igb_ethtool.c 59.8 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel(R) Gigabit Ethernet Linux driver
4
  Copyright(c) 2007-2009 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

/* ethtool support for igb */

#include <linux/vmalloc.h>
#include <linux/netdevice.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/if_ether.h>
#include <linux/ethtool.h>

#include "igb.h"

40 41
enum {NETDEV_STATS, IGB_STATS};

42 43
struct igb_stats {
	char stat_string[ETH_GSTRING_LEN];
44
	int type;
45 46 47 48
	int sizeof_stat;
	int stat_offset;
};

49 50 51 52 53 54 55
#define IGB_STAT(m)		IGB_STATS, \
				FIELD_SIZEOF(struct igb_adapter, m), \
				offsetof(struct igb_adapter, m)
#define IGB_NETDEV_STAT(m)	NETDEV_STATS, \
				FIELD_SIZEOF(struct net_device, m), \
				offsetof(struct net_device, m)

56 57 58 59 60 61 62 63 64
static const struct igb_stats igb_gstrings_stats[] = {
	{ "rx_packets", IGB_STAT(stats.gprc) },
	{ "tx_packets", IGB_STAT(stats.gptc) },
	{ "rx_bytes", IGB_STAT(stats.gorc) },
	{ "tx_bytes", IGB_STAT(stats.gotc) },
	{ "rx_broadcast", IGB_STAT(stats.bprc) },
	{ "tx_broadcast", IGB_STAT(stats.bptc) },
	{ "rx_multicast", IGB_STAT(stats.mprc) },
	{ "tx_multicast", IGB_STAT(stats.mptc) },
65 66 67
	{ "rx_errors", IGB_NETDEV_STAT(stats.rx_errors) },
	{ "tx_errors", IGB_NETDEV_STAT(stats.tx_errors) },
	{ "tx_dropped", IGB_NETDEV_STAT(stats.tx_dropped) },
68 69
	{ "multicast", IGB_STAT(stats.mprc) },
	{ "collisions", IGB_STAT(stats.colc) },
70 71
	{ "rx_length_errors", IGB_NETDEV_STAT(stats.rx_length_errors) },
	{ "rx_over_errors", IGB_NETDEV_STAT(stats.rx_over_errors) },
72
	{ "rx_crc_errors", IGB_STAT(stats.crcerrs) },
73
	{ "rx_frame_errors", IGB_NETDEV_STAT(stats.rx_frame_errors) },
74
	{ "rx_no_buffer_count", IGB_STAT(stats.rnbc) },
75
	{ "rx_queue_drop_packet_count", IGB_NETDEV_STAT(stats.rx_fifo_errors) },
76 77 78
	{ "rx_missed_errors", IGB_STAT(stats.mpc) },
	{ "tx_aborted_errors", IGB_STAT(stats.ecol) },
	{ "tx_carrier_errors", IGB_STAT(stats.tncrs) },
79 80
	{ "tx_fifo_errors", IGB_NETDEV_STAT(stats.tx_fifo_errors) },
	{ "tx_heartbeat_errors", IGB_NETDEV_STAT(stats.tx_heartbeat_errors) },
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
	{ "tx_window_errors", IGB_STAT(stats.latecol) },
	{ "tx_abort_late_coll", IGB_STAT(stats.latecol) },
	{ "tx_deferred_ok", IGB_STAT(stats.dc) },
	{ "tx_single_coll_ok", IGB_STAT(stats.scc) },
	{ "tx_multi_coll_ok", IGB_STAT(stats.mcc) },
	{ "tx_timeout_count", IGB_STAT(tx_timeout_count) },
	{ "tx_restart_queue", IGB_STAT(restart_queue) },
	{ "rx_long_length_errors", IGB_STAT(stats.roc) },
	{ "rx_short_length_errors", IGB_STAT(stats.ruc) },
	{ "rx_align_errors", IGB_STAT(stats.algnerrc) },
	{ "tx_tcp_seg_good", IGB_STAT(stats.tsctc) },
	{ "tx_tcp_seg_failed", IGB_STAT(stats.tsctfc) },
	{ "rx_flow_control_xon", IGB_STAT(stats.xonrxc) },
	{ "rx_flow_control_xoff", IGB_STAT(stats.xoffrxc) },
	{ "tx_flow_control_xon", IGB_STAT(stats.xontxc) },
	{ "tx_flow_control_xoff", IGB_STAT(stats.xofftxc) },
	{ "rx_long_byte_count", IGB_STAT(stats.gorc) },
	{ "rx_csum_offload_good", IGB_STAT(hw_csum_good) },
	{ "rx_csum_offload_errors", IGB_STAT(hw_csum_err) },
100
	{ "tx_dma_out_of_sync", IGB_STAT(stats.doosync) },
101 102 103 104 105 106 107
	{ "alloc_rx_buff_failed", IGB_STAT(alloc_rx_buff_failed) },
	{ "tx_smbus", IGB_STAT(stats.mgptc) },
	{ "rx_smbus", IGB_STAT(stats.mgprc) },
	{ "dropped_smbus", IGB_STAT(stats.mgpdc) },
};

#define IGB_QUEUE_STATS_LEN \
108 109 110 111
	(((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues)* \
	  (sizeof(struct igb_rx_queue_stats) / sizeof(u64))) + \
	 ((((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues) * \
	  (sizeof(struct igb_tx_queue_stats) / sizeof(u64))))
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
#define IGB_GLOBAL_STATS_LEN	\
	sizeof(igb_gstrings_stats) / sizeof(struct igb_stats)
#define IGB_STATS_LEN (IGB_GLOBAL_STATS_LEN + IGB_QUEUE_STATS_LEN)
static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
	"Register test  (offline)", "Eeprom test    (offline)",
	"Interrupt test (offline)", "Loopback test  (offline)",
	"Link test   (on/offline)"
};
#define IGB_TEST_LEN sizeof(igb_gstrings_test) / ETH_GSTRING_LEN

static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	if (hw->phy.media_type == e1000_media_type_copper) {

		ecmd->supported = (SUPPORTED_10baseT_Half |
				   SUPPORTED_10baseT_Full |
				   SUPPORTED_100baseT_Half |
				   SUPPORTED_100baseT_Full |
				   SUPPORTED_1000baseT_Full|
				   SUPPORTED_Autoneg |
				   SUPPORTED_TP);
		ecmd->advertising = ADVERTISED_TP;

		if (hw->mac.autoneg == 1) {
			ecmd->advertising |= ADVERTISED_Autoneg;
			/* the e1000 autoneg seems to match ethtool nicely */
			ecmd->advertising |= hw->phy.autoneg_advertised;
		}

		ecmd->port = PORT_TP;
		ecmd->phy_address = hw->phy.addr;
	} else {
		ecmd->supported   = (SUPPORTED_1000baseT_Full |
				     SUPPORTED_FIBRE |
				     SUPPORTED_Autoneg);

		ecmd->advertising = (ADVERTISED_1000baseT_Full |
				     ADVERTISED_FIBRE |
				     ADVERTISED_Autoneg);

		ecmd->port = PORT_FIBRE;
	}

	ecmd->transceiver = XCVR_INTERNAL;

	if (rd32(E1000_STATUS) & E1000_STATUS_LU) {

		adapter->hw.mac.ops.get_speed_and_duplex(hw,
					&adapter->link_speed,
					&adapter->link_duplex);
		ecmd->speed = adapter->link_speed;

		/* unfortunately FULL_DUPLEX != DUPLEX_FULL
		 *          and HALF_DUPLEX != DUPLEX_HALF */

		if (adapter->link_duplex == FULL_DUPLEX)
			ecmd->duplex = DUPLEX_FULL;
		else
			ecmd->duplex = DUPLEX_HALF;
	} else {
		ecmd->speed = -1;
		ecmd->duplex = -1;
	}

179
	ecmd->autoneg = hw->mac.autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE;
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
	return 0;
}

static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	/* When SoL/IDER sessions are active, autoneg/speed/duplex
	 * cannot be changed */
	if (igb_check_reset_block(hw)) {
		dev_err(&adapter->pdev->dev, "Cannot change link "
			"characteristics when SoL/IDER is active.\n");
		return -EINVAL;
	}

	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);

	if (ecmd->autoneg == AUTONEG_ENABLE) {
		hw->mac.autoneg = 1;
201 202 203
		hw->phy.autoneg_advertised = ecmd->advertising |
					     ADVERTISED_TP |
					     ADVERTISED_Autoneg;
204
		ecmd->advertising = hw->phy.autoneg_advertised;
205 206
		if (adapter->fc_autoneg)
			hw->fc.requested_mode = e1000_fc_default;
207
	} else {
208 209 210 211
		if (igb_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
			clear_bit(__IGB_RESETTING, &adapter->state);
			return -EINVAL;
		}
212
	}
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233

