w83627ehf.c 49.1 KB
Newer Older
1 2 3 4
/*
    w83627ehf - Driver for the hardware monitoring functionality of
                the Winbond W83627EHF Super-I/O chip
    Copyright (C) 2005  Jean Delvare <khali@linux-fr.org>
J
Jean Delvare 已提交
5
    Copyright (C) 2006  Yuan Mu (Winbond),
6
                        Rudolf Marek <r.marek@assembler.cz>
7
                        David Hubbard <david.c.hubbard@gmail.com>
8 9 10 11 12 13 14

    Shamelessly ripped from the w83627hf driver
    Copyright (C) 2003  Mark Studebaker

    Thanks to Leon Moonen, Steve Cliffe and Grant Coady for their help
    in testing and debugging this driver.

15 16 17
    This driver also supports the W83627EHG, which is the lead-free
    version of the W83627EHF.

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.


    Supports the following chips:

35 36 37 38
    Chip        #vin    #fan    #pwm    #temp  chip IDs       man ID
    w83627ehf   10      5       4       3      0x8850 0x88    0x5ca3
                                               0x8860 0xa1
    w83627dhg    9      5       4       3      0xa020 0xc1    0x5ca3
39 40 41 42 43
*/

#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
44 45
#include <linux/jiffies.h>
#include <linux/platform_device.h>
46
#include <linux/hwmon.h>
47
#include <linux/hwmon-sysfs.h>
48
#include <linux/hwmon-vid.h>
49
#include <linux/err.h>
50
#include <linux/mutex.h>
51 52 53
#include <asm/io.h>
#include "lm75.h"

54
enum kinds { w83627ehf, w83627dhg };
55

56 57 58 59 60 61
/* used to set data->name = w83627ehf_device_names[data->sio_kind] */
static const char * w83627ehf_device_names[] = {
	"w83627ehf",
	"w83627dhg",
};

62 63 64 65
static unsigned short force_id;
module_param(force_id, ushort, 0);
MODULE_PARM_DESC(force_id, "Override the detected device ID");

66
#define DRVNAME "w83627ehf"
67

68
/*
69
 * Super-I/O constants and functions
70
 */
71 72 73 74 75

#define W83627EHF_LD_HWM	0x0b

#define SIO_REG_LDSEL		0x07	/* Logical device select */
#define SIO_REG_DEVID		0x20	/* Device ID (2 bytes) */
76
#define SIO_REG_EN_VRM10	0x2C	/* GPIO3, GPIO4 selection */
77 78
#define SIO_REG_ENABLE		0x30	/* Logical device enable */
#define SIO_REG_ADDR		0x60	/* Logical device address (2 bytes) */
79 80
#define SIO_REG_VID_CTRL	0xF0	/* VID control */
#define SIO_REG_VID_DATA	0xF1	/* VID data */
81

82 83 84 85
#define SIO_W83627EHF_ID	0x8850
#define SIO_W83627EHG_ID	0x8860
#define SIO_W83627DHG_ID	0xa020
#define SIO_ID_MASK		0xFFF0
86 87

static inline void
88
superio_outb(int ioreg, int reg, int val)
89
{
90 91
	outb(reg, ioreg);
	outb(val, ioreg + 1);
92 93 94
}

static inline int
95
superio_inb(int ioreg, int reg)
96
{
97 98
	outb(reg, ioreg);
	return inb(ioreg + 1);
99 100 101
}

static inline void
102
superio_select(int ioreg, int ld)
103
{
104 105
	outb(SIO_REG_LDSEL, ioreg);
	outb(ld, ioreg + 1);
106 107 108
}

static inline void
109
superio_enter(int ioreg)
110
{
111 112
	outb(0x87, ioreg);
	outb(0x87, ioreg);
113 114 115
}

static inline void
116
superio_exit(int ioreg)
117
{
118 119
	outb(0x02, ioreg);
	outb(0x02, ioreg + 1);
120 121 122 123 124 125
}

/*
 * ISA constants
 */

126 127 128
#define IOREGION_ALIGNMENT	~7
#define IOREGION_OFFSET		5
#define IOREGION_LENGTH		2
129 130
#define ADDR_REG_OFFSET		0
#define DATA_REG_OFFSET		1
131 132 133

#define W83627EHF_REG_BANK		0x4E
#define W83627EHF_REG_CONFIG		0x40
134 135 136 137 138 139

/* Not currently used:
 * REG_MAN_ID has the value 0x5ca3 for all supported chips.
 * REG_CHIP_ID == 0x88/0xa1/0xc1 depending on chip model.
 * REG_MAN_ID is at port 0x4f
 * REG_CHIP_ID is at port 0x58 */
140 141 142 143

static const u16 W83627EHF_REG_FAN[] = { 0x28, 0x29, 0x2a, 0x3f, 0x553 };
static const u16 W83627EHF_REG_FAN_MIN[] = { 0x3b, 0x3c, 0x3d, 0x3e, 0x55c };

144 145 146 147 148 149 150 151
/* The W83627EHF registers for nr=7,8,9 are in bank 5 */
#define W83627EHF_REG_IN_MAX(nr)	((nr < 7) ? (0x2b + (nr) * 2) : \
					 (0x554 + (((nr) - 7) * 2)))
#define W83627EHF_REG_IN_MIN(nr)	((nr < 7) ? (0x2c + (nr) * 2) : \
					 (0x555 + (((nr) - 7) * 2)))
#define W83627EHF_REG_IN(nr)		((nr < 7) ? (0x20 + (nr)) : \
					 (0x550 + (nr) - 7))

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
#define W83627EHF_REG_TEMP1		0x27
#define W83627EHF_REG_TEMP1_HYST	0x3a
#define W83627EHF_REG_TEMP1_OVER	0x39
static const u16 W83627EHF_REG_TEMP[] = { 0x150, 0x250 };
static const u16 W83627EHF_REG_TEMP_HYST[] = { 0x153, 0x253 };
static const u16 W83627EHF_REG_TEMP_OVER[] = { 0x155, 0x255 };
static const u16 W83627EHF_REG_TEMP_CONFIG[] = { 0x152, 0x252 };

/* Fan clock dividers are spread over the following five registers */
#define W83627EHF_REG_FANDIV1		0x47
#define W83627EHF_REG_FANDIV2		0x4B
#define W83627EHF_REG_VBAT		0x5D
#define W83627EHF_REG_DIODE		0x59
#define W83627EHF_REG_SMI_OVT		0x4C

167 168 169 170
#define W83627EHF_REG_ALARM1		0x459
#define W83627EHF_REG_ALARM2		0x45A
#define W83627EHF_REG_ALARM3		0x45B

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
/* SmartFan registers */
/* DC or PWM output fan configuration */
static const u8 W83627EHF_REG_PWM_ENABLE[] = {
	0x04,			/* SYS FAN0 output mode and PWM mode */
	0x04,			/* CPU FAN0 output mode and PWM mode */
	0x12,			/* AUX FAN mode */
	0x62,			/* CPU fan1 mode */
};

static const u8 W83627EHF_PWM_MODE_SHIFT[] = { 0, 1, 0, 6 };
static const u8 W83627EHF_PWM_ENABLE_SHIFT[] = { 2, 4, 1, 4 };

/* FAN Duty Cycle, be used to control */
static const u8 W83627EHF_REG_PWM[] = { 0x01, 0x03, 0x11, 0x61 };
static const u8 W83627EHF_REG_TARGET[] = { 0x05, 0x06, 0x13, 0x63 };
static const u8 W83627EHF_REG_TOLERANCE[] = { 0x07, 0x07, 0x14, 0x62 };


/* Advanced Fan control, some values are common for all fans */
static const u8 W83627EHF_REG_FAN_MIN_OUTPUT[] = { 0x08, 0x09, 0x15, 0x64 };
static const u8 W83627EHF_REG_FAN_STOP_TIME[] = { 0x0C, 0x0D, 0x17, 0x66 };

193 194 195 196
/*
 * Conversions
 */

197 198 199 200 201 202 203 204 205 206 207 208
/* 1 is PWM mode, output in ms */
static inline unsigned int step_time_from_reg(u8 reg, u8 mode)
{
	return mode ? 100 * reg : 400 * reg;
}

static inline u8 step_time_to_reg(unsigned int msec, u8 mode)
{
	return SENSORS_LIMIT((mode ? (msec + 50) / 100 :
						(msec + 200) / 400), 1, 255);
}

