kasan.c 20.2 KB
Newer Older
1 2 3 4
/*
 * This file contains shadow memory manipulation code.
 *
 * Copyright (c) 2014 Samsung Electronics Co., Ltd.
5
 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
6
 *
7
 * Some code borrowed from https://github.com/xairy/kasan-prototype by
8 9 10 11 12 13 14 15 16 17 18 19
 *        Andrey Konovalov <adech.fo@gmail.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#define DISABLE_BRANCH_PROFILING

#include <linux/export.h>
20
#include <linux/interrupt.h>
21
#include <linux/init.h>
22
#include <linux/kasan.h>
23
#include <linux/kernel.h>
24
#include <linux/kmemleak.h>
25
#include <linux/linkage.h>
26
#include <linux/memblock.h>
A
Andrey Ryabinin 已提交
27
#include <linux/memory.h>
28
#include <linux/mm.h>
29
#include <linux/module.h>
30 31
#include <linux/printk.h>
#include <linux/sched.h>
32
#include <linux/sched/task_stack.h>
33 34 35 36
#include <linux/slab.h>
#include <linux/stacktrace.h>
#include <linux/string.h>
#include <linux/types.h>
37
#include <linux/vmalloc.h>
38
#include <linux/bug.h>
39 40

#include "kasan.h"
41
#include "../slab.h"
42

43 44 45 46 47 48 49 50 51 52
void kasan_enable_current(void)
{
	current->kasan_depth++;
}

void kasan_disable_current(void)
{
	current->kasan_depth--;
}

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
/*
 * Poisons the shadow memory for 'size' bytes starting from 'addr'.
 * Memory addresses should be aligned to KASAN_SHADOW_SCALE_SIZE.
 */
static void kasan_poison_shadow(const void *address, size_t size, u8 value)
{
	void *shadow_start, *shadow_end;

	shadow_start = kasan_mem_to_shadow(address);
	shadow_end = kasan_mem_to_shadow(address + size);

	memset(shadow_start, value, shadow_end - shadow_start);
}

void kasan_unpoison_shadow(const void *address, size_t size)
{
	kasan_poison_shadow(address, size, 0);

	if (size & KASAN_SHADOW_MASK) {
		u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size);
		*shadow = size & KASAN_SHADOW_MASK;
	}
}

77
static void __kasan_unpoison_stack(struct task_struct *task, const void *sp)
78 79 80 81 82 83 84 85 86 87 88 89 90 91
{
	void *base = task_stack_page(task);
	size_t size = sp - base;

	kasan_unpoison_shadow(base, size);
}

/* Unpoison the entire stack for a task. */
void kasan_unpoison_task_stack(struct task_struct *task)
{
	__kasan_unpoison_stack(task, task_stack_page(task) + THREAD_SIZE);
}

/* Unpoison the stack for the current task beyond a watermark sp value. */
92
asmlinkage void kasan_unpoison_task_stack_below(const void *watermark)
93
{
94 95 96 97 98 99 100 101
	/*
	 * Calculate the task stack base address.  Avoid using 'current'
	 * because this function is called by early resume code which hasn't
	 * yet set up the percpu register (%gs).
	 */
	void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));

	kasan_unpoison_shadow(base, watermark - base);
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
}

/*
 * Clear all poison for the region between the current SP and a provided
 * watermark value, as is sometimes required prior to hand-crafted asm function
 * returns in the middle of functions.
 */
void kasan_unpoison_stack_above_sp_to(const void *watermark)
{
	const void *sp = __builtin_frame_address(0);
	size_t size = watermark - sp;

	if (WARN_ON(sp > watermark))
		return;
	kasan_unpoison_shadow(sp, size);
117
}
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144