	/* reset the link */
	if (netif_running(adapter->netdev)) {
		igb_down(adapter);
		igb_up(adapter);
	} else
		igb_reset(adapter);

	clear_bit(__IGB_RESETTING, &adapter->state);
	return 0;
}

static void igb_get_pauseparam(struct net_device *netdev,
			       struct ethtool_pauseparam *pause)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	pause->autoneg =
		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);

234
	if (hw->fc.current_mode == e1000_fc_rx_pause)
235
		pause->rx_pause = 1;
236
	else if (hw->fc.current_mode == e1000_fc_tx_pause)
237
		pause->tx_pause = 1;
238
	else if (hw->fc.current_mode == e1000_fc_full) {
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
		pause->rx_pause = 1;
		pause->tx_pause = 1;
	}
}

static int igb_set_pauseparam(struct net_device *netdev,
			      struct ethtool_pauseparam *pause)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	int retval = 0;

	adapter->fc_autoneg = pause->autoneg;

	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);

	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
257
		hw->fc.requested_mode = e1000_fc_default;
258 259 260 261 262
		if (netif_running(adapter->netdev)) {
			igb_down(adapter);
			igb_up(adapter);
		} else
			igb_reset(adapter);
263 264 265 266 267 268 269 270 271 272 273 274
	} else {
		if (pause->rx_pause && pause->tx_pause)
			hw->fc.requested_mode = e1000_fc_full;
		else if (pause->rx_pause && !pause->tx_pause)
			hw->fc.requested_mode = e1000_fc_rx_pause;
		else if (!pause->rx_pause && pause->tx_pause)
			hw->fc.requested_mode = e1000_fc_tx_pause;
		else if (!pause->rx_pause && !pause->tx_pause)
			hw->fc.requested_mode = e1000_fc_none;

		hw->fc.current_mode = hw->fc.requested_mode;

275 276
		retval = ((hw->phy.media_type == e1000_media_type_copper) ?
			  igb_force_mac_fc(hw) : igb_setup_link(hw));
277
	}
278 279 280 281 282 283 284 285

	clear_bit(__IGB_RESETTING, &adapter->state);
	return retval;
}

static u32 igb_get_rx_csum(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
286
	return !(adapter->flags & IGB_FLAG_RX_CSUM_DISABLED);
287 288 289 290 291
}

static int igb_set_rx_csum(struct net_device *netdev, u32 data)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
292 293 294 295 296

	if (data)
		adapter->flags &= ~IGB_FLAG_RX_CSUM_DISABLED;
	else
		adapter->flags |= IGB_FLAG_RX_CSUM_DISABLED;
297 298 299 300 301 302

	return 0;
}

static u32 igb_get_tx_csum(struct net_device *netdev)
{
303
	return (netdev->features & NETIF_F_IP_CSUM) != 0;
304 305 306 307
}

static int igb_set_tx_csum(struct net_device *netdev, u32 data)
{
308 309 310
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (data) {
311
		netdev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
312 313 314 315 316 317
		if (adapter->hw.mac.type == e1000_82576)
			netdev->features |= NETIF_F_SCTP_CSUM;
	} else {
		netdev->features &= ~(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
		                      NETIF_F_SCTP_CSUM);
	}
318 319 320 321 322 323 324 325

	return 0;
}

static int igb_set_tso(struct net_device *netdev, u32 data)
{
	struct igb_adapter *adapter = netdev_priv(netdev);

326
	if (data) {
327 328
		netdev->features |= NETIF_F_TSO;
		netdev->features |= NETIF_F_TSO6;
329 330
	} else {
		netdev->features &= ~NETIF_F_TSO;
331
		netdev->features &= ~NETIF_F_TSO6;
332
	}
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386

	dev_info(&adapter->pdev->dev, "TSO is %s\n",
		 data ? "Enabled" : "Disabled");
	return 0;
}

static u32 igb_get_msglevel(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	return adapter->msg_enable;
}

static void igb_set_msglevel(struct net_device *netdev, u32 data)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	adapter->msg_enable = data;
}

static int igb_get_regs_len(struct net_device *netdev)
{
#define IGB_REGS_LEN 551
	return IGB_REGS_LEN * sizeof(u32);
}

static void igb_get_regs(struct net_device *netdev,
			 struct ethtool_regs *regs, void *p)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 *regs_buff = p;
	u8 i;

	memset(p, 0, IGB_REGS_LEN * sizeof(u32));

	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;

	/* General Registers */
	regs_buff[0] = rd32(E1000_CTRL);
	regs_buff[1] = rd32(E1000_STATUS);
	regs_buff[2] = rd32(E1000_CTRL_EXT);
	regs_buff[3] = rd32(E1000_MDIC);
	regs_buff[4] = rd32(E1000_SCTL);
	regs_buff[5] = rd32(E1000_CONNSW);
	regs_buff[6] = rd32(E1000_VET);
	regs_buff[7] = rd32(E1000_LEDCTL);
	regs_buff[8] = rd32(E1000_PBA);
	regs_buff[9] = rd32(E1000_PBS);
	regs_buff[10] = rd32(E1000_FRTIMER);
	regs_buff[11] = rd32(E1000_TCPTIMER);

	/* NVM Register */
	regs_buff[12] = rd32(E1000_EECD);

	/* Interrupt */
387 388 389
	/* Reading EICS for EICR because they read the
	 * same but EICS does not clear on read */
	regs_buff[13] = rd32(E1000_EICS);
390 391 392 393 394
	regs_buff[14] = rd32(E1000_EICS);
	regs_buff[15] = rd32(E1000_EIMS);
	regs_buff[16] = rd32(E1000_EIMC);
	regs_buff[17] = rd32(E1000_EIAC);
	regs_buff[18] = rd32(E1000_EIAM);
395 396 397
	/* Reading ICS for ICR because they read the
	 * same but ICS does not clear on read */
	regs_buff[19] = rd32(E1000_ICS);
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
	regs_buff[20] = rd32(E1000_ICS);
	regs_buff[21] = rd32(E1000_IMS);
	regs_buff[22] = rd32(E1000_IMC);
	regs_buff[23] = rd32(E1000_IAC);
	regs_buff[24] = rd32(E1000_IAM);
	regs_buff[25] = rd32(E1000_IMIRVP);

	/* Flow Control */
	regs_buff[26] = rd32(E1000_FCAL);
	regs_buff[27] = rd32(E1000_FCAH);
	regs_buff[28] = rd32(E1000_FCTTV);
	regs_buff[29] = rd32(E1000_FCRTL);
	regs_buff[30] = rd32(E1000_FCRTH);
	regs_buff[31] = rd32(E1000_FCRTV);

	/* Receive */
	regs_buff[32] = rd32(E1000_RCTL);
	regs_buff[33] = rd32(E1000_RXCSUM);
	regs_buff[34] = rd32(E1000_RLPML);
	regs_buff[35] = rd32(E1000_RFCTL);
	regs_buff[36] = rd32(E1000_MRQC);
419
	regs_buff[37] = rd32(E1000_VT_CTL);
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611

	/* Transmit */
	regs_buff[38] = rd32(E1000_TCTL);
	regs_buff[39] = rd32(E1000_TCTL_EXT);
	regs_buff[40] = rd32(E1000_TIPG);
	regs_buff[41] = rd32(E1000_DTXCTL);

	/* Wake Up */
	regs_buff[42] = rd32(E1000_WUC);
	regs_buff[43] = rd32(E1000_WUFC);
	regs_buff[44] = rd32(E1000_WUS);
	regs_buff[45] = rd32(E1000_IPAV);
	regs_buff[46] = rd32(E1000_WUPL);

	/* MAC */
	regs_buff[47] = rd32(E1000_PCS_CFG0);
	regs_buff[48] = rd32(E1000_PCS_LCTL);
	regs_buff[49] = rd32(E1000_PCS_LSTAT);
	regs_buff[50] = rd32(E1000_PCS_ANADV);
	regs_buff[51] = rd32(E1000_PCS_LPAB);
	regs_buff[52] = rd32(E1000_PCS_NPTX);
	regs_buff[53] = rd32(E1000_PCS_LPABNP);

