head_64.S 15.6 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 *  linux/boot/head.S
 *
 *  Copyright (C) 1991, 1992, 1993  Linus Torvalds
 */

/*
 *  head.S contains the 32-bit startup code.
 *
 * NOTE!!! Startup happens at absolute address 0x00001000, which is also where
 * the page directory will exist. The startup code will be overwritten by
 * the page directory. [According to comments etc elsewhere on a compressed
 * kernel it will end up at 0x1000 + 1Mb I hope so as I assume this. - AC]
 *
 * Page 0 is deliberately kept safe, since System Management Mode code in 
 * laptops may need to access the BIOS data stored there.  This is also
 * useful for future device drivers that either access the BIOS via VM86 
 * mode.
 */

/*
23
 * High loaded stuff by Hans Lermen & Werner Almesberger, Feb. 1996
L
Linus Torvalds 已提交
24
 */
25 26
	.code32
	.text
L
Linus Torvalds 已提交
27

28
#include <linux/init.h>
L
Linus Torvalds 已提交
29 30
#include <linux/linkage.h>
#include <asm/segment.h>
31
#include <asm/boot.h>
32
#include <asm/msr.h>
33
#include <asm/processor-flags.h>
34
#include <asm/asm-offsets.h>
35
#include <asm/bootparam.h>
36
#include "pgtable.h"
L
Linus Torvalds 已提交
37

38 39 40 41 42 43 44 45
/*
 * Locally defined symbols should be marked hidden:
 */
	.hidden _bss
	.hidden _ebss
	.hidden _got
	.hidden _egot

46
	__HEAD
L
Linus Torvalds 已提交
47
	.code32
48
SYM_FUNC_START(startup_32)
49 50 51 52 53 54
	/*
	 * 32bit entry is 0 and it is ABI so immutable!
	 * If we come here directly from a bootloader,
	 * kernel(text+data+bss+brk) ramdisk, zero_page, command line
	 * all need to be under the 4G limit.
	 */
L
Linus Torvalds 已提交
55 56
	cld
	cli
57
	movl	$(__BOOT_DS), %eax
58 59 60 61
	movl	%eax, %ds
	movl	%eax, %es
	movl	%eax, %ss

62 63
/*
 * Calculate the delta between where we were compiled to run
64 65 66
 * at and where we were actually loaded at.  This can only be done
 * with a short local call on x86.  Nothing  else will tell us what
 * address we are running at.  The reserved chunk of the real-mode
67 68
 * data at 0x1e4 (defined as a scratch field) are used as the stack
 * for this calculation. Only 4 bytes are needed.
69
 */
70
	leal	(BP_scratch+4)(%esi), %esp
71 72 73 74
	call	1f
1:	popl	%ebp
	subl	$1b, %ebp

75
/* setup a stack and make sure cpu supports long mode. */
76
	movl	$boot_stack_end, %eax
77 78 79 80 81
	addl	%ebp, %eax
	movl	%eax, %esp

	call	verify_cpu
	testl	%eax, %eax
82
	jnz	.Lno_longmode
83

84 85
/*
 * Compute the delta between where we were compiled to run at
86
 * and where the code will actually run at.
87 88
 *
 * %ebp contains the address we are loaded at by the boot loader and %ebx
89 90 91 92 93 94
 * contains the address where we should move the kernel image temporarily
 * for safe in-place decompression.
 */

#ifdef CONFIG_RELOCATABLE
	movl	%ebp, %ebx
95 96 97 98 99
	movl	BP_kernel_alignment(%esi), %eax
	decl	%eax
	addl	%eax, %ebx
	notl	%eax
	andl	%eax, %ebx
100 101
	cmpl	$LOAD_PHYSICAL_ADDR, %ebx
	jge	1f
102
#endif
103 104
	movl	$LOAD_PHYSICAL_ADDR, %ebx
1:
105

106
	/* Target address to relocate to for decompression */
107 108 109
	movl	BP_init_size(%esi), %eax
	subl	$_end, %eax
	addl	%eax, %ebx
L
Linus Torvalds 已提交
110 111

/*
112
 * Prepare for entering 64 bit mode
L
Linus Torvalds 已提交
113
 */
114 115

	/* Load new GDT with the 64bit segments using 32bit descriptor */
116
	addl	%ebp, gdt+2(%ebp)
117 118 119
	lgdt	gdt(%ebp)