/*
 * All functions below always inlined so compiler could
 * perform better optimizations in each of __asan_loadX/__assn_storeX
 * depending on memory access size X.
 */

static __always_inline bool memory_is_poisoned_1(unsigned long addr)
{
	s8 shadow_value = *(s8 *)kasan_mem_to_shadow((void *)addr);

	if (unlikely(shadow_value)) {
		s8 last_accessible_byte = addr & KASAN_SHADOW_MASK;
		return unlikely(last_accessible_byte >= shadow_value);
	}

	return false;
}

static __always_inline bool memory_is_poisoned_2(unsigned long addr)
{
	u16 *shadow_addr = (u16 *)kasan_mem_to_shadow((void *)addr);

	if (unlikely(*shadow_addr)) {
		if (memory_is_poisoned_1(addr + 1))
			return true;

145 146 147 148 149
		/*
		 * If single shadow byte covers 2-byte access, we don't
		 * need to do anything more. Otherwise, test the first
		 * shadow byte.
		 */
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
		if (likely(((addr + 1) & KASAN_SHADOW_MASK) != 0))
			return false;

		return unlikely(*(u8 *)shadow_addr);
	}

	return false;
}

static __always_inline bool memory_is_poisoned_4(unsigned long addr)
{
	u16 *shadow_addr = (u16 *)kasan_mem_to_shadow((void *)addr);

	if (unlikely(*shadow_addr)) {
		if (memory_is_poisoned_1(addr + 3))
			return true;

167 168 169 170 171
		/*
		 * If single shadow byte covers 4-byte access, we don't
		 * need to do anything more. Otherwise, test the first
		 * shadow byte.
		 */
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
		if (likely(((addr + 3) & KASAN_SHADOW_MASK) >= 3))
			return false;

		return unlikely(*(u8 *)shadow_addr);
	}

	return false;
}

static __always_inline bool memory_is_poisoned_8(unsigned long addr)
{
	u16 *shadow_addr = (u16 *)kasan_mem_to_shadow((void *)addr);

	if (unlikely(*shadow_addr)) {
		if (memory_is_poisoned_1(addr + 7))
			return true;

189 190 191 192 193 194
		/*
		 * If single shadow byte covers 8-byte access, we don't
		 * need to do anything more. Otherwise, test the first
		 * shadow byte.
		 */
		if (likely(IS_ALIGNED(addr, KASAN_SHADOW_SCALE_SIZE)))
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
			return false;

		return unlikely(*(u8 *)shadow_addr);
	}

	return false;
}

static __always_inline bool memory_is_poisoned_16(unsigned long addr)
{
	u32 *shadow_addr = (u32 *)kasan_mem_to_shadow((void *)addr);

	if (unlikely(*shadow_addr)) {
		u16 shadow_first_bytes = *(u16 *)shadow_addr;

		if (unlikely(shadow_first_bytes))
			return true;

213 214 215 216 217 218
		/*
		 * If two shadow bytes covers 16-byte access, we don't
		 * need to do anything more. Otherwise, test the last
		 * shadow byte.
		 */
		if (likely(IS_ALIGNED(addr, KASAN_SHADOW_SCALE_SIZE)))
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
			return false;

		return memory_is_poisoned_1(addr + 15);
	}

	return false;
}

static __always_inline unsigned long bytes_is_zero(const u8 *start,
					size_t size)
{
	while (size) {
		if (unlikely(*start))
			return (unsigned long)start;
		start++;
		size--;
	}

	return 0;
}

static __always_inline unsigned long memory_is_zero(const void *start,
						const void *end)
{
	unsigned int words;
	unsigned long ret;
	unsigned int prefix = (unsigned long)start % 8;

	if (end - start <= 16)
		return bytes_is_zero(start, end - start);

	if (prefix) {
		prefix = 8 - prefix;
		ret = bytes_is_zero(start, prefix);
		if (unlikely(ret))
			return ret;
		start += prefix;
	}

	words = (end - start) / 8;
	while (words) {
		if (unlikely(*(u64 *)start))
			return bytes_is_zero(start, 8);
		start += 8;
		words--;
	}

