vgic-its.c 64.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * GICv3 ITS emulation
 *
 * Copyright (C) 2015,2016 ARM Ltd.
 * Author: Andre Przywara <andre.przywara@arm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <linux/cpu.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/interrupt.h>
24
#include <linux/list.h>
25
#include <linux/uaccess.h>
26
#include <linux/list_sort.h>
27 28 29 30 31 32 33 34 35 36

#include <linux/irqchip/arm-gic-v3.h>

#include <asm/kvm_emulate.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_mmu.h>

#include "vgic.h"
#include "vgic-mmio.h"

37 38 39
static int vgic_its_save_tables_v0(struct vgic_its *its);
static int vgic_its_restore_tables_v0(struct vgic_its *its);
static int vgic_its_commit_v0(struct vgic_its *its);
40
static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
41
			     struct kvm_vcpu *filter_vcpu, bool needs_inv);
42

43 44 45 46 47 48 49
/*
 * Creates a new (reference to a) struct vgic_irq for a given LPI.
 * If this LPI is already mapped on another ITS, we increase its refcount
 * and return a pointer to the existing structure.
 * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
 * This function returns a pointer to the _unlocked_ structure.
 */
50 51
static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid,
				     struct kvm_vcpu *vcpu)
52 53 54
{
	struct vgic_dist *dist = &kvm->arch.vgic;
	struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq;
55
	int ret;
56 57 58 59 60 61 62

	/* In this case there is no put, since we keep the reference. */
	if (irq)
		return irq;

	irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL);
	if (!irq)
63
		return ERR_PTR(-ENOMEM);
64 65 66 67 68 69 70 71

	INIT_LIST_HEAD(&irq->lpi_list);
	INIT_LIST_HEAD(&irq->ap_list);
	spin_lock_init(&irq->irq_lock);

	irq->config = VGIC_CONFIG_EDGE;
	kref_init(&irq->refcount);
	irq->intid = intid;
72
	irq->target_vcpu = vcpu;
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92

	spin_lock(&dist->lpi_list_lock);

	/*
	 * There could be a race with another vgic_add_lpi(), so we need to
	 * check that we don't add a second list entry with the same LPI.
	 */
	list_for_each_entry(oldirq, &dist->lpi_list_head, lpi_list) {
		if (oldirq->intid != intid)
			continue;

		/* Someone was faster with adding this LPI, lets use that. */
		kfree(irq);
		irq = oldirq;

		/*
		 * This increases the refcount, the caller is expected to
		 * call vgic_put_irq() on the returned pointer once it's
		 * finished with the IRQ.
		 */
93
		vgic_get_irq_kref(irq);
94 95 96 97 98 99 100 101 102 103

		goto out_unlock;
	}

	list_add_tail(&irq->lpi_list, &dist->lpi_list_head);
	dist->lpi_list_count++;

out_unlock:
	spin_unlock(&dist->lpi_list_lock);

104 105 106 107 108
	/*
	 * We "cache" the configuration table entries in our struct vgic_irq's.
	 * However we only have those structs for mapped IRQs, so we read in
	 * the respective config data from memory here upon mapping the LPI.
	 */
109
	ret = update_lpi_config(kvm, irq, NULL, false);
110 111 112 113 114 115 116
	if (ret)
		return ERR_PTR(ret);

	ret = vgic_v3_lpi_sync_pending_status(kvm, irq);
	if (ret)
		return ERR_PTR(ret);

117 118 119
	return irq;
}

120 121 122 123 124
struct its_device {
	struct list_head dev_list;

	/* the head for the list of ITTEs */
	struct list_head itt_head;
125
	u32 num_eventid_bits;
126
	gpa_t itt_addr;
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
	u32 device_id;
};

#define COLLECTION_NOT_MAPPED ((u32)~0)

struct its_collection {
	struct list_head coll_list;

	u32 collection_id;
	u32 target_addr;
};

#define its_is_collection_mapped(coll) ((coll) && \
				((coll)->target_addr != COLLECTION_NOT_MAPPED))

142 143
struct its_ite {
	struct list_head ite_list;
144

145
	struct vgic_irq *irq;
146 147 148 149
	struct its_collection *collection;
	u32 event_id;
};

150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
/**
 * struct vgic_its_abi - ITS abi ops and settings
 * @cte_esz: collection table entry size
 * @dte_esz: device table entry size
 * @ite_esz: interrupt translation table entry size
 * @save tables: save the ITS tables into guest RAM
 * @restore_tables: restore the ITS internal structs from tables
 *  stored in guest RAM
 * @commit: initialize the registers which expose the ABI settings,
 *  especially the entry sizes
 */
struct vgic_its_abi {
	int cte_esz;
	int dte_esz;
	int ite_esz;
	int (*save_tables)(struct vgic_its *its);
	int (*restore_tables)(struct vgic_its *its);
	int (*commit)(struct vgic_its *its);
};

static const struct vgic_its_abi its_table_abi_versions[] = {
	[0] = {.cte_esz = 8, .dte_esz = 8, .ite_esz = 8,
	 .save_tables = vgic_its_save_tables_v0,
	 .restore_tables = vgic_its_restore_tables_v0,
	 .commit = vgic_its_commit_v0,
	},
};

#define NR_ITS_ABIS	ARRAY_SIZE(its_table_abi_versions)

inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its)
{
	return &its_table_abi_versions[its->abi_rev];
}

int vgic_its_set_abi(struct vgic_its *its, int rev)
{
	const struct vgic_its_abi *abi;

	its->abi_rev = rev;
	abi = vgic_its_get_abi(its);
	return abi->commit(its);
}

194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
/*
 * Find and returns a device in the device table for an ITS.
 * Must be called with the its_lock mutex held.
 */
static struct its_device *find_its_device(struct vgic_its *its, u32 device_id)
{
	struct its_device *device;

	list_for_each_entry(device, &its->device_list, dev_list)
		if (device_id == device->device_id)
			return device;

	return NULL;
}

/*
 * Find and returns an interrupt translation table entry (ITTE) for a given
 * Device ID/Event ID pair on an ITS.
 * Must be called with the its_lock mutex held.
 */
214
static struct its_ite *find_ite(struct vgic_its *its, u32 device_id,
215 216 217
				  u32 event_id)
{
	struct its_device *device;
218
	struct its_ite *ite;
219 220 221 222 223

	device = find_its_device(its, device_id);
	if (device == NULL)
		return NULL;

224 225 226
	list_for_each_entry(ite, &device->itt_head, ite_list)
		if (ite->event_id == event_id)
			return ite;
227 228 229 230 231

	return NULL;
}

/* To be used as an iterator this macro misses the enclosing parentheses */
232
#define for_each_lpi_its(dev, ite, its) \
233
	list_for_each_entry(dev, &(its)->device_list, dev_list) \
234
		list_for_each_entry(ite, &(dev)->itt_head, ite_list)
235

236 237 238 239
/*
 * We only implement 48 bits of PA at the moment, although the ITS
 * supports more. Let's be restrictive here.
 */
240
#define BASER_ADDRESS(x)	((x) & GENMASK_ULL(47, 16))
241
#define CBASER_ADDRESS(x)	((x) & GENMASK_ULL(47, 12))
242 243 244

#define GIC_LPI_OFFSET 8192

245
#define VITS_TYPER_IDBITS 16
246
#define VITS_TYPER_DEVBITS 16
247 248
#define VITS_DTE_MAX_DEVID_OFFSET	(BIT(14) - 1)
#define VITS_ITE_MAX_EVENTID_OFFSET	(BIT(16) - 1)
249

250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
/*
 * Finds and returns a collection in the ITS collection table.
 * Must be called with the its_lock mutex held.
 */
static struct its_collection *find_collection(struct vgic_its *its, int coll_id)
{
	struct its_collection *collection;

	list_for_each_entry(collection, &its->collection_list, coll_list) {
		if (coll_id == collection->collection_id)
			return collection;
	}

	return NULL;
}

266 267 268 269 270 271 272 273 274 275
#define LPI_PROP_ENABLE_BIT(p)	((p) & LPI_PROP_ENABLED)
#define LPI_PROP_PRIORITY(p)	((p) & 0xfc)

/*
 * Reads the configuration data for a given LPI from guest memory and
 * updates the fields in struct vgic_irq.
 * If filter_vcpu is not NULL, applies only if the IRQ is targeting this
 * VCPU. Unconditionally applies if filter_vcpu is NULL.
 */
static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
276
			     struct kvm_vcpu *filter_vcpu, bool needs_inv)
277
{
278
	u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
279 280
	u8 prop;
	int ret;
281
	unsigned long flags;
282 283 284 285 286 287 288

	ret = kvm_read_guest(kvm, propbase + irq->intid - GIC_LPI_OFFSET,
			     &prop, 1);

	if (ret)
		return ret;

289
	spin_lock_irqsave(&irq->irq_lock, flags);
290 291 292 293 294

	if (!filter_vcpu || filter_vcpu == irq->target_vcpu) {
		irq->priority = LPI_PROP_PRIORITY(prop);
		irq->enabled = LPI_PROP_ENABLE_BIT(prop);

295 296 297 298
		if (!irq->hw) {
			vgic_queue_irq_unlock(kvm, irq, flags);
			return 0;
		}
299 300
	}

301 302
	spin_unlock_irqrestore(&irq->irq_lock, flags);

303
	if (irq->hw)
304
		return its_prop_update_vlpi(irq->host_irq, prop, needs_inv);
305

306 307
	return 0;
}
308 309

/*
310 311 312
 * Create a snapshot of the current LPIs targeting @vcpu, so that we can
 * enumerate those LPIs without holding any lock.
 * Returns their number and puts the kmalloc'ed array into intid_ptr.
313
 */
314
static int vgic_copy_lpi_list(struct kvm_vcpu *vcpu, u32 **intid_ptr)
315
{
316
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
	struct vgic_irq *irq;
	u32 *intids;
	int irq_count = dist->lpi_list_count, i = 0;