	/* Statistics */
	regs_buff[54] = adapter->stats.crcerrs;
	regs_buff[55] = adapter->stats.algnerrc;
	regs_buff[56] = adapter->stats.symerrs;
	regs_buff[57] = adapter->stats.rxerrc;
	regs_buff[58] = adapter->stats.mpc;
	regs_buff[59] = adapter->stats.scc;
	regs_buff[60] = adapter->stats.ecol;
	regs_buff[61] = adapter->stats.mcc;
	regs_buff[62] = adapter->stats.latecol;
	regs_buff[63] = adapter->stats.colc;
	regs_buff[64] = adapter->stats.dc;
	regs_buff[65] = adapter->stats.tncrs;
	regs_buff[66] = adapter->stats.sec;
	regs_buff[67] = adapter->stats.htdpmc;
	regs_buff[68] = adapter->stats.rlec;
	regs_buff[69] = adapter->stats.xonrxc;
	regs_buff[70] = adapter->stats.xontxc;
	regs_buff[71] = adapter->stats.xoffrxc;
	regs_buff[72] = adapter->stats.xofftxc;
	regs_buff[73] = adapter->stats.fcruc;
	regs_buff[74] = adapter->stats.prc64;
	regs_buff[75] = adapter->stats.prc127;
	regs_buff[76] = adapter->stats.prc255;
	regs_buff[77] = adapter->stats.prc511;
	regs_buff[78] = adapter->stats.prc1023;
	regs_buff[79] = adapter->stats.prc1522;
	regs_buff[80] = adapter->stats.gprc;
	regs_buff[81] = adapter->stats.bprc;
	regs_buff[82] = adapter->stats.mprc;
	regs_buff[83] = adapter->stats.gptc;
	regs_buff[84] = adapter->stats.gorc;
	regs_buff[86] = adapter->stats.gotc;
	regs_buff[88] = adapter->stats.rnbc;
	regs_buff[89] = adapter->stats.ruc;
	regs_buff[90] = adapter->stats.rfc;
	regs_buff[91] = adapter->stats.roc;
	regs_buff[92] = adapter->stats.rjc;
	regs_buff[93] = adapter->stats.mgprc;
	regs_buff[94] = adapter->stats.mgpdc;
	regs_buff[95] = adapter->stats.mgptc;
	regs_buff[96] = adapter->stats.tor;
	regs_buff[98] = adapter->stats.tot;
	regs_buff[100] = adapter->stats.tpr;
	regs_buff[101] = adapter->stats.tpt;
	regs_buff[102] = adapter->stats.ptc64;
	regs_buff[103] = adapter->stats.ptc127;
	regs_buff[104] = adapter->stats.ptc255;
	regs_buff[105] = adapter->stats.ptc511;
	regs_buff[106] = adapter->stats.ptc1023;
	regs_buff[107] = adapter->stats.ptc1522;
	regs_buff[108] = adapter->stats.mptc;
	regs_buff[109] = adapter->stats.bptc;
	regs_buff[110] = adapter->stats.tsctc;
	regs_buff[111] = adapter->stats.iac;
	regs_buff[112] = adapter->stats.rpthc;
	regs_buff[113] = adapter->stats.hgptc;
	regs_buff[114] = adapter->stats.hgorc;
	regs_buff[116] = adapter->stats.hgotc;
	regs_buff[118] = adapter->stats.lenerrs;
	regs_buff[119] = adapter->stats.scvpc;
	regs_buff[120] = adapter->stats.hrmpc;

	/* These should probably be added to e1000_regs.h instead */
	#define E1000_PSRTYPE_REG(_i) (0x05480 + ((_i) * 4))
	#define E1000_IP4AT_REG(_i)   (0x05840 + ((_i) * 8))
	#define E1000_IP6AT_REG(_i)   (0x05880 + ((_i) * 4))
	#define E1000_WUPM_REG(_i)    (0x05A00 + ((_i) * 4))
	#define E1000_FFMT_REG(_i)    (0x09000 + ((_i) * 8))
	#define E1000_FFVT_REG(_i)    (0x09800 + ((_i) * 8))
	#define E1000_FFLT_REG(_i)    (0x05F00 + ((_i) * 8))

	for (i = 0; i < 4; i++)
		regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
	for (i = 0; i < 4; i++)
		regs_buff[125 + i] = rd32(E1000_PSRTYPE_REG(i));
	for (i = 0; i < 4; i++)
		regs_buff[129 + i] = rd32(E1000_RDBAL(i));
	for (i = 0; i < 4; i++)
		regs_buff[133 + i] = rd32(E1000_RDBAH(i));
	for (i = 0; i < 4; i++)
		regs_buff[137 + i] = rd32(E1000_RDLEN(i));
	for (i = 0; i < 4; i++)
		regs_buff[141 + i] = rd32(E1000_RDH(i));
	for (i = 0; i < 4; i++)
		regs_buff[145 + i] = rd32(E1000_RDT(i));
	for (i = 0; i < 4; i++)
		regs_buff[149 + i] = rd32(E1000_RXDCTL(i));

	for (i = 0; i < 10; i++)
		regs_buff[153 + i] = rd32(E1000_EITR(i));
	for (i = 0; i < 8; i++)
		regs_buff[163 + i] = rd32(E1000_IMIR(i));
	for (i = 0; i < 8; i++)
		regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
	for (i = 0; i < 16; i++)
		regs_buff[179 + i] = rd32(E1000_RAL(i));
	for (i = 0; i < 16; i++)
		regs_buff[195 + i] = rd32(E1000_RAH(i));

	for (i = 0; i < 4; i++)
		regs_buff[211 + i] = rd32(E1000_TDBAL(i));
	for (i = 0; i < 4; i++)
		regs_buff[215 + i] = rd32(E1000_TDBAH(i));
	for (i = 0; i < 4; i++)
		regs_buff[219 + i] = rd32(E1000_TDLEN(i));
	for (i = 0; i < 4; i++)
		regs_buff[223 + i] = rd32(E1000_TDH(i));
	for (i = 0; i < 4; i++)
		regs_buff[227 + i] = rd32(E1000_TDT(i));
	for (i = 0; i < 4; i++)
		regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
	for (i = 0; i < 4; i++)
		regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
	for (i = 0; i < 4; i++)
		regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
	for (i = 0; i < 4; i++)
		regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));

	for (i = 0; i < 4; i++)
		regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
	for (i = 0; i < 4; i++)
		regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
	for (i = 0; i < 32; i++)
		regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
	for (i = 0; i < 128; i++)
		regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
	for (i = 0; i < 128; i++)
		regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
	for (i = 0; i < 4; i++)
		regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));

	regs_buff[547] = rd32(E1000_TDFH);
	regs_buff[548] = rd32(E1000_TDFT);
	regs_buff[549] = rd32(E1000_TDFHS);
	regs_buff[550] = rd32(E1000_TDFPC);

}

static int igb_get_eeprom_len(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	return adapter->hw.nvm.word_size * 2;
}

static int igb_get_eeprom(struct net_device *netdev,
			  struct ethtool_eeprom *eeprom, u8 *bytes)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u16 *eeprom_buff;
	int first_word, last_word;
	int ret_val = 0;
	u16 i;

	if (eeprom->len == 0)
		return -EINVAL;

	eeprom->magic = hw->vendor_id | (hw->device_id << 16);

	first_word = eeprom->offset >> 1;
	last_word = (eeprom->offset + eeprom->len - 1) >> 1;

	eeprom_buff = kmalloc(sizeof(u16) *
			(last_word - first_word + 1), GFP_KERNEL);
	if (!eeprom_buff)
		return -ENOMEM;

	if (hw->nvm.type == e1000_nvm_eeprom_spi)
A
Alexander Duyck 已提交
612
		ret_val = hw->nvm.ops.read(hw, first_word,
613 614 615 616
					    last_word - first_word + 1,
					    eeprom_buff);
	else {
		for (i = 0; i < last_word - first_word + 1; i++) {
A
Alexander Duyck 已提交
617
			ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
						    &eeprom_buff[i]);
			if (ret_val)
				break;
		}
	}

	/* Device's eeprom is always little-endian, word addressable */
	for (i = 0; i < last_word - first_word + 1; i++)
		le16_to_cpus(&eeprom_buff[i]);

	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
			eeprom->len);
	kfree(eeprom_buff);

	return ret_val;
}

static int igb_set_eeprom(struct net_device *netdev,
			  struct ethtool_eeprom *eeprom, u8 *bytes)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u16 *eeprom_buff;
	void *ptr;
	int max_len, first_word, last_word, ret_val = 0;
	u16 i;

	if (eeprom->len == 0)
		return -EOPNOTSUPP;

	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
		return -EFAULT;

	max_len = hw->nvm.word_size * 2;

	first_word = eeprom->offset >> 1;
	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
	if (!eeprom_buff)
		return -ENOMEM;

	ptr = (void *)eeprom_buff;

	if (eeprom->offset & 1) {
		/* need read/modify/write of first changed EEPROM word */
		/* only the second byte of the word is being modified */
A
Alexander Duyck 已提交
664
		ret_val = hw->nvm.ops.read(hw, first_word, 1,
665 666 667 668 669 670
					    &eeprom_buff[0]);
		ptr++;
	}
	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
		/* need read/modify/write of last changed EEPROM word */
		/* only the first byte of the word is being modified */
A
Alexander Duyck 已提交
671
		ret_val = hw->nvm.ops.read(hw, last_word, 1,
672 673 674 675 676 677 678 679 680 681 682 683
				   &eeprom_buff[last_word - first_word]);
	}