	return bytes_is_zero(start, (end - start) % 8);
}

static __always_inline bool memory_is_poisoned_n(unsigned long addr,
						size_t size)
{
	unsigned long ret;

	ret = memory_is_zero(kasan_mem_to_shadow((void *)addr),
			kasan_mem_to_shadow((void *)addr + size - 1) + 1);

	if (unlikely(ret)) {
		unsigned long last_byte = addr + size - 1;
		s8 *last_shadow = (s8 *)kasan_mem_to_shadow((void *)last_byte);

		if (unlikely(ret != (unsigned long)last_shadow ||
W
Wang Long 已提交
282
			((long)(last_byte & KASAN_SHADOW_MASK) >= *last_shadow)))
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
			return true;
	}
	return false;
}

static __always_inline bool memory_is_poisoned(unsigned long addr, size_t size)
{
	if (__builtin_constant_p(size)) {
		switch (size) {
		case 1:
			return memory_is_poisoned_1(addr);
		case 2:
			return memory_is_poisoned_2(addr);
		case 4:
			return memory_is_poisoned_4(addr);
		case 8:
			return memory_is_poisoned_8(addr);
		case 16:
			return memory_is_poisoned_16(addr);
		default:
			BUILD_BUG();
		}
	}

	return memory_is_poisoned_n(addr, size);
}

310 311 312
static __always_inline void check_memory_region_inline(unsigned long addr,
						size_t size, bool write,
						unsigned long ret_ip)
313 314 315 316 317 318
{
	if (unlikely(size == 0))
		return;

	if (unlikely((void *)addr <
		kasan_shadow_to_mem((void *)KASAN_SHADOW_START))) {
319
		kasan_report(addr, size, write, ret_ip);
320 321 322 323 324 325
		return;
	}

	if (likely(!memory_is_poisoned(addr, size)))
		return;

326
	kasan_report(addr, size, write, ret_ip);
327 328
}

329 330 331 332 333 334
static void check_memory_region(unsigned long addr,
				size_t size, bool write,
				unsigned long ret_ip)
{
	check_memory_region_inline(addr, size, write, ret_ip);
}
335

336 337 338 339 340 341 342 343 344 345 346 347
void kasan_check_read(const void *p, unsigned int size)
{
	check_memory_region((unsigned long)p, size, false, _RET_IP_);
}
EXPORT_SYMBOL(kasan_check_read);

void kasan_check_write(const void *p, unsigned int size)
{
	check_memory_region((unsigned long)p, size, true, _RET_IP_);
}
EXPORT_SYMBOL(kasan_check_write);

348 349 350
#undef memset
void *memset(void *addr, int c, size_t len)
{
351
	check_memory_region((unsigned long)addr, len, true, _RET_IP_);
352 353 354 355 356 357 358

	return __memset(addr, c, len);
}

#undef memmove
void *memmove(void *dest, const void *src, size_t len)
{
359 360
	check_memory_region((unsigned long)src, len, false, _RET_IP_);
	check_memory_region((unsigned long)dest, len, true, _RET_IP_);
361 362 363 364 365 366 367

	return __memmove(dest, src, len);
}

#undef memcpy
void *memcpy(void *dest, const void *src, size_t len)
{
368 369
	check_memory_region((unsigned long)src, len, false, _RET_IP_);
	check_memory_region((unsigned long)dest, len, true, _RET_IP_);
370 371 372 373

	return __memcpy(dest, src, len);
}

374 375 376 377 378 379 380 381 382 383 384 385 386 387
void kasan_alloc_pages(struct page *page, unsigned int order)
{
	if (likely(!PageHighMem(page)))
		kasan_unpoison_shadow(page_address(page), PAGE_SIZE << order);
}

void kasan_free_pages(struct page *page, unsigned int order)
{
	if (likely(!PageHighMem(page)))
		kasan_poison_shadow(page_address(page),
				PAGE_SIZE << order,
				KASAN_FREE_PAGE);
}