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
static inline unsigned int
fan_from_reg(u8 reg, unsigned int div)
{
	if (reg == 0 || reg == 255)
		return 0;
	return 1350000U / (reg * div);
}

static inline unsigned int
div_from_reg(u8 reg)
{
	return 1 << reg;
}

static inline int
temp1_from_reg(s8 reg)
{
	return reg * 1000;
}

static inline s8
230
temp1_to_reg(long temp, int min, int max)
231
{
232 233 234 235
	if (temp <= min)
		return min / 1000;
	if (temp >= max)
		return max / 1000;
236 237 238 239 240
	if (temp < 0)
		return (temp - 500) / 1000;
	return (temp + 500) / 1000;
}

241 242 243 244 245 246 247 248 249 250 251 252 253 254
/* Some of analog inputs have internal scaling (2x), 8mV is ADC LSB */

static u8 scale_in[10] = { 8, 8, 16, 16, 8, 8, 8, 16, 16, 8 };

static inline long in_from_reg(u8 reg, u8 nr)
{
	return reg * scale_in[nr];
}

static inline u8 in_to_reg(u32 val, u8 nr)
{
	return SENSORS_LIMIT(((val + (scale_in[nr] / 2)) / scale_in[nr]), 0, 255);
}

255 256 257 258 259
/*
 * Data structures and manipulation thereof
 */

struct w83627ehf_data {
260 261 262
	int addr;	/* IO base of hw monitor block */
	const char *name;

263
	struct device *hwmon_dev;
264
	struct mutex lock;
265

266
	struct mutex update_lock;
267 268 269 270
	char valid;		/* !=0 if following fields are valid */
	unsigned long last_updated;	/* In jiffies */

	/* Register values */
271
	u8 in_num;		/* number of in inputs we have */
272 273 274
	u8 in[10];		/* Register value */
	u8 in_max[10];		/* Register value */
	u8 in_min[10];		/* Register value */
275 276 277 278
	u8 fan[5];
	u8 fan_min[5];
	u8 fan_div[5];
	u8 has_fan;		/* some fan inputs can be disabled */
279
	u8 temp_type[3];
280 281 282 283 284 285
	s8 temp1;
	s8 temp1_max;
	s8 temp1_max_hyst;
	s16 temp[2];
	s16 temp_max[2];
	s16 temp_max_hyst[2];
286
	u32 alarms;
287 288 289 290 291 292 293 294 295 296

	u8 pwm_mode[4]; /* 0->DC variable voltage, 1->PWM variable duty cycle */
	u8 pwm_enable[4]; /* 1->manual
			     2->thermal cruise (also called SmartFan I) */
	u8 pwm[4];
	u8 target_temp[4];
	u8 tolerance[4];

	u8 fan_min_output[4]; /* minimum fan speed */
	u8 fan_stop_time[4];
297 298 299

	u8 vid;
	u8 vrm;
300 301
};

302 303 304 305 306
struct w83627ehf_sio_data {
	int sioreg;
	enum kinds kind;
};

307 308 309 310 311 312 313 314 315
static inline int is_word_sized(u16 reg)
{
	return (((reg & 0xff00) == 0x100
	      || (reg & 0xff00) == 0x200)
	     && ((reg & 0x00ff) == 0x50
	      || (reg & 0x00ff) == 0x53
	      || (reg & 0x00ff) == 0x55));
}

316
/* Registers 0x50-0x5f are banked */
317
static inline void w83627ehf_set_bank(struct w83627ehf_data *data, u16 reg)
318
{
319
	if ((reg & 0x00f0) == 0x50) {
320 321
		outb_p(W83627EHF_REG_BANK, data->addr + ADDR_REG_OFFSET);
		outb_p(reg >> 8, data->addr + DATA_REG_OFFSET);
322 323 324
	}
}

325
/* Not strictly necessary, but play it safe for now */
326
static inline void w83627ehf_reset_bank(struct w83627ehf_data *data, u16 reg)
327 328
{
	if (reg & 0xff00) {
329 330
		outb_p(W83627EHF_REG_BANK, data->addr + ADDR_REG_OFFSET);
		outb_p(0, data->addr + DATA_REG_OFFSET);
331 332 333
	}
}

334
static u16 w83627ehf_read_value(struct w83627ehf_data *data, u16 reg)
335 336 337
{
	int res, word_sized = is_word_sized(reg);

338
	mutex_lock(&data->lock);
339

340 341 342
	w83627ehf_set_bank(data, reg);
	outb_p(reg & 0xff, data->addr + ADDR_REG_OFFSET);
	res = inb_p(data->addr + DATA_REG_OFFSET);
343 344
	if (word_sized) {
		outb_p((reg & 0xff) + 1,
345 346
		       data->addr + ADDR_REG_OFFSET);
		res = (res << 8) + inb_p(data->addr + DATA_REG_OFFSET);
347
	}
348
	w83627ehf_reset_bank(data, reg);
349

350
	mutex_unlock(&data->lock);
351 352 353 354

	return res;
}

355
static int w83627ehf_write_value(struct w83627ehf_data *data, u16 reg, u16 value)
356 357 358
{
	int word_sized = is_word_sized(reg);

359
	mutex_lock(&data->lock);
360

361 362
	w83627ehf_set_bank(data, reg);
	outb_p(reg & 0xff, data->addr + ADDR_REG_OFFSET);
363
	if (word_sized) {
364
		outb_p(value >> 8, data->addr + DATA_REG_OFFSET);
365
		outb_p((reg & 0xff) + 1,
366
		       data->addr + ADDR_REG_OFFSET);
367
	}
368 369
	outb_p(value & 0xff, data->addr + DATA_REG_OFFSET);
	w83627ehf_reset_bank(data, reg);
370

371
	mutex_unlock(&data->lock);
372 373 374 375
	return 0;
}

/* This function assumes that the caller holds data->update_lock */
376
static void w83627ehf_write_fan_div(struct w83627ehf_data *data, int nr)
377 378 379 380 381
{
	u8 reg;

	switch (nr) {
	case 0:
382
		reg = (w83627ehf_read_value(data, W83627EHF_REG_FANDIV1) & 0xcf)
383
		    | ((data->fan_div[0] & 0x03) << 4);
384 385
		/* fan5 input control bit is write only, compute the value */
		reg |= (data->has_fan & (1 << 4)) ? 1 : 0;
386 387
		w83627ehf_write_value(data, W83627EHF_REG_FANDIV1, reg);
		reg = (w83627ehf_read_value(data, W83627EHF_REG_VBAT) & 0xdf)
388
		    | ((data->fan_div[0] & 0x04) << 3);
389
		w83627ehf_write_value(data, W83627EHF_REG_VBAT, reg);
390 391
		break;
	case 1:
392
		reg = (w83627ehf_read_value(data, W83627EHF_REG_FANDIV1) & 0x3f)
393
		    | ((data->fan_div[1] & 0x03) << 6);
394 395
		/* fan5 input control bit is write only, compute the value */
		reg |= (data->has_fan & (1 << 4)) ? 1 : 0;
396 397
		w83627ehf_write_value(data, W83627EHF_REG_FANDIV1, reg);
		reg = (w83627ehf_read_value(data, W83627EHF_REG_VBAT) & 0xbf)
398
		    | ((data->fan_div[1] & 0x04) << 4);
399
		w83627ehf_write_value(data, W83627EHF_REG_VBAT, reg);
400 401
		break;
	case 2:
402
		reg = (w83627ehf_read_value(data, W83627EHF_REG_FANDIV2) & 0x3f)
403
		    | ((data->fan_div[2] & 0x03) << 6);
404 405
		w83627ehf_write_value(data, W83627EHF_REG_FANDIV2, reg);
		reg = (w83627ehf_read_value(data, W83627EHF_REG_VBAT) & 0x7f)
406
		    | ((data->fan_div[2] & 0x04) << 5);
407
		w83627ehf_write_value(data, W83627EHF_REG_VBAT, reg);
408 409
		break;
	case 3:
410
		reg = (w83627ehf_read_value(data, W83627EHF_REG_DIODE) & 0xfc)
411
		    | (data->fan_div[3] & 0x03);
412 413
		w83627ehf_write_value(data, W83627EHF_REG_DIODE, reg);
		reg = (w83627ehf_read_value(data, W83627EHF_REG_SMI_OVT) & 0x7f)
414
		    | ((data->fan_div[3] & 0x04) << 5);
415
		w83627ehf_write_value(data, W83627EHF_REG_SMI_OVT, reg);
416 417
		break;
	case 4:
418
		reg = (w83627ehf_read_value(data, W83627EHF_REG_DIODE) & 0x73)
419
		    | ((data->fan_div[4] & 0x03) << 2)
420
		    | ((data->fan_div[4] & 0x04) << 5);
421
		w83627ehf_write_value(data, W83627EHF_REG_DIODE, reg);
422 423 424 425
		break;
	}
}