	/* Enable PAE mode */
120 121
	movl	%cr4, %eax
	orl	$X86_CR4_PAE, %eax
122 123 124 125 126
	movl	%eax, %cr4

 /*
  * Build early 4G boot pagetable
  */
127 128 129 130 131 132 133 134 135 136 137 138 139
	/*
	 * If SEV is active then set the encryption mask in the page tables.
	 * This will insure that when the kernel is copied and decompressed
	 * it will be done so encrypted.
	 */
	call	get_sev_encryption_bit
	xorl	%edx, %edx
	testl	%eax, %eax
	jz	1f
	subl	$32, %eax	/* Encryption bit is always above bit 31 */
	bts	%eax, %edx	/* Set encryption mask for page tables */
1:

140
	/* Initialize Page tables to 0 */
141 142
	leal	pgtable(%ebx), %edi
	xorl	%eax, %eax
143
	movl	$(BOOT_INIT_PGT_SIZE/4), %ecx
144 145 146 147 148 149
	rep	stosl

	/* Build Level 4 */
	leal	pgtable + 0(%ebx), %edi
	leal	0x1007 (%edi), %eax
	movl	%eax, 0(%edi)
150
	addl	%edx, 4(%edi)
151 152 153 154 155 156

	/* Build Level 3 */
	leal	pgtable + 0x1000(%ebx), %edi
	leal	0x1007(%edi), %eax
	movl	$4, %ecx
1:	movl	%eax, 0x00(%edi)
157
	addl	%edx, 0x04(%edi)
158 159 160 161 162 163 164 165 166 167
	addl	$0x00001000, %eax
	addl	$8, %edi
	decl	%ecx
	jnz	1b

	/* Build Level 2 */
	leal	pgtable + 0x2000(%ebx), %edi
	movl	$0x00000183, %eax
	movl	$2048, %ecx
1:	movl	%eax, 0(%edi)
168
	addl	%edx, 4(%edi)
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
	addl	$0x00200000, %eax
	addl	$8, %edi
	decl	%ecx
	jnz	1b

	/* Enable the boot page tables */
	leal	pgtable(%ebx), %eax
	movl	%eax, %cr3

	/* Enable Long mode in EFER (Extended Feature Enable Register) */
	movl	$MSR_EFER, %ecx
	rdmsr
	btsl	$_EFER_LME, %eax
	wrmsr

184 185 186
	/* After gdt is loaded */
	xorl	%eax, %eax
	lldt	%ax
187
	movl    $__BOOT_TSS, %eax
188 189
	ltr	%ax

190 191
	/*
	 * Setup for the jump to 64bit mode
192 193 194 195 196 197 198 199 200 201
	 *
	 * When the jump is performend we will be in long mode but
	 * in 32bit compatibility mode with EFER.LME = 1, CS.L = 0, CS.D = 1
	 * (and in turn EFER.LMA = 1).	To jump into 64bit mode we use
	 * the new gdt/idt that has __KERNEL_CS with CS.L = 1.
	 * We place all of the values on our mini stack so lret can
	 * used to perform that far jump.
	 */
	pushl	$__KERNEL_CS
	leal	startup_64(%ebp), %eax
202
#ifdef CONFIG_EFI_MIXED
203 204
	movl	efi32_boot_args(%ebp), %edi
	cmp	$0, %edi
205
	jz	1f
206
	leal	efi64_stub_entry(%ebp), %eax
207 208
	movl	%esi, %edx
	movl	efi32_boot_args+4(%ebp), %esi
209 210
1:
#endif
211 212 213
	pushl	%eax

	/* Enter paged protected Mode, activating Long Mode */
214
	movl	$(X86_CR0_PG | X86_CR0_PE), %eax /* Enable Paging and Protected mode */
215 216 217 218
	movl	%eax, %cr0

	/* Jump from 32bit compatibility mode into 64bit mode. */
	lret
219
SYM_FUNC_END(startup_32)
220

