dmar.c 57.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4
/*
 * Copyright (c) 2006, Intel Corporation.
 *
5 6 7 8
 * Copyright (C) 2006-2008 Intel Corporation
 * Author: Ashok Raj <ashok.raj@intel.com>
 * Author: Shaohua Li <shaohua.li@intel.com>
 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9
 *
10
 * This file implements early detection/parsing of Remapping Devices
11 12
 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
 * tables.
13 14
 *
 * These routines are used by both DMA-remapping and Interrupt-remapping
15 16
 */

J
Joerg Roedel 已提交
17
#define pr_fmt(fmt)     "DMAR: " fmt
18

19 20
#include <linux/pci.h>
#include <linux/dmar.h>
K
Kay, Allen M 已提交
21 22
#include <linux/iova.h>
#include <linux/intel-iommu.h>
23
#include <linux/timer.h>
24 25
#include <linux/irq.h>
#include <linux/interrupt.h>
26
#include <linux/tboot.h>
27
#include <linux/dmi.h>
28
#include <linux/slab.h>
29
#include <linux/iommu.h>
30
#include <linux/numa.h>
31
#include <linux/limits.h>
32
#include <asm/irq_remapping.h>
33
#include <asm/iommu_table.h>
34

35
#include "../irq_remapping.h"
36

37 38 39 40 41 42 43 44
typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *);
struct dmar_res_callback {
	dmar_res_handler_t	cb[ACPI_DMAR_TYPE_RESERVED];
	void			*arg[ACPI_DMAR_TYPE_RESERVED];
	bool			ignore_unhandled;
	bool			print_entry;
};

45 46 47 48 49 50 51 52 53 54 55
/*
 * Assumptions:
 * 1) The hotplug framework guarentees that DMAR unit will be hot-added
 *    before IO devices managed by that unit.
 * 2) The hotplug framework guarantees that DMAR unit will be hot-removed
 *    after IO devices managed by that unit.
 * 3) Hotplug events are rare.
 *
 * Locking rules for DMA and interrupt remapping related global data structures:
 * 1) Use dmar_global_lock in process context
 * 2) Use RCU in interrupt context
56
 */
57
DECLARE_RWSEM(dmar_global_lock);
58 59
LIST_HEAD(dmar_drhd_units);

60
struct acpi_table_header * __initdata dmar_tbl;
61
static int dmar_dev_scope_status = 1;
62
static unsigned long dmar_seq_ids[BITS_TO_LONGS(DMAR_UNITS_SUPPORTED)];
63

64
static int alloc_iommu(struct dmar_drhd_unit *drhd);
65
static void free_iommu(struct intel_iommu *iommu);
66

67 68
extern const struct iommu_ops intel_iommu_ops;

69
static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
70 71 72 73 74 75
{
	/*
	 * add INCLUDE_ALL at the tail, so scan the list will find it at
	 * the very end.
	 */
	if (drhd->include_all)
76
		list_add_tail_rcu(&drhd->list, &dmar_drhd_units);
77
	else
78
		list_add_rcu(&drhd->list, &dmar_drhd_units);
79 80
}

81
void *dmar_alloc_dev_scope(void *start, void *end, int *cnt)
82 83 84 85 86 87
{
	struct acpi_dmar_device_scope *scope;

	*cnt = 0;
	while (start < end) {
		scope = start;
88
		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE ||
89
		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
90 91
		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
			(*cnt)++;
92 93
		else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
			scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
94
			pr_warn("Unsupported device scope\n");
95
		}
96 97 98
		start += scope->length;
	}
	if (*cnt == 0)
99 100
		return NULL;

101
	return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL);
102 103
}

104
void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt)
105
{
106
	int i;
107
	struct device *tmp_dev;
108

109
	if (*devices && *cnt) {
110
		for_each_active_dev_scope(*devices, *cnt, i, tmp_dev)
111
			put_device(tmp_dev);
112 113
		kfree(*devices);
	}
114 115 116

	*devices = NULL;
	*cnt = 0;
117 118
}

119 120 121 122 123 124 125 126 127 128 129 130 131
/* Optimize out kzalloc()/kfree() for normal cases */
static char dmar_pci_notify_info_buf[64];

static struct dmar_pci_notify_info *
dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event)
{
	int level = 0;
	size_t size;
	struct pci_dev *tmp;
	struct dmar_pci_notify_info *info;

	BUG_ON(dev->is_virtfn);

132 133 134 135 136 137 138
	/*
	 * Ignore devices that have a domain number higher than what can
	 * be looked up in DMAR, e.g. VMD subdevices with domain 0x10000
	 */
	if (pci_domain_nr(dev->bus) > U16_MAX)
		return NULL;

139 140 141 142 143
	/* Only generate path[] for device addition event */
	if (event == BUS_NOTIFY_ADD_DEVICE)
		for (tmp = dev; tmp; tmp = tmp->bus->self)
			level++;