	/*
	 * We use the current value of the list length, which may change
	 * after the kmalloc. We don't care, because the guest shouldn't
	 * change anything while the command handling is still running,
	 * and in the worst case we would miss a new IRQ, which one wouldn't
	 * expect to be covered by this command anyway.
	 */
	intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL);
	if (!intids)
		return -ENOMEM;

	spin_lock(&dist->lpi_list_lock);
	list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
		/* We don't need to "get" the IRQ, as we hold the list lock. */
335 336 337
		if (irq->target_vcpu != vcpu)
			continue;
		intids[i++] = irq->intid;
338 339 340 341
	}
	spin_unlock(&dist->lpi_list_lock);

	*intid_ptr = intids;
342
	return i;
343 344
}

345 346
static int update_affinity(struct vgic_irq *irq, struct kvm_vcpu *vcpu)
{
347 348
	int ret = 0;

349 350 351 352
	spin_lock(&irq->irq_lock);
	irq->target_vcpu = vcpu;
	spin_unlock(&irq->irq_lock);

353 354 355 356 357 358 359 360 361 362 363 364 365
	if (irq->hw) {
		struct its_vlpi_map map;

		ret = its_get_vlpi(irq->host_irq, &map);
		if (ret)
			return ret;

		map.vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;

		ret = its_map_vlpi(irq->host_irq, &map);
	}

	return ret;
366 367
}

368 369 370 371 372 373
/*
 * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI
 * is targeting) to the VGIC's view, which deals with target VCPUs.
 * Needs to be called whenever either the collection for a LPIs has
 * changed or the collection itself got retargeted.
 */
374
static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite)
375 376 377
{
	struct kvm_vcpu *vcpu;

378
	if (!its_is_collection_mapped(ite->collection))
379 380
		return;

381
	vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
382
	update_affinity(ite->irq, vcpu);
383 384 385 386 387 388 389 390 391 392
}

/*
 * Updates the target VCPU for every LPI targeting this collection.
 * Must be called with the its_lock mutex held.
 */
static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its,
				       struct its_collection *coll)
{
	struct its_device *device;
393
	struct its_ite *ite;
394

395 396
	for_each_lpi_its(device, ite, its) {
		if (!ite->collection || coll != ite->collection)
397 398
			continue;

399
		update_affinity_ite(kvm, ite);
400 401 402 403 404 405 406 407 408 409
	}
}

static u32 max_lpis_propbaser(u64 propbaser)
{
	int nr_idbits = (propbaser & 0x1f) + 1;

	return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS);
}

410
/*
411
 * Sync the pending table pending bit of LPIs targeting @vcpu
412 413 414 415 416
 * with our own data structures. This relies on the LPI being
 * mapped before.
 */
static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
{
417
	gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
418 419 420 421 422
	struct vgic_irq *irq;
	int last_byte_offset = -1;
	int ret = 0;
	u32 *intids;
	int nr_irqs, i;
423
	unsigned long flags;
424
	u8 pendmask;
425

426
	nr_irqs = vgic_copy_lpi_list(vcpu, &intids);
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
	if (nr_irqs < 0)
		return nr_irqs;

	for (i = 0; i < nr_irqs; i++) {
		int byte_offset, bit_nr;

		byte_offset = intids[i] / BITS_PER_BYTE;
		bit_nr = intids[i] % BITS_PER_BYTE;

		/*
		 * For contiguously allocated LPIs chances are we just read
		 * this very same byte in the last iteration. Reuse that.
		 */
		if (byte_offset != last_byte_offset) {
			ret = kvm_read_guest(vcpu->kvm, pendbase + byte_offset,
					     &pendmask, 1);
			if (ret) {
				kfree(intids);
				return ret;
			}
			last_byte_offset = byte_offset;
		}

		irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]);
451
		spin_lock_irqsave(&irq->irq_lock, flags);
452
		irq->pending_latch = pendmask & (1U << bit_nr);
453
		vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
454 455 456 457 458 459 460
		vgic_put_irq(vcpu->kvm, irq);
	}

	kfree(intids);

	return ret;
}
461 462 463 464 465

static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
					      struct vgic_its *its,
					      gpa_t addr, unsigned int len)
{
466
	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
467 468 469 470 471 472 473 474 475 476
	u64 reg = GITS_TYPER_PLPIS;

	/*
	 * We use linear CPU numbers for redistributor addressing,
	 * so GITS_TYPER.PTA is 0.
	 * Also we force all PROPBASER registers to be the same, so
	 * CommonLPIAff is 0 as well.
	 * To avoid memory waste in the guest, we keep the number of IDBits and
	 * DevBits low - as least for the time being.
	 */
477
	reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT;
478
	reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT;
479
	reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT;
480 481 482 483 484 485 486 487

	return extract_bytes(reg, addr & 7, len);
}

static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm,
					     struct vgic_its *its,
					     gpa_t addr, unsigned int len)
{
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
	u32 val;

	val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK;
	val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM;
	return val;
}

static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm,
					    struct vgic_its *its,
					    gpa_t addr, unsigned int len,
					    unsigned long val)
{
	u32 rev = GITS_IIDR_REV(val);

	if (rev >= NR_ITS_ABIS)
		return -EINVAL;
	return vgic_its_set_abi(its, rev);
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
}

static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm,
					       struct vgic_its *its,
					       gpa_t addr, unsigned int len)
{
	switch (addr & 0xffff) {
	case GITS_PIDR0:
		return 0x92;	/* part number, bits[7:0] */
	case GITS_PIDR1:
		return 0xb4;	/* part number, bits[11:8] */
	case GITS_PIDR2:
		return GIC_PIDR2_ARCH_GICv3 | 0x0b;
	case GITS_PIDR4:
		return 0x40;	/* This is a 64K software visible page */
	/* The following are the ID registers for (any) GIC. */
	case GITS_CIDR0:
		return 0x0d;
	case GITS_CIDR1:
		return 0xf0;
	case GITS_CIDR2:
		return 0x05;
	case GITS_CIDR3:
		return 0xb1;
	}

	return 0;
}

534 535
int vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its,
			 u32 devid, u32 eventid, struct vgic_irq **irq)
536
{
537
	struct kvm_vcpu *vcpu;
538
	struct its_ite *ite;
539 540

	if (!its->enabled)
541
		return -EBUSY;
542

543 544
	ite = find_ite(its, devid, eventid);
	if (!ite || !its_is_collection_mapped(ite->collection))
545 546
		return E_ITS_INT_UNMAPPED_INTERRUPT;

547
	vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
548 549 550 551 552 553
	if (!vcpu)
		return E_ITS_INT_UNMAPPED_INTERRUPT;

	if (!vcpu->arch.vgic_cpu.lpis_enabled)
		return -EBUSY;

554
	*irq = ite->irq;
555
	return 0;
556 557
}

558
struct vgic_its *vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi)
559
{
560 561
	u64 address;
	struct kvm_io_device *kvm_io_dev;
562 563
	struct vgic_io_device *iodev;

564 565 566 567 568
	if (!vgic_has_its(kvm))
		return ERR_PTR(-ENODEV);

	if (!(msi->flags & KVM_MSI_VALID_DEVID))
		return ERR_PTR(-EINVAL);
569

570 571 572 573 574
	address = (u64)msi->address_hi << 32 | msi->address_lo;

	kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, address);
	if (!kvm_io_dev)
		return ERR_PTR(-EINVAL);
575

576 577
	if (kvm_io_dev->ops != &kvm_io_gic_ops)
		return ERR_PTR(-EINVAL);
578

579
	iodev = container_of(kvm_io_dev, struct vgic_io_device, dev);
580
	if (iodev->iodev_type != IODEV_ITS)
581
		return ERR_PTR(-EINVAL);
582

583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
	return iodev->its;
}

/*
 * Find the target VCPU and the LPI number for a given devid/eventid pair
 * and make this IRQ pending, possibly injecting it.
 * Must be called with the its_lock mutex held.
 * Returns 0 on success, a positive error value for any ITS mapping
 * related errors and negative error values for generic errors.
 */
static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
				u32 devid, u32 eventid)
{
	struct vgic_irq *irq = NULL;
	unsigned long flags;
	int err;
599

600 601 602 603
	err = vgic_its_resolve_lpi(kvm, its, devid, eventid, &irq);
	if (err)
		return err;

604 605 606 607
	if (irq->hw)
		return irq_set_irqchip_state(irq->host_irq,
					     IRQCHIP_STATE_PENDING, true);

608 609 610 611 612
	spin_lock_irqsave(&irq->irq_lock, flags);
	irq->pending_latch = true;
	vgic_queue_irq_unlock(kvm, irq, flags);

	return 0;
613 614
}

615 616 617 618
/*
 * Queries the KVM IO bus framework to get the ITS pointer from the given
 * doorbell address.
 * We then call vgic_its_trigger_msi() with the decoded data.
619
 * According to the KVM_SIGNAL_MSI API description returns 1 on success.
620 621 622
 */
int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
{
623
	struct vgic_its *its;
624
	int ret;
625

626 627 628
	its = vgic_msi_to_its(kvm, msi);
	if (IS_ERR(its))
		return PTR_ERR(its);
629

630 631 632
	mutex_lock(&its->its_lock);
	ret = vgic_its_trigger_msi(kvm, its, msi->devid, msi->data);
	mutex_unlock(&its->its_lock);
633

634 635 636 637 638 639 640 641 642 643 644 645
	if (ret < 0)
		return ret;

	/*
	 * KVM_SIGNAL_MSI demands a return value > 0 for success and 0
	 * if the guest has blocked the MSI. So we map any LPI mapping
	 * related error to that.
	 */
	if (ret)
		return 0;
	else
		return 1;
646 647
}

648
/* Requires the its_lock to be held. */
649
static void its_free_ite(struct kvm *kvm, struct its_ite *ite)
650
{
651
	list_del(&ite->ite_list);
652 653