426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
static void w83627ehf_update_fan_div(struct w83627ehf_data *data)
{
	int i;

	i = w83627ehf_read_value(data, W83627EHF_REG_FANDIV1);
	data->fan_div[0] = (i >> 4) & 0x03;
	data->fan_div[1] = (i >> 6) & 0x03;
	i = w83627ehf_read_value(data, W83627EHF_REG_FANDIV2);
	data->fan_div[2] = (i >> 6) & 0x03;
	i = w83627ehf_read_value(data, W83627EHF_REG_VBAT);
	data->fan_div[0] |= (i >> 3) & 0x04;
	data->fan_div[1] |= (i >> 4) & 0x04;
	data->fan_div[2] |= (i >> 5) & 0x04;
	if (data->has_fan & ((1 << 3) | (1 << 4))) {
		i = w83627ehf_read_value(data, W83627EHF_REG_DIODE);
		data->fan_div[3] = i & 0x03;
		data->fan_div[4] = ((i >> 2) & 0x03)
				 | ((i >> 5) & 0x04);
	}
	if (data->has_fan & (1 << 3)) {
		i = w83627ehf_read_value(data, W83627EHF_REG_SMI_OVT);
		data->fan_div[3] |= (i >> 5) & 0x04;
	}
}

451 452
static struct w83627ehf_data *w83627ehf_update_device(struct device *dev)
{
453
	struct w83627ehf_data *data = dev_get_drvdata(dev);
454
	int pwmcfg = 0, tolerance = 0; /* shut up the compiler */
455 456
	int i;

457
	mutex_lock(&data->update_lock);
458

459
	if (time_after(jiffies, data->last_updated + HZ + HZ/2)
460 461
	 || !data->valid) {
		/* Fan clock dividers */
462
		w83627ehf_update_fan_div(data);
463

464
		/* Measured voltages and limits */
465 466
		for (i = 0; i < data->in_num; i++) {
			data->in[i] = w83627ehf_read_value(data,
467
				      W83627EHF_REG_IN(i));
468
			data->in_min[i] = w83627ehf_read_value(data,
469
					  W83627EHF_REG_IN_MIN(i));
470
			data->in_max[i] = w83627ehf_read_value(data,
471 472 473
					  W83627EHF_REG_IN_MAX(i));
		}

474 475 476 477 478
		/* Measured fan speeds and limits */
		for (i = 0; i < 5; i++) {
			if (!(data->has_fan & (1 << i)))
				continue;

479
			data->fan[i] = w83627ehf_read_value(data,
480
				       W83627EHF_REG_FAN[i]);
481
			data->fan_min[i] = w83627ehf_read_value(data,
482 483 484 485 486 487 488
					   W83627EHF_REG_FAN_MIN[i]);

			/* If we failed to measure the fan speed and clock
			   divider can be increased, let's try that for next
			   time */
			if (data->fan[i] == 0xff
			 && data->fan_div[i] < 0x07) {
489
			 	dev_dbg(dev, "Increasing fan%d "
490
					"clock divider from %u to %u\n",
491
					i + 1, div_from_reg(data->fan_div[i]),
492 493
					div_from_reg(data->fan_div[i] + 1));
				data->fan_div[i]++;
494
				w83627ehf_write_fan_div(data, i);
495 496 497
				/* Preserve min limit if possible */
				if (data->fan_min[i] >= 2
				 && data->fan_min[i] != 255)
498
					w83627ehf_write_value(data,
499 500 501 502 503
						W83627EHF_REG_FAN_MIN[i],
						(data->fan_min[i] /= 2));
			}
		}

504 505 506
		for (i = 0; i < 4; i++) {
			/* pwmcfg, tolarance mapped for i=0, i=1 to same reg */
			if (i != 1) {
507
				pwmcfg = w83627ehf_read_value(data,
508
						W83627EHF_REG_PWM_ENABLE[i]);
509
				tolerance = w83627ehf_read_value(data,
510 511 512 513 514 515 516 517
						W83627EHF_REG_TOLERANCE[i]);
			}
			data->pwm_mode[i] =
				((pwmcfg >> W83627EHF_PWM_MODE_SHIFT[i]) & 1)
				? 0 : 1;
			data->pwm_enable[i] =
					((pwmcfg >> W83627EHF_PWM_ENABLE_SHIFT[i])
						& 3) + 1;
518
			data->pwm[i] = w83627ehf_read_value(data,
519
						W83627EHF_REG_PWM[i]);
520
			data->fan_min_output[i] = w83627ehf_read_value(data,
521
						W83627EHF_REG_FAN_MIN_OUTPUT[i]);
522
			data->fan_stop_time[i] = w83627ehf_read_value(data,
523 524
						W83627EHF_REG_FAN_STOP_TIME[i]);
			data->target_temp[i] =
525
				w83627ehf_read_value(data,
526 527 528 529 530 531
					W83627EHF_REG_TARGET[i]) &
					(data->pwm_mode[i] == 1 ? 0x7f : 0xff);
			data->tolerance[i] = (tolerance >> (i == 1 ? 4 : 0))
									& 0x0f;
		}

532
		/* Measured temperatures and limits */
533
		data->temp1 = w83627ehf_read_value(data,
534
			      W83627EHF_REG_TEMP1);
535
		data->temp1_max = w83627ehf_read_value(data,
536
				  W83627EHF_REG_TEMP1_OVER);
537
		data->temp1_max_hyst = w83627ehf_read_value(data,
538 539
				       W83627EHF_REG_TEMP1_HYST);
		for (i = 0; i < 2; i++) {
540
			data->temp[i] = w83627ehf_read_value(data,
541
					W83627EHF_REG_TEMP[i]);
542
			data->temp_max[i] = w83627ehf_read_value(data,
543
					    W83627EHF_REG_TEMP_OVER[i]);
544
			data->temp_max_hyst[i] = w83627ehf_read_value(data,
545 546 547
						 W83627EHF_REG_TEMP_HYST[i]);
		}

548
		data->alarms = w83627ehf_read_value(data,
549
					W83627EHF_REG_ALARM1) |
550
			       (w83627ehf_read_value(data,
551
					W83627EHF_REG_ALARM2) << 8) |
552
			       (w83627ehf_read_value(data,
553 554
					W83627EHF_REG_ALARM3) << 16);

555 556 557 558
		data->last_updated = jiffies;
		data->valid = 1;
	}

559
	mutex_unlock(&data->update_lock);
560 561 562 563 564 565
	return data;
}

/*
 * Sysfs callback functions
 */
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
#define show_in_reg(reg) \
static ssize_t \
show_##reg(struct device *dev, struct device_attribute *attr, \
	   char *buf) \
{ \
	struct w83627ehf_data *data = w83627ehf_update_device(dev); \
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
	return sprintf(buf, "%ld\n", in_from_reg(data->reg[nr], nr)); \
}
show_in_reg(in)
show_in_reg(in_min)
show_in_reg(in_max)

#define store_in_reg(REG, reg) \
static ssize_t \
store_in_##reg (struct device *dev, struct device_attribute *attr, \
			const char *buf, size_t count) \
{ \
585
	struct w83627ehf_data *data = dev_get_drvdata(dev); \
586 587 588 589 590 591
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
	u32 val = simple_strtoul(buf, NULL, 10); \
 \
	mutex_lock(&data->update_lock); \
	data->in_##reg[nr] = in_to_reg(val, nr); \
592
	w83627ehf_write_value(data, W83627EHF_REG_IN_##REG(nr), \
593 594 595 596 597 598 599 600
			      data->in_##reg[nr]); \
	mutex_unlock(&data->update_lock); \
	return count; \
}

store_in_reg(MIN, min)
store_in_reg(MAX, max)

601 602 603 604 605 606 607 608
static ssize_t show_alarm(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct w83627ehf_data *data = w83627ehf_update_device(dev);
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
	int nr = sensor_attr->index;
	return sprintf(buf, "%u\n", (data->alarms >> nr) & 0x01);
}

609 610 611 612 613 614 615 616 617 618 619 620 621
static struct sensor_device_attribute sda_in_input[] = {
	SENSOR_ATTR(in0_input, S_IRUGO, show_in, NULL, 0),
	SENSOR_ATTR(in1_input, S_IRUGO, show_in, NULL, 1),
	SENSOR_ATTR(in2_input, S_IRUGO, show_in, NULL, 2),
	SENSOR_ATTR(in3_input, S_IRUGO, show_in, NULL, 3),
	SENSOR_ATTR(in4_input, S_IRUGO, show_in, NULL, 4),
	SENSOR_ATTR(in5_input, S_IRUGO, show_in, NULL, 5),
	SENSOR_ATTR(in6_input, S_IRUGO, show_in, NULL, 6),
	SENSOR_ATTR(in7_input, S_IRUGO, show_in, NULL, 7),
	SENSOR_ATTR(in8_input, S_IRUGO, show_in, NULL, 8),
	SENSOR_ATTR(in9_input, S_IRUGO, show_in, NULL, 9),
};

