struct super_block *sb, int blocksize,
				  struct nilfs_super_block **sbpp)
{
	struct nilfs_super_block **sbp = nilfs->ns_sbp;
	struct buffer_head **sbh = nilfs->ns_sbh;
	u64 sb2off = NILFS_SB2_OFFSET_BYTES(nilfs->ns_bdev->bd_inode->i_size);
	int valid[2], swp = 0;

	sbp[0] = nilfs_read_super_block(sb, NILFS_SB_OFFSET_BYTES, blocksize,
					&sbh[0]);
	sbp[1] = nilfs_read_super_block(sb, sb2off, blocksize, &sbh[1]);

	if (!sbp[0]) {
		if (!sbp[1]) {
			printk(KERN_ERR "NILFS: unable to read superblock\n");
			return -EIO;
		}
		printk(KERN_WARNING
480 481 482
		       "NILFS warning: unable to read primary superblock "
		       "(blocksize = %d)\n", blocksize);
	} else if (!sbp[1]) {
483
		printk(KERN_WARNING
484 485 486
		       "NILFS warning: unable to read secondary superblock "
		       "(blocksize = %d)\n", blocksize);
	}
487

488 489 490 491
	/*
	 * Compare two super blocks and set 1 in swp if the secondary
	 * super block is valid and newer.  Otherwise, set 0 in swp.
	 */
492 493
	valid[0] = nilfs_valid_sb(sbp[0]);
	valid[1] = nilfs_valid_sb(sbp[1]);
494 495 496
	swp = valid[1] && (!valid[0] ||
			   le64_to_cpu(sbp[1]->s_last_cno) >
			   le64_to_cpu(sbp[0]->s_last_cno));
497 498 499 500 501 502 503 504 505 506 507 508 509 510

	if (valid[swp] && nilfs_sb2_bad_offset(sbp[swp], sb2off)) {
		brelse(sbh[1]);
		sbh[1] = NULL;
		sbp[1] = NULL;
		swp = 0;
	}
	if (!valid[swp]) {
		nilfs_release_super_block(nilfs);
		printk(KERN_ERR "NILFS: Can't find nilfs on dev %s.\n",
		       sb->s_id);
		return -EINVAL;
	}

511
	if (!valid[!swp])
512
		printk(KERN_WARNING "NILFS warning: broken superblock. "
513
		       "using spare superblock (blocksize = %d).\n", blocksize);
514
	if (swp)
515 516
		nilfs_swap_super_block(nilfs);

J
Jiro SEKIBA 已提交
517 518
	nilfs->ns_sbwcount = 0;
	nilfs->ns_sbwtime = le64_to_cpu(sbp[0]->s_wtime);
519 520 521 522 523
	nilfs->ns_prot_seq = le64_to_cpu(sbp[valid[1] & !swp]->s_last_seq);
	*sbpp = sbp[0];
	return 0;
}

524 525 526 527 528 529 530 531 532
/**
 * init_nilfs - initialize a NILFS instance.
 * @nilfs: the_nilfs structure
 * @sbi: nilfs_sb_info
 * @sb: super block
 * @data: mount options
 *
 * init_nilfs() performs common initialization per block device (e.g.
 * reading the super block, getting disk layout information, initializing
533
 * shared fields in the_nilfs).
534 535 536 537 538 539 540 541 542
 *
 * Return Value: On success, 0 is returned. On error, a negative error
 * code is returned.
 */
int init_nilfs(struct the_nilfs *nilfs, struct nilfs_sb_info *sbi, char *data)
{
	struct super_block *sb = sbi->s_super;
	struct nilfs_super_block *sbp;
	int blocksize;
543
	int err;
544 545 546

	down_write(&nilfs->ns_sem);

547
	blocksize = sb_min_blocksize(sb, NILFS_MIN_BLOCK_SIZE);
548 549
	if (!blocksize) {
		printk(KERN_ERR "NILFS: unable to set blocksize\n");
550 551 552
		err = -EINVAL;
		goto out;
	}
553 554 555 556
	err = nilfs_load_super_block(nilfs, sb, blocksize, &sbp);
	if (err)
		goto out;

557 558 559 560
	err = nilfs_store_magic_and_option(sb, sbp, data);
	if (err)
		goto failed_sbh;

561 562 563 564
	err = nilfs_check_feature_compatibility(sb, sbp);
	if (err)
		goto failed_sbh;

565
	blocksize = BLOCK_SIZE << le32_to_cpu(sbp->s_log_block_size);
566 567 568 569 570 571 572
	if (blocksize < NILFS_MIN_BLOCK_SIZE ||
	    blocksize > NILFS_MAX_BLOCK_SIZE) {
		printk(KERN_ERR "NILFS: couldn't mount because of unsupported "
		       "filesystem blocksize %d\n", blocksize);
		err = -EINVAL;
		goto failed_sbh;
	}
573
	if (sb->s_blocksize != blocksize) {
574
		int hw_blocksize = bdev_logical_block_size(sb->s_bdev);
575 576 577 578 579 580

		if (blocksize < hw_blocksize) {
			printk(KERN_ERR
			       "NILFS: blocksize %d too small for device "
			       "(sector-size = %d).\n",
			       blocksize, hw_blocksize);
581
			err = -EINVAL;
582 583 584 585 586 587 588
			goto failed_sbh;
		}
		nilfs_release_super_block(nilfs);
		sb_set_blocksize(sb, blocksize);

		err = nilfs_load_super_block(nilfs, sb, blocksize, &sbp);
		if (err)
589 590 591 592 593
			goto out;
			/* not failed_sbh; sbh is released automatically
			   when reloading fails. */
	}
	nilfs->ns_blocksize_bits = sb->s_blocksize_bits;
594
	nilfs->ns_blocksize = blocksize;
595