144
	size = struct_size(info, path, level);
145 146 147 148 149 150 151
	if (size <= sizeof(dmar_pci_notify_info_buf)) {
		info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf;
	} else {
		info = kzalloc(size, GFP_KERNEL);
		if (!info) {
			pr_warn("Out of memory when allocating notify_info "
				"for %s.\n", pci_name(dev));
152 153
			if (dmar_dev_scope_status == 0)
				dmar_dev_scope_status = -ENOMEM;
154 155 156 157 158 159 160 161 162
			return NULL;
		}
	}

	info->event = event;
	info->dev = dev;
	info->seg = pci_domain_nr(dev->bus);
	info->level = level;
	if (event == BUS_NOTIFY_ADD_DEVICE) {
163 164
		for (tmp = dev; tmp; tmp = tmp->bus->self) {
			level--;
165
			info->path[level].bus = tmp->bus->number;
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
			info->path[level].device = PCI_SLOT(tmp->devfn);
			info->path[level].function = PCI_FUNC(tmp->devfn);
			if (pci_is_root_bus(tmp->bus))
				info->bus = tmp->bus->number;
		}
	}

	return info;
}

static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info)
{
	if ((void *)info != dmar_pci_notify_info_buf)
		kfree(info);
}

static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus,
				struct acpi_dmar_pci_path *path, int count)
{
	int i;

	if (info->bus != bus)
188
		goto fallback;
189
	if (info->level != count)
190
		goto fallback;
191 192 193 194

	for (i = 0; i < count; i++) {
		if (path[i].device != info->path[i].device ||
		    path[i].function != info->path[i].function)
195
			goto fallback;
196 197 198
	}

	return true;
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214

fallback:

	if (count != 1)
		return false;

	i = info->level - 1;
	if (bus              == info->path[i].bus &&
	    path[0].device   == info->path[i].device &&
	    path[0].function == info->path[i].function) {
		pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n",
			bus, path[0].device, path[0].function);
		return true;
	}

	return false;
215 216 217 218 219
}

/* Return: > 0 if match found, 0 if no match found, < 0 if error happens */
int dmar_insert_dev_scope(struct dmar_pci_notify_info *info,
			  void *start, void*end, u16 segment,
220 221
			  struct dmar_dev_scope *devices,
			  int devices_cnt)
222 223
{
	int i, level;
224
	struct device *tmp, *dev = &info->dev->dev;
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
	struct acpi_dmar_device_scope *scope;
	struct acpi_dmar_pci_path *path;

	if (segment != info->seg)
		return 0;

	for (; start < end; start += scope->length) {
		scope = start;
		if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
		    scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE)
			continue;

		path = (struct acpi_dmar_pci_path *)(scope + 1);
		level = (scope->length - sizeof(*scope)) / sizeof(*path);
		if (!dmar_match_pci_path(info, scope->bus, path, level))
			continue;

242 243 244 245 246 247 248 249 250 251 252 253 254
		/*
		 * We expect devices with endpoint scope to have normal PCI
		 * headers, and devices with bridge scope to have bridge PCI
		 * headers.  However PCI NTB devices may be listed in the
		 * DMAR table with bridge scope, even though they have a
		 * normal PCI header.  NTB devices are identified by class
		 * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch
		 * for this special case.
		 */
		if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
		     info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) ||
		    (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE &&
		     (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
255
		      info->dev->class >> 16 != PCI_BASE_CLASS_BRIDGE))) {
256
			pr_warn("Device scope type does not match for %s\n",
257
				pci_name(info->dev));
258 259 260 261 262
			return -EINVAL;
		}

		for_each_dev_scope(devices, devices_cnt, i, tmp)
			if (tmp == NULL) {
263 264 265 266
				devices[i].bus = info->dev->bus->number;
				devices[i].devfn = info->dev->devfn;
				rcu_assign_pointer(devices[i].dev,
						   get_device(dev));
267 268 269 270 271 272 273 274 275
				return 1;
			}
		BUG_ON(i >= devices_cnt);
	}

	return 0;
}

int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment,
276
			  struct dmar_dev_scope *devices, int count)
277 278
{
	int index;
279
	struct device *tmp;
280 281 282 283 284

	if (info->seg != segment)
		return 0;

	for_each_active_dev_scope(devices, count, index, tmp)
285
		if (tmp == &info->dev->dev) {
286
			RCU_INIT_POINTER(devices[index].dev, NULL);
287
			synchronize_rcu();
288
			put_device(tmp);
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
			return 1;
		}

	return 0;
}

static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info)
{
	int ret = 0;
	struct dmar_drhd_unit *dmaru;
	struct acpi_dmar_hardware_unit *drhd;

	for_each_drhd_unit(dmaru) {
		if (dmaru->include_all)
			continue;

		drhd = container_of(dmaru->hdr,
				    struct acpi_dmar_hardware_unit, header);
		ret = dmar_insert_dev_scope(info, (void *)(drhd + 1),
				((void *)drhd) + drhd->header.length,
				dmaru->segment,
				dmaru->devices, dmaru->devices_cnt);
311
		if (ret)
312 313 314 315
			break;
	}
	if (ret >= 0)
		ret = dmar_iommu_notify_scope_dev(info);
316 317
	if (ret < 0 && dmar_dev_scope_status == 0)
		dmar_dev_scope_status = ret;
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338

	return ret;
}

static void  dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info)
{
	struct dmar_drhd_unit *dmaru;

	for_each_drhd_unit(dmaru)
		if (dmar_remove_dev_scope(info, dmaru->segment,
			dmaru->devices, dmaru->devices_cnt))
			break;
	dmar_iommu_notify_scope_dev(info);
}

static int dmar_pci_bus_notifier(struct notifier_block *nb,
				 unsigned long action, void *data)
{
	struct pci_dev *pdev = to_pci_dev(data);
	struct dmar_pci_notify_info *info;