221 222
#ifdef CONFIG_EFI_MIXED
	.org 0x190
223
SYM_FUNC_START(efi32_stub_entry)
224
	add	$0x4, %esp		/* Discard return address */
225 226 227
	popl	%ecx
	popl	%edx
	popl	%esi
228 229 230 231 232

	call	1f
1:	pop	%ebp
	subl	$1b, %ebp

233 234
	movl	%ecx, efi32_boot_args(%ebp)
	movl	%edx, efi32_boot_args+4(%ebp)
235
	sgdtl	efi32_boot_gdt(%ebp)
236
	movb	$0, efi_is64(%ebp)
237

238 239 240 241 242
	/* Disable paging */
	movl	%cr0, %eax
	btrl	$X86_CR0_PG_BIT, %eax
	movl	%eax, %cr0

243
	jmp	startup_32
244
SYM_FUNC_END(efi32_stub_entry)
245 246
#endif

247
	.code64
248
	.org 0x200
249
SYM_CODE_START(startup_64)
250
	/*
251
	 * 64bit entry is 0x200 and it is ABI so immutable!
252
	 * We come here either from startup_32 or directly from a
253 254 255 256 257 258
	 * 64bit bootloader.
	 * If we come here from a bootloader, kernel(text+data+bss+brk),
	 * ramdisk, zero_page, command line could be above 4G.
	 * We depend on an identity mapped page table being provided
	 * that maps our entire kernel(text+data+bss+brk), zero page
	 * and command line.
259 260 261 262 263 264 265
	 */

	/* Setup data segments. */
	xorl	%eax, %eax
	movl	%eax, %ds
	movl	%eax, %es
	movl	%eax, %ss
266 267
	movl	%eax, %fs
	movl	%eax, %gs
268

269 270
	/*
	 * Compute the decompressed kernel start address.  It is where
271 272 273 274 275
	 * we were loaded at aligned to a 2M boundary. %rbp contains the
	 * decompressed kernel start address.
	 *
	 * If it is a relocatable kernel then decompress and run the kernel
	 * from load address aligned to 2MB addr, otherwise decompress and
276
	 * run the kernel from LOAD_PHYSICAL_ADDR
277 278 279
	 *
	 * We cannot rely on the calculation done in 32-bit mode, since we
	 * may have been invoked via the 64-bit entry point.
280 281 282 283 284
	 */

	/* Start with the delta to where the kernel will run at. */
#ifdef CONFIG_RELOCATABLE
	leaq	startup_32(%rip) /* - $startup_32 */, %rbp
285 286 287 288 289
	movl	BP_kernel_alignment(%rsi), %eax
	decl	%eax
	addq	%rax, %rbp
	notq	%rax
	andq	%rax, %rbp
290 291
	cmpq	$LOAD_PHYSICAL_ADDR, %rbp
	jge	1f
292
#endif
293 294
	movq	$LOAD_PHYSICAL_ADDR, %rbp
1:
295

296
	/* Target address to relocate to for decompression */
297 298 299
	movl	BP_init_size(%rsi), %ebx
	subl	$_end, %ebx
	addq	%rbp, %rbx
300

301 302 303
	/* Set up the stack */
	leaq	boot_stack_end(%rbx), %rsp

304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
	/*
	 * paging_prepare() and cleanup_trampoline() below can have GOT
	 * references. Adjust the table with address we are running at.
	 *
	 * Zero RAX for adjust_got: the GOT was not adjusted before;
	 * there's no adjustment to undo.
	 */
	xorq	%rax, %rax

	/*
	 * Calculate the address the binary is loaded at and use it as
	 * a GOT adjustment.
	 */
	call	1f
1:	popq	%rdi
	subq	$1b, %rdi

321
	call	.Ladjust_got
322

323 324
	/*
	 * At this point we are in long mode with 4-level paging enabled,
325
	 * but we might want to enable 5-level paging or vice versa.
326
	 *
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
	 * The problem is that we cannot do it directly. Setting or clearing
	 * CR4.LA57 in long mode would trigger #GP. So we need to switch off
	 * long mode and paging first.
	 *
	 * We also need a trampoline in lower memory to switch over from
	 * 4- to 5-level paging for cases when the bootloader puts the kernel
	 * above 4G, but didn't enable 5-level paging for us.
	 *
	 * The same trampoline can be used to switch from 5- to 4-level paging
	 * mode, like when starting 4-level paging kernel via kexec() when
	 * original kernel worked in 5-level paging mode.
	 *
	 * For the trampoline, we need the top page table to reside in lower
	 * memory as we don't have a way to load 64-bit values into CR3 in
	 * 32-bit mode.
	 *
	 * We go though the trampoline even if we don't have to: if we're
	 * already in a desired paging mode. This way the trampoline code gets
	 * tested on every boot.
346 347
	 */