	/* Device's eeprom is always little-endian, word addressable */
	for (i = 0; i < last_word - first_word + 1; i++)
		le16_to_cpus(&eeprom_buff[i]);

	memcpy(ptr, bytes, eeprom->len);

	for (i = 0; i < last_word - first_word + 1; i++)
		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);

A
Alexander Duyck 已提交
684
	ret_val = hw->nvm.ops.write(hw, first_word,
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
				     last_word - first_word + 1, eeprom_buff);

	/* Update the checksum over the first part of the EEPROM if needed
	 * and flush shadow RAM for 82573 controllers */
	if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG)))
		igb_update_nvm_checksum(hw);

	kfree(eeprom_buff);
	return ret_val;
}

static void igb_get_drvinfo(struct net_device *netdev,
			    struct ethtool_drvinfo *drvinfo)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	char firmware_version[32];
	u16 eeprom_data;

	strncpy(drvinfo->driver,  igb_driver_name, 32);
	strncpy(drvinfo->version, igb_driver_version, 32);

	/* EEPROM image version # is reported as firmware version # for
	 * 82575 controllers */
A
Alexander Duyck 已提交
708
	adapter->hw.nvm.ops.read(&adapter->hw, 5, 1, &eeprom_data);
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
	sprintf(firmware_version, "%d.%d-%d",
		(eeprom_data & 0xF000) >> 12,
		(eeprom_data & 0x0FF0) >> 4,
		eeprom_data & 0x000F);

	strncpy(drvinfo->fw_version, firmware_version, 32);
	strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
	drvinfo->n_stats = IGB_STATS_LEN;
	drvinfo->testinfo_len = IGB_TEST_LEN;
	drvinfo->regdump_len = igb_get_regs_len(netdev);
	drvinfo->eedump_len = igb_get_eeprom_len(netdev);
}

static void igb_get_ringparam(struct net_device *netdev,
			      struct ethtool_ringparam *ring)
{
	struct igb_adapter *adapter = netdev_priv(netdev);

	ring->rx_max_pending = IGB_MAX_RXD;
	ring->tx_max_pending = IGB_MAX_TXD;
	ring->rx_mini_max_pending = 0;
	ring->rx_jumbo_max_pending = 0;
731 732
	ring->rx_pending = adapter->rx_ring_count;
	ring->tx_pending = adapter->tx_ring_count;
733 734 735 736 737 738 739 740
	ring->rx_mini_pending = 0;
	ring->rx_jumbo_pending = 0;
}

static int igb_set_ringparam(struct net_device *netdev,
			     struct ethtool_ringparam *ring)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
741
	struct igb_ring *temp_ring;
742
	int i, err = 0;
743
	u32 new_rx_count, new_tx_count;
744 745 746 747 748 749 750 751 752 753 754 755

	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
		return -EINVAL;

	new_rx_count = max(ring->rx_pending, (u32)IGB_MIN_RXD);
	new_rx_count = min(new_rx_count, (u32)IGB_MAX_RXD);
	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);

	new_tx_count = max(ring->tx_pending, (u32)IGB_MIN_TXD);
	new_tx_count = min(new_tx_count, (u32)IGB_MAX_TXD);
	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);

756 757
	if ((new_tx_count == adapter->tx_ring_count) &&
	    (new_rx_count == adapter->rx_ring_count)) {
758 759 760 761
		/* nothing to do */
		return 0;
	}

762 763 764 765 766 767 768 769 770 771 772 773 774
	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);

	if (!netif_running(adapter->netdev)) {
		for (i = 0; i < adapter->num_tx_queues; i++)
			adapter->tx_ring[i].count = new_tx_count;
		for (i = 0; i < adapter->num_rx_queues; i++)
			adapter->rx_ring[i].count = new_rx_count;
		adapter->tx_ring_count = new_tx_count;
		adapter->rx_ring_count = new_rx_count;
		goto clear_reset;
	}

775 776 777 778 779
	if (adapter->num_tx_queues > adapter->num_rx_queues)
		temp_ring = vmalloc(adapter->num_tx_queues * sizeof(struct igb_ring));
	else
		temp_ring = vmalloc(adapter->num_rx_queues * sizeof(struct igb_ring));

780 781 782 783
	if (!temp_ring) {
		err = -ENOMEM;
		goto clear_reset;
	}
784

785
	igb_down(adapter);
786 787 788 789 790 791

	/*
	 * We can't just free everything and then setup again,
	 * because the ISRs in MSI-X mode get passed pointers
	 * to the tx and rx ring structs.
	 */
792 793 794 795
	if (new_tx_count != adapter->tx_ring_count) {
		memcpy(temp_ring, adapter->tx_ring,
		       adapter->num_tx_queues * sizeof(struct igb_ring));

796
		for (i = 0; i < adapter->num_tx_queues; i++) {
797 798
			temp_ring[i].count = new_tx_count;
			err = igb_setup_tx_resources(adapter, &temp_ring[i]);
799
			if (err) {
800 801 802 803
				while (i) {
					i--;
					igb_free_tx_resources(&temp_ring[i]);
				}
804 805 806
				goto err_setup;
			}
		}
807 808 809 810 811 812 813 814

		for (i = 0; i < adapter->num_tx_queues; i++)
			igb_free_tx_resources(&adapter->tx_ring[i]);

		memcpy(adapter->tx_ring, temp_ring,
		       adapter->num_tx_queues * sizeof(struct igb_ring));

		adapter->tx_ring_count = new_tx_count;
815 816 817
	}

	if (new_rx_count != adapter->rx_ring->count) {
818 819
		memcpy(temp_ring, adapter->rx_ring,
		       adapter->num_rx_queues * sizeof(struct igb_ring));
820

821 822 823
		for (i = 0; i < adapter->num_rx_queues; i++) {
			temp_ring[i].count = new_rx_count;
			err = igb_setup_rx_resources(adapter, &temp_ring[i]);
824
			if (err) {
825 826 827 828
				while (i) {
					i--;
					igb_free_rx_resources(&temp_ring[i]);
				}
829 830 831 832
				goto err_setup;
			}

		}
833 834 835 836 837 838 839 840

		for (i = 0; i < adapter->num_rx_queues; i++)
			igb_free_rx_resources(&adapter->rx_ring[i]);

		memcpy(adapter->rx_ring, temp_ring,
		       adapter->num_rx_queues * sizeof(struct igb_ring));

		adapter->rx_ring_count = new_rx_count;
841 842
	}
err_setup:
843
	igb_up(adapter);
844
	vfree(temp_ring);
845 846
clear_reset:
	clear_bit(__IGB_RESETTING, &adapter->state);
847 848 849 850 851 852
	return err;
}

/* ethtool register test data */
struct igb_reg_test {
	u16 reg;
A
Alexander Duyck 已提交
853 854 855
	u16 reg_offset;
	u16 array_len;
	u16 test_type;
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
	u32 mask;
	u32 write;
};

/* In the hardware, registers are laid out either singly, in arrays
 * spaced 0x100 bytes apart, or in contiguous tables.  We assume
 * most tests take place on arrays or single registers (handled
 * as a single-element array) and special-case the tables.
 * Table tests are always pattern tests.
 *
 * We also make provision for some required setup steps by specifying
 * registers to be written without any read-back testing.
 */

#define PATTERN_TEST	1
#define SET_READ_TEST	2
#define WRITE_NO_TEST	3
#define TABLE32_TEST	4
#define TABLE64_TEST_LO	5
#define TABLE64_TEST_HI	6

A
Alexander Duyck 已提交
877 878 879 880 881 882 883 884 885
/* 82576 reg test */
static struct igb_reg_test reg_test_82576[] = {
	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
886 887 888 889 890 891
	{ E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
	{ E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
	{ E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
	/* Enable all RX queues before testing. */
	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
A
Alexander Duyck 已提交
892 893
	/* RDH is read-only for 82576, only test RDT. */
	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
894
	{ E1000_RDT(4),	   0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
A
Alexander Duyck 已提交
895
	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
896
	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
A
Alexander Duyck 已提交
897 898 899 900 901 902
	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
903 904 905
	{ E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
	{ E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
	{ E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
A
Alexander Duyck 已提交
906 907 908 909 910 911 912 913 914 915 916 917 918
	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
	{ E1000_RA,	   0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
	{ E1000_RA,	   0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
	{ E1000_MTA,	   0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
	{ 0, 0, 0, 0 }
};