596
	err = nilfs_store_disk_layout(nilfs, sbp);
597 598 599 600 601 602 603
	if (err)
		goto failed_sbh;

	sb->s_maxbytes = nilfs_max_size(sb->s_blocksize_bits);

	nilfs->ns_mount_state = le16_to_cpu(sbp->s_state);

604 605
	err = nilfs_store_log_cursor(nilfs, sbp);
	if (err)
606 607 608 609 610 611 612 613 614
		goto failed_sbh;

	set_nilfs_init(nilfs);
	err = 0;
 out:
	up_write(&nilfs->ns_sem);
	return err;

 failed_sbh:
615
	nilfs_release_super_block(nilfs);
616 617 618
	goto out;
}

619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
int nilfs_discard_segments(struct the_nilfs *nilfs, __u64 *segnump,
			    size_t nsegs)
{
	sector_t seg_start, seg_end;
	sector_t start = 0, nblocks = 0;
	unsigned int sects_per_block;
	__u64 *sn;
	int ret = 0;

	sects_per_block = (1 << nilfs->ns_blocksize_bits) /
		bdev_logical_block_size(nilfs->ns_bdev);
	for (sn = segnump; sn < segnump + nsegs; sn++) {
		nilfs_get_segment_range(nilfs, *sn, &seg_start, &seg_end);

		if (!nblocks) {
			start = seg_start;
			nblocks = seg_end - seg_start + 1;
		} else if (start + nblocks == seg_start) {
			nblocks += seg_end - seg_start + 1;
		} else {
			ret = blkdev_issue_discard(nilfs->ns_bdev,
						   start * sects_per_block,
						   nblocks * sects_per_block,
642
						   GFP_NOFS, 0);
643 644 645 646 647 648 649 650 651
			if (ret < 0)
				return ret;
			nblocks = 0;
		}
	}
	if (nblocks)
		ret = blkdev_issue_discard(nilfs->ns_bdev,
					   start * sects_per_block,
					   nblocks * sects_per_block,
652
					   GFP_NOFS, 0);
653 654 655
	return ret;
}

656 657 658 659
int nilfs_count_free_blocks(struct the_nilfs *nilfs, sector_t *nblocks)
{
	unsigned long ncleansegs;

660
	down_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
661
	ncleansegs = nilfs_sufile_get_ncleansegs(nilfs->ns_sufile);
662
	up_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
663 664
	*nblocks = (sector_t)ncleansegs * nilfs->ns_blocks_per_segment;
	return 0;
665 666 667 668 669
}

int nilfs_near_disk_full(struct the_nilfs *nilfs)
{
	unsigned long ncleansegs, nincsegs;
670 671 672 673 674 675

	ncleansegs = nilfs_sufile_get_ncleansegs(nilfs->ns_sufile);
	nincsegs = atomic_read(&nilfs->ns_ndirtyblks) /
		nilfs->ns_blocks_per_segment + 1;

	return ncleansegs <= nilfs->ns_nrsvsegs + nincsegs;
676 677
}

678
struct nilfs_root *nilfs_lookup_root(struct the_nilfs *nilfs, __u64 cno)
679
{
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
	struct rb_node *n;
	struct nilfs_root *root;

	spin_lock(&nilfs->ns_cptree_lock);
	n = nilfs->ns_cptree.rb_node;
	while (n) {
		root = rb_entry(n, struct nilfs_root, rb_node);

		if (cno < root->cno) {
			n = n->rb_left;
		} else if (cno > root->cno) {
			n = n->rb_right;
		} else {
			atomic_inc(&root->count);
			spin_unlock(&nilfs->ns_cptree_lock);
			return root;
		}
697
	}
698
	spin_unlock(&nilfs->ns_cptree_lock);
699 700 701 702

	return NULL;
}

703 704
struct nilfs_root *
nilfs_find_or_create_root(struct the_nilfs *nilfs, __u64 cno)
705
{
706 707
	struct rb_node **p, *parent;
	struct nilfs_root *root, *new;
708

709 710 711
	root = nilfs_lookup_root(nilfs, cno);
	if (root)
		return root;
712

713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
	new = kmalloc(sizeof(*root), GFP_KERNEL);
	if (!new)
		return NULL;

	spin_lock(&nilfs->ns_cptree_lock);

	p = &nilfs->ns_cptree.rb_node;
	parent = NULL;

	while (*p) {
		parent = *p;
		root = rb_entry(parent, struct nilfs_root, rb_node);

		if (cno < root->cno) {
			p = &(*p)->rb_left;
		} else if (cno > root->cno) {
			p = &(*p)->rb_right;
		} else {
			atomic_inc(&root->count);
			spin_unlock(&nilfs->ns_cptree_lock);
			kfree(new);
			return root;
735 736 737
		}
	}

738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
	new->cno = cno;
	new->ifile = NULL;
	new->nilfs = nilfs;
	atomic_set(&new->count, 1);
	atomic_set(&new->inodes_count, 0);
	atomic_set(&new->blocks_count, 0);

	rb_link_node(&new->rb_node, parent, p);
	rb_insert_color(&new->rb_node, &nilfs->ns_cptree);

	spin_unlock(&nilfs->ns_cptree_lock);

	return new;
}

void nilfs_put_root(struct nilfs_root *root)
{
	if (atomic_dec_and_test(&root->count)) {
		struct the_nilfs *nilfs = root->nilfs;

		spin_lock(&nilfs->ns_cptree_lock);
		rb_erase(&root->rb_node, &nilfs->ns_cptree);
		spin_unlock(&nilfs->ns_cptree_lock);
		if (root->ifile)
762
			iput(root->ifile);
763 764 765

		kfree(root);
	}
766
}