A
Alexander Potapenko 已提交
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
/*
 * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
 * For larger allocations larger redzones are used.
 */
static size_t optimal_redzone(size_t object_size)
{
	int rz =
		object_size <= 64        - 16   ? 16 :
		object_size <= 128       - 32   ? 32 :
		object_size <= 512       - 64   ? 64 :
		object_size <= 4096      - 128  ? 128 :
		object_size <= (1 << 14) - 256  ? 256 :
		object_size <= (1 << 15) - 512  ? 512 :
		object_size <= (1 << 16) - 1024 ? 1024 : 2048;
	return rz;
}

void kasan_cache_create(struct kmem_cache *cache, size_t *size,
			unsigned long *flags)
{
	int redzone_adjust;
409 410
	int orig_size = *size;

A
Alexander Potapenko 已提交
411 412 413 414 415 416 417 418 419 420 421 422
	/* Add alloc meta. */
	cache->kasan_info.alloc_meta_offset = *size;
	*size += sizeof(struct kasan_alloc_meta);

	/* Add free meta. */
	if (cache->flags & SLAB_DESTROY_BY_RCU || cache->ctor ||
	    cache->object_size < sizeof(struct kasan_free_meta)) {
		cache->kasan_info.free_meta_offset = *size;
		*size += sizeof(struct kasan_free_meta);
	}
	redzone_adjust = optimal_redzone(cache->object_size) -
		(*size - cache->object_size);
423

A
Alexander Potapenko 已提交
424 425
	if (redzone_adjust > 0)
		*size += redzone_adjust;
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441

	*size = min(KMALLOC_MAX_SIZE, max(*size, cache->object_size +
					optimal_redzone(cache->object_size)));

	/*
	 * If the metadata doesn't fit, don't enable KASAN at all.
	 */
	if (*size <= cache->kasan_info.alloc_meta_offset ||
			*size <= cache->kasan_info.free_meta_offset) {
		cache->kasan_info.alloc_meta_offset = 0;
		cache->kasan_info.free_meta_offset = 0;
		*size = orig_size;
		return;
	}

	*flags |= SLAB_KASAN;
A
Alexander Potapenko 已提交
442 443
}

444 445 446 447 448
void kasan_cache_shrink(struct kmem_cache *cache)
{
	quarantine_remove_cache(cache);
}

449
void kasan_cache_shutdown(struct kmem_cache *cache)
450 451 452 453
{
	quarantine_remove_cache(cache);
}

454 455 456 457 458 459 460 461
size_t kasan_metadata_size(struct kmem_cache *cache)
{
	return (cache->kasan_info.alloc_meta_offset ?
		sizeof(struct kasan_alloc_meta) : 0) +
		(cache->kasan_info.free_meta_offset ?
		sizeof(struct kasan_free_meta) : 0);
}

462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
void kasan_poison_slab(struct page *page)
{
	kasan_poison_shadow(page_address(page),
			PAGE_SIZE << compound_order(page),
			KASAN_KMALLOC_REDZONE);
}

void kasan_unpoison_object_data(struct kmem_cache *cache, void *object)
{
	kasan_unpoison_shadow(object, cache->object_size);
}

void kasan_poison_object_data(struct kmem_cache *cache, void *object)
{
	kasan_poison_shadow(object,
			round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE),
			KASAN_KMALLOC_REDZONE);
}

481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
static inline int in_irqentry_text(unsigned long ptr)
{
	return (ptr >= (unsigned long)&__irqentry_text_start &&
		ptr < (unsigned long)&__irqentry_text_end) ||
		(ptr >= (unsigned long)&__softirqentry_text_start &&
		 ptr < (unsigned long)&__softirqentry_text_end);
}

static inline void filter_irq_stacks(struct stack_trace *trace)
{
	int i;

	if (!trace->nr_entries)
		return;
	for (i = 0; i < trace->nr_entries; i++)
		if (in_irqentry_text(trace->entries[i])) {
			/* Include the irqentry function into the stack. */
			trace->nr_entries = i + 1;
			break;
		}
}