622 623 624 625 626 627 628 629 630 631 632 633 634
static struct sensor_device_attribute sda_in_alarm[] = {
	SENSOR_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0),
	SENSOR_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1),
	SENSOR_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2),
	SENSOR_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3),
	SENSOR_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8),
	SENSOR_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 21),
	SENSOR_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 20),
	SENSOR_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 16),
	SENSOR_ATTR(in8_alarm, S_IRUGO, show_alarm, NULL, 17),
	SENSOR_ATTR(in9_alarm, S_IRUGO, show_alarm, NULL, 19),
};

635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
static struct sensor_device_attribute sda_in_min[] = {
       SENSOR_ATTR(in0_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 0),
       SENSOR_ATTR(in1_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 1),
       SENSOR_ATTR(in2_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 2),
       SENSOR_ATTR(in3_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 3),
       SENSOR_ATTR(in4_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 4),
       SENSOR_ATTR(in5_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 5),
       SENSOR_ATTR(in6_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 6),
       SENSOR_ATTR(in7_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 7),
       SENSOR_ATTR(in8_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 8),
       SENSOR_ATTR(in9_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 9),
};

static struct sensor_device_attribute sda_in_max[] = {
       SENSOR_ATTR(in0_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 0),
       SENSOR_ATTR(in1_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 1),
       SENSOR_ATTR(in2_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 2),
       SENSOR_ATTR(in3_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 3),
       SENSOR_ATTR(in4_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 4),
       SENSOR_ATTR(in5_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 5),
       SENSOR_ATTR(in6_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 6),
       SENSOR_ATTR(in7_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 7),
       SENSOR_ATTR(in8_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 8),
       SENSOR_ATTR(in9_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 9),
};

661 662
#define show_fan_reg(reg) \
static ssize_t \
663 664
show_##reg(struct device *dev, struct device_attribute *attr, \
	   char *buf) \
665 666
{ \
	struct w83627ehf_data *data = w83627ehf_update_device(dev); \
667 668
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
669 670 671 672 673 674 675 676
	return sprintf(buf, "%d\n", \
		       fan_from_reg(data->reg[nr], \
				    div_from_reg(data->fan_div[nr]))); \
}
show_fan_reg(fan);
show_fan_reg(fan_min);

static ssize_t
677 678
show_fan_div(struct device *dev, struct device_attribute *attr,
	     char *buf)
679 680
{
	struct w83627ehf_data *data = w83627ehf_update_device(dev);
681 682 683
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
	int nr = sensor_attr->index;
	return sprintf(buf, "%u\n", div_from_reg(data->fan_div[nr]));
684 685 686
}

static ssize_t
687 688
store_fan_min(struct device *dev, struct device_attribute *attr,
	      const char *buf, size_t count)
689
{
690
	struct w83627ehf_data *data = dev_get_drvdata(dev);
691 692
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
	int nr = sensor_attr->index;
693 694 695 696
	unsigned int val = simple_strtoul(buf, NULL, 10);
	unsigned int reg;
	u8 new_div;

697
	mutex_lock(&data->update_lock);
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
	if (!val) {
		/* No min limit, alarm disabled */
		data->fan_min[nr] = 255;
		new_div = data->fan_div[nr]; /* No change */
		dev_info(dev, "fan%u low limit and alarm disabled\n", nr + 1);
	} else if ((reg = 1350000U / val) >= 128 * 255) {
		/* Speed below this value cannot possibly be represented,
		   even with the highest divider (128) */
		data->fan_min[nr] = 254;
		new_div = 7; /* 128 == (1 << 7) */
		dev_warn(dev, "fan%u low limit %u below minimum %u, set to "
			 "minimum\n", nr + 1, val, fan_from_reg(254, 128));
	} else if (!reg) {
		/* Speed above this value cannot possibly be represented,
		   even with the lowest divider (1) */
		data->fan_min[nr] = 1;
		new_div = 0; /* 1 == (1 << 0) */
		dev_warn(dev, "fan%u low limit %u above maximum %u, set to "
716
			 "maximum\n", nr + 1, val, fan_from_reg(1, 1));
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
	} else {
		/* Automatically pick the best divider, i.e. the one such
		   that the min limit will correspond to a register value
		   in the 96..192 range */
		new_div = 0;
		while (reg > 192 && new_div < 7) {
			reg >>= 1;
			new_div++;
		}
		data->fan_min[nr] = reg;
	}

	/* Write both the fan clock divider (if it changed) and the new
	   fan min (unconditionally) */
	if (new_div != data->fan_div[nr]) {
732 733 734 735 736 737 738 739 740
		/* Preserve the fan speed reading */
		if (data->fan[nr] != 0xff) {
			if (new_div > data->fan_div[nr])
				data->fan[nr] >>= new_div - data->fan_div[nr];
			else if (data->fan[nr] & 0x80)
				data->fan[nr] = 0xff;
			else
				data->fan[nr] <<= data->fan_div[nr] - new_div;
		}
741 742 743 744 745

		dev_dbg(dev, "fan%u clock divider changed from %u to %u\n",
			nr + 1, div_from_reg(data->fan_div[nr]),
			div_from_reg(new_div));
		data->fan_div[nr] = new_div;
746
		w83627ehf_write_fan_div(data, nr);
747 748
		/* Give the chip time to sample a new speed value */
		data->last_updated = jiffies;
749
	}
750
	w83627ehf_write_value(data, W83627EHF_REG_FAN_MIN[nr],
751
			      data->fan_min[nr]);
752
	mutex_unlock(&data->update_lock);
753 754 755 756

	return count;
}

757 758 759 760 761 762 763
static struct sensor_device_attribute sda_fan_input[] = {
	SENSOR_ATTR(fan1_input, S_IRUGO, show_fan, NULL, 0),
	SENSOR_ATTR(fan2_input, S_IRUGO, show_fan, NULL, 1),
	SENSOR_ATTR(fan3_input, S_IRUGO, show_fan, NULL, 2),
	SENSOR_ATTR(fan4_input, S_IRUGO, show_fan, NULL, 3),
	SENSOR_ATTR(fan5_input, S_IRUGO, show_fan, NULL, 4),
};
764

765 766 767 768 769 770 771 772
static struct sensor_device_attribute sda_fan_alarm[] = {
	SENSOR_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6),
	SENSOR_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7),
	SENSOR_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 11),
	SENSOR_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 10),
	SENSOR_ATTR(fan5_alarm, S_IRUGO, show_alarm, NULL, 23),
};

773 774 775 776 777 778 779 780 781 782 783 784
static struct sensor_device_attribute sda_fan_min[] = {
	SENSOR_ATTR(fan1_min, S_IWUSR | S_IRUGO, show_fan_min,
		    store_fan_min, 0),
	SENSOR_ATTR(fan2_min, S_IWUSR | S_IRUGO, show_fan_min,
		    store_fan_min, 1),
	SENSOR_ATTR(fan3_min, S_IWUSR | S_IRUGO, show_fan_min,
		    store_fan_min, 2),
	SENSOR_ATTR(fan4_min, S_IWUSR | S_IRUGO, show_fan_min,
		    store_fan_min, 3),
	SENSOR_ATTR(fan5_min, S_IWUSR | S_IRUGO, show_fan_min,
		    store_fan_min, 4),
};
785

786 787 788 789 790 791 792 793
static struct sensor_device_attribute sda_fan_div[] = {
	SENSOR_ATTR(fan1_div, S_IRUGO, show_fan_div, NULL, 0),
	SENSOR_ATTR(fan2_div, S_IRUGO, show_fan_div, NULL, 1),
	SENSOR_ATTR(fan3_div, S_IRUGO, show_fan_div, NULL, 2),
	SENSOR_ATTR(fan4_div, S_IRUGO, show_fan_div, NULL, 3),
	SENSOR_ATTR(fan5_div, S_IRUGO, show_fan_div, NULL, 4),
};

794 795
#define show_temp1_reg(reg) \
static ssize_t \
796 797
show_##reg(struct device *dev, struct device_attribute *attr, \
	   char *buf) \
798 799 800 801 802 803 804 805 806 807
{ \
	struct w83627ehf_data *data = w83627ehf_update_device(dev); \
	return sprintf(buf, "%d\n", temp1_from_reg(data->reg)); \
}
show_temp1_reg(temp1);
show_temp1_reg(temp1_max);
show_temp1_reg(temp1_max_hyst);