348 349 350 351 352
	/* Make sure we have GDT with 32-bit code segment */
	leaq	gdt(%rip), %rax
	movq	%rax, gdt64+2(%rip)
	lgdt	gdt64(%rip)

353 354 355
	/*
	 * paging_prepare() sets up the trampoline and checks if we need to
	 * enable 5-level paging.
356
	 *
357 358 359 360 361
	 * paging_prepare() returns a two-quadword structure which lands
	 * into RDX:RAX:
	 *   - Address of the trampoline is returned in RAX.
	 *   - Non zero RDX means trampoline needs to enable 5-level
	 *     paging.
362
	 *
363 364
	 * RSI holds real mode data and needs to be preserved across
	 * this function call.
365
	 */
366
	pushq	%rsi
367
	movq	%rsi, %rdi		/* real mode address */
368 369 370 371 372 373
	call	paging_prepare
	popq	%rsi

	/* Save the trampoline address in RCX */
	movq	%rax, %rcx

374 375 376 377 378
	/*
	 * Load the address of trampoline_return() into RDI.
	 * It will be used by the trampoline to return to the main code.
	 */
	leaq	trampoline_return(%rip), %rdi
379 380 381

	/* Switch to compatibility mode (CS.L = 0 CS.D = 1) via far return */
	pushq	$__KERNEL32_CS
382
	leaq	TRAMPOLINE_32BIT_CODE_OFFSET(%rax), %rax
383 384
	pushq	%rax
	lretq
385
trampoline_return:
386 387
	/* Restore the stack, the 32-bit trampoline uses its own stack */
	leaq	boot_stack_end(%rbx), %rsp
388

389 390 391
	/*
	 * cleanup_trampoline() would restore trampoline memory.
	 *
392 393 394
	 * RDI is address of the page table to use instead of page table
	 * in trampoline memory (if required).
	 *
395 396 397 398
	 * RSI holds real mode data and needs to be preserved across
	 * this function call.
	 */
	pushq	%rsi
399
	leaq	top_pgtable(%rbx), %rdi
400 401 402
	call	cleanup_trampoline
	popq	%rsi

403 404 405 406
	/* Zero EFLAGS */
	pushq	$0
	popfq

407 408 409 410 411 412 413 414 415 416 417 418 419
	/*
	 * Previously we've adjusted the GOT with address the binary was
	 * loaded at. Now we need to re-adjust for relocation address.
	 *
	 * Calculate the address the binary is loaded at, so that we can
	 * undo the previous GOT adjustment.
	 */
	call	1f
1:	popq	%rax
	subq	$1b, %rax

	/* The new adjustment is the relocation address */
	movq	%rbx, %rdi
420
	call	.Ladjust_got
421

422 423
/*
 * Copy the compressed kernel to the end of our buffer
424 425
 * where decompression in place becomes safe.
 */
426 427 428
	pushq	%rsi
	leaq	(_bss-8)(%rip), %rsi
	leaq	(_bss-8)(%rbx), %rdi
429
	movq	$_bss /* - $startup_32 */, %rcx
430 431 432 433 434
	shrq	$3, %rcx
	std
	rep	movsq
	cld
	popq	%rsi
435 436 437 438

/*
 * Jump to the relocated address.
 */
439
	leaq	.Lrelocated(%rbx), %rax
440
	jmp	*%rax
441
SYM_CODE_END(startup_64)
442

443
#ifdef CONFIG_EFI_STUB
444 445 446
	.org 0x390
SYM_FUNC_START(efi64_stub_entry)
SYM_FUNC_START_ALIAS(efi_stub_entry)
447
	and	$~0xf, %rsp			/* realign the stack */
448 449 450 451 452
	call	efi_main
	movq	%rax,%rsi
	movl	BP_code32_start(%esi), %eax
	leaq	startup_64(%rax), %rax
	jmp	*%rax
453
SYM_FUNC_END(efi64_stub_entry)
454
SYM_FUNC_END_ALIAS(efi_stub_entry)
455 456
#endif