/* 82575 register test */
919
static struct igb_reg_test reg_test_82575[] = {
A
Alexander Duyck 已提交
920 921 922 923 924 925 926
	{ E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
	{ E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
	{ E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
	{ E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
927
	/* Enable all four RX queues before testing. */
A
Alexander Duyck 已提交
928
	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
929
	/* RDH is read-only for 82575, only test RDT. */
A
Alexander Duyck 已提交
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
	{ E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
	{ E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
	{ E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
	{ E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
	{ E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
	{ E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
	{ E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
	{ E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
	{ E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
	{ E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
	{ E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
	{ E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
946 947 948 949 950 951
	{ 0, 0, 0, 0 }
};

static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
			     int reg, u32 mask, u32 write)
{
952
	struct e1000_hw *hw = &adapter->hw;
953 954 955 956
	u32 pat, val;
	u32 _test[] =
		{0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
	for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
957 958
		wr32(reg, (_test[pat] & write));
		val = rd32(reg);
959 960 961 962 963 964 965 966 967 968 969 970 971 972
		if (val != (_test[pat] & write & mask)) {
			dev_err(&adapter->pdev->dev, "pattern test reg %04X "
				"failed: got 0x%08X expected 0x%08X\n",
				reg, val, (_test[pat] & write & mask));
			*data = reg;
			return 1;
		}
	}
	return 0;
}

static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
			      int reg, u32 mask, u32 write)
{
973
	struct e1000_hw *hw = &adapter->hw;
974
	u32 val;
975 976
	wr32(reg, write & mask);
	val = rd32(reg);
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
	if ((write & mask) != (val & mask)) {
		dev_err(&adapter->pdev->dev, "set/check reg %04X test failed:"
			" got 0x%08X expected 0x%08X\n", reg,
			(val & mask), (write & mask));
		*data = reg;
		return 1;
	}
	return 0;
}

#define REG_PATTERN_TEST(reg, mask, write) \
	do { \
		if (reg_pattern_test(adapter, data, reg, mask, write)) \
			return 1; \
	} while (0)

#define REG_SET_AND_CHECK(reg, mask, write) \
	do { \
		if (reg_set_and_check(adapter, data, reg, mask, write)) \
			return 1; \
	} while (0)

static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
{
	struct e1000_hw *hw = &adapter->hw;
	struct igb_reg_test *test;
	u32 value, before, after;
	u32 i, toggle;

	toggle = 0x7FFFF3FF;
A
Alexander Duyck 已提交
1007 1008 1009 1010 1011 1012 1013 1014 1015

	switch (adapter->hw.mac.type) {
	case e1000_82576:
		test = reg_test_82576;
		break;
	default:
		test = reg_test_82575;
		break;
	}
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041

	/* Because the status register is such a special case,
	 * we handle it separately from the rest of the register
	 * tests.  Some bits are read-only, some toggle, and some
	 * are writable on newer MACs.
	 */
	before = rd32(E1000_STATUS);
	value = (rd32(E1000_STATUS) & toggle);
	wr32(E1000_STATUS, toggle);
	after = rd32(E1000_STATUS) & toggle;
	if (value != after) {
		dev_err(&adapter->pdev->dev, "failed STATUS register test "
			"got: 0x%08X expected: 0x%08X\n", after, value);
		*data = 1;
		return 1;
	}
	/* restore previous status */
	wr32(E1000_STATUS, before);

	/* Perform the remainder of the register test, looping through
	 * the test table until we either fail or reach the null entry.
	 */
	while (test->reg) {
		for (i = 0; i < test->array_len; i++) {
			switch (test->test_type) {
			case PATTERN_TEST:
1042 1043
				REG_PATTERN_TEST(test->reg +
						(i * test->reg_offset),
1044 1045 1046 1047
						test->mask,
						test->write);
				break;
			case SET_READ_TEST:
1048 1049
				REG_SET_AND_CHECK(test->reg +
						(i * test->reg_offset),
1050 1051 1052 1053 1054 1055
						test->mask,
						test->write);
				break;
			case WRITE_NO_TEST:
				writel(test->write,
				    (adapter->hw.hw_addr + test->reg)
A
Alexander Duyck 已提交
1056
					+ (i * test->reg_offset));
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
				break;
			case TABLE32_TEST:
				REG_PATTERN_TEST(test->reg + (i * 4),
						test->mask,
						test->write);
				break;
			case TABLE64_TEST_LO:
				REG_PATTERN_TEST(test->reg + (i * 8),
						test->mask,
						test->write);
				break;
			case TABLE64_TEST_HI:
				REG_PATTERN_TEST((test->reg + 4) + (i * 8),
						test->mask,
						test->write);
				break;
			}
		}
		test++;
	}

	*data = 0;
	return 0;
}

static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
{
	u16 temp;
	u16 checksum = 0;
	u16 i;

	*data = 0;
	/* Read and add up the contents of the EEPROM */
	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
A
Alexander Duyck 已提交
1091
		if ((adapter->hw.nvm.ops.read(&adapter->hw, i, 1, &temp))
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
		    < 0) {
			*data = 1;
			break;
		}
		checksum += temp;
	}

	/* If Checksum is not Correct return error else test passed */
	if ((checksum != (u16) NVM_SUM) && !(*data))
		*data = 2;

	return *data;
}

static irqreturn_t igb_test_intr(int irq, void *data)
{
	struct net_device *netdev = (struct net_device *) data;
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	adapter->test_icr |= rd32(E1000_ICR);

	return IRQ_HANDLED;
}

static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
1121
	u32 mask, ics_mask, i = 0, shared_int = true;
1122 1123 1124 1125 1126
	u32 irq = adapter->pdev->irq;

	*data = 0;

	/* Hook up test interrupt handler just for this test */
1127
	if (adapter->msix_entries)
1128 1129
		/* NOTE: we don't test MSI-X interrupts here, yet */
		return 0;
1130 1131

	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
		shared_int = false;
		if (request_irq(irq, &igb_test_intr, 0, netdev->name, netdev)) {
			*data = 1;
			return -1;
		}
	} else if (!request_irq(irq, &igb_test_intr, IRQF_PROBE_SHARED,
				netdev->name, netdev)) {
		shared_int = false;
	} else if (request_irq(irq, &igb_test_intr, IRQF_SHARED,
		 netdev->name, netdev)) {
		*data = 1;
		return -1;
	}
	dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
		(shared_int ? "shared" : "unshared"));
	/* Disable all the interrupts */
	wr32(E1000_IMC, 0xFFFFFFFF);
	msleep(10);

1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
	/* Define all writable bits for ICS */
	switch(hw->mac.type) {
	case e1000_82575:
		ics_mask = 0x37F47EDD;
		break;
	case e1000_82576:
		ics_mask = 0x77D4FBFD;
		break;
	default:
		ics_mask = 0x7FFFFFFF;
		break;
	}

1164
	/* Test each interrupt */
1165
	for (; i < 31; i++) {
1166 1167 1168
		/* Interrupt to test */
		mask = 1 << i;

1169 1170 1171
		if (!(mask & ics_mask))
			continue;

1172 1173 1174 1175 1176 1177 1178 1179
		if (!shared_int) {
			/* Disable the interrupt to be reported in
			 * the cause register and then force the same
			 * interrupt and see if one gets posted.  If
			 * an interrupt was posted to the bus, the
			 * test failed.
			 */
			adapter->test_icr = 0;
1180 1181 1182 1183 1184 1185

			/* Flush any pending interrupts */
			wr32(E1000_ICR, ~0);

			wr32(E1000_IMC, mask);
			wr32(E1000_ICS, mask);
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
			msleep(10);

			if (adapter->test_icr & mask) {
				*data = 3;
				break;
			}
		}

		/* Enable the interrupt to be reported in
		 * the cause register and then force the same
		 * interrupt and see if one gets posted.  If
		 * an interrupt was not posted to the bus, the
		 * test failed.
		 */
		adapter->test_icr = 0;
1201 1202 1203 1204

		/* Flush any pending interrupts */
		wr32(E1000_ICR, ~0);

1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
		wr32(E1000_IMS, mask);
		wr32(E1000_ICS, mask);
		msleep(10);

		if (!(adapter->test_icr & mask)) {
			*data = 4;
			break;
		}

		if (!shared_int) {
			/* Disable the other interrupts to be reported in
			 * the cause register and then force the other
			 * interrupts and see if any get posted.  If
			 * an interrupt was posted to the bus, the
			 * test failed.
			 */
			adapter->test_icr = 0;
1222 1223 1224 1225 1226 1227

			/* Flush any pending interrupts */
			wr32(E1000_ICR, ~0);

			wr32(E1000_IMC, ~mask);
			wr32(E1000_ICS, ~mask);
1228 1229
			msleep(10);

1230
			if (adapter->test_icr & mask) {
1231 1232 1233 1234 1235 1236 1237
				*data = 5;
				break;
			}
		}
	}

	/* Disable all the interrupts */
1238
	wr32(E1000_IMC, ~0);
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
	msleep(10);