	/* This put matches the get in vgic_add_lpi. */
654 655 656 657
	if (ite->irq) {
		if (ite->irq->hw)
			WARN_ON(its_unmap_vlpi(ite->irq->host_irq));

658
		vgic_put_irq(kvm, ite->irq);
659
	}
660

661
	kfree(ite);
662 663
}

664 665 666 667 668 669 670
static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
{
	return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1);
}

#define its_cmd_get_command(cmd)	its_cmd_mask_field(cmd, 0,  0,  8)
#define its_cmd_get_deviceid(cmd)	its_cmd_mask_field(cmd, 0, 32, 32)
671
#define its_cmd_get_size(cmd)		(its_cmd_mask_field(cmd, 1,  0,  5) + 1)
672 673 674
#define its_cmd_get_id(cmd)		its_cmd_mask_field(cmd, 1,  0, 32)
#define its_cmd_get_physical_id(cmd)	its_cmd_mask_field(cmd, 1, 32, 32)
#define its_cmd_get_collection(cmd)	its_cmd_mask_field(cmd, 2,  0, 16)
675
#define its_cmd_get_ittaddr(cmd)	(its_cmd_mask_field(cmd, 2,  8, 44) << 8)
676 677 678 679 680 681 682 683 684 685 686 687
#define its_cmd_get_target_addr(cmd)	its_cmd_mask_field(cmd, 2, 16, 32)
#define its_cmd_get_validbit(cmd)	its_cmd_mask_field(cmd, 2, 63,  1)

/*
 * The DISCARD command frees an Interrupt Translation Table Entry (ITTE).
 * Must be called with the its_lock mutex held.
 */
static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its,
				       u64 *its_cmd)
{
	u32 device_id = its_cmd_get_deviceid(its_cmd);
	u32 event_id = its_cmd_get_id(its_cmd);
688
	struct its_ite *ite;
689 690


691 692
	ite = find_ite(its, device_id, event_id);
	if (ite && ite->collection) {
693 694 695 696 697
		/*
		 * Though the spec talks about removing the pending state, we
		 * don't bother here since we clear the ITTE anyway and the
		 * pending state is a property of the ITTE struct.
		 */
698
		its_free_ite(kvm, ite);
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
		return 0;
	}

	return E_ITS_DISCARD_UNMAPPED_INTERRUPT;
}

/*
 * The MOVI command moves an ITTE to a different collection.
 * Must be called with the its_lock mutex held.
 */
static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
				    u64 *its_cmd)
{
	u32 device_id = its_cmd_get_deviceid(its_cmd);
	u32 event_id = its_cmd_get_id(its_cmd);
	u32 coll_id = its_cmd_get_collection(its_cmd);
	struct kvm_vcpu *vcpu;
716
	struct its_ite *ite;
717 718
	struct its_collection *collection;

719 720
	ite = find_ite(its, device_id, event_id);
	if (!ite)
721 722
		return E_ITS_MOVI_UNMAPPED_INTERRUPT;

723
	if (!its_is_collection_mapped(ite->collection))
724 725 726 727 728 729
		return E_ITS_MOVI_UNMAPPED_COLLECTION;

	collection = find_collection(its, coll_id);
	if (!its_is_collection_mapped(collection))
		return E_ITS_MOVI_UNMAPPED_COLLECTION;

730
	ite->collection = collection;
731 732
	vcpu = kvm_get_vcpu(kvm, collection->target_addr);

733
	return update_affinity(ite->irq, vcpu);
734 735
}

736 737 738 739
/*
 * Check whether an ID can be stored into the corresponding guest table.
 * For a direct table this is pretty easy, but gets a bit nasty for
 * indirect tables. We check whether the resulting guest physical address
740
 * is actually valid (covered by a memslot and guest accessible).
741 742
 * For this we have to read the respective first level entry.
 */
743 744
static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id,
			      gpa_t *eaddr)
745 746
{
	int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
747 748
	u64 indirect_ptr, type = GITS_BASER_TYPE(baser);
	int esz = GITS_BASER_ENTRY_SIZE(baser);
749 750
	int index;
	gfn_t gfn;
751 752 753 754 755 756 757 758 759 760 761 762 763 764

	switch (type) {
	case GITS_BASER_TYPE_DEVICE:
		if (id >= BIT_ULL(VITS_TYPER_DEVBITS))
			return false;
		break;
	case GITS_BASER_TYPE_COLLECTION:
		/* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */
		if (id >= BIT_ULL(16))
			return false;
		break;
	default:
		return false;
	}
765 766 767 768

	if (!(baser & GITS_BASER_INDIRECT)) {
		phys_addr_t addr;

769
		if (id >= (l1_tbl_size / esz))
770 771
			return false;

772
		addr = BASER_ADDRESS(baser) + id * esz;
773 774
		gfn = addr >> PAGE_SHIFT;

775 776
		if (eaddr)
			*eaddr = addr;
777 778 779 780
		return kvm_is_visible_gfn(its->dev->kvm, gfn);
	}

	/* calculate and check the index into the 1st level */
781
	index = id / (SZ_64K / esz);
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
	if (index >= (l1_tbl_size / sizeof(u64)))
		return false;

	/* Each 1st level entry is represented by a 64-bit value. */
	if (kvm_read_guest(its->dev->kvm,
			   BASER_ADDRESS(baser) + index * sizeof(indirect_ptr),
			   &indirect_ptr, sizeof(indirect_ptr)))
		return false;

	indirect_ptr = le64_to_cpu(indirect_ptr);

	/* check the valid bit of the first level entry */
	if (!(indirect_ptr & BIT_ULL(63)))
		return false;

	/*
	 * Mask the guest physical address and calculate the frame number.
	 * Any address beyond our supported 48 bits of PA will be caught
	 * by the actual check in the final step.
	 */
	indirect_ptr &= GENMASK_ULL(51, 16);

	/* Find the address of the actual entry */
805 806
	index = id % (SZ_64K / esz);
	indirect_ptr += index * esz;
807 808
	gfn = indirect_ptr >> PAGE_SHIFT;

809 810
	if (eaddr)
		*eaddr = indirect_ptr;
811 812 813
	return kvm_is_visible_gfn(its->dev->kvm, gfn);
}

814 815
static int vgic_its_alloc_collection(struct vgic_its *its,
				     struct its_collection **colp,
816 817
				     u32 coll_id)
{
818 819
	struct its_collection *collection;

820
	if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
821 822
		return E_ITS_MAPC_COLLECTION_OOR;

823
	collection = kzalloc(sizeof(*collection), GFP_KERNEL);
824 825
	if (!collection)
		return -ENOMEM;
826

827 828 829 830
	collection->collection_id = coll_id;
	collection->target_addr = COLLECTION_NOT_MAPPED;

	list_add_tail(&collection->coll_list, &its->collection_list);
831 832 833 834 835 836 837 838 839
	*colp = collection;

	return 0;
}

static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id)
{
	struct its_collection *collection;
	struct its_device *device;
840
	struct its_ite *ite;
841 842 843 844 845 846 847 848 849 850

	/*
	 * Clearing the mapping for that collection ID removes the
	 * entry from the list. If there wasn't any before, we can
	 * go home early.
	 */
	collection = find_collection(its, coll_id);
	if (!collection)
		return;

851 852 853 854
	for_each_lpi_its(device, ite, its)
		if (ite->collection &&
		    ite->collection->collection_id == coll_id)
			ite->collection = NULL;
855 856 857

	list_del(&collection->coll_list);
	kfree(collection);
858 859
}

860 861 862
/* Must be called with its_lock mutex held */
static struct its_ite *vgic_its_alloc_ite(struct its_device *device,
					  struct its_collection *collection,
863
					  u32 event_id)
864 865 866 867 868 869 870 871 872 873 874 875 876 877
{
	struct its_ite *ite;

	ite = kzalloc(sizeof(*ite), GFP_KERNEL);
	if (!ite)
		return ERR_PTR(-ENOMEM);

	ite->event_id	= event_id;
	ite->collection = collection;

	list_add_tail(&ite->ite_list, &device->itt_head);
	return ite;
}

878 879 880 881 882
/*
 * The MAPTI and MAPI commands map LPIs to ITTEs.
 * Must be called with its_lock mutex held.
 */
static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
883
				    u64 *its_cmd)
884 885 886 887
{
	u32 device_id = its_cmd_get_deviceid(its_cmd);
	u32 event_id = its_cmd_get_id(its_cmd);
	u32 coll_id = its_cmd_get_collection(its_cmd);
888
	struct its_ite *ite;
889
	struct kvm_vcpu *vcpu = NULL;
890 891
	struct its_device *device;
	struct its_collection *collection, *new_coll = NULL;
892
	struct vgic_irq *irq;
893
	int lpi_nr;
894 895 896 897 898

	device = find_its_device(its, device_id);
	if (!device)
		return E_ITS_MAPTI_UNMAPPED_DEVICE;

899 900 901
	if (event_id >= BIT_ULL(device->num_eventid_bits))
		return E_ITS_MAPTI_ID_OOR;

902
	if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI)
903 904 905 906
		lpi_nr = its_cmd_get_physical_id(its_cmd);
	else
		lpi_nr = event_id;
	if (lpi_nr < GIC_LPI_OFFSET ||
907 908 909
	    lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser))
		return E_ITS_MAPTI_PHYSICALID_OOR;

910
	/* If there is an existing mapping, behavior is UNPREDICTABLE. */
911
	if (find_ite(its, device_id, event_id))
912 913
		return 0;

914 915 916 917 918 919
	collection = find_collection(its, coll_id);
	if (!collection) {
		int ret = vgic_its_alloc_collection(its, &collection, coll_id);
		if (ret)
			return ret;
		new_coll = collection;
920 921
	}

922
	ite = vgic_its_alloc_ite(device, collection, event_id);
923
	if (IS_ERR(ite)) {
924 925
		if (new_coll)
			vgic_its_free_collection(its, coll_id);
926
		return PTR_ERR(ite);
927 928
	}