457
	.text
J
Jiri Slaby 已提交
458
SYM_FUNC_START_LOCAL_NOALIGN(.Lrelocated)
459

L
Linus Torvalds 已提交
460
/*
461
 * Clear BSS (stack is currently empty)
L
Linus Torvalds 已提交
462
 */
463 464 465
	xorl	%eax, %eax
	leaq    _bss(%rip), %rdi
	leaq    _ebss(%rip), %rcx
466
	subq	%rdi, %rcx
467 468
	shrq	$3, %rcx
	rep	stosq
469

L
Linus Torvalds 已提交
470
/*
471
 * Do the extraction, and jump to the new kernel..
L
Linus Torvalds 已提交
472
 */
473 474 475 476 477 478
	pushq	%rsi			/* Save the real mode argument */
	movq	%rsi, %rdi		/* real mode address */
	leaq	boot_heap(%rip), %rsi	/* malloc area for uncompression */
	leaq	input_data(%rip), %rdx  /* input_data */
	movl	$z_input_len, %ecx	/* input_len */
	movq	%rbp, %r8		/* output target address */
479
	movq	$z_output_len, %r9	/* decompressed length, end of relocs */
480
	call	extract_kernel		/* returns kernel location in %rax */
481
	popq	%rsi
L
Linus Torvalds 已提交
482 483

/*
484
 * Jump to the decompressed kernel.
L
Linus Torvalds 已提交
485
 */
486
	jmp	*%rax
J
Jiri Slaby 已提交
487
SYM_FUNC_END(.Lrelocated)
L
Linus Torvalds 已提交
488

489 490 491 492 493 494 495
/*
 * Adjust the global offset table
 *
 * RAX is the previous adjustment of the table to undo (use 0 if it's the
 * first time we touch GOT).
 * RDI is the new adjustment to apply.
 */
496
.Ladjust_got:
497 498 499 500 501 502 503 504 505 506 507 508 509
	/* Walk through the GOT adding the address to the entries */
	leaq	_got(%rip), %rdx
	leaq	_egot(%rip), %rcx
1:
	cmpq	%rcx, %rdx
	jae	2f
	subq	%rax, (%rdx)	/* Undo previous adjustment */
	addq	%rdi, (%rdx)	/* Apply the new adjustment */
	addq	$8, %rdx
	jmp	1b
2:
	ret

510
	.code32
511 512 513 514 515
/*
 * This is the 32-bit trampoline that will be copied over to low memory.
 *
 * RDI contains the return address (might be above 4G).
 * ECX contains the base address of the trampoline memory.
516
 * Non zero RDX means trampoline needs to enable 5-level paging.
517
 */
518
SYM_CODE_START(trampoline_32bit_src)
519
	/* Set up data and stack segments */
520 521 522 523
	movl	$__KERNEL_DS, %eax
	movl	%eax, %ds
	movl	%eax, %ss

524 525 526
	/* Set up new stack */
	leal	TRAMPOLINE_32BIT_STACK_END(%ecx), %esp

527 528 529 530 531
	/* Disable paging */
	movl	%cr0, %eax
	btrl	$X86_CR0_PG_BIT, %eax
	movl	%eax, %cr0

532 533 534
	/* Check what paging mode we want to be in after the trampoline */
	cmpl	$0, %edx
	jz	1f
535

536
	/* We want 5-level paging: don't touch CR3 if it already points to 5-level page tables */
537
	movl	%cr4, %eax
538 539 540 541 542 543 544 545 546 547 548 549 550
	testl	$X86_CR4_LA57, %eax
	jnz	3f
	jmp	2f
1:
	/* We want 4-level paging: don't touch CR3 if it already points to 4-level page tables */
	movl	%cr4, %eax
	testl	$X86_CR4_LA57, %eax
	jz	3f
2:
	/* Point CR3 to the trampoline's new top level page table */
	leal	TRAMPOLINE_32BIT_PGTABLE_OFFSET(%ecx), %eax
	movl	%eax, %cr3
3:
551 552
	/* Set EFER.LME=1 as a precaution in case hypervsior pulls the rug */
	pushl	%ecx
553
	pushl	%edx
554 555 556 557
	movl	$MSR_EFER, %ecx
	rdmsr
	btsl	$_EFER_LME, %eax
	wrmsr
558
	popl	%edx
559 560
	popl	%ecx