339 340 341
	/* Only care about add/remove events for physical functions.
	 * For VFs we actually do the lookup based on the corresponding
	 * PF in device_to_iommu() anyway. */
342 343
	if (pdev->is_virtfn)
		return NOTIFY_DONE;
344 345
	if (action != BUS_NOTIFY_ADD_DEVICE &&
	    action != BUS_NOTIFY_REMOVED_DEVICE)
346 347 348 349 350 351 352 353 354
		return NOTIFY_DONE;

	info = dmar_alloc_pci_notify_info(pdev, action);
	if (!info)
		return NOTIFY_DONE;

	down_write(&dmar_global_lock);
	if (action == BUS_NOTIFY_ADD_DEVICE)
		dmar_pci_bus_add_dev(info);
355
	else if (action == BUS_NOTIFY_REMOVED_DEVICE)
356 357 358 359 360 361 362 363 364 365 366 367 368
		dmar_pci_bus_del_dev(info);
	up_write(&dmar_global_lock);

	dmar_free_pci_notify_info(info);

	return NOTIFY_OK;
}

static struct notifier_block dmar_pci_bus_nb = {
	.notifier_call = dmar_pci_bus_notifier,
	.priority = INT_MIN,
};

369 370 371 372 373
static struct dmar_drhd_unit *
dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd)
{
	struct dmar_drhd_unit *dmaru;

374 375
	list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list,
				dmar_rcu_check())
376 377 378 379 380 381 382
		if (dmaru->segment == drhd->segment &&
		    dmaru->reg_base_addr == drhd->address)
			return dmaru;

	return NULL;
}

383 384 385 386 387
/**
 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
 * structure which uniquely represent one DMA remapping hardware unit
 * present in the platform
 */
388
static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg)
389 390 391
{
	struct acpi_dmar_hardware_unit *drhd;
	struct dmar_drhd_unit *dmaru;
392
	int ret;
393

394
	drhd = (struct acpi_dmar_hardware_unit *)header;
395 396 397 398 399
	dmaru = dmar_find_dmaru(drhd);
	if (dmaru)
		goto out;

	dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL);
400 401 402
	if (!dmaru)
		return -ENOMEM;

403 404 405 406 407 408
	/*
	 * If header is allocated from slab by ACPI _DSM method, we need to
	 * copy the content because the memory buffer will be freed on return.
	 */
	dmaru->hdr = (void *)(dmaru + 1);
	memcpy(dmaru->hdr, header, header->length);
409
	dmaru->reg_base_addr = drhd->address;
410
	dmaru->segment = drhd->segment;
411
	dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
412 413 414 415 416 417
	dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1),
					      ((void *)drhd) + drhd->header.length,
					      &dmaru->devices_cnt);
	if (dmaru->devices_cnt && dmaru->devices == NULL) {
		kfree(dmaru);
		return -ENOMEM;
418
	}
419

420 421
	ret = alloc_iommu(dmaru);
	if (ret) {
422 423
		dmar_free_dev_scope(&dmaru->devices,
				    &dmaru->devices_cnt);
424 425 426 427
		kfree(dmaru);
		return ret;
	}
	dmar_register_drhd_unit(dmaru);
428

429
out:
430 431 432
	if (arg)
		(*(int *)arg)++;

433 434 435
	return 0;
}

436 437 438 439 440 441 442 443 444
static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
{
	if (dmaru->devices && dmaru->devices_cnt)
		dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
	if (dmaru->iommu)
		free_iommu(dmaru->iommu);
	kfree(dmaru);
}

445 446
static int __init dmar_parse_one_andd(struct acpi_dmar_header *header,
				      void *arg)
D
David Woodhouse 已提交
447 448 449 450
{
	struct acpi_dmar_andd *andd = (void *)header;

	/* Check for NUL termination within the designated length */
451
	if (strnlen(andd->device_name, header->length - 8) == header->length - 8) {
452
		pr_warn(FW_BUG
D
David Woodhouse 已提交
453 454 455 456 457
			   "Your BIOS is broken; ANDD object name is not NUL-terminated\n"
			   "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
			   dmi_get_system_info(DMI_BIOS_VENDOR),
			   dmi_get_system_info(DMI_BIOS_VERSION),
			   dmi_get_system_info(DMI_PRODUCT_VERSION));
458
		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
D
David Woodhouse 已提交
459 460 461
		return -EINVAL;
	}
	pr_info("ANDD device: %x name: %s\n", andd->device_number,
462
		andd->device_name);
D
David Woodhouse 已提交
463 464 465 466

	return 0;
}

467
#ifdef CONFIG_ACPI_NUMA
468
static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg)
469 470 471 472 473
{
	struct acpi_dmar_rhsa *rhsa;
	struct dmar_drhd_unit *drhd;