929 930 931 932
	if (its_is_collection_mapped(collection))
		vcpu = kvm_get_vcpu(kvm, collection->target_addr);

	irq = vgic_add_lpi(kvm, lpi_nr, vcpu);
933 934 935
	if (IS_ERR(irq)) {
		if (new_coll)
			vgic_its_free_collection(its, coll_id);
936
		its_free_ite(kvm, ite);
937 938
		return PTR_ERR(irq);
	}
939
	ite->irq = irq;
940

941 942 943 944
	return 0;
}

/* Requires the its_lock to be held. */
945
static void vgic_its_free_device(struct kvm *kvm, struct its_device *device)
946
{
947
	struct its_ite *ite, *temp;
948 949 950 951 952 953

	/*
	 * The spec says that unmapping a device with still valid
	 * ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
	 * since we cannot leave the memory unreferenced.
	 */
954 955
	list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list)
		its_free_ite(kvm, ite);
956 957 958 959 960

	list_del(&device->dev_list);
	kfree(device);
}

961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
/* its lock must be held */
static void vgic_its_free_device_list(struct kvm *kvm, struct vgic_its *its)
{
	struct its_device *cur, *temp;

	list_for_each_entry_safe(cur, temp, &its->device_list, dev_list)
		vgic_its_free_device(kvm, cur);
}

/* its lock must be held */
static void vgic_its_free_collection_list(struct kvm *kvm, struct vgic_its *its)
{
	struct its_collection *cur, *temp;

	list_for_each_entry_safe(cur, temp, &its->collection_list, coll_list)
		vgic_its_free_collection(its, cur->collection_id);
}

979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
/* Must be called with its_lock mutex held */
static struct its_device *vgic_its_alloc_device(struct vgic_its *its,
						u32 device_id, gpa_t itt_addr,
						u8 num_eventid_bits)
{
	struct its_device *device;

	device = kzalloc(sizeof(*device), GFP_KERNEL);
	if (!device)
		return ERR_PTR(-ENOMEM);

	device->device_id = device_id;
	device->itt_addr = itt_addr;
	device->num_eventid_bits = num_eventid_bits;
	INIT_LIST_HEAD(&device->itt_head);

	list_add_tail(&device->dev_list, &its->device_list);
	return device;
}

999 1000 1001 1002 1003 1004 1005 1006 1007
/*
 * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
 * Must be called with the its_lock mutex held.
 */
static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
				    u64 *its_cmd)
{
	u32 device_id = its_cmd_get_deviceid(its_cmd);
	bool valid = its_cmd_get_validbit(its_cmd);
1008
	u8 num_eventid_bits = its_cmd_get_size(its_cmd);
1009
	gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd);
1010 1011
	struct its_device *device;

1012
	if (!vgic_its_check_id(its, its->baser_device_table, device_id, NULL))
1013 1014
		return E_ITS_MAPD_DEVICE_OOR;

1015 1016 1017
	if (valid && num_eventid_bits > VITS_TYPER_IDBITS)
		return E_ITS_MAPD_ITTSIZE_OOR;

1018 1019 1020 1021 1022 1023 1024 1025
	device = find_its_device(its, device_id);

	/*
	 * The spec says that calling MAPD on an already mapped device
	 * invalidates all cached data for this device. We implement this
	 * by removing the mapping and re-establishing it.
	 */
	if (device)
1026
		vgic_its_free_device(kvm, device);
1027 1028 1029 1030 1031 1032 1033 1034

	/*
	 * The spec does not say whether unmapping a not-mapped device
	 * is an error, so we are done in any case.
	 */
	if (!valid)
		return 0;

1035 1036 1037 1038
	device = vgic_its_alloc_device(its, device_id, itt_addr,
				       num_eventid_bits);
	if (IS_ERR(device))
		return PTR_ERR(device);
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062

	return 0;
}

/*
 * The MAPC command maps collection IDs to redistributors.
 * Must be called with the its_lock mutex held.
 */
static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its,
				    u64 *its_cmd)
{
	u16 coll_id;
	u32 target_addr;
	struct its_collection *collection;
	bool valid;

	valid = its_cmd_get_validbit(its_cmd);
	coll_id = its_cmd_get_collection(its_cmd);
	target_addr = its_cmd_get_target_addr(its_cmd);

	if (target_addr >= atomic_read(&kvm->online_vcpus))
		return E_ITS_MAPC_PROCNUM_OOR;

	if (!valid) {
1063
		vgic_its_free_collection(its, coll_id);
1064
	} else {
1065 1066
		collection = find_collection(its, coll_id);

1067
		if (!collection) {
1068
			int ret;
1069

1070 1071 1072 1073
			ret = vgic_its_alloc_collection(its, &collection,
							coll_id);
			if (ret)
				return ret;
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
			collection->target_addr = target_addr;
		} else {
			collection->target_addr = target_addr;
			update_affinity_collection(kvm, its, collection);
		}
	}

	return 0;
}

/*
 * The CLEAR command removes the pending state for a particular LPI.
 * Must be called with the its_lock mutex held.
 */
static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its,
				     u64 *its_cmd)
{
	u32 device_id = its_cmd_get_deviceid(its_cmd);
	u32 event_id = its_cmd_get_id(its_cmd);
1093
	struct its_ite *ite;
1094 1095


1096 1097
	ite = find_ite(its, device_id, event_id);
	if (!ite)
1098 1099
		return E_ITS_CLEAR_UNMAPPED_INTERRUPT;

1100
	ite->irq->pending_latch = false;
1101

1102 1103 1104 1105
	if (ite->irq->hw)
		return irq_set_irqchip_state(ite->irq->host_irq,
					     IRQCHIP_STATE_PENDING, false);

1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
	return 0;
}

/*
 * The INV command syncs the configuration bits from the memory table.
 * Must be called with the its_lock mutex held.
 */
static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its,
				   u64 *its_cmd)
{
	u32 device_id = its_cmd_get_deviceid(its_cmd);
	u32 event_id = its_cmd_get_id(its_cmd);
1118
	struct its_ite *ite;
1119 1120


1121 1122
	ite = find_ite(its, device_id, event_id);
	if (!ite)
1123 1124
		return E_ITS_INV_UNMAPPED_INTERRUPT;

1125
	return update_lpi_config(kvm, ite->irq, NULL, true);
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
}

/*
 * The INVALL command requests flushing of all IRQ data in this collection.
 * Find the VCPU mapped to that collection, then iterate over the VM's list
 * of mapped LPIs and update the configuration for each IRQ which targets
 * the specified vcpu. The configuration will be read from the in-memory
 * configuration table.
 * Must be called with the its_lock mutex held.
 */
static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its,
				      u64 *its_cmd)
{
	u32 coll_id = its_cmd_get_collection(its_cmd);
	struct its_collection *collection;
	struct kvm_vcpu *vcpu;
	struct vgic_irq *irq;
	u32 *intids;
	int irq_count, i;

	collection = find_collection(its, coll_id);
	if (!its_is_collection_mapped(collection))
		return E_ITS_INVALL_UNMAPPED_COLLECTION;

	vcpu = kvm_get_vcpu(kvm, collection->target_addr);

1152
	irq_count = vgic_copy_lpi_list(vcpu, &intids);
1153 1154 1155 1156 1157 1158 1159
	if (irq_count < 0)
		return irq_count;

	for (i = 0; i < irq_count; i++) {
		irq = vgic_get_irq(kvm, NULL, intids[i]);
		if (!irq)
			continue;
1160
		update_lpi_config(kvm, irq, vcpu, false);
1161 1162 1163 1164 1165
		vgic_put_irq(kvm, irq);
	}

	kfree(intids);

1166 1167 1168
	if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.its_vm)
		its_invall_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe);

1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
	return 0;
}

/*
 * The MOVALL command moves the pending state of all IRQs targeting one
 * redistributor to another. We don't hold the pending state in the VCPUs,
 * but in the IRQs instead, so there is really not much to do for us here.
 * However the spec says that no IRQ must target the old redistributor
 * afterwards, so we make sure that no LPI is using the associated target_vcpu.
 * This command affects all LPIs in the system that target that redistributor.
 */
static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its,
				      u64 *its_cmd)
{
	u32 target1_addr = its_cmd_get_target_addr(its_cmd);
	u32 target2_addr = its_cmd_mask_field(its_cmd, 3, 16, 32);
	struct kvm_vcpu *vcpu1, *vcpu2;
	struct vgic_irq *irq;
1187 1188
	u32 *intids;
	int irq_count, i;
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199

	if (target1_addr >= atomic_read(&kvm->online_vcpus) ||
	    target2_addr >= atomic_read(&kvm->online_vcpus))
		return E_ITS_MOVALL_PROCNUM_OOR;

	if (target1_addr == target2_addr)
		return 0;

	vcpu1 = kvm_get_vcpu(kvm, target1_addr);
	vcpu2 = kvm_get_vcpu(kvm, target2_addr);

1200 1201 1202
	irq_count = vgic_copy_lpi_list(vcpu1, &intids);
	if (irq_count < 0)
		return irq_count;
1203

1204 1205
	for (i = 0; i < irq_count; i++) {
		irq = vgic_get_irq(kvm, NULL, intids[i]);
1206

1207
		update_affinity(irq, vcpu2);
1208

1209
		vgic_put_irq(kvm, irq);
1210 1211
	}

1212
	kfree(intids);
1213 1214 1215
	return 0;
}

1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
/*
 * The INT command injects the LPI associated with that DevID/EvID pair.
 * Must be called with the its_lock mutex held.
 */
static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its,
				   u64 *its_cmd)
{
	u32 msi_data = its_cmd_get_id(its_cmd);
	u64 msi_devid = its_cmd_get_deviceid(its_cmd);

1226
	return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data);
1227 1228
}