#define store_temp1_reg(REG, reg) \
static ssize_t \
808 809
store_temp1_##reg(struct device *dev, struct device_attribute *attr, \
		  const char *buf, size_t count) \
810
{ \
811
	struct w83627ehf_data *data = dev_get_drvdata(dev); \
812
	long val = simple_strtol(buf, NULL, 10); \
813
 \
814
	mutex_lock(&data->update_lock); \
815
	data->temp1_##reg = temp1_to_reg(val, -128000, 127000); \
816
	w83627ehf_write_value(data, W83627EHF_REG_TEMP1_##REG, \
817
			      data->temp1_##reg); \
818
	mutex_unlock(&data->update_lock); \
819 820 821 822 823 824 825
	return count; \
}
store_temp1_reg(OVER, max);
store_temp1_reg(HYST, max_hyst);

#define show_temp_reg(reg) \
static ssize_t \
826 827
show_##reg(struct device *dev, struct device_attribute *attr, \
	   char *buf) \
828 829
{ \
	struct w83627ehf_data *data = w83627ehf_update_device(dev); \
830 831
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
832 833 834 835 836 837 838 839 840
	return sprintf(buf, "%d\n", \
		       LM75_TEMP_FROM_REG(data->reg[nr])); \
}
show_temp_reg(temp);
show_temp_reg(temp_max);
show_temp_reg(temp_max_hyst);

#define store_temp_reg(REG, reg) \
static ssize_t \
841 842
store_##reg(struct device *dev, struct device_attribute *attr, \
	    const char *buf, size_t count) \
843
{ \
844
	struct w83627ehf_data *data = dev_get_drvdata(dev); \
845 846
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
847
	long val = simple_strtol(buf, NULL, 10); \
848
 \
849
	mutex_lock(&data->update_lock); \
850
	data->reg[nr] = LM75_TEMP_TO_REG(val); \
851
	w83627ehf_write_value(data, W83627EHF_REG_TEMP_##REG[nr], \
852
			      data->reg[nr]); \
853
	mutex_unlock(&data->update_lock); \
854 855 856 857 858
	return count; \
}
store_temp_reg(OVER, temp_max);
store_temp_reg(HYST, temp_max_hyst);

859 860 861 862 863 864 865 866 867
static ssize_t
show_temp_type(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct w83627ehf_data *data = w83627ehf_update_device(dev);
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
	int nr = sensor_attr->index;
	return sprintf(buf, "%d\n", (int)data->temp_type[nr]);
}

868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
static struct sensor_device_attribute sda_temp[] = {
	SENSOR_ATTR(temp1_input, S_IRUGO, show_temp1, NULL, 0),
	SENSOR_ATTR(temp2_input, S_IRUGO, show_temp, NULL, 0),
	SENSOR_ATTR(temp3_input, S_IRUGO, show_temp, NULL, 1),
	SENSOR_ATTR(temp1_max, S_IRUGO | S_IWUSR, show_temp1_max,
		    store_temp1_max, 0),
	SENSOR_ATTR(temp2_max, S_IRUGO | S_IWUSR, show_temp_max,
		    store_temp_max, 0),
	SENSOR_ATTR(temp3_max, S_IRUGO | S_IWUSR, show_temp_max,
		    store_temp_max, 1),
	SENSOR_ATTR(temp1_max_hyst, S_IRUGO | S_IWUSR, show_temp1_max_hyst,
		    store_temp1_max_hyst, 0),
	SENSOR_ATTR(temp2_max_hyst, S_IRUGO | S_IWUSR, show_temp_max_hyst,
		    store_temp_max_hyst, 0),
	SENSOR_ATTR(temp3_max_hyst, S_IRUGO | S_IWUSR, show_temp_max_hyst,
		    store_temp_max_hyst, 1),
884 885 886
	SENSOR_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4),
	SENSOR_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5),
	SENSOR_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 13),
887 888 889
	SENSOR_ATTR(temp1_type, S_IRUGO, show_temp_type, NULL, 0),
	SENSOR_ATTR(temp2_type, S_IRUGO, show_temp_type, NULL, 1),
	SENSOR_ATTR(temp3_type, S_IRUGO, show_temp_type, NULL, 2),
890
};
891

892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
#define show_pwm_reg(reg) \
static ssize_t show_##reg (struct device *dev, struct device_attribute *attr, \
				char *buf) \
{ \
	struct w83627ehf_data *data = w83627ehf_update_device(dev); \
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
	return sprintf(buf, "%d\n", data->reg[nr]); \
}

show_pwm_reg(pwm_mode)
show_pwm_reg(pwm_enable)
show_pwm_reg(pwm)

static ssize_t
store_pwm_mode(struct device *dev, struct device_attribute *attr,
			const char *buf, size_t count)
{
910
	struct w83627ehf_data *data = dev_get_drvdata(dev);
911 912 913 914 915 916 917 918
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
	int nr = sensor_attr->index;
	u32 val = simple_strtoul(buf, NULL, 10);
	u16 reg;

	if (val > 1)
		return -EINVAL;
	mutex_lock(&data->update_lock);
919
	reg = w83627ehf_read_value(data, W83627EHF_REG_PWM_ENABLE[nr]);
920 921 922 923
	data->pwm_mode[nr] = val;
	reg &= ~(1 << W83627EHF_PWM_MODE_SHIFT[nr]);
	if (!val)
		reg |= 1 << W83627EHF_PWM_MODE_SHIFT[nr];
924
	w83627ehf_write_value(data, W83627EHF_REG_PWM_ENABLE[nr], reg);
925 926 927 928 929 930 931 932
	mutex_unlock(&data->update_lock);
	return count;
}

static ssize_t
store_pwm(struct device *dev, struct device_attribute *attr,
			const char *buf, size_t count)
{
933
	struct w83627ehf_data *data = dev_get_drvdata(dev);
934 935 936 937 938 939
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
	int nr = sensor_attr->index;
	u32 val = SENSORS_LIMIT(simple_strtoul(buf, NULL, 10), 0, 255);

	mutex_lock(&data->update_lock);
	data->pwm[nr] = val;
940
	w83627ehf_write_value(data, W83627EHF_REG_PWM[nr], val);
941 942 943 944 945 946 947 948
	mutex_unlock(&data->update_lock);
	return count;
}

static ssize_t
store_pwm_enable(struct device *dev, struct device_attribute *attr,
			const char *buf, size_t count)
{
949
	struct w83627ehf_data *data = dev_get_drvdata(dev);
950 951 952 953 954 955 956 957
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
	int nr = sensor_attr->index;
	u32 val = simple_strtoul(buf, NULL, 10);
	u16 reg;

	if (!val || (val > 2))	/* only modes 1 and 2 are supported */
		return -EINVAL;
	mutex_lock(&data->update_lock);
958
	reg = w83627ehf_read_value(data, W83627EHF_REG_PWM_ENABLE[nr]);
959 960 961
	data->pwm_enable[nr] = val;
	reg &= ~(0x03 << W83627EHF_PWM_ENABLE_SHIFT[nr]);
	reg |= (val - 1) << W83627EHF_PWM_ENABLE_SHIFT[nr];
962
	w83627ehf_write_value(data, W83627EHF_REG_PWM_ENABLE[nr], reg);
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
	mutex_unlock(&data->update_lock);
	return count;
}


#define show_tol_temp(reg) \
static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
				char *buf) \
{ \
	struct w83627ehf_data *data = w83627ehf_update_device(dev); \
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
	return sprintf(buf, "%d\n", temp1_from_reg(data->reg[nr])); \
}

show_tol_temp(tolerance)
show_tol_temp(target_temp)

static ssize_t
store_target_temp(struct device *dev, struct device_attribute *attr,
			const char *buf, size_t count)
{
985
	struct w83627ehf_data *data = dev_get_drvdata(dev);
986 987 988 989 990 991
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
	int nr = sensor_attr->index;
	u8 val = temp1_to_reg(simple_strtoul(buf, NULL, 10), 0, 127000);

	mutex_lock(&data->update_lock);
	data->target_temp[nr] = val;
992
	w83627ehf_write_value(data, W83627EHF_REG_TARGET[nr], val);
993 994 995 996 997 998 999 1000
	mutex_unlock(&data->update_lock);
	return count;
}

static ssize_t
store_tolerance(struct device *dev, struct device_attribute *attr,
			const char *buf, size_t count)
{
1001
	struct w83627ehf_data *data = dev_get_drvdata(dev);
1002 1003 1004 1005 1006 1007 1008
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
	int nr = sensor_attr->index;
	u16 reg;
	/* Limit the temp to 0C - 15C */
	u8 val = temp1_to_reg(simple_strtoul(buf, NULL, 10), 0, 15000);