	rhsa = (struct acpi_dmar_rhsa *)header;
474
	for_each_drhd_unit(drhd) {
475 476 477 478
		if (drhd->reg_base_addr == rhsa->base_address) {
			int node = acpi_map_pxm_to_node(rhsa->proximity_domain);

			if (!node_online(node))
479
				node = NUMA_NO_NODE;
480
			drhd->iommu->node = node;
481 482
			return 0;
		}
483
	}
484
	pr_warn(FW_BUG
485 486
		"Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
		"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
487
		rhsa->base_address,
488 489 490
		dmi_get_system_info(DMI_BIOS_VENDOR),
		dmi_get_system_info(DMI_BIOS_VERSION),
		dmi_get_system_info(DMI_PRODUCT_VERSION));
491
	add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
492

493
	return 0;
494
}
495 496
#else
#define	dmar_parse_one_rhsa		dmar_res_noop
497
#endif
498

499
static void
500 501 502 503
dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
{
	struct acpi_dmar_hardware_unit *drhd;
	struct acpi_dmar_reserved_memory *rmrr;
504
	struct acpi_dmar_atsr *atsr;
505
	struct acpi_dmar_rhsa *rhsa;
506 507 508

	switch (header->type) {
	case ACPI_DMAR_TYPE_HARDWARE_UNIT:
509 510
		drhd = container_of(header, struct acpi_dmar_hardware_unit,
				    header);
511
		pr_info("DRHD base: %#016Lx flags: %#x\n",
512
			(unsigned long long)drhd->address, drhd->flags);
513 514
		break;
	case ACPI_DMAR_TYPE_RESERVED_MEMORY:
515 516
		rmrr = container_of(header, struct acpi_dmar_reserved_memory,
				    header);
517
		pr_info("RMRR base: %#016Lx end: %#016Lx\n",
F
Fenghua Yu 已提交
518 519
			(unsigned long long)rmrr->base_address,
			(unsigned long long)rmrr->end_address);
520
		break;
521
	case ACPI_DMAR_TYPE_ROOT_ATS:
522
		atsr = container_of(header, struct acpi_dmar_atsr, header);
523
		pr_info("ATSR flags: %#x\n", atsr->flags);
524
		break;
525
	case ACPI_DMAR_TYPE_HARDWARE_AFFINITY:
526
		rhsa = container_of(header, struct acpi_dmar_rhsa, header);
527
		pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
528 529 530
		       (unsigned long long)rhsa->base_address,
		       rhsa->proximity_domain);
		break;
531
	case ACPI_DMAR_TYPE_NAMESPACE:
D
David Woodhouse 已提交
532 533 534
		/* We don't print this here because we need to sanity-check
		   it first. So print it in dmar_parse_one_andd() instead. */
		break;
535 536 537
	}
}

538 539 540 541 542 543 544 545
/**
 * dmar_table_detect - checks to see if the platform supports DMAR devices
 */
static int __init dmar_table_detect(void)
{
	acpi_status status = AE_OK;

	/* if we could find DMAR table, then there are DMAR devices */
546
	status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl);
547 548

	if (ACPI_SUCCESS(status) && !dmar_tbl) {
549
		pr_warn("Unable to map DMAR\n");
550 551 552
		status = AE_NOT_FOUND;
	}

553
	return ACPI_SUCCESS(status) ? 0 : -ENOENT;
554
}
555

556 557 558 559 560 561
static int dmar_walk_remapping_entries(struct acpi_dmar_header *start,
				       size_t len, struct dmar_res_callback *cb)
{
	struct acpi_dmar_header *iter, *next;
	struct acpi_dmar_header *end = ((void *)start) + len;

562
	for (iter = start; iter < end; iter = next) {
563 564 565 566 567 568 569
		next = (void *)iter + iter->length;
		if (iter->length == 0) {
			/* Avoid looping forever on bad ACPI tables */
			pr_debug(FW_BUG "Invalid 0-length structure\n");
			break;
		} else if (next > end) {
			/* Avoid passing table end */
J
Joerg Roedel 已提交
570
			pr_warn(FW_BUG "Record passes table end\n");
571
			return -EINVAL;
572 573 574 575 576 577 578 579 580 581
		}

		if (cb->print_entry)
			dmar_table_print_dmar_entry(iter);

		if (iter->type >= ACPI_DMAR_TYPE_RESERVED) {
			/* continue for forward compatibility */
			pr_debug("Unknown DMAR structure type %d\n",
				 iter->type);
		} else if (cb->cb[iter->type]) {
582 583
			int ret;

584
			ret = cb->cb[iter->type](iter, cb->arg[iter->type]);
585 586
			if (ret)
				return ret;
587 588 589
		} else if (!cb->ignore_unhandled) {
			pr_warn("No handler for DMAR structure type %d\n",
				iter->type);
590
			return -EINVAL;
591 592 593
		}
	}

594
	return 0;
595 596 597 598 599 600 601 602 603
}

static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar,
				       struct dmar_res_callback *cb)
{
	return dmar_walk_remapping_entries((void *)(dmar + 1),
			dmar->header.length - sizeof(*dmar), cb);
}