1229 1230 1231 1232
/*
 * This function is called with the its_cmd lock held, but the ITS data
 * structure lock dropped.
 */
1233 1234 1235
static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its,
				   u64 *its_cmd)
{
1236 1237 1238
	int ret = -ENODEV;

	mutex_lock(&its->its_lock);
1239
	switch (its_cmd_get_command(its_cmd)) {
1240 1241 1242 1243 1244 1245 1246
	case GITS_CMD_MAPD:
		ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd);
		break;
	case GITS_CMD_MAPC:
		ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd);
		break;
	case GITS_CMD_MAPI:
1247
		ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1248 1249
		break;
	case GITS_CMD_MAPTI:
1250
		ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
		break;
	case GITS_CMD_MOVI:
		ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd);
		break;
	case GITS_CMD_DISCARD:
		ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd);
		break;
	case GITS_CMD_CLEAR:
		ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd);
		break;
	case GITS_CMD_MOVALL:
		ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd);
		break;
1264 1265 1266
	case GITS_CMD_INT:
		ret = vgic_its_cmd_handle_int(kvm, its, its_cmd);
		break;
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
	case GITS_CMD_INV:
		ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd);
		break;
	case GITS_CMD_INVALL:
		ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd);
		break;
	case GITS_CMD_SYNC:
		/* we ignore this command: we are in sync all of the time */
		ret = 0;
		break;
	}
	mutex_unlock(&its->its_lock);

	return ret;
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
}

static u64 vgic_sanitise_its_baser(u64 reg)
{
	reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK,
				  GITS_BASER_SHAREABILITY_SHIFT,
				  vgic_sanitise_shareability);
	reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK,
				  GITS_BASER_INNER_CACHEABILITY_SHIFT,
				  vgic_sanitise_inner_cacheability);
	reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK,
				  GITS_BASER_OUTER_CACHEABILITY_SHIFT,
				  vgic_sanitise_outer_cacheability);

	/* Bits 15:12 contain bits 51:48 of the PA, which we don't support. */
	reg &= ~GENMASK_ULL(15, 12);

	/* We support only one (ITS) page size: 64K */
	reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K;

	return reg;
}

static u64 vgic_sanitise_its_cbaser(u64 reg)
{
	reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK,
				  GITS_CBASER_SHAREABILITY_SHIFT,
				  vgic_sanitise_shareability);
	reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK,
				  GITS_CBASER_INNER_CACHEABILITY_SHIFT,
				  vgic_sanitise_inner_cacheability);
	reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK,
				  GITS_CBASER_OUTER_CACHEABILITY_SHIFT,
				  vgic_sanitise_outer_cacheability);

	/*
	 * Sanitise the physical address to be 64k aligned.
	 * Also limit the physical addresses to 48 bits.
	 */
	reg &= ~(GENMASK_ULL(51, 48) | GENMASK_ULL(15, 12));

	return reg;
}

static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm,
					       struct vgic_its *its,
					       gpa_t addr, unsigned int len)
{
	return extract_bytes(its->cbaser, addr & 7, len);
}

static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its,
				       gpa_t addr, unsigned int len,
				       unsigned long val)
{
	/* When GITS_CTLR.Enable is 1, this register is RO. */
	if (its->enabled)
		return;

	mutex_lock(&its->cmd_lock);
	its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val);
	its->cbaser = vgic_sanitise_its_cbaser(its->cbaser);
	its->creadr = 0;
	/*
	 * CWRITER is architecturally UNKNOWN on reset, but we need to reset
	 * it to CREADR to make sure we start with an empty command buffer.
	 */
	its->cwriter = its->creadr;
	mutex_unlock(&its->cmd_lock);
}

#define ITS_CMD_BUFFER_SIZE(baser)	((((baser) & 0xff) + 1) << 12)
#define ITS_CMD_SIZE			32
#define ITS_CMD_OFFSET(reg)		((reg) & GENMASK(19, 5))

1356 1357
/* Must be called with the cmd_lock held. */
static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its)
1358 1359 1360 1361
{
	gpa_t cbaser;
	u64 cmd_buf[4];

1362 1363
	/* Commands are only processed when the ITS is enabled. */
	if (!its->enabled)
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
		return;

	cbaser = CBASER_ADDRESS(its->cbaser);

	while (its->cwriter != its->creadr) {
		int ret = kvm_read_guest(kvm, cbaser + its->creadr,
					 cmd_buf, ITS_CMD_SIZE);
		/*
		 * If kvm_read_guest() fails, this could be due to the guest
		 * programming a bogus value in CBASER or something else going
		 * wrong from which we cannot easily recover.
		 * According to section 6.3.2 in the GICv3 spec we can just
		 * ignore that command then.
		 */
		if (!ret)
			vgic_its_handle_command(kvm, its, cmd_buf);

		its->creadr += ITS_CMD_SIZE;
		if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser))
			its->creadr = 0;
	}
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
}

/*
 * By writing to CWRITER the guest announces new commands to be processed.
 * To avoid any races in the first place, we take the its_cmd lock, which
 * protects our ring buffer variables, so that there is only one user
 * per ITS handling commands at a given time.
 */
static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its,
					gpa_t addr, unsigned int len,
					unsigned long val)
{
	u64 reg;

	if (!its)
		return;

	mutex_lock(&its->cmd_lock);

	reg = update_64bit_reg(its->cwriter, addr & 7, len, val);
	reg = ITS_CMD_OFFSET(reg);
	if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
		mutex_unlock(&its->cmd_lock);
		return;
	}
	its->cwriter = reg;

	vgic_its_process_commands(kvm, its);
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430

	mutex_unlock(&its->cmd_lock);
}

static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm,
						struct vgic_its *its,
						gpa_t addr, unsigned int len)
{
	return extract_bytes(its->cwriter, addr & 0x7, len);
}

static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm,
					       struct vgic_its *its,
					       gpa_t addr, unsigned int len)
{
	return extract_bytes(its->creadr, addr & 0x7, len);
}

1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm,
					      struct vgic_its *its,
					      gpa_t addr, unsigned int len,
					      unsigned long val)
{
	u32 cmd_offset;
	int ret = 0;

	mutex_lock(&its->cmd_lock);

	if (its->enabled) {
		ret = -EBUSY;
		goto out;
	}

	cmd_offset = ITS_CMD_OFFSET(val);
	if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
		ret = -EINVAL;
		goto out;
	}

	its->creadr = cmd_offset;
out:
	mutex_unlock(&its->cmd_lock);
	return ret;
}

1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
#define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm,
					      struct vgic_its *its,
					      gpa_t addr, unsigned int len)
{
	u64 reg;

	switch (BASER_INDEX(addr)) {
	case 0:
		reg = its->baser_device_table;
		break;
	case 1:
		reg = its->baser_coll_table;
		break;
	default:
		reg = 0;
		break;
	}

	return extract_bytes(reg, addr & 7, len);
}

#define GITS_BASER_RO_MASK	(GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56))
static void vgic_mmio_write_its_baser(struct kvm *kvm,
				      struct vgic_its *its,
				      gpa_t addr, unsigned int len,
				      unsigned long val)
{
1486
	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
1487
	u64 entry_size, table_type;
1488 1489 1490 1491 1492 1493 1494 1495 1496
	u64 reg, *regptr, clearbits = 0;

	/* When GITS_CTLR.Enable is 1, we ignore write accesses. */
	if (its->enabled)
		return;

	switch (BASER_INDEX(addr)) {
	case 0:
		regptr = &its->baser_device_table;
1497
		entry_size = abi->dte_esz;
1498
		table_type = GITS_BASER_TYPE_DEVICE;
1499 1500 1501
		break;
	case 1:
		regptr = &its->baser_coll_table;
1502
		entry_size = abi->cte_esz;
1503
		table_type = GITS_BASER_TYPE_COLLECTION;
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
		clearbits = GITS_BASER_INDIRECT;
		break;
	default:
		return;
	}

	reg = update_64bit_reg(*regptr, addr & 7, len, val);
	reg &= ~GITS_BASER_RO_MASK;
	reg &= ~clearbits;

	reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT;
1515
	reg |= table_type << GITS_BASER_TYPE_SHIFT;
1516 1517 1518
	reg = vgic_sanitise_its_baser(reg);

	*regptr = reg;
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532

	if (!(reg & GITS_BASER_VALID)) {
		/* Take the its_lock to prevent a race with a save/restore */
		mutex_lock(&its->its_lock);
		switch (table_type) {
		case GITS_BASER_TYPE_DEVICE:
			vgic_its_free_device_list(kvm, its);
			break;
		case GITS_BASER_TYPE_COLLECTION:
			vgic_its_free_collection_list(kvm, its);
			break;
		}
		mutex_unlock(&its->its_lock);
	}
1533 1534
}

1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu,
					     struct vgic_its *its,
					     gpa_t addr, unsigned int len)
{
	u32 reg = 0;

	mutex_lock(&its->cmd_lock);
	if (its->creadr == its->cwriter)
		reg |= GITS_CTLR_QUIESCENT;
	if (its->enabled)
		reg |= GITS_CTLR_ENABLE;
	mutex_unlock(&its->cmd_lock);

	return reg;
}

static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its,
				     gpa_t addr, unsigned int len,
				     unsigned long val)
{
	mutex_lock(&its->cmd_lock);

1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
	/*
	 * It is UNPREDICTABLE to enable the ITS if any of the CBASER or
	 * device/collection BASER are invalid
	 */
	if (!its->enabled && (val & GITS_CTLR_ENABLE) &&
		(!(its->baser_device_table & GITS_BASER_VALID) ||
		 !(its->baser_coll_table & GITS_BASER_VALID) ||
		 !(its->cbaser & GITS_CBASER_VALID)))
		goto out;

1567 1568 1569 1570 1571 1572 1573 1574
	its->enabled = !!(val & GITS_CTLR_ENABLE);

	/*
	 * Try to process any pending commands. This function bails out early
	 * if the ITS is disabled or no commands have been queued.
	 */
	vgic_its_process_commands(kvm, its);