	mutex_lock(&data->update_lock);
1009
	reg = w83627ehf_read_value(data, W83627EHF_REG_TOLERANCE[nr]);
1010 1011 1012 1013 1014
	data->tolerance[nr] = val;
	if (nr == 1)
		reg = (reg & 0x0f) | (val << 4);
	else
		reg = (reg & 0xf0) | val;
1015
	w83627ehf_write_value(data, W83627EHF_REG_TOLERANCE[nr], reg);
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
	mutex_unlock(&data->update_lock);
	return count;
}

static struct sensor_device_attribute sda_pwm[] = {
	SENSOR_ATTR(pwm1, S_IWUSR | S_IRUGO, show_pwm, store_pwm, 0),
	SENSOR_ATTR(pwm2, S_IWUSR | S_IRUGO, show_pwm, store_pwm, 1),
	SENSOR_ATTR(pwm3, S_IWUSR | S_IRUGO, show_pwm, store_pwm, 2),
	SENSOR_ATTR(pwm4, S_IWUSR | S_IRUGO, show_pwm, store_pwm, 3),
};

static struct sensor_device_attribute sda_pwm_mode[] = {
	SENSOR_ATTR(pwm1_mode, S_IWUSR | S_IRUGO, show_pwm_mode,
		    store_pwm_mode, 0),
	SENSOR_ATTR(pwm2_mode, S_IWUSR | S_IRUGO, show_pwm_mode,
		    store_pwm_mode, 1),
	SENSOR_ATTR(pwm3_mode, S_IWUSR | S_IRUGO, show_pwm_mode,
		    store_pwm_mode, 2),
	SENSOR_ATTR(pwm4_mode, S_IWUSR | S_IRUGO, show_pwm_mode,
		    store_pwm_mode, 3),
};

static struct sensor_device_attribute sda_pwm_enable[] = {
	SENSOR_ATTR(pwm1_enable, S_IWUSR | S_IRUGO, show_pwm_enable,
		    store_pwm_enable, 0),
	SENSOR_ATTR(pwm2_enable, S_IWUSR | S_IRUGO, show_pwm_enable,
		    store_pwm_enable, 1),
	SENSOR_ATTR(pwm3_enable, S_IWUSR | S_IRUGO, show_pwm_enable,
		    store_pwm_enable, 2),
	SENSOR_ATTR(pwm4_enable, S_IWUSR | S_IRUGO, show_pwm_enable,
		    store_pwm_enable, 3),
};

static struct sensor_device_attribute sda_target_temp[] = {
	SENSOR_ATTR(pwm1_target, S_IWUSR | S_IRUGO, show_target_temp,
		    store_target_temp, 0),
	SENSOR_ATTR(pwm2_target, S_IWUSR | S_IRUGO, show_target_temp,
		    store_target_temp, 1),
	SENSOR_ATTR(pwm3_target, S_IWUSR | S_IRUGO, show_target_temp,
		    store_target_temp, 2),
	SENSOR_ATTR(pwm4_target, S_IWUSR | S_IRUGO, show_target_temp,
		    store_target_temp, 3),
};

static struct sensor_device_attribute sda_tolerance[] = {
	SENSOR_ATTR(pwm1_tolerance, S_IWUSR | S_IRUGO, show_tolerance,
		    store_tolerance, 0),
	SENSOR_ATTR(pwm2_tolerance, S_IWUSR | S_IRUGO, show_tolerance,
		    store_tolerance, 1),
	SENSOR_ATTR(pwm3_tolerance, S_IWUSR | S_IRUGO, show_tolerance,
		    store_tolerance, 2),
	SENSOR_ATTR(pwm4_tolerance, S_IWUSR | S_IRUGO, show_tolerance,
		    store_tolerance, 3),
};

/* Smart Fan registers */

#define fan_functions(reg, REG) \
static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
		       char *buf) \
{ \
	struct w83627ehf_data *data = w83627ehf_update_device(dev); \
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
	return sprintf(buf, "%d\n", data->reg[nr]); \
}\
static ssize_t \
store_##reg(struct device *dev, struct device_attribute *attr, \
			    const char *buf, size_t count) \
{\
1086
	struct w83627ehf_data *data = dev_get_drvdata(dev); \
1087 1088 1089 1090 1091
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
	u32 val = SENSORS_LIMIT(simple_strtoul(buf, NULL, 10), 1, 255); \
	mutex_lock(&data->update_lock); \
	data->reg[nr] = val; \
1092
	w83627ehf_write_value(data, W83627EHF_REG_##REG[nr], val); \
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
	mutex_unlock(&data->update_lock); \
	return count; \
}

fan_functions(fan_min_output, FAN_MIN_OUTPUT)

#define fan_time_functions(reg, REG) \
static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
				char *buf) \
{ \
	struct w83627ehf_data *data = w83627ehf_update_device(dev); \
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
	return sprintf(buf, "%d\n", \
			step_time_from_reg(data->reg[nr], data->pwm_mode[nr])); \
} \
\
static ssize_t \
store_##reg(struct device *dev, struct device_attribute *attr, \
			const char *buf, size_t count) \
{ \
1114
	struct w83627ehf_data *data = dev_get_drvdata(dev); \
1115 1116 1117 1118 1119 1120
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
	u8 val = step_time_to_reg(simple_strtoul(buf, NULL, 10), \
					data->pwm_mode[nr]); \
	mutex_lock(&data->update_lock); \
	data->reg[nr] = val; \
1121
	w83627ehf_write_value(data, W83627EHF_REG_##REG[nr], val); \
1122 1123 1124 1125 1126 1127
	mutex_unlock(&data->update_lock); \
	return count; \
} \

fan_time_functions(fan_stop_time, FAN_STOP_TIME)

1128 1129 1130 1131 1132 1133 1134 1135
static ssize_t show_name(struct device *dev, struct device_attribute *attr,
			 char *buf)
{
	struct w83627ehf_data *data = dev_get_drvdata(dev);

	return sprintf(buf, "%s\n", data->name);
}
static DEVICE_ATTR(name, S_IRUGO, show_name, NULL);
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158

static struct sensor_device_attribute sda_sf3_arrays_fan4[] = {
	SENSOR_ATTR(pwm4_stop_time, S_IWUSR | S_IRUGO, show_fan_stop_time,
		    store_fan_stop_time, 3),
	SENSOR_ATTR(pwm4_min_output, S_IWUSR | S_IRUGO, show_fan_min_output,
		    store_fan_min_output, 3),
};

static struct sensor_device_attribute sda_sf3_arrays[] = {
	SENSOR_ATTR(pwm1_stop_time, S_IWUSR | S_IRUGO, show_fan_stop_time,
		    store_fan_stop_time, 0),
	SENSOR_ATTR(pwm2_stop_time, S_IWUSR | S_IRUGO, show_fan_stop_time,
		    store_fan_stop_time, 1),
	SENSOR_ATTR(pwm3_stop_time, S_IWUSR | S_IRUGO, show_fan_stop_time,
		    store_fan_stop_time, 2),
	SENSOR_ATTR(pwm1_min_output, S_IWUSR | S_IRUGO, show_fan_min_output,
		    store_fan_min_output, 0),
	SENSOR_ATTR(pwm2_min_output, S_IWUSR | S_IRUGO, show_fan_min_output,
		    store_fan_min_output, 1),
	SENSOR_ATTR(pwm3_min_output, S_IWUSR | S_IRUGO, show_fan_min_output,
		    store_fan_min_output, 2),
};

1159 1160 1161 1162 1163 1164 1165 1166
static ssize_t
show_vid(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct w83627ehf_data *data = dev_get_drvdata(dev);
	return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm));
}
static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid, NULL);

1167
/*
1168
 * Driver and device management
1169 1170
 */

1171 1172 1173 1174 1175
static void w83627ehf_device_remove_files(struct device *dev)
{
	/* some entries in the following arrays may not have been used in
	 * device_create_file(), but device_remove_file() will ignore them */
	int i;
1176
	struct w83627ehf_data *data = dev_get_drvdata(dev);
1177 1178 1179 1180 1181

	for (i = 0; i < ARRAY_SIZE(sda_sf3_arrays); i++)
		device_remove_file(dev, &sda_sf3_arrays[i].dev_attr);
	for (i = 0; i < ARRAY_SIZE(sda_sf3_arrays_fan4); i++)
		device_remove_file(dev, &sda_sf3_arrays_fan4[i].dev_attr);
1182
	for (i = 0; i < data->in_num; i++) {
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
		device_remove_file(dev, &sda_in_input[i].dev_attr);
		device_remove_file(dev, &sda_in_alarm[i].dev_attr);
		device_remove_file(dev, &sda_in_min[i].dev_attr);
		device_remove_file(dev, &sda_in_max[i].dev_attr);
	}
	for (i = 0; i < 5; i++) {
		device_remove_file(dev, &sda_fan_input[i].dev_attr);
		device_remove_file(dev, &sda_fan_alarm[i].dev_attr);
		device_remove_file(dev, &sda_fan_div[i].dev_attr);
		device_remove_file(dev, &sda_fan_min[i].dev_attr);
	}
	for (i = 0; i < 4; i++) {
		device_remove_file(dev, &sda_pwm[i].dev_attr);
		device_remove_file(dev, &sda_pwm_mode[i].dev_attr);
		device_remove_file(dev, &sda_pwm_enable[i].dev_attr);
		device_remove_file(dev, &sda_target_temp[i].dev_attr);
		device_remove_file(dev, &sda_tolerance[i].dev_attr);
	}
	for (i = 0; i < ARRAY_SIZE(sda_temp); i++)
		device_remove_file(dev, &sda_temp[i].dev_attr);