604 605 606 607 608 609 610
/**
 * parse_dmar_table - parses the DMA reporting table
 */
static int __init
parse_dmar_table(void)
{
	struct acpi_table_dmar *dmar;
611
	int drhd_count = 0;
612
	int ret;
613 614 615 616 617 618 619 620 621 622
	struct dmar_res_callback cb = {
		.print_entry = true,
		.ignore_unhandled = true,
		.arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count,
		.cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd,
		.cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr,
		.cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr,
		.cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa,
		.cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd,
	};
623

624 625 626 627 628 629
	/*
	 * Do it again, earlier dmar_tbl mapping could be mapped with
	 * fixed map.
	 */
	dmar_table_detect();

630 631 632 633 634 635
	/*
	 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
	 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
	 */
	dmar_tbl = tboot_get_dmar_table(dmar_tbl);

636 637 638 639
	dmar = (struct acpi_table_dmar *)dmar_tbl;
	if (!dmar)
		return -ENODEV;

F
Fenghua Yu 已提交
640
	if (dmar->width < PAGE_SHIFT - 1) {
641
		pr_warn("Invalid DMAR haw\n");
642 643 644
		return -EINVAL;
	}

645
	pr_info("Host address width %d\n", dmar->width + 1);
646 647
	ret = dmar_walk_dmar_table(dmar, &cb);
	if (ret == 0 && drhd_count == 0)
648
		pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
649

650 651 652
	return ret;
}

653 654
static int dmar_pci_device_match(struct dmar_dev_scope devices[],
				 int cnt, struct pci_dev *dev)
655 656
{
	int index;
657
	struct device *tmp;
658 659

	while (dev) {
660
		for_each_active_dev_scope(devices, cnt, index, tmp)
661
			if (dev_is_pci(tmp) && dev == to_pci_dev(tmp))
662 663 664 665 666 667 668 669 670 671 672 673
				return 1;

		/* Check our parent */
		dev = dev->bus->self;
	}

	return 0;
}

struct dmar_drhd_unit *
dmar_find_matched_drhd_unit(struct pci_dev *dev)
{
674
	struct dmar_drhd_unit *dmaru;
675 676
	struct acpi_dmar_hardware_unit *drhd;

677 678
	dev = pci_physfn(dev);

679
	rcu_read_lock();
680
	for_each_drhd_unit(dmaru) {
681 682 683 684 685 686
		drhd = container_of(dmaru->hdr,
				    struct acpi_dmar_hardware_unit,
				    header);

		if (dmaru->include_all &&
		    drhd->segment == pci_domain_nr(dev->bus))
687
			goto out;
688

689 690
		if (dmar_pci_device_match(dmaru->devices,
					  dmaru->devices_cnt, dev))
691
			goto out;
692
	}
693 694 695
	dmaru = NULL;
out:
	rcu_read_unlock();
696

697
	return dmaru;
698 699
}

700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
static void __init dmar_acpi_insert_dev_scope(u8 device_number,
					      struct acpi_device *adev)
{
	struct dmar_drhd_unit *dmaru;
	struct acpi_dmar_hardware_unit *drhd;
	struct acpi_dmar_device_scope *scope;
	struct device *tmp;
	int i;
	struct acpi_dmar_pci_path *path;

	for_each_drhd_unit(dmaru) {
		drhd = container_of(dmaru->hdr,
				    struct acpi_dmar_hardware_unit,
				    header);

		for (scope = (void *)(drhd + 1);
		     (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length;
		     scope = ((void *)scope) + scope->length) {
718
			if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE)
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
				continue;
			if (scope->enumeration_id != device_number)
				continue;

			path = (void *)(scope + 1);
			pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n",
				dev_name(&adev->dev), dmaru->reg_base_addr,
				scope->bus, path->device, path->function);
			for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp)
				if (tmp == NULL) {
					dmaru->devices[i].bus = scope->bus;
					dmaru->devices[i].devfn = PCI_DEVFN(path->device,
									    path->function);
					rcu_assign_pointer(dmaru->devices[i].dev,
							   get_device(&adev->dev));
					return;
				}
			BUG_ON(i >= dmaru->devices_cnt);
		}
	}
	pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n",
		device_number, dev_name(&adev->dev));
}

static int __init dmar_acpi_dev_scope_init(void)
{
745 746 747 748 749
	struct acpi_dmar_andd *andd;

	if (dmar_tbl == NULL)
		return -ENODEV;

750 751 752
	for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar);
	     ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length;
	     andd = ((void *)andd) + andd->header.length) {
753
		if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) {
754 755 756 757
			acpi_handle h;
			struct acpi_device *adev;

			if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT,
758
							  andd->device_name,
759 760
							  &h))) {
				pr_err("Failed to find handle for ACPI object %s\n",
761
				       andd->device_name);
762 763
				continue;
			}
764
			if (acpi_bus_get_device(h, &adev)) {
765
				pr_err("Failed to get device for ACPI object %s\n",
766
				       andd->device_name);
767 768 769 770 771 772 773 774
				continue;
			}
			dmar_acpi_insert_dev_scope(andd->device_number, adev);
		}
	}
	return 0;
}

775 776
int __init dmar_dev_scope_init(void)
{
777 778
	struct pci_dev *dev = NULL;
	struct dmar_pci_notify_info *info;
779