static inline depot_stack_handle_t save_stack(gfp_t flags)
{
	unsigned long entries[KASAN_STACK_DEPTH];
	struct stack_trace trace = {
		.nr_entries = 0,
		.entries = entries,
		.max_entries = KASAN_STACK_DEPTH,
		.skip = 0
	};

	save_stack_trace(&trace);
	filter_irq_stacks(&trace);
	if (trace.nr_entries != 0 &&
	    trace.entries[trace.nr_entries-1] == ULONG_MAX)
		trace.nr_entries--;

	return depot_save_stack(&trace, flags);
}

static inline void set_track(struct kasan_track *track, gfp_t flags)
A
Alexander Potapenko 已提交
523 524
{
	track->pid = current->pid;
525
	track->stack = save_stack(flags);
A
Alexander Potapenko 已提交
526 527 528 529 530
}

struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache,
					const void *object)
{
531
	BUILD_BUG_ON(sizeof(struct kasan_alloc_meta) > 32);
A
Alexander Potapenko 已提交
532 533 534 535 536 537
	return (void *)object + cache->kasan_info.alloc_meta_offset;
}

struct kasan_free_meta *get_free_info(struct kmem_cache *cache,
				      const void *object)
{
538
	BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
A
Alexander Potapenko 已提交
539 540 541
	return (void *)object + cache->kasan_info.free_meta_offset;
}

542 543 544 545 546 547 548 549 550 551 552
void kasan_init_slab_obj(struct kmem_cache *cache, const void *object)
{
	struct kasan_alloc_meta *alloc_info;

	if (!(cache->flags & SLAB_KASAN))
		return;

	alloc_info = get_alloc_info(cache, object);
	__memset(alloc_info, 0, sizeof(*alloc_info));
}

553
void kasan_slab_alloc(struct kmem_cache *cache, void *object, gfp_t flags)
554
{
555
	kasan_kmalloc(cache, object, cache->object_size, flags);
556 557
}

558
static void kasan_poison_slab_free(struct kmem_cache *cache, void *object)
559 560 561 562 563 564 565 566
{
	unsigned long size = cache->object_size;
	unsigned long rounded_up_size = round_up(size, KASAN_SHADOW_SCALE_SIZE);

	/* RCU slabs could be legally used after free within the RCU period */
	if (unlikely(cache->flags & SLAB_DESTROY_BY_RCU))
		return;

567 568 569 570 571
	kasan_poison_shadow(object, rounded_up_size, KASAN_KMALLOC_FREE);
}

bool kasan_slab_free(struct kmem_cache *cache, void *object)
{
572 573
	s8 shadow_byte;

574 575 576 577
	/* RCU slabs could be legally used after free within the RCU period */
	if (unlikely(cache->flags & SLAB_DESTROY_BY_RCU))
		return false;

578 579
	shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(object));
	if (shadow_byte < 0 || shadow_byte >= KASAN_SHADOW_SCALE_SIZE) {
580
		kasan_report_double_free(cache, object, shadow_byte);
581 582
		return true;
	}
583

584
	kasan_poison_slab_free(cache, object);
585

586 587 588 589 590 591
	if (unlikely(!(cache->flags & SLAB_KASAN)))
		return false;

	set_track(&get_alloc_info(cache, object)->free_track, GFP_NOWAIT);
	quarantine_put(get_free_info(cache, object), cache);
	return true;
592 593
}

594 595
void kasan_kmalloc(struct kmem_cache *cache, const void *object, size_t size,
		   gfp_t flags)
596 597 598 599
{
	unsigned long redzone_start;
	unsigned long redzone_end;

600
	if (gfpflags_allow_blocking(flags))
601 602
		quarantine_reduce();