	/* Unhook test interrupt handler */
	free_irq(irq, netdev);

	return *data;
}

static void igb_free_desc_rings(struct igb_adapter *adapter)
{
	struct igb_ring *tx_ring = &adapter->test_tx_ring;
	struct igb_ring *rx_ring = &adapter->test_rx_ring;
	struct pci_dev *pdev = adapter->pdev;
	int i;

	if (tx_ring->desc && tx_ring->buffer_info) {
		for (i = 0; i < tx_ring->count; i++) {
			struct igb_buffer *buf = &(tx_ring->buffer_info[i]);
			if (buf->dma)
				pci_unmap_single(pdev, buf->dma, buf->length,
						 PCI_DMA_TODEVICE);
			if (buf->skb)
				dev_kfree_skb(buf->skb);
		}
	}

	if (rx_ring->desc && rx_ring->buffer_info) {
		for (i = 0; i < rx_ring->count; i++) {
			struct igb_buffer *buf = &(rx_ring->buffer_info[i]);
			if (buf->dma)
				pci_unmap_single(pdev, buf->dma,
						 IGB_RXBUFFER_2048,
						 PCI_DMA_FROMDEVICE);
			if (buf->skb)
				dev_kfree_skb(buf->skb);
		}
	}

	if (tx_ring->desc) {
		pci_free_consistent(pdev, tx_ring->size, tx_ring->desc,
				    tx_ring->dma);
		tx_ring->desc = NULL;
	}
	if (rx_ring->desc) {
		pci_free_consistent(pdev, rx_ring->size, rx_ring->desc,
				    rx_ring->dma);
		rx_ring->desc = NULL;
	}

	kfree(tx_ring->buffer_info);
	tx_ring->buffer_info = NULL;
	kfree(rx_ring->buffer_info);
	rx_ring->buffer_info = NULL;

	return;
}

static int igb_setup_desc_rings(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct igb_ring *tx_ring = &adapter->test_tx_ring;
	struct igb_ring *rx_ring = &adapter->test_rx_ring;
	struct pci_dev *pdev = adapter->pdev;
1302
	struct igb_buffer *buffer_info;
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
	u32 rctl;
	int i, ret_val;

	/* Setup Tx descriptor ring and Tx buffers */

	if (!tx_ring->count)
		tx_ring->count = IGB_DEFAULT_TXD;

	tx_ring->buffer_info = kcalloc(tx_ring->count,
				       sizeof(struct igb_buffer),
				       GFP_KERNEL);
	if (!tx_ring->buffer_info) {
		ret_val = 1;
		goto err_nomem;
	}

1319
	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
	tx_ring->size = ALIGN(tx_ring->size, 4096);
	tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
					     &tx_ring->dma);
	if (!tx_ring->desc) {
		ret_val = 2;
		goto err_nomem;
	}
	tx_ring->next_to_use = tx_ring->next_to_clean = 0;

	wr32(E1000_TDBAL(0),
			((u64) tx_ring->dma & 0x00000000FFFFFFFF));
	wr32(E1000_TDBAH(0), ((u64) tx_ring->dma >> 32));
	wr32(E1000_TDLEN(0),
1333
			tx_ring->count * sizeof(union e1000_adv_tx_desc));
1334 1335 1336 1337 1338 1339 1340 1341
	wr32(E1000_TDH(0), 0);
	wr32(E1000_TDT(0), 0);
	wr32(E1000_TCTL,
			E1000_TCTL_PSP | E1000_TCTL_EN |
			E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
			E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);

	for (i = 0; i < tx_ring->count; i++) {
1342
		union e1000_adv_tx_desc *tx_desc;
1343 1344 1345
		struct sk_buff *skb;
		unsigned int size = 1024;

1346
		tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
1347 1348 1349 1350 1351 1352
		skb = alloc_skb(size, GFP_KERNEL);
		if (!skb) {
			ret_val = 3;
			goto err_nomem;
		}
		skb_put(skb, size);
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
		buffer_info = &tx_ring->buffer_info[i];
		buffer_info->skb = skb;
		buffer_info->length = skb->len;
		buffer_info->dma = pci_map_single(pdev, skb->data, skb->len,
		                                  PCI_DMA_TODEVICE);
		tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
		tx_desc->read.olinfo_status = cpu_to_le32(skb->len) <<
		                              E1000_ADVTXD_PAYLEN_SHIFT;
		tx_desc->read.cmd_type_len = cpu_to_le32(skb->len);
		tx_desc->read.cmd_type_len |= cpu_to_le32(E1000_TXD_CMD_EOP |
		                                          E1000_TXD_CMD_IFCS |
		                                          E1000_TXD_CMD_RS |
		                                          E1000_ADVTXD_DTYP_DATA |
		                                          E1000_ADVTXD_DCMD_DEXT);
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
	}

	/* Setup Rx descriptor ring and Rx buffers */

	if (!rx_ring->count)
		rx_ring->count = IGB_DEFAULT_RXD;

	rx_ring->buffer_info = kcalloc(rx_ring->count,
				       sizeof(struct igb_buffer),
				       GFP_KERNEL);
	if (!rx_ring->buffer_info) {
		ret_val = 4;
		goto err_nomem;
	}

1382
	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
	rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
					     &rx_ring->dma);
	if (!rx_ring->desc) {
		ret_val = 5;
		goto err_nomem;
	}
	rx_ring->next_to_use = rx_ring->next_to_clean = 0;

	rctl = rd32(E1000_RCTL);
	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
	wr32(E1000_RDBAL(0),
			((u64) rx_ring->dma & 0xFFFFFFFF));
	wr32(E1000_RDBAH(0),
			((u64) rx_ring->dma >> 32));
	wr32(E1000_RDLEN(0), rx_ring->size);
	wr32(E1000_RDH(0), 0);
	wr32(E1000_RDT(0), 0);
1400
	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
A
Alexander Duyck 已提交
1401
	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
1402 1403
		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
	wr32(E1000_RCTL, rctl);
1404
	wr32(E1000_SRRCTL(0), E1000_SRRCTL_DESCTYPE_ADV_ONEBUF);
1405 1406

	for (i = 0; i < rx_ring->count; i++) {
1407
		union e1000_adv_rx_desc *rx_desc;
1408 1409
		struct sk_buff *skb;

1410 1411
		buffer_info = &rx_ring->buffer_info[i];
		rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
1412 1413 1414 1415 1416 1417 1418
		skb = alloc_skb(IGB_RXBUFFER_2048 + NET_IP_ALIGN,
				GFP_KERNEL);
		if (!skb) {
			ret_val = 6;
			goto err_nomem;
		}
		skb_reserve(skb, NET_IP_ALIGN);
1419 1420 1421 1422 1423
		buffer_info->skb = skb;
		buffer_info->dma = pci_map_single(pdev, skb->data,
		                                  IGB_RXBUFFER_2048,
		                                  PCI_DMA_FROMDEVICE);
		rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
		memset(skb->data, 0x00, skb->len);
	}

	return 0;

err_nomem:
	igb_free_desc_rings(adapter);
	return ret_val;
}

static void igb_phy_disable_receiver(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1439 1440 1441 1442
	igb_write_phy_reg(hw, 29, 0x001F);
	igb_write_phy_reg(hw, 30, 0x8FFC);
	igb_write_phy_reg(hw, 29, 0x001A);
	igb_write_phy_reg(hw, 30, 0x8FF0);
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
}

static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_reg = 0;

	hw->mac.autoneg = false;

	if (hw->phy.type == e1000_phy_m88) {
		/* Auto-MDI/MDIX Off */
1454
		igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1455
		/* reset to update Auto-MDI/MDIX */
1456
		igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1457
		/* autoneg off */
1458
		igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1459 1460 1461 1462 1463
	}

	ctrl_reg = rd32(E1000_CTRL);

	/* force 1000, set loopback */
1464
	igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1465 1466 1467 1468 1469 1470 1471

	/* Now set up the MAC to the same speed/duplex as the PHY. */
	ctrl_reg = rd32(E1000_CTRL);
	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
A
Alexander Duyck 已提交
1472 1473
		     E1000_CTRL_FD |	 /* Force Duplex to FULL */
		     E1000_CTRL_SLU);	 /* Set link up enable bit */
1474

A
Alexander Duyck 已提交
1475
	if (hw->phy.type == e1000_phy_m88)
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */

	wr32(E1000_CTRL, ctrl_reg);

	/* Disable the receiver on the PHY so when a cable is plugged in, the
	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
	 */
	if (hw->phy.type == e1000_phy_m88)
		igb_phy_disable_receiver(adapter);

	udelay(500);

	return 0;
}

static int igb_set_phy_loopback(struct igb_adapter *adapter)
{
	return igb_integrated_phy_loopback(adapter);
}

static int igb_setup_loopback_test(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
1499
	u32 reg;
1500

1501
	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
A
Alexander Duyck 已提交
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
		reg = rd32(E1000_RCTL);
		reg |= E1000_RCTL_LBM_TCVR;
		wr32(E1000_RCTL, reg);

		wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);

		reg = rd32(E1000_CTRL);
		reg &= ~(E1000_CTRL_RFCE |
			 E1000_CTRL_TFCE |
			 E1000_CTRL_LRST);
		reg |= E1000_CTRL_SLU |
1513
		       E1000_CTRL_FD;
A
Alexander Duyck 已提交
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
		wr32(E1000_CTRL, reg);