780 781
	if (dmar_dev_scope_status != 1)
		return dmar_dev_scope_status;
782

783 784 785 786 787
	if (list_empty(&dmar_drhd_units)) {
		dmar_dev_scope_status = -ENODEV;
	} else {
		dmar_dev_scope_status = 0;

788 789
		dmar_acpi_dev_scope_init();

790 791 792 793 794 795 796 797 798 799 800 801 802
		for_each_pci_dev(dev) {
			if (dev->is_virtfn)
				continue;

			info = dmar_alloc_pci_notify_info(dev,
					BUS_NOTIFY_ADD_DEVICE);
			if (!info) {
				return dmar_dev_scope_status;
			} else {
				dmar_pci_bus_add_dev(info);
				dmar_free_pci_notify_info(info);
			}
		}
803 804
	}

805
	return dmar_dev_scope_status;
806 807
}

808
void __init dmar_register_bus_notifier(void)
809 810 811 812
{
	bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb);
}

813 814 815

int __init dmar_table_init(void)
{
816
	static int dmar_table_initialized;
F
Fenghua Yu 已提交
817 818
	int ret;

819 820 821 822
	if (dmar_table_initialized == 0) {
		ret = parse_dmar_table();
		if (ret < 0) {
			if (ret != -ENODEV)
J
Joerg Roedel 已提交
823
				pr_info("Parse DMAR table failure.\n");
824 825 826 827
		} else  if (list_empty(&dmar_drhd_units)) {
			pr_info("No DMAR devices found\n");
			ret = -ENODEV;
		}
F
Fenghua Yu 已提交
828

829 830 831 832
		if (ret < 0)
			dmar_table_initialized = ret;
		else
			dmar_table_initialized = 1;
833
	}
F
Fenghua Yu 已提交
834

835
	return dmar_table_initialized < 0 ? dmar_table_initialized : 0;
836 837
}

838 839
static void warn_invalid_dmar(u64 addr, const char *message)
{
840
	pr_warn_once(FW_BUG
841 842 843 844 845 846
		"Your BIOS is broken; DMAR reported at address %llx%s!\n"
		"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
		addr, message,
		dmi_get_system_info(DMI_BIOS_VENDOR),
		dmi_get_system_info(DMI_BIOS_VERSION),
		dmi_get_system_info(DMI_PRODUCT_VERSION));
847
	add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
848
}
849

850 851
static int __ref
dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg)
852 853
{
	struct acpi_dmar_hardware_unit *drhd;
854 855
	void __iomem *addr;
	u64 cap, ecap;
856

857 858 859 860 861
	drhd = (void *)entry;
	if (!drhd->address) {
		warn_invalid_dmar(0, "");
		return -EINVAL;
	}
862

863 864 865 866
	if (arg)
		addr = ioremap(drhd->address, VTD_PAGE_SIZE);
	else
		addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
867
	if (!addr) {
J
Joerg Roedel 已提交
868
		pr_warn("Can't validate DRHD address: %llx\n", drhd->address);
869 870
		return -EINVAL;
	}
871

872 873
	cap = dmar_readq(addr + DMAR_CAP_REG);
	ecap = dmar_readq(addr + DMAR_ECAP_REG);
874 875 876 877 878

	if (arg)
		iounmap(addr);
	else
		early_iounmap(addr, VTD_PAGE_SIZE);
879

880 881 882
	if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
		warn_invalid_dmar(drhd->address, " returns all ones");
		return -EINVAL;
883
	}
884 885

	return 0;
886 887
}

888
int __init detect_intel_iommu(void)
889 890
{
	int ret;
891 892 893 894
	struct dmar_res_callback validate_drhd_cb = {
		.cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd,
		.ignore_unhandled = true,
	};
895

896
	down_write(&dmar_global_lock);
897
	ret = dmar_table_detect();
898 899 900 901
	if (!ret)
		ret = dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl,
					   &validate_drhd_cb);
	if (!ret && !no_iommu && !iommu_detected && !dmar_disabled) {
902 903 904 905
		iommu_detected = 1;
		/* Make sure ACS will be enabled */
		pci_request_acs();
	}
906

907
#ifdef CONFIG_X86
908
	if (!ret) {
909
		x86_init.iommu.iommu_init = intel_iommu_init;
910 911 912
		x86_platform.iommu_shutdown = intel_iommu_shutdown;
	}

913
#endif
914

915 916 917 918
	if (dmar_tbl) {
		acpi_put_table(dmar_tbl);
		dmar_tbl = NULL;
	}
919
	up_write(&dmar_global_lock);
920

921
	return ret ? ret : 1;
922 923
}

924 925 926 927 928 929 930 931 932 933
static void unmap_iommu(struct intel_iommu *iommu)
{
	iounmap(iommu->reg);
	release_mem_region(iommu->reg_phys, iommu->reg_size);
}