1204
	device_remove_file(dev, &dev_attr_name);
1205 1206
	if (data->vid != 0x3f)
		device_remove_file(dev, &dev_attr_cpu0_vid);
1207
}
1208

1209 1210
/* Get the monitoring functions started */
static inline void __devinit w83627ehf_init_device(struct w83627ehf_data *data)
1211 1212
{
	int i;
1213
	u8 tmp, diode;
1214 1215

	/* Start monitoring is needed */
1216
	tmp = w83627ehf_read_value(data, W83627EHF_REG_CONFIG);
1217
	if (!(tmp & 0x01))
1218
		w83627ehf_write_value(data, W83627EHF_REG_CONFIG,
1219 1220 1221 1222
				      tmp | 0x01);

	/* Enable temp2 and temp3 if needed */
	for (i = 0; i < 2; i++) {
1223
		tmp = w83627ehf_read_value(data,
1224 1225
					   W83627EHF_REG_TEMP_CONFIG[i]);
		if (tmp & 0x01)
1226
			w83627ehf_write_value(data,
1227 1228 1229
					      W83627EHF_REG_TEMP_CONFIG[i],
					      tmp & 0xfe);
	}
1230 1231 1232 1233 1234

	/* Enable VBAT monitoring if needed */
	tmp = w83627ehf_read_value(data, W83627EHF_REG_VBAT);
	if (!(tmp & 0x01))
		w83627ehf_write_value(data, W83627EHF_REG_VBAT, tmp | 0x01);
1235 1236 1237 1238 1239 1240 1241 1242 1243

	/* Get thermal sensor types */
	diode = w83627ehf_read_value(data, W83627EHF_REG_DIODE);
	for (i = 0; i < 3; i++) {
		if ((tmp & (0x02 << i)))
			data->temp_type[i] = (diode & (0x10 << i)) ? 1 : 2;
		else
			data->temp_type[i] = 4; /* thermistor */
	}
1244 1245
}

1246
static int __devinit w83627ehf_probe(struct platform_device *pdev)
1247
{
1248 1249
	struct device *dev = &pdev->dev;
	struct w83627ehf_sio_data *sio_data = dev->platform_data;
1250
	struct w83627ehf_data *data;
1251
	struct resource *res;
1252
	u8 fan4pin, fan5pin, en_vrm10;
1253 1254
	int i, err = 0;

1255 1256
	res = platform_get_resource(pdev, IORESOURCE_IO, 0);
	if (!request_region(res->start, IOREGION_LENGTH, DRVNAME)) {
1257
		err = -EBUSY;
1258 1259 1260
		dev_err(dev, "Failed to request region 0x%lx-0x%lx\n",
			(unsigned long)res->start,
			(unsigned long)res->start + IOREGION_LENGTH - 1);
1261 1262 1263
		goto exit;
	}

D
Deepak Saxena 已提交
1264
	if (!(data = kzalloc(sizeof(struct w83627ehf_data), GFP_KERNEL))) {
1265 1266 1267 1268
		err = -ENOMEM;
		goto exit_release;
	}

1269
	data->addr = res->start;
1270 1271
	mutex_init(&data->lock);
	mutex_init(&data->update_lock);
1272 1273
	data->name = w83627ehf_device_names[sio_data->kind];
	platform_set_drvdata(pdev, data);
1274

1275 1276
	/* 627EHG and 627EHF have 10 voltage inputs; DHG has 9 */
	data->in_num = (sio_data->kind == w83627dhg) ? 9 : 10;
1277 1278

	/* Initialize the chip */
1279
	w83627ehf_init_device(data);
1280

1281 1282 1283 1284
	data->vrm = vid_which_vrm();
	superio_enter(sio_data->sioreg);
	/* Read VID value */
	superio_select(sio_data->sioreg, W83627EHF_LD_HWM);
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
	if (superio_inb(sio_data->sioreg, SIO_REG_VID_CTRL) & 0x80) {
		/* Set VID input sensibility if needed. In theory the BIOS
		   should have set it, but in practice it's not always the
		   case. We only do it for the W83627EHF/EHG because the
		   W83627DHG is more complex in this respect. */
		if (sio_data->kind == w83627ehf) {
			en_vrm10 = superio_inb(sio_data->sioreg,
					       SIO_REG_EN_VRM10);
			if ((en_vrm10 & 0x08) && data->vrm == 90) {
				dev_warn(dev, "Setting VID input voltage to "
					 "TTL\n");
				superio_outb(sio_data->sioreg, SIO_REG_EN_VRM10,
					     en_vrm10 & ~0x08);
			} else if (!(en_vrm10 & 0x08) && data->vrm == 100) {
				dev_warn(dev, "Setting VID input voltage to "
					 "VRM10\n");
				superio_outb(sio_data->sioreg, SIO_REG_EN_VRM10,
					     en_vrm10 | 0x08);
			}
		}

1306
		data->vid = superio_inb(sio_data->sioreg, SIO_REG_VID_DATA) & 0x3f;
1307
	} else {
1308 1309 1310 1311 1312
		dev_info(dev, "VID pins in output mode, CPU VID not "
			 "available\n");
		data->vid = 0x3f;
	}

1313 1314
	/* fan4 and fan5 share some pins with the GPIO and serial flash */

1315 1316 1317
	fan5pin = superio_inb(sio_data->sioreg, 0x24) & 0x2;
	fan4pin = superio_inb(sio_data->sioreg, 0x29) & 0x6;
	superio_exit(sio_data->sioreg);
1318

1319
	/* It looks like fan4 and fan5 pins can be alternatively used
1320 1321 1322 1323
	   as fan on/off switches, but fan5 control is write only :/
	   We assume that if the serial interface is disabled, designers
	   connected fan5 as input unless they are emitting log 1, which
	   is not the default. */
1324

1325
	data->has_fan = 0x07; /* fan1, fan2 and fan3 */
1326
	i = w83627ehf_read_value(data, W83627EHF_REG_FANDIV1);
1327
	if ((i & (1 << 2)) && (!fan4pin))
1328
		data->has_fan |= (1 << 3);
1329
	if (!(i & (1 << 1)) && (!fan5pin))
1330 1331
		data->has_fan |= (1 << 4);

1332 1333 1334
	/* Read fan clock dividers immediately */
	w83627ehf_update_fan_div(data);

1335
	/* Register sysfs hooks */
1336
  	for (i = 0; i < ARRAY_SIZE(sda_sf3_arrays); i++)
1337 1338 1339
		if ((err = device_create_file(dev,
			&sda_sf3_arrays[i].dev_attr)))
			goto exit_remove;
1340 1341 1342

	/* if fan4 is enabled create the sf3 files for it */
	if (data->has_fan & (1 << 3))
1343 1344 1345 1346 1347
		for (i = 0; i < ARRAY_SIZE(sda_sf3_arrays_fan4); i++) {
			if ((err = device_create_file(dev,
				&sda_sf3_arrays_fan4[i].dev_attr)))
				goto exit_remove;
		}
1348

1349
	for (i = 0; i < data->in_num; i++)
1350 1351 1352 1353 1354 1355 1356 1357
		if ((err = device_create_file(dev, &sda_in_input[i].dev_attr))
			|| (err = device_create_file(dev,
				&sda_in_alarm[i].dev_attr))
			|| (err = device_create_file(dev,
				&sda_in_min[i].dev_attr))
			|| (err = device_create_file(dev,
				&sda_in_max[i].dev_attr)))
			goto exit_remove;
1358