1575
out:
1576 1577 1578
	mutex_unlock(&its->cmd_lock);
}

1579 1580 1581 1582 1583 1584 1585 1586 1587
#define REGISTER_ITS_DESC(off, rd, wr, length, acc)		\
{								\
	.reg_offset = off,					\
	.len = length,						\
	.access_flags = acc,					\
	.its_read = rd,						\
	.its_write = wr,					\
}

1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
#define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\
{								\
	.reg_offset = off,					\
	.len = length,						\
	.access_flags = acc,					\
	.its_read = rd,						\
	.its_write = wr,					\
	.uaccess_its_write = uwr,				\
}

1598 1599 1600 1601 1602 1603 1604 1605
static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its,
			      gpa_t addr, unsigned int len, unsigned long val)
{
	/* Ignore */
}

static struct vgic_register_region its_registers[] = {
	REGISTER_ITS_DESC(GITS_CTLR,
1606
		vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4,
1607
		VGIC_ACCESS_32bit),
1608 1609 1610
	REGISTER_ITS_DESC_UACCESS(GITS_IIDR,
		vgic_mmio_read_its_iidr, its_mmio_write_wi,
		vgic_mmio_uaccess_write_its_iidr, 4,
1611 1612
		VGIC_ACCESS_32bit),
	REGISTER_ITS_DESC(GITS_TYPER,
1613
		vgic_mmio_read_its_typer, its_mmio_write_wi, 8,
1614 1615
		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
	REGISTER_ITS_DESC(GITS_CBASER,
1616
		vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8,
1617 1618
		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
	REGISTER_ITS_DESC(GITS_CWRITER,
1619
		vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8,
1620
		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1621 1622 1623
	REGISTER_ITS_DESC_UACCESS(GITS_CREADR,
		vgic_mmio_read_its_creadr, its_mmio_write_wi,
		vgic_mmio_uaccess_write_its_creadr, 8,
1624 1625
		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
	REGISTER_ITS_DESC(GITS_BASER,
1626
		vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40,
1627 1628
		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
	REGISTER_ITS_DESC(GITS_IDREGS_BASE,
1629
		vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30,
1630 1631 1632
		VGIC_ACCESS_32bit),
};

1633 1634 1635 1636 1637 1638 1639
/* This is called on setting the LPI enable bit in the redistributor. */
void vgic_enable_lpis(struct kvm_vcpu *vcpu)
{
	if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ))
		its_sync_lpi_pending_table(vcpu);
}

1640 1641
static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its,
				   u64 addr)
1642 1643 1644 1645
{
	struct vgic_io_device *iodev = &its->iodev;
	int ret;

1646 1647 1648 1649 1650
	mutex_lock(&kvm->slots_lock);
	if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
		ret = -EBUSY;
		goto out;
	}
1651

1652
	its->vgic_its_base = addr;
1653 1654 1655 1656 1657 1658 1659 1660 1661
	iodev->regions = its_registers;
	iodev->nr_regions = ARRAY_SIZE(its_registers);
	kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops);

	iodev->base_addr = its->vgic_its_base;
	iodev->iodev_type = IODEV_ITS;
	iodev->its = its;
	ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr,
				      KVM_VGIC_V3_ITS_SIZE, &iodev->dev);
1662
out:
1663 1664 1665 1666
	mutex_unlock(&kvm->slots_lock);

	return ret;
}
1667

1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
#define INITIAL_BASER_VALUE						  \
	(GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb)		| \
	 GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner)		| \
	 GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable)		| \
	 GITS_BASER_PAGE_SIZE_64K)

#define INITIAL_PROPBASER_VALUE						  \
	(GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb)		| \
	 GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner)	| \
	 GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable))

1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
static int vgic_its_create(struct kvm_device *dev, u32 type)
{
	struct vgic_its *its;

	if (type != KVM_DEV_TYPE_ARM_VGIC_ITS)
		return -ENODEV;

	its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL);
	if (!its)
		return -ENOMEM;

1690 1691
	if (vgic_initialized(dev->kvm)) {
		int ret = vgic_v4_init(dev->kvm);
1692
		if (ret < 0) {
1693 1694 1695 1696 1697
			kfree(its);
			return ret;
		}
	}

1698 1699 1700
	mutex_init(&its->its_lock);
	mutex_init(&its->cmd_lock);

1701 1702
	its->vgic_its_base = VGIC_ADDR_UNDEF;

1703 1704 1705
	INIT_LIST_HEAD(&its->device_list);
	INIT_LIST_HEAD(&its->collection_list);

1706
	dev->kvm->arch.vgic.msis_require_devid = true;
1707 1708
	dev->kvm->arch.vgic.has_its = true;
	its->enabled = false;
1709
	its->dev = dev;
1710

1711 1712 1713 1714 1715 1716
	its->baser_device_table = INITIAL_BASER_VALUE			|
		((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT);
	its->baser_coll_table = INITIAL_BASER_VALUE |
		((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT);
	dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE;

1717 1718
	dev->private = its;

1719
	return vgic_its_set_abi(its, NR_ITS_ABIS - 1);
1720 1721 1722 1723
}

static void vgic_its_destroy(struct kvm_device *kvm_dev)
{
1724
	struct kvm *kvm = kvm_dev->kvm;
1725
	struct vgic_its *its = kvm_dev->private;
1726 1727

	mutex_lock(&its->its_lock);
1728

1729 1730
	vgic_its_free_device_list(kvm, its);
	vgic_its_free_collection_list(kvm, its);
1731 1732

	mutex_unlock(&its->its_lock);
1733 1734 1735
	kfree(its);
}

1736 1737 1738
int vgic_its_has_attr_regs(struct kvm_device *dev,
			   struct kvm_device_attr *attr)
{
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
	const struct vgic_register_region *region;
	gpa_t offset = attr->attr;
	int align;

	align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7;

	if (offset & align)
		return -EINVAL;

	region = vgic_find_mmio_region(its_registers,
				       ARRAY_SIZE(its_registers),
				       offset);
	if (!region)
		return -ENXIO;

	return 0;
1755 1756 1757 1758 1759 1760
}

int vgic_its_attr_regs_access(struct kvm_device *dev,
			      struct kvm_device_attr *attr,
			      u64 *reg, bool is_write)
{
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
	const struct vgic_register_region *region;
	struct vgic_its *its;
	gpa_t addr, offset;
	unsigned int len;
	int align, ret = 0;

	its = dev->private;
	offset = attr->attr;

	/*
	 * Although the spec supports upper/lower 32-bit accesses to
	 * 64-bit ITS registers, the userspace ABI requires 64-bit
	 * accesses to all 64-bit wide registers. We therefore only
	 * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID
	 * registers
	 */
	if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4))
		align = 0x3;
	else
		align = 0x7;

	if (offset & align)
		return -EINVAL;

	mutex_lock(&dev->kvm->lock);

	if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
		ret = -ENXIO;
		goto out;
	}

	region = vgic_find_mmio_region(its_registers,
				       ARRAY_SIZE(its_registers),
				       offset);
	if (!region) {
		ret = -ENXIO;
		goto out;
	}

	if (!lock_all_vcpus(dev->kvm)) {
		ret = -EBUSY;
		goto out;
	}

	addr = its->vgic_its_base + offset;

	len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4;

	if (is_write) {
		if (region->uaccess_its_write)
			ret = region->uaccess_its_write(dev->kvm, its, addr,
							len, *reg);
		else
			region->its_write(dev->kvm, its, addr, len, *reg);
	} else {
		*reg = region->its_read(dev->kvm, its, addr, len);
	}
	unlock_all_vcpus(dev->kvm);
out:
	mutex_unlock(&dev->kvm->lock);
	return ret;
1822 1823
}

1824 1825
static u32 compute_next_devid_offset(struct list_head *h,
				     struct its_device *dev)
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
{
	struct its_device *next;
	u32 next_offset;

	if (list_is_last(&dev->dev_list, h))
		return 0;
	next = list_next_entry(dev, dev_list);
	next_offset = next->device_id - dev->device_id;

	return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET);
}

1838
static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite)
1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
{
	struct its_ite *next;
	u32 next_offset;

	if (list_is_last(&ite->ite_list, h))
		return 0;
	next = list_next_entry(ite, ite_list);
	next_offset = next->event_id - ite->event_id;

	return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET);
}

/**
 * entry_fn_t - Callback called on a table entry restore path
 * @its: its handle
 * @id: id of the entry
 * @entry: pointer to the entry
 * @opaque: pointer to an opaque data
 *
 * Return: < 0 on error, 0 if last element was identified, id offset to next
 * element otherwise
 */
typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry,
			  void *opaque);

/**
 * scan_its_table - Scan a contiguous table in guest RAM and applies a function
 * to each entry
 *
 * @its: its handle
 * @base: base gpa of the table
 * @size: size of the table in bytes
 * @esz: entry size in bytes
 * @start_id: the ID of the first entry in the table
 * (non zero for 2d level tables)
 * @fn: function to apply on each entry
 *
 * Return: < 0 on error, 0 if last element was identified, 1 otherwise
 * (the last element may not be found on second level tables)
 */
1879 1880
static int scan_its_table(struct vgic_its *its, gpa_t base, int size, int esz,
			  int start_id, entry_fn_t fn, void *opaque)
1881 1882 1883 1884 1885
{
	struct kvm *kvm = its->dev->kvm;
	unsigned long len = size;
	int id = start_id;
	gpa_t gpa = base;
1886
	char entry[esz];
1887 1888
	int ret;

1889 1890
	memset(entry, 0, esz);

1891 1892 1893 1894 1895 1896
	while (len > 0) {
		int next_offset;
		size_t byte_offset;

		ret = kvm_read_guest(kvm, gpa, entry, esz);
		if (ret)
1897
			return ret;
1898 1899

		next_offset = fn(its, id, entry, opaque);
1900 1901
		if (next_offset <= 0)
			return next_offset;
1902 1903 1904 1905 1906 1907

		byte_offset = next_offset * esz;
		id += next_offset;
		gpa += byte_offset;
		len -= byte_offset;
	}
1908
	return 1;
1909 1910
}