		/* Unset switch control to serdes energy detect */
		reg = rd32(E1000_CONNSW);
		reg &= ~E1000_CONNSW_ENRGSRC;
		wr32(E1000_CONNSW, reg);

		/* Set PCS register for forced speed */
		reg = rd32(E1000_PCS_LCTL);
		reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
		reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
		       E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
		       E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
		       E1000_PCS_LCTL_FSD |           /* Force Speed */
		       E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
		wr32(E1000_PCS_LCTL, reg);

1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
		return 0;
	} else if (hw->phy.media_type == e1000_media_type_copper) {
		return igb_set_phy_loopback(adapter);
	}

	return 7;
}

static void igb_loopback_cleanup(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;
	u16 phy_reg;

	rctl = rd32(E1000_RCTL);
	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
	wr32(E1000_RCTL, rctl);

	hw->mac.autoneg = true;
1550
	igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1551 1552
	if (phy_reg & MII_CR_LOOPBACK) {
		phy_reg &= ~MII_CR_LOOPBACK;
1553
		igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
		igb_phy_sw_reset(hw);
	}
}

static void igb_create_lbtest_frame(struct sk_buff *skb,
				    unsigned int frame_size)
{
	memset(skb->data, 0xFF, frame_size);
	frame_size &= ~1;
	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
	memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
	memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
}

static int igb_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
{
	frame_size &= ~1;
	if (*(skb->data + 3) == 0xFF)
		if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
		   (*(skb->data + frame_size / 2 + 12) == 0xAF))
			return 0;
	return 13;
}

static int igb_run_loopback_test(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct igb_ring *tx_ring = &adapter->test_tx_ring;
	struct igb_ring *rx_ring = &adapter->test_rx_ring;
	struct pci_dev *pdev = adapter->pdev;
	int i, j, k, l, lc, good_cnt;
	int ret_val = 0;
	unsigned long time;

	wr32(E1000_RDT(0), rx_ring->count - 1);

	/* Calculate the loop count based on the largest descriptor ring
	 * The idea is to wrap the largest ring a number of times using 64
	 * send/receive pairs during each loop
	 */

	if (rx_ring->count <= tx_ring->count)
		lc = ((tx_ring->count / 64) * 2) + 1;
	else
		lc = ((rx_ring->count / 64) * 2) + 1;

	k = l = 0;
	for (j = 0; j <= lc; j++) { /* loop count loop */
		for (i = 0; i < 64; i++) { /* send the packets */
			igb_create_lbtest_frame(tx_ring->buffer_info[k].skb,
						1024);
			pci_dma_sync_single_for_device(pdev,
				tx_ring->buffer_info[k].dma,
				tx_ring->buffer_info[k].length,
				PCI_DMA_TODEVICE);
			k++;
			if (k == tx_ring->count)
				k = 0;
		}
		wr32(E1000_TDT(0), k);
		msleep(200);
		time = jiffies; /* set the start time for the receive */
		good_cnt = 0;
		do { /* receive the sent packets */
			pci_dma_sync_single_for_cpu(pdev,
					rx_ring->buffer_info[l].dma,
					IGB_RXBUFFER_2048,
					PCI_DMA_FROMDEVICE);

			ret_val = igb_check_lbtest_frame(
					     rx_ring->buffer_info[l].skb, 1024);
			if (!ret_val)
				good_cnt++;
			l++;
			if (l == rx_ring->count)
				l = 0;
			/* time + 20 msecs (200 msecs on 2.4) is more than
			 * enough time to complete the receives, if it's
			 * exceeded, break and error off
			 */
		} while (good_cnt < 64 && jiffies < (time + 20));
		if (good_cnt != 64) {
			ret_val = 13; /* ret_val is the same as mis-compare */
			break;
		}
		if (jiffies >= (time + 20)) {
			ret_val = 14; /* error code for time out error */
			break;
		}
	} /* end loop count loop */
	return ret_val;
}

static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
{
	/* PHY loopback cannot be performed if SoL/IDER
	 * sessions are active */
	if (igb_check_reset_block(&adapter->hw)) {
		dev_err(&adapter->pdev->dev,
			"Cannot do PHY loopback test "
			"when SoL/IDER is active.\n");
		*data = 0;
		goto out;
	}
	*data = igb_setup_desc_rings(adapter);
	if (*data)
		goto out;
	*data = igb_setup_loopback_test(adapter);
	if (*data)
		goto err_loopback;
	*data = igb_run_loopback_test(adapter);
	igb_loopback_cleanup(adapter);

err_loopback:
	igb_free_desc_rings(adapter);
out:
	return *data;
}

static int igb_link_test(struct igb_adapter *adapter, u64 *data)
{
	struct e1000_hw *hw = &adapter->hw;
	*data = 0;
	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
		int i = 0;
		hw->mac.serdes_has_link = false;

		/* On some blade server designs, link establishment
		 * could take as long as 2-3 minutes */
		do {
			hw->mac.ops.check_for_link(&adapter->hw);
			if (hw->mac.serdes_has_link)
				return *data;
			msleep(20);
		} while (i++ < 3750);

		*data = 1;
	} else {
		hw->mac.ops.check_for_link(&adapter->hw);
		if (hw->mac.autoneg)
			msleep(4000);

		if (!(rd32(E1000_STATUS) &
		      E1000_STATUS_LU))
			*data = 1;
	}
	return *data;
}

static void igb_diag_test(struct net_device *netdev,
			  struct ethtool_test *eth_test, u64 *data)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	u16 autoneg_advertised;
	u8 forced_speed_duplex, autoneg;
	bool if_running = netif_running(netdev);

	set_bit(__IGB_TESTING, &adapter->state);
	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
		/* Offline tests */

		/* save speed, duplex, autoneg settings */
		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
		autoneg = adapter->hw.mac.autoneg;

		dev_info(&adapter->pdev->dev, "offline testing starting\n");

		/* Link test performed before hardware reset so autoneg doesn't
		 * interfere with test result */
		if (igb_link_test(adapter, &data[4]))
			eth_test->flags |= ETH_TEST_FL_FAILED;

		if (if_running)
			/* indicate we're in test mode */
			dev_close(netdev);
		else
			igb_reset(adapter);

		if (igb_reg_test(adapter, &data[0]))
			eth_test->flags |= ETH_TEST_FL_FAILED;

		igb_reset(adapter);
		if (igb_eeprom_test(adapter, &data[1]))
			eth_test->flags |= ETH_TEST_FL_FAILED;

		igb_reset(adapter);
		if (igb_intr_test(adapter, &data[2]))
			eth_test->flags |= ETH_TEST_FL_FAILED;

		igb_reset(adapter);
		if (igb_loopback_test(adapter, &data[3]))
			eth_test->flags |= ETH_TEST_FL_FAILED;

		/* restore speed, duplex, autoneg settings */
		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
		adapter->hw.mac.autoneg = autoneg;

		/* force this routine to wait until autoneg complete/timeout */
		adapter->hw.phy.autoneg_wait_to_complete = true;
		igb_reset(adapter);
		adapter->hw.phy.autoneg_wait_to_complete = false;

		clear_bit(__IGB_TESTING, &adapter->state);
		if (if_running)
			dev_open(netdev);
	} else {
		dev_info(&adapter->pdev->dev, "online testing starting\n");
		/* Online tests */
		if (igb_link_test(adapter, &data[4]))
			eth_test->flags |= ETH_TEST_FL_FAILED;

		/* Online tests aren't run; pass by default */
		data[0] = 0;
		data[1] = 0;
		data[2] = 0;
		data[3] = 0;

		clear_bit(__IGB_TESTING, &adapter->state);
	}
	msleep_interruptible(4 * 1000);
}

static int igb_wol_exclusion(struct igb_adapter *adapter,
			     struct ethtool_wolinfo *wol)
{
	struct e1000_hw *hw = &adapter->hw;
	int retval = 1; /* fail by default */

	switch (hw->device_id) {
	case E1000_DEV_ID_82575GB_QUAD_COPPER:
		/* WoL not supported */
		wol->supported = 0;
		break;
	case E1000_DEV_ID_82575EB_FIBER_SERDES:
A
Alexander Duyck 已提交
1790 1791
	case E1000_DEV_ID_82576_FIBER:
	case E1000_DEV_ID_82576_SERDES:
1792 1793 1794 1795 1796
		/* Wake events not supported on port B */
		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) {
			wol->supported = 0;
			break;
		}
1797 1798 1799
		/* return success for non excluded adapter ports */
		retval = 0;
		break;
1800 1801 1802 1803 1804 1805 1806 1807 1808
	case E1000_DEV_ID_82576_QUAD_COPPER:
		/* quad port adapters only support WoL on port A */
		if (!(adapter->flags & IGB_FLAG_QUAD_PORT_A)) {
			wol->supported = 0;
			break;
		}
		/* return success for non excluded adapter ports */
		retval = 0;
		break;
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
	default:
		/* dual port cards only support WoL on port A from now on
		 * unless it was enabled in the eeprom for port B
		 * so exclude FUNC_1 ports from having WoL enabled */
		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1 &&
		    !adapter->eeprom_wol) {
			wol->supported = 0;
			break;
		}

		retval = 0;
	}

	return retval;
}

static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
{
	struct igb_adapter *adapter = netdev_priv(netdev);

	wol->supported = WAKE_UCAST | WAKE_MCAST |
			 WAKE_BCAST | WAKE_MAGIC;
	wol->wolopts = 0;