1359
	for (i = 0; i < 5; i++) {
1360
		if (data->has_fan & (1 << i)) {
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
			if ((err = device_create_file(dev,
					&sda_fan_input[i].dev_attr))
				|| (err = device_create_file(dev,
					&sda_fan_alarm[i].dev_attr))
				|| (err = device_create_file(dev,
					&sda_fan_div[i].dev_attr))
				|| (err = device_create_file(dev,
					&sda_fan_min[i].dev_attr)))
				goto exit_remove;
			if (i < 4 && /* w83627ehf only has 4 pwm */
				((err = device_create_file(dev,
					&sda_pwm[i].dev_attr))
				|| (err = device_create_file(dev,
					&sda_pwm_mode[i].dev_attr))
				|| (err = device_create_file(dev,
					&sda_pwm_enable[i].dev_attr))
				|| (err = device_create_file(dev,
					&sda_target_temp[i].dev_attr))
				|| (err = device_create_file(dev,
					&sda_tolerance[i].dev_attr))))
				goto exit_remove;
1382
		}
1383
	}
1384

1385
	for (i = 0; i < ARRAY_SIZE(sda_temp); i++)
1386 1387 1388
		if ((err = device_create_file(dev, &sda_temp[i].dev_attr)))
			goto exit_remove;

1389 1390 1391 1392
	err = device_create_file(dev, &dev_attr_name);
	if (err)
		goto exit_remove;

1393 1394 1395 1396 1397 1398
	if (data->vid != 0x3f) {
		err = device_create_file(dev, &dev_attr_cpu0_vid);
		if (err)
			goto exit_remove;
	}

1399 1400 1401
	data->hwmon_dev = hwmon_device_register(dev);
	if (IS_ERR(data->hwmon_dev)) {
		err = PTR_ERR(data->hwmon_dev);
1402 1403
		goto exit_remove;
	}
1404 1405 1406

	return 0;

1407 1408
exit_remove:
	w83627ehf_device_remove_files(dev);
1409
	kfree(data);
1410
	platform_set_drvdata(pdev, NULL);
1411
exit_release:
1412
	release_region(res->start, IOREGION_LENGTH);
1413 1414 1415 1416
exit:
	return err;
}

1417
static int __devexit w83627ehf_remove(struct platform_device *pdev)
1418
{
1419
	struct w83627ehf_data *data = platform_get_drvdata(pdev);
1420

1421
	hwmon_device_unregister(data->hwmon_dev);
1422 1423 1424
	w83627ehf_device_remove_files(&pdev->dev);
	release_region(data->addr, IOREGION_LENGTH);
	platform_set_drvdata(pdev, NULL);
1425
	kfree(data);
1426 1427 1428 1429

	return 0;
}

1430
static struct platform_driver w83627ehf_driver = {
1431
	.driver = {
J
Jean Delvare 已提交
1432
		.owner	= THIS_MODULE,
1433
		.name	= DRVNAME,
1434
	},
1435 1436
	.probe		= w83627ehf_probe,
	.remove		= __devexit_p(w83627ehf_remove),
1437 1438
};

1439 1440 1441
/* w83627ehf_find() looks for a '627 in the Super-I/O config space */
static int __init w83627ehf_find(int sioaddr, unsigned short *addr,
				 struct w83627ehf_sio_data *sio_data)
1442
{
1443 1444 1445 1446
	static const char __initdata sio_name_W83627EHF[] = "W83627EHF";
	static const char __initdata sio_name_W83627EHG[] = "W83627EHG";
	static const char __initdata sio_name_W83627DHG[] = "W83627DHG";

1447
	u16 val;
1448
	const char *sio_name;
1449

1450
	superio_enter(sioaddr);
1451

1452 1453 1454 1455 1456
	if (force_id)
		val = force_id;
	else
		val = (superio_inb(sioaddr, SIO_REG_DEVID) << 8)
		    | superio_inb(sioaddr, SIO_REG_DEVID + 1);
1457 1458
	switch (val & SIO_ID_MASK) {
	case SIO_W83627EHF_ID:
1459 1460 1461
		sio_data->kind = w83627ehf;
		sio_name = sio_name_W83627EHF;
		break;
1462
	case SIO_W83627EHG_ID:
1463 1464 1465 1466 1467 1468
		sio_data->kind = w83627ehf;
		sio_name = sio_name_W83627EHG;
		break;
	case SIO_W83627DHG_ID:
		sio_data->kind = w83627dhg;
		sio_name = sio_name_W83627DHG;
1469 1470
		break;
	default:
1471 1472 1473
		if (val != 0xffff)
			pr_debug(DRVNAME ": unsupported chip ID: 0x%04x\n",
				 val);
1474
		superio_exit(sioaddr);
1475 1476 1477
		return -ENODEV;
	}

1478 1479 1480 1481
	/* We have a known chip, find the HWM I/O address */
	superio_select(sioaddr, W83627EHF_LD_HWM);
	val = (superio_inb(sioaddr, SIO_REG_ADDR) << 8)
	    | superio_inb(sioaddr, SIO_REG_ADDR + 1);
1482
	*addr = val & IOREGION_ALIGNMENT;
1483
	if (*addr == 0) {
1484 1485
		printk(KERN_ERR DRVNAME ": Refusing to enable a Super-I/O "
		       "device with a base I/O port 0.\n");
1486
		superio_exit(sioaddr);
1487 1488 1489 1490
		return -ENODEV;
	}

	/* Activate logical device if needed */
1491
	val = superio_inb(sioaddr, SIO_REG_ENABLE);
1492 1493 1494
	if (!(val & 0x01)) {
		printk(KERN_WARNING DRVNAME ": Forcibly enabling Super-I/O. "
		       "Sensor is probably unusable.\n");
1495
		superio_outb(sioaddr, SIO_REG_ENABLE, val | 0x01);
1496
	}
1497 1498 1499 1500

	superio_exit(sioaddr);
	pr_info(DRVNAME ": Found %s chip at %#x\n", sio_name, *addr);
	sio_data->sioreg = sioaddr;
1501 1502 1503 1504

	return 0;
}

1505 1506 1507 1508 1509 1510
/* when Super-I/O functions move to a separate file, the Super-I/O
 * bus will manage the lifetime of the device and this module will only keep
 * track of the w83627ehf driver. But since we platform_device_alloc(), we
 * must keep track of the device */
static struct platform_device *pdev;

1511 1512
static int __init sensors_w83627ehf_init(void)
{
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
	int err;
	unsigned short address;
	struct resource res;
	struct w83627ehf_sio_data sio_data;

	/* initialize sio_data->kind and sio_data->sioreg.
	 *
	 * when Super-I/O functions move to a separate file, the Super-I/O
	 * driver will probe 0x2e and 0x4e and auto-detect the presence of a
	 * w83627ehf hardware monitor, and call probe() */
	if (w83627ehf_find(0x2e, &address, &sio_data) &&
	    w83627ehf_find(0x4e, &address, &sio_data))
1525 1526
		return -ENODEV;

1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
	err = platform_driver_register(&w83627ehf_driver);
	if (err)
		goto exit;

	if (!(pdev = platform_device_alloc(DRVNAME, address))) {
		err = -ENOMEM;
		printk(KERN_ERR DRVNAME ": Device allocation failed\n");
		goto exit_unregister;
	}

	err = platform_device_add_data(pdev, &sio_data,
				       sizeof(struct w83627ehf_sio_data));
	if (err) {
		printk(KERN_ERR DRVNAME ": Platform data allocation failed\n");
		goto exit_device_put;
	}

	memset(&res, 0, sizeof(res));
	res.name = DRVNAME;
	res.start = address + IOREGION_OFFSET;
	res.end = address + IOREGION_OFFSET + IOREGION_LENGTH - 1;
	res.flags = IORESOURCE_IO;
	err = platform_device_add_resources(pdev, &res, 1);
	if (err) {
		printk(KERN_ERR DRVNAME ": Device resource addition failed "
		       "(%d)\n", err);
		goto exit_device_put;
	}

	/* platform_device_add calls probe() */
	err = platform_device_add(pdev);
	if (err) {
		printk(KERN_ERR DRVNAME ": Device addition failed (%d)\n",
		       err);
		goto exit_device_put;
	}

	return 0;

exit_device_put:
	platform_device_put(pdev);
exit_unregister:
	platform_driver_unregister(&w83627ehf_driver);
exit:
	return err;
1572 1573 1574 1575
}

static void __exit sensors_w83627ehf_exit(void)
{
1576 1577
	platform_device_unregister(pdev);
	platform_driver_unregister(&w83627ehf_driver);
1578 1579 1580 1581 1582 1583 1584 1585
}

MODULE_AUTHOR("Jean Delvare <khali@linux-fr.org>");
MODULE_DESCRIPTION("W83627EHF driver");
MODULE_LICENSE("GPL");

module_init(sensors_w83627ehf_init);
module_exit(sensors_w83627ehf_exit);