/**
 * map_iommu: map the iommu's registers
 * @iommu: the iommu to map
 * @phys_addr: the physical address of the base resgister
934
 *
935
 * Memory map the iommu's registers.  Start w/ a single page, and
936
 * possibly expand if that turns out to be insufficent.
937 938 939 940 941 942 943 944 945
 */
static int map_iommu(struct intel_iommu *iommu, u64 phys_addr)
{
	int map_size, err=0;

	iommu->reg_phys = phys_addr;
	iommu->reg_size = VTD_PAGE_SIZE;

	if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
J
Joerg Roedel 已提交
946
		pr_err("Can't reserve memory\n");
947 948 949 950 951 952
		err = -EBUSY;
		goto out;
	}

	iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
	if (!iommu->reg) {
J
Joerg Roedel 已提交
953
		pr_err("Can't map the region\n");
954 955 956 957 958 959 960 961 962 963 964 965
		err = -ENOMEM;
		goto release;
	}

	iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
	iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);

	if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
		err = -EINVAL;
		warn_invalid_dmar(phys_addr, " returns all ones");
		goto unmap;
	}
966
	iommu->vccap = dmar_readq(iommu->reg + DMAR_VCCAP_REG);
967 968 969 970 971 972 973 974 975 976 977

	/* the registers might be more than one page */
	map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
			 cap_max_fault_reg_offset(iommu->cap));
	map_size = VTD_PAGE_ALIGN(map_size);
	if (map_size > iommu->reg_size) {
		iounmap(iommu->reg);
		release_mem_region(iommu->reg_phys, iommu->reg_size);
		iommu->reg_size = map_size;
		if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
					iommu->name)) {
J
Joerg Roedel 已提交
978
			pr_err("Can't reserve memory\n");
979 980 981 982 983
			err = -EBUSY;
			goto out;
		}
		iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
		if (!iommu->reg) {
J
Joerg Roedel 已提交
984
			pr_err("Can't map the region\n");
985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
			err = -ENOMEM;
			goto release;
		}
	}
	err = 0;
	goto out;

unmap:
	iounmap(iommu->reg);
release:
	release_mem_region(iommu->reg_phys, iommu->reg_size);
out:
	return err;
}

1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
static int dmar_alloc_seq_id(struct intel_iommu *iommu)
{
	iommu->seq_id = find_first_zero_bit(dmar_seq_ids,
					    DMAR_UNITS_SUPPORTED);
	if (iommu->seq_id >= DMAR_UNITS_SUPPORTED) {
		iommu->seq_id = -1;
	} else {
		set_bit(iommu->seq_id, dmar_seq_ids);
		sprintf(iommu->name, "dmar%d", iommu->seq_id);
	}

	return iommu->seq_id;
}

static void dmar_free_seq_id(struct intel_iommu *iommu)
{
	if (iommu->seq_id >= 0) {
		clear_bit(iommu->seq_id, dmar_seq_ids);
		iommu->seq_id = -1;
	}
}

1022
static int alloc_iommu(struct dmar_drhd_unit *drhd)
1023
{
1024
	struct intel_iommu *iommu;
1025
	u32 ver, sts;
1026
	int agaw = 0;
F
Fenghua Yu 已提交
1027
	int msagaw = 0;
1028
	int err;
1029

1030
	if (!drhd->reg_base_addr) {
1031
		warn_invalid_dmar(0, "");
1032 1033 1034
		return -EINVAL;
	}

1035 1036
	iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
	if (!iommu)
1037
		return -ENOMEM;
1038

1039
	if (dmar_alloc_seq_id(iommu) < 0) {
J
Joerg Roedel 已提交
1040
		pr_err("Failed to allocate seq_id\n");
1041 1042 1043
		err = -ENOSPC;
		goto error;
	}
1044

1045 1046
	err = map_iommu(iommu, drhd->reg_base_addr);
	if (err) {
J
Joerg Roedel 已提交
1047
		pr_err("Failed to map %s\n", iommu->name);
1048
		goto error_free_seq_id;
1049
	}
1050

1051
	err = -EINVAL;
W
Weidong Han 已提交
1052 1053
	agaw = iommu_calculate_agaw(iommu);
	if (agaw < 0) {
1054 1055
		pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
			iommu->seq_id);
1056
		goto err_unmap;
F
Fenghua Yu 已提交
1057 1058 1059
	}
	msagaw = iommu_calculate_max_sagaw(iommu);
	if (msagaw < 0) {
1060
		pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
W
Weidong Han 已提交
1061
			iommu->seq_id);
1062
		goto err_unmap;
W
Weidong Han 已提交
1063 1064
	}
	iommu->agaw = agaw;
F
Fenghua Yu 已提交
1065
	iommu->msagaw = msagaw;
1066
	iommu->segment = drhd->segment;
W
Weidong Han 已提交
1067

1068
	iommu->node = NUMA_NO_NODE;
1069

1070
	ver = readl(iommu->reg + DMAR_VER_REG);
J
Joerg Roedel 已提交
1071 1072
	pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
		iommu->name,
F
Fenghua Yu 已提交
1073 1074 1075 1076
		(unsigned long long)drhd->reg_base_addr,
		DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
		(unsigned long long)iommu->cap,
		(unsigned long long)iommu->ecap);
1077