1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
/**
 * vgic_its_save_ite - Save an interrupt translation entry at @gpa
 */
static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev,
			      struct its_ite *ite, gpa_t gpa, int ite_esz)
{
	struct kvm *kvm = its->dev->kvm;
	u32 next_offset;
	u64 val;

	next_offset = compute_next_eventid_offset(&dev->itt_head, ite);
	val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) |
1923
	       ((u64)ite->irq->intid << KVM_ITS_ITE_PINTID_SHIFT) |
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
		ite->collection->collection_id;
	val = cpu_to_le64(val);
	return kvm_write_guest(kvm, gpa, &val, ite_esz);
}

/**
 * vgic_its_restore_ite - restore an interrupt translation entry
 * @event_id: id used for indexing
 * @ptr: pointer to the ITE entry
 * @opaque: pointer to the its_device
 */
static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id,
				void *ptr, void *opaque)
{
	struct its_device *dev = (struct its_device *)opaque;
	struct its_collection *collection;
	struct kvm *kvm = its->dev->kvm;
	struct kvm_vcpu *vcpu = NULL;
	u64 val;
	u64 *p = (u64 *)ptr;
	struct vgic_irq *irq;
	u32 coll_id, lpi_id;
	struct its_ite *ite;
	u32 offset;

	val = *p;

	val = le64_to_cpu(val);

	coll_id = val & KVM_ITS_ITE_ICID_MASK;
	lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT;

	if (!lpi_id)
		return 1; /* invalid entry, no choice but to scan next entry */

	if (lpi_id < VGIC_MIN_LPI)
		return -EINVAL;

	offset = val >> KVM_ITS_ITE_NEXT_SHIFT;
	if (event_id + offset >= BIT_ULL(dev->num_eventid_bits))
		return -EINVAL;

	collection = find_collection(its, coll_id);
	if (!collection)
		return -EINVAL;

1970
	ite = vgic_its_alloc_ite(dev, collection, event_id);
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
	if (IS_ERR(ite))
		return PTR_ERR(ite);

	if (its_is_collection_mapped(collection))
		vcpu = kvm_get_vcpu(kvm, collection->target_addr);

	irq = vgic_add_lpi(kvm, lpi_id, vcpu);
	if (IS_ERR(irq))
		return PTR_ERR(irq);
	ite->irq = irq;

	return offset;
}

static int vgic_its_ite_cmp(void *priv, struct list_head *a,
			    struct list_head *b)
{
	struct its_ite *itea = container_of(a, struct its_ite, ite_list);
	struct its_ite *iteb = container_of(b, struct its_ite, ite_list);

	if (itea->event_id < iteb->event_id)
		return -1;
	else
		return 1;
}

1997 1998
static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device)
{
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
	gpa_t base = device->itt_addr;
	struct its_ite *ite;
	int ret;
	int ite_esz = abi->ite_esz;

	list_sort(NULL, &device->itt_head, vgic_its_ite_cmp);

	list_for_each_entry(ite, &device->itt_head, ite_list) {
		gpa_t gpa = base + ite->event_id * ite_esz;

2010 2011 2012 2013 2014 2015 2016 2017 2018
		/*
		 * If an LPI carries the HW bit, this means that this
		 * interrupt is controlled by GICv4, and we do not
		 * have direct access to that state. Let's simply fail
		 * the save operation...
		 */
		if (ite->irq->hw)
			return -EACCES;

2019 2020 2021 2022 2023
		ret = vgic_its_save_ite(its, device, ite, gpa, ite_esz);
		if (ret)
			return ret;
	}
	return 0;
2024 2025
}

2026 2027 2028 2029 2030 2031 2032 2033
/**
 * vgic_its_restore_itt - restore the ITT of a device
 *
 * @its: its handle
 * @dev: device handle
 *
 * Return 0 on success, < 0 on error
 */
2034 2035
static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev)
{
2036 2037 2038 2039 2040 2041 2042 2043 2044
	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
	gpa_t base = dev->itt_addr;
	int ret;
	int ite_esz = abi->ite_esz;
	size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz;

	ret = scan_its_table(its, base, max_size, ite_esz, 0,
			     vgic_its_restore_ite, dev);

2045 2046 2047 2048
	/* scan_its_table returns +1 if all ITEs are invalid */
	if (ret > 0)
		ret = 0;

2049
	return ret;
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
}

/**
 * vgic_its_save_dte - Save a device table entry at a given GPA
 *
 * @its: ITS handle
 * @dev: ITS device
 * @ptr: GPA
 */
static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev,
			     gpa_t ptr, int dte_esz)
{
	struct kvm *kvm = its->dev->kvm;
	u64 val, itt_addr_field;
	u32 next_offset;

	itt_addr_field = dev->itt_addr >> 8;
	next_offset = compute_next_devid_offset(&its->device_list, dev);
	val = (1ULL << KVM_ITS_DTE_VALID_SHIFT |
	       ((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) |
	       (itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) |
		(dev->num_eventid_bits - 1));
	val = cpu_to_le64(val);
	return kvm_write_guest(kvm, ptr, &val, dte_esz);
}

/**
 * vgic_its_restore_dte - restore a device table entry
 *
 * @its: its handle
 * @id: device id the DTE corresponds to
 * @ptr: kernel VA where the 8 byte DTE is located
 * @opaque: unused
 *
 * Return: < 0 on error, 0 if the dte is the last one, id offset to the
 * next dte otherwise
 */
static int vgic_its_restore_dte(struct vgic_its *its, u32 id,
				void *ptr, void *opaque)
{
	struct its_device *dev;
	gpa_t itt_addr;
	u8 num_eventid_bits;
	u64 entry = *(u64 *)ptr;
	bool valid;
	u32 offset;
	int ret;

	entry = le64_to_cpu(entry);

	valid = entry >> KVM_ITS_DTE_VALID_SHIFT;
	num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1;
	itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK)
			>> KVM_ITS_DTE_ITTADDR_SHIFT) << 8;

	if (!valid)
		return 1;

	/* dte entry is valid */
	offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT;

	dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits);
	if (IS_ERR(dev))
		return PTR_ERR(dev);

	ret = vgic_its_restore_itt(its, dev);
2116 2117
	if (ret) {
		vgic_its_free_device(its->dev->kvm, dev);
2118
		return ret;
2119
	}
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135

	return offset;
}

static int vgic_its_device_cmp(void *priv, struct list_head *a,
			       struct list_head *b)
{
	struct its_device *deva = container_of(a, struct its_device, dev_list);
	struct its_device *devb = container_of(b, struct its_device, dev_list);

	if (deva->device_id < devb->device_id)
		return -1;
	else
		return 1;
}

2136 2137 2138
/**
 * vgic_its_save_device_tables - Save the device table and all ITT
 * into guest RAM
2139 2140 2141
 *
 * L1/L2 handling is hidden by vgic_its_check_id() helper which directly
 * returns the GPA of the device entry
2142 2143 2144
 */
static int vgic_its_save_device_tables(struct vgic_its *its)
{
2145
	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2146
	u64 baser = its->baser_device_table;
2147 2148 2149
	struct its_device *dev;
	int dte_esz = abi->dte_esz;

2150 2151
	if (!(baser & GITS_BASER_VALID))
		return 0;
2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205

	list_sort(NULL, &its->device_list, vgic_its_device_cmp);

	list_for_each_entry(dev, &its->device_list, dev_list) {
		int ret;
		gpa_t eaddr;

		if (!vgic_its_check_id(its, baser,
				       dev->device_id, &eaddr))
			return -EINVAL;

		ret = vgic_its_save_itt(its, dev);
		if (ret)
			return ret;

		ret = vgic_its_save_dte(its, dev, eaddr, dte_esz);
		if (ret)
			return ret;
	}
	return 0;
}

/**
 * handle_l1_dte - callback used for L1 device table entries (2 stage case)
 *
 * @its: its handle
 * @id: index of the entry in the L1 table
 * @addr: kernel VA
 * @opaque: unused
 *
 * L1 table entries are scanned by steps of 1 entry
 * Return < 0 if error, 0 if last dte was found when scanning the L2
 * table, +1 otherwise (meaning next L1 entry must be scanned)
 */
static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr,
			 void *opaque)
{
	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
	int l2_start_id = id * (SZ_64K / abi->dte_esz);
	u64 entry = *(u64 *)addr;
	int dte_esz = abi->dte_esz;
	gpa_t gpa;
	int ret;

	entry = le64_to_cpu(entry);

	if (!(entry & KVM_ITS_L1E_VALID_MASK))
		return 1;

	gpa = entry & KVM_ITS_L1E_ADDR_MASK;

	ret = scan_its_table(its, gpa, SZ_64K, dte_esz,
			     l2_start_id, vgic_its_restore_dte, NULL);

2206
	return ret;
2207 2208 2209 2210 2211 2212 2213 2214
}

/**
 * vgic_its_restore_device_tables - Restore the device table and all ITT
 * from guest RAM to internal data structs
 */
static int vgic_its_restore_device_tables(struct vgic_its *its)
{
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
	u64 baser = its->baser_device_table;
	int l1_esz, ret;
	int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
	gpa_t l1_gpa;

	if (!(baser & GITS_BASER_VALID))
		return 0;

	l1_gpa = BASER_ADDRESS(baser);

	if (baser & GITS_BASER_INDIRECT) {
		l1_esz = GITS_LVL1_ENTRY_SIZE;
		ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
				     handle_l1_dte, NULL);
	} else {
		l1_esz = abi->dte_esz;
		ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
				     vgic_its_restore_dte, NULL);
	}