	/* this function will set ->supported = 0 and return 1 if wol is not
	 * supported by this hardware */
1835 1836
	if (igb_wol_exclusion(adapter, wol) ||
	    !device_can_wakeup(&adapter->pdev->dev))
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
		return;

	/* apply any specific unsupported masks here */
	switch (adapter->hw.device_id) {
	default:
		break;
	}

	if (adapter->wol & E1000_WUFC_EX)
		wol->wolopts |= WAKE_UCAST;
	if (adapter->wol & E1000_WUFC_MC)
		wol->wolopts |= WAKE_MCAST;
	if (adapter->wol & E1000_WUFC_BC)
		wol->wolopts |= WAKE_BCAST;
	if (adapter->wol & E1000_WUFC_MAG)
		wol->wolopts |= WAKE_MAGIC;

	return;
}

static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
{
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
		return -EOPNOTSUPP;

1864 1865
	if (igb_wol_exclusion(adapter, wol) ||
	    !device_can_wakeup(&adapter->pdev->dev))
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
		return wol->wolopts ? -EOPNOTSUPP : 0;

	/* these settings will always override what we currently have */
	adapter->wol = 0;

	if (wol->wolopts & WAKE_UCAST)
		adapter->wol |= E1000_WUFC_EX;
	if (wol->wolopts & WAKE_MCAST)
		adapter->wol |= E1000_WUFC_MC;
	if (wol->wolopts & WAKE_BCAST)
		adapter->wol |= E1000_WUFC_BC;
	if (wol->wolopts & WAKE_MAGIC)
		adapter->wol |= E1000_WUFC_MAG;

1880 1881
	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);

1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
	return 0;
}

/* bit defines for adapter->led_status */
#define IGB_LED_ON		0

static int igb_phys_id(struct net_device *netdev, u32 data)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
		data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);

	igb_blink_led(hw);
	msleep_interruptible(data * 1000);

	igb_led_off(hw);
	clear_bit(IGB_LED_ON, &adapter->led_status);
	igb_cleanup_led(hw);

	return 0;
}

static int igb_set_coalesce(struct net_device *netdev,
			    struct ethtool_coalesce *ec)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
1910 1911
	struct e1000_hw *hw = &adapter->hw;
	int i;
1912 1913 1914 1915 1916 1917 1918 1919

	if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
	    ((ec->rx_coalesce_usecs > 3) &&
	     (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
	    (ec->rx_coalesce_usecs == 2))
		return -EINVAL;

	/* convert to rate of irq's per second */
1920
	if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3) {
1921
		adapter->itr_setting = ec->rx_coalesce_usecs;
1922 1923 1924 1925 1926
		adapter->itr = IGB_START_ITR;
	} else {
		adapter->itr_setting = ec->rx_coalesce_usecs << 2;
		adapter->itr = adapter->itr_setting;
	}
1927

1928 1929
	for (i = 0; i < adapter->num_rx_queues; i++)
		wr32(adapter->rx_ring[i].itr_register, adapter->itr);
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941

	return 0;
}

static int igb_get_coalesce(struct net_device *netdev,
			    struct ethtool_coalesce *ec)
{
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (adapter->itr_setting <= 3)
		ec->rx_coalesce_usecs = adapter->itr_setting;
	else
1942
		ec->rx_coalesce_usecs = adapter->itr_setting >> 2;
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972

	return 0;
}


static int igb_nway_reset(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	if (netif_running(netdev))
		igb_reinit_locked(adapter);
	return 0;
}

static int igb_get_sset_count(struct net_device *netdev, int sset)
{
	switch (sset) {
	case ETH_SS_STATS:
		return IGB_STATS_LEN;
	case ETH_SS_TEST:
		return IGB_TEST_LEN;
	default:
		return -ENOTSUPP;
	}
}

static void igb_get_ethtool_stats(struct net_device *netdev,
				  struct ethtool_stats *stats, u64 *data)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	u64 *queue_stat;
1973 1974
	int stat_count_tx = sizeof(struct igb_tx_queue_stats) / sizeof(u64);
	int stat_count_rx = sizeof(struct igb_rx_queue_stats) / sizeof(u64);
1975 1976
	int j;
	int i;
1977
	char *p = NULL;
1978 1979 1980

	igb_update_stats(adapter);
	for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
		switch (igb_gstrings_stats[i].type) {
		case NETDEV_STATS:
			p = (char *) netdev +
					igb_gstrings_stats[i].stat_offset;
			break;
		case IGB_STATS:
			p = (char *) adapter +
					igb_gstrings_stats[i].stat_offset;
			break;
		}

1992 1993 1994
		data[i] = (igb_gstrings_stats[i].sizeof_stat ==
			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
	}
1995 1996 1997
	for (j = 0; j < adapter->num_tx_queues; j++) {
		int k;
		queue_stat = (u64 *)&adapter->tx_ring[j].tx_stats;
1998
		for (k = 0; k < stat_count_tx; k++)
1999 2000 2001
			data[i + k] = queue_stat[k];
		i += k;
	}
2002 2003 2004
	for (j = 0; j < adapter->num_rx_queues; j++) {
		int k;
		queue_stat = (u64 *)&adapter->rx_ring[j].rx_stats;
2005
		for (k = 0; k < stat_count_rx; k++)
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
			data[i + k] = queue_stat[k];
		i += k;
	}
}

static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	u8 *p = data;
	int i;

	switch (stringset) {
	case ETH_SS_TEST:
		memcpy(data, *igb_gstrings_test,
			IGB_TEST_LEN*ETH_GSTRING_LEN);
		break;
	case ETH_SS_STATS:
		for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
			memcpy(p, igb_gstrings_stats[i].stat_string,
			       ETH_GSTRING_LEN);
			p += ETH_GSTRING_LEN;
		}
		for (i = 0; i < adapter->num_tx_queues; i++) {
			sprintf(p, "tx_queue_%u_packets", i);
			p += ETH_GSTRING_LEN;
			sprintf(p, "tx_queue_%u_bytes", i);
			p += ETH_GSTRING_LEN;
		}
		for (i = 0; i < adapter->num_rx_queues; i++) {
			sprintf(p, "rx_queue_%u_packets", i);
			p += ETH_GSTRING_LEN;
			sprintf(p, "rx_queue_%u_bytes", i);
			p += ETH_GSTRING_LEN;
2039 2040
			sprintf(p, "rx_queue_%u_drops", i);
			p += ETH_GSTRING_LEN;
2041 2042 2043 2044 2045 2046
		}
/*		BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
		break;
	}
}

2047
static const struct ethtool_ops igb_ethtool_ops = {
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
	.get_settings           = igb_get_settings,
	.set_settings           = igb_set_settings,
	.get_drvinfo            = igb_get_drvinfo,
	.get_regs_len           = igb_get_regs_len,
	.get_regs               = igb_get_regs,
	.get_wol                = igb_get_wol,
	.set_wol                = igb_set_wol,
	.get_msglevel           = igb_get_msglevel,
	.set_msglevel           = igb_set_msglevel,
	.nway_reset             = igb_nway_reset,
	.get_link               = ethtool_op_get_link,
	.get_eeprom_len         = igb_get_eeprom_len,
	.get_eeprom             = igb_get_eeprom,
	.set_eeprom             = igb_set_eeprom,
	.get_ringparam          = igb_get_ringparam,
	.set_ringparam          = igb_set_ringparam,
	.get_pauseparam         = igb_get_pauseparam,
	.set_pauseparam         = igb_set_pauseparam,
	.get_rx_csum            = igb_get_rx_csum,
	.set_rx_csum            = igb_set_rx_csum,
	.get_tx_csum            = igb_get_tx_csum,
	.set_tx_csum            = igb_set_tx_csum,
	.get_sg                 = ethtool_op_get_sg,
	.set_sg                 = ethtool_op_set_sg,
	.get_tso                = ethtool_op_get_tso,
	.set_tso                = igb_set_tso,
	.self_test              = igb_diag_test,
	.get_strings            = igb_get_strings,
	.phys_id                = igb_phys_id,
	.get_sset_count         = igb_get_sset_count,
	.get_ethtool_stats      = igb_get_ethtool_stats,
	.get_coalesce           = igb_get_coalesce,
	.set_coalesce           = igb_set_coalesce,
};

void igb_set_ethtool_ops(struct net_device *netdev)
{
	SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
}