603 604 605 606 607 608 609 610 611 612 613
	if (unlikely(object == NULL))
		return;

	redzone_start = round_up((unsigned long)(object + size),
				KASAN_SHADOW_SCALE_SIZE);
	redzone_end = round_up((unsigned long)object + cache->object_size,
				KASAN_SHADOW_SCALE_SIZE);

	kasan_unpoison_shadow(object, size);
	kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
		KASAN_KMALLOC_REDZONE);
A
Alexander Potapenko 已提交
614

615 616
	if (cache->flags & SLAB_KASAN)
		set_track(&get_alloc_info(cache, object)->alloc_track, flags);
617 618 619
}
EXPORT_SYMBOL(kasan_kmalloc);

620
void kasan_kmalloc_large(const void *ptr, size_t size, gfp_t flags)
621 622 623 624 625
{
	struct page *page;
	unsigned long redzone_start;
	unsigned long redzone_end;

626
	if (gfpflags_allow_blocking(flags))
627 628
		quarantine_reduce();

629 630 631 632 633 634 635 636 637 638 639 640 641
	if (unlikely(ptr == NULL))
		return;

	page = virt_to_page(ptr);
	redzone_start = round_up((unsigned long)(ptr + size),
				KASAN_SHADOW_SCALE_SIZE);
	redzone_end = (unsigned long)ptr + (PAGE_SIZE << compound_order(page));

	kasan_unpoison_shadow(ptr, size);
	kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
		KASAN_PAGE_REDZONE);
}

642
void kasan_krealloc(const void *object, size_t size, gfp_t flags)
643 644 645 646 647 648 649 650 651
{
	struct page *page;

	if (unlikely(object == ZERO_SIZE_PTR))
		return;

	page = virt_to_head_page(object);

	if (unlikely(!PageSlab(page)))
652
		kasan_kmalloc_large(object, size, flags);
653
	else
654
		kasan_kmalloc(page->slab_cache, object, size, flags);
655 656
}

657
void kasan_poison_kfree(void *ptr)
658 659 660 661 662 663 664 665 666
{
	struct page *page;

	page = virt_to_head_page(ptr);

	if (unlikely(!PageSlab(page)))
		kasan_poison_shadow(ptr, PAGE_SIZE << compound_order(page),
				KASAN_FREE_PAGE);
	else
667
		kasan_poison_slab_free(page->slab_cache, ptr);
668 669
}

670 671 672 673 674 675 676 677
void kasan_kfree_large(const void *ptr)
{
	struct page *page = virt_to_page(ptr);

	kasan_poison_shadow(ptr, PAGE_SIZE << compound_order(page),
			KASAN_FREE_PAGE);
}

678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
int kasan_module_alloc(void *addr, size_t size)
{
	void *ret;
	size_t shadow_size;
	unsigned long shadow_start;

	shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
	shadow_size = round_up(size >> KASAN_SHADOW_SCALE_SHIFT,
			PAGE_SIZE);

	if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
		return -EINVAL;

	ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
			shadow_start + shadow_size,
			GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
			PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
			__builtin_return_address(0));
696 697 698

	if (ret) {
		find_vm_area(addr)->flags |= VM_KASAN;
699
		kmemleak_ignore(ret);
700 701 702 703
		return 0;
	}

	return -ENOMEM;
704 705
}

706
void kasan_free_shadow(const struct vm_struct *vm)
707
{
708 709
	if (vm->flags & VM_KASAN)
		vfree(kasan_mem_to_shadow(vm->addr));
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
}

static void register_global(struct kasan_global *global)
{
	size_t aligned_size = round_up(global->size, KASAN_SHADOW_SCALE_SIZE);

	kasan_unpoison_shadow(global->beg, global->size);

	kasan_poison_shadow(global->beg + aligned_size,
		global->size_with_redzone - aligned_size,
		KASAN_GLOBAL_REDZONE);
}

void __asan_register_globals(struct kasan_global *globals, size_t size)
{
	int i;

	for (i = 0; i < size; i++)
		register_global(&globals[i]);
}
EXPORT_SYMBOL(__asan_register_globals);

void __asan_unregister_globals(struct kasan_global *globals, size_t size)
{
}
EXPORT_SYMBOL(__asan_unregister_globals);