2236
	/* scan_its_table returns +1 if all entries are invalid */
2237
	if (ret > 0)
2238
		ret = 0;
2239 2240

	return ret;
2241 2242
}

2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
static int vgic_its_save_cte(struct vgic_its *its,
			     struct its_collection *collection,
			     gpa_t gpa, int esz)
{
	u64 val;

	val = (1ULL << KVM_ITS_CTE_VALID_SHIFT |
	       ((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) |
	       collection->collection_id);
	val = cpu_to_le64(val);
	return kvm_write_guest(its->dev->kvm, gpa, &val, esz);
}

static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa, int esz)
{
	struct its_collection *collection;
	struct kvm *kvm = its->dev->kvm;
	u32 target_addr, coll_id;
	u64 val;
	int ret;

	BUG_ON(esz > sizeof(val));
	ret = kvm_read_guest(kvm, gpa, &val, esz);
	if (ret)
		return ret;
	val = le64_to_cpu(val);
	if (!(val & KVM_ITS_CTE_VALID_MASK))
		return 0;

	target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT);
	coll_id = val & KVM_ITS_CTE_ICID_MASK;

	if (target_addr >= atomic_read(&kvm->online_vcpus))
		return -EINVAL;

	collection = find_collection(its, coll_id);
	if (collection)
		return -EEXIST;
	ret = vgic_its_alloc_collection(its, &collection, coll_id);
	if (ret)
		return ret;
	collection->target_addr = target_addr;
	return 1;
}

2288 2289 2290 2291 2292 2293
/**
 * vgic_its_save_collection_table - Save the collection table into
 * guest RAM
 */
static int vgic_its_save_collection_table(struct vgic_its *its)
{
2294
	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2295 2296
	u64 baser = its->baser_coll_table;
	gpa_t gpa = BASER_ADDRESS(baser);
2297 2298 2299 2300 2301
	struct its_collection *collection;
	u64 val;
	size_t max_size, filled = 0;
	int ret, cte_esz = abi->cte_esz;

2302
	if (!(baser & GITS_BASER_VALID))
2303 2304
		return 0;

2305
	max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325

	list_for_each_entry(collection, &its->collection_list, coll_list) {
		ret = vgic_its_save_cte(its, collection, gpa, cte_esz);
		if (ret)
			return ret;
		gpa += cte_esz;
		filled += cte_esz;
	}

	if (filled == max_size)
		return 0;

	/*
	 * table is not fully filled, add a last dummy element
	 * with valid bit unset
	 */
	val = 0;
	BUG_ON(cte_esz > sizeof(val));
	ret = kvm_write_guest(its->dev->kvm, gpa, &val, cte_esz);
	return ret;
2326 2327 2328 2329 2330 2331 2332 2333 2334
}

/**
 * vgic_its_restore_collection_table - reads the collection table
 * in guest memory and restores the ITS internal state. Requires the
 * BASER registers to be restored before.
 */
static int vgic_its_restore_collection_table(struct vgic_its *its)
{
2335
	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2336
	u64 baser = its->baser_coll_table;
2337 2338 2339 2340 2341
	int cte_esz = abi->cte_esz;
	size_t max_size, read = 0;
	gpa_t gpa;
	int ret;

2342
	if (!(baser & GITS_BASER_VALID))
2343 2344
		return 0;

2345
	gpa = BASER_ADDRESS(baser);
2346

2347
	max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2348 2349 2350 2351 2352 2353 2354 2355

	while (read < max_size) {
		ret = vgic_its_restore_cte(its, gpa, cte_esz);
		if (ret <= 0)
			break;
		gpa += cte_esz;
		read += cte_esz;
	}
2356 2357 2358 2359

	if (ret > 0)
		return 0;

2360
	return ret;
2361 2362
}

2363 2364 2365 2366 2367 2368
/**
 * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM
 * according to v0 ABI
 */
static int vgic_its_save_tables_v0(struct vgic_its *its)
{
2369 2370 2371 2372
	int ret;

	ret = vgic_its_save_device_tables(its);
	if (ret)
2373
		return ret;
2374

2375
	return vgic_its_save_collection_table(its);
2376 2377 2378 2379 2380 2381 2382 2383 2384
}

/**
 * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM
 * to internal data structs according to V0 ABI
 *
 */
static int vgic_its_restore_tables_v0(struct vgic_its *its)
{
2385 2386 2387 2388
	int ret;

	ret = vgic_its_restore_collection_table(its);
	if (ret)
2389
		return ret;
2390

2391
	return vgic_its_restore_device_tables(its);
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
}

static int vgic_its_commit_v0(struct vgic_its *its)
{
	const struct vgic_its_abi *abi;

	abi = vgic_its_get_abi(its);
	its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
	its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK;

	its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5)
					<< GITS_BASER_ENTRY_SIZE_SHIFT);

	its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5)
					<< GITS_BASER_ENTRY_SIZE_SHIFT);
	return 0;
}

2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
static void vgic_its_reset(struct kvm *kvm, struct vgic_its *its)
{
	/* We need to keep the ABI specific field values */
	its->baser_coll_table &= ~GITS_BASER_VALID;
	its->baser_device_table &= ~GITS_BASER_VALID;
	its->cbaser = 0;
	its->creadr = 0;
	its->cwriter = 0;
	its->enabled = 0;
	vgic_its_free_device_list(kvm, its);
	vgic_its_free_collection_list(kvm, its);
}

2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
static int vgic_its_has_attr(struct kvm_device *dev,
			     struct kvm_device_attr *attr)
{
	switch (attr->group) {
	case KVM_DEV_ARM_VGIC_GRP_ADDR:
		switch (attr->attr) {
		case KVM_VGIC_ITS_ADDR_TYPE:
			return 0;
		}
		break;
	case KVM_DEV_ARM_VGIC_GRP_CTRL:
		switch (attr->attr) {
		case KVM_DEV_ARM_VGIC_CTRL_INIT:
			return 0;
2437 2438
		case KVM_DEV_ARM_ITS_CTRL_RESET:
			return 0;
2439 2440 2441 2442
		case KVM_DEV_ARM_ITS_SAVE_TABLES:
			return 0;
		case KVM_DEV_ARM_ITS_RESTORE_TABLES:
			return 0;
2443 2444
		}
		break;
2445 2446
	case KVM_DEV_ARM_VGIC_GRP_ITS_REGS:
		return vgic_its_has_attr_regs(dev, attr);
2447 2448 2449 2450
	}
	return -ENXIO;
}

2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485
static int vgic_its_ctrl(struct kvm *kvm, struct vgic_its *its, u64 attr)
{
	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
	int ret = 0;

	if (attr == KVM_DEV_ARM_VGIC_CTRL_INIT) /* Nothing to do */
		return 0;

	mutex_lock(&kvm->lock);
	mutex_lock(&its->its_lock);

	if (!lock_all_vcpus(kvm)) {
		mutex_unlock(&its->its_lock);
		mutex_unlock(&kvm->lock);
		return -EBUSY;
	}

	switch (attr) {
	case KVM_DEV_ARM_ITS_CTRL_RESET:
		vgic_its_reset(kvm, its);
		break;
	case KVM_DEV_ARM_ITS_SAVE_TABLES:
		ret = abi->save_tables(its);
		break;
	case KVM_DEV_ARM_ITS_RESTORE_TABLES:
		ret = abi->restore_tables(its);
		break;
	}

	unlock_all_vcpus(kvm);
	mutex_unlock(&its->its_lock);
	mutex_unlock(&kvm->lock);
	return ret;
}

2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
static int vgic_its_set_attr(struct kvm_device *dev,
			     struct kvm_device_attr *attr)
{
	struct vgic_its *its = dev->private;
	int ret;

	switch (attr->group) {
	case KVM_DEV_ARM_VGIC_GRP_ADDR: {
		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
		unsigned long type = (unsigned long)attr->attr;
		u64 addr;

		if (type != KVM_VGIC_ITS_ADDR_TYPE)
			return -ENODEV;

		if (copy_from_user(&addr, uaddr, sizeof(addr)))
			return -EFAULT;

		ret = vgic_check_ioaddr(dev->kvm, &its->vgic_its_base,
					addr, SZ_64K);
		if (ret)
			return ret;

2509
		return vgic_register_its_iodev(dev->kvm, its, addr);
2510
	}
2511 2512
	case KVM_DEV_ARM_VGIC_GRP_CTRL:
		return vgic_its_ctrl(dev->kvm, its, attr->attr);
2513 2514 2515 2516 2517 2518 2519 2520 2521
	case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
		u64 reg;

		if (get_user(reg, uaddr))
			return -EFAULT;

		return vgic_its_attr_regs_access(dev, attr, &reg, true);
	}
2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
	}
	return -ENXIO;
}

static int vgic_its_get_attr(struct kvm_device *dev,
			     struct kvm_device_attr *attr)
{
	switch (attr->group) {
	case KVM_DEV_ARM_VGIC_GRP_ADDR: {
		struct vgic_its *its = dev->private;
		u64 addr = its->vgic_its_base;
		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
		unsigned long type = (unsigned long)attr->attr;

		if (type != KVM_VGIC_ITS_ADDR_TYPE)
			return -ENODEV;

		if (copy_to_user(uaddr, &addr, sizeof(addr)))
			return -EFAULT;
		break;
2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552
	}
	case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
		u64 reg;
		int ret;

		ret = vgic_its_attr_regs_access(dev, attr, &reg, false);
		if (ret)
			return ret;
		return put_user(reg, uaddr);
	}
2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573
	default:
		return -ENXIO;
	}

	return 0;
}

static struct kvm_device_ops kvm_arm_vgic_its_ops = {
	.name = "kvm-arm-vgic-its",
	.create = vgic_its_create,
	.destroy = vgic_its_destroy,
	.set_attr = vgic_its_set_attr,
	.get_attr = vgic_its_get_attr,
	.has_attr = vgic_its_has_attr,
};

int kvm_vgic_register_its_device(void)
{
	return kvm_register_device_ops(&kvm_arm_vgic_its_ops,
				       KVM_DEV_TYPE_ARM_VGIC_ITS);
}