561 562 563 564 565 566
	/* Enable PAE and LA57 (if required) paging modes */
	movl	$X86_CR4_PAE, %eax
	cmpl	$0, %edx
	jz	1f
	orl	$X86_CR4_LA57, %eax
1:
567 568
	movl	%eax, %cr4

569
	/* Calculate address of paging_enabled() once we are executing in the trampoline */
570
	leal	.Lpaging_enabled - trampoline_32bit_src + TRAMPOLINE_32BIT_CODE_OFFSET(%ecx), %eax
571

572
	/* Prepare the stack for far return to Long Mode */
573
	pushl	$__KERNEL_CS
574
	pushl	%eax
575

576
	/* Enable paging again */
577 578 579 580
	movl	$(X86_CR0_PG | X86_CR0_PE), %eax
	movl	%eax, %cr0

	lret
581
SYM_CODE_END(trampoline_32bit_src)
582

583
	.code64
J
Jiri Slaby 已提交
584
SYM_FUNC_START_LOCAL_NOALIGN(.Lpaging_enabled)
585 586
	/* Return from the trampoline */
	jmp	*%rdi
J
Jiri Slaby 已提交
587
SYM_FUNC_END(.Lpaging_enabled)
588 589 590 591 592 593 594 595 596

	/*
         * The trampoline code has a size limit.
         * Make sure we fail to compile if the trampoline code grows
         * beyond TRAMPOLINE_32BIT_CODE_SIZE bytes.
	 */
	.org	trampoline_32bit_src + TRAMPOLINE_32BIT_CODE_SIZE

	.code32
J
Jiri Slaby 已提交
597
SYM_FUNC_START_LOCAL_NOALIGN(.Lno_longmode)
598
	/* This isn't an x86-64 CPU, so hang intentionally, we cannot continue */
599 600 601
1:
	hlt
	jmp     1b
J
Jiri Slaby 已提交
602
SYM_FUNC_END(.Lno_longmode)
603 604 605

#include "../../kernel/verify_cpu.S"

606
	.data
J
Jiri Slaby 已提交
607
SYM_DATA_START_LOCAL(gdt64)
608 609
	.word	gdt_end - gdt
	.quad   0
J
Jiri Slaby 已提交
610
SYM_DATA_END(gdt64)
611
	.balign	8
J
Jiri Slaby 已提交
612
SYM_DATA_START_LOCAL(gdt)
613 614 615
	.word	gdt_end - gdt
	.long	gdt
	.word	0
616
	.quad	0x00cf9a000000ffff	/* __KERNEL32_CS */
617 618
	.quad	0x00af9a000000ffff	/* __KERNEL_CS */
	.quad	0x00cf92000000ffff	/* __KERNEL_DS */
619 620
	.quad	0x0080890000000000	/* TS descriptor */
	.quad   0x0000000000000000	/* TS continued */
J
Jiri Slaby 已提交
621
SYM_DATA_END_LABEL(gdt, SYM_L_LOCAL, gdt_end)
622

623
#ifdef CONFIG_EFI_MIXED
624
SYM_DATA_LOCAL(efi32_boot_args, .long 0, 0)
625
SYM_DATA(efi_is64, .byte 1)
626 627
#endif

628 629 630 631 632
/*
 * Stack and heap for uncompression
 */
	.bss
	.balign 4
J
Jiri Slaby 已提交
633 634 635
SYM_DATA_LOCAL(boot_heap,	.fill BOOT_HEAP_SIZE, 1, 0)

SYM_DATA_START_LOCAL(boot_stack)
636
	.fill BOOT_STACK_SIZE, 1, 0
J
Jiri Slaby 已提交
637
SYM_DATA_END_LABEL(boot_stack, SYM_L_LOCAL, boot_stack_end)
638 639 640 641 642 643

/*
 * Space for page tables (not in .bss so not zeroed)
 */
	.section ".pgtable","a",@nobits
	.balign 4096
J
Jiri Slaby 已提交
644
SYM_DATA_LOCAL(pgtable,		.fill BOOT_PGT_SIZE, 1, 0)
645 646 647 648 649

/*
 * The page table is going to be used instead of page table in the trampoline
 * memory.
 */
J
Jiri Slaby 已提交
650
SYM_DATA_LOCAL(top_pgtable,	.fill PAGE_SIZE, 1, 0)