737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
#define DEFINE_ASAN_LOAD_STORE(size)					\
	void __asan_load##size(unsigned long addr)			\
	{								\
		check_memory_region_inline(addr, size, false, _RET_IP_);\
	}								\
	EXPORT_SYMBOL(__asan_load##size);				\
	__alias(__asan_load##size)					\
	void __asan_load##size##_noabort(unsigned long);		\
	EXPORT_SYMBOL(__asan_load##size##_noabort);			\
	void __asan_store##size(unsigned long addr)			\
	{								\
		check_memory_region_inline(addr, size, true, _RET_IP_);	\
	}								\
	EXPORT_SYMBOL(__asan_store##size);				\
	__alias(__asan_store##size)					\
	void __asan_store##size##_noabort(unsigned long);		\
753 754 755 756 757 758 759 760 761 762
	EXPORT_SYMBOL(__asan_store##size##_noabort)

DEFINE_ASAN_LOAD_STORE(1);
DEFINE_ASAN_LOAD_STORE(2);
DEFINE_ASAN_LOAD_STORE(4);
DEFINE_ASAN_LOAD_STORE(8);
DEFINE_ASAN_LOAD_STORE(16);

void __asan_loadN(unsigned long addr, size_t size)
{
763
	check_memory_region(addr, size, false, _RET_IP_);
764 765 766 767 768 769 770 771 772
}
EXPORT_SYMBOL(__asan_loadN);

__alias(__asan_loadN)
void __asan_loadN_noabort(unsigned long, size_t);
EXPORT_SYMBOL(__asan_loadN_noabort);

void __asan_storeN(unsigned long addr, size_t size)
{
773
	check_memory_region(addr, size, true, _RET_IP_);
774 775 776 777 778 779 780 781 782 783
}
EXPORT_SYMBOL(__asan_storeN);

__alias(__asan_storeN)
void __asan_storeN_noabort(unsigned long, size_t);
EXPORT_SYMBOL(__asan_storeN_noabort);

/* to shut up compiler complaints */
void __asan_handle_no_return(void) {}
EXPORT_SYMBOL(__asan_handle_no_return);
A
Andrey Ryabinin 已提交
784

785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
/* Emitted by compiler to poison large objects when they go out of scope. */
void __asan_poison_stack_memory(const void *addr, size_t size)
{
	/*
	 * Addr is KASAN_SHADOW_SCALE_SIZE-aligned and the object is surrounded
	 * by redzones, so we simply round up size to simplify logic.
	 */
	kasan_poison_shadow(addr, round_up(size, KASAN_SHADOW_SCALE_SIZE),
			    KASAN_USE_AFTER_SCOPE);
}
EXPORT_SYMBOL(__asan_poison_stack_memory);

/* Emitted by compiler to unpoison large objects when they go into scope. */
void __asan_unpoison_stack_memory(const void *addr, size_t size)
{
	kasan_unpoison_shadow(addr, size);
}
EXPORT_SYMBOL(__asan_unpoison_stack_memory);

A
Andrey Ryabinin 已提交
804 805 806 807 808 809 810 811 812
#ifdef CONFIG_MEMORY_HOTPLUG
static int kasan_mem_notifier(struct notifier_block *nb,
			unsigned long action, void *data)
{
	return (action == MEM_GOING_ONLINE) ? NOTIFY_BAD : NOTIFY_OK;
}

static int __init kasan_memhotplug_init(void)
{
813 814
	pr_info("WARNING: KASAN doesn't support memory hot-add\n");
	pr_info("Memory hot-add will be disabled\n");
A
Andrey Ryabinin 已提交
815 816 817 818 819 820 821 822

	hotplug_memory_notifier(kasan_mem_notifier, 0);

	return 0;
}

module_init(kasan_memhotplug_init);
#endif