1078 1079 1080 1081 1082 1083 1084 1085 1086
	/* Reflect status in gcmd */
	sts = readl(iommu->reg + DMAR_GSTS_REG);
	if (sts & DMA_GSTS_IRES)
		iommu->gcmd |= DMA_GCMD_IRE;
	if (sts & DMA_GSTS_TES)
		iommu->gcmd |= DMA_GCMD_TE;
	if (sts & DMA_GSTS_QIES)
		iommu->gcmd |= DMA_GCMD_QIE;

1087
	raw_spin_lock_init(&iommu->register_lock);
1088

1089
	if (intel_iommu_enabled) {
1090 1091 1092 1093
		err = iommu_device_sysfs_add(&iommu->iommu, NULL,
					     intel_iommu_groups,
					     "%s", iommu->name);
		if (err)
1094
			goto err_unmap;
1095

1096 1097 1098 1099
		iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops);

		err = iommu_device_register(&iommu->iommu);
		if (err)
1100
			goto err_unmap;
1101 1102
	}

1103 1104
	drhd->iommu = iommu;

1105
	return 0;
1106

1107
err_unmap:
1108
	unmap_iommu(iommu);
1109 1110 1111
error_free_seq_id:
	dmar_free_seq_id(iommu);
error:
1112
	kfree(iommu);
1113
	return err;
1114 1115
}

1116
static void free_iommu(struct intel_iommu *iommu)
1117
{
1118 1119 1120 1121
	if (intel_iommu_enabled) {
		iommu_device_unregister(&iommu->iommu);
		iommu_device_sysfs_remove(&iommu->iommu);
	}
1122

1123
	if (iommu->irq) {
1124 1125 1126 1127 1128
		if (iommu->pr_irq) {
			free_irq(iommu->pr_irq, iommu);
			dmar_free_hwirq(iommu->pr_irq);
			iommu->pr_irq = 0;
		}
1129
		free_irq(iommu->irq, iommu);
1130
		dmar_free_hwirq(iommu->irq);
1131
		iommu->irq = 0;
1132
	}
1133

1134 1135 1136 1137 1138 1139
	if (iommu->qi) {
		free_page((unsigned long)iommu->qi->desc);
		kfree(iommu->qi->desc_status);
		kfree(iommu->qi);
	}

1140
	if (iommu->reg)
1141 1142
		unmap_iommu(iommu);

1143
	dmar_free_seq_id(iommu);
1144 1145
	kfree(iommu);
}
1146 1147 1148 1149 1150 1151

/*
 * Reclaim all the submitted descriptors which have completed its work.
 */
static inline void reclaim_free_desc(struct q_inval *qi)
{
1152 1153
	while (qi->desc_status[qi->free_tail] == QI_DONE ||
	       qi->desc_status[qi->free_tail] == QI_ABORT) {
1154 1155 1156 1157 1158 1159
		qi->desc_status[qi->free_tail] = QI_FREE;
		qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
		qi->free_cnt++;
	}
}

1160
static int qi_check_fault(struct intel_iommu *iommu, int index, int wait_index)
1161 1162
{
	u32 fault;
1163
	int head, tail;
1164
	struct q_inval *qi = iommu->qi;
1165
	int shift = qi_shift(iommu);
1166

1167 1168 1169
	if (qi->desc_status[wait_index] == QI_ABORT)
		return -EAGAIN;

1170 1171 1172 1173 1174 1175 1176 1177 1178
	fault = readl(iommu->reg + DMAR_FSTS_REG);

	/*
	 * If IQE happens, the head points to the descriptor associated
	 * with the error. No new descriptors are fetched until the IQE
	 * is cleared.
	 */
	if (fault & DMA_FSTS_IQE) {
		head = readl(iommu->reg + DMAR_IQH_REG);
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
		if ((head >> shift) == index) {
			struct qi_desc *desc = qi->desc + head;

			/*
			 * desc->qw2 and desc->qw3 are either reserved or
			 * used by software as private data. We won't print
			 * out these two qw's for security consideration.
			 */
			pr_err("VT-d detected invalid descriptor: qw0 = %llx, qw1 = %llx\n",
			       (unsigned long long)desc->qw0,
			       (unsigned long long)desc->qw1);
			memcpy(desc, qi->desc + (wait_index << shift),
			       1 << shift);
1192 1193 1194 1195 1196
			writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
			return -EINVAL;
		}
	}

1197 1198 1199 1200 1201 1202
	/*
	 * If ITE happens, all pending wait_desc commands are aborted.
	 * No new descriptors are fetched until the ITE is cleared.
	 */
	if (fault & DMA_FSTS_ITE) {
		head = readl(iommu->reg + DMAR_IQH_REG);
1203
		head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1204 1205
		head |= 1;
		tail = readl(iommu->reg + DMAR_IQT_REG);
1206
		tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222

		writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);

		do {
			if (qi->desc_status[head] == QI_IN_USE)
				qi->desc_status[head] = QI_ABORT;
			head = (head - 2 + QI_LENGTH) % QI_LENGTH;
		} while (head != tail);

		if (qi->desc_status[wait_index] == QI_ABORT)
			return -EAGAIN;
	}

	if (fault & DMA_FSTS_ICE)
		writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);

1223 1224 1225
	return 0;
}

1226
/*
1227 1228 1229 1230 1231
 * Function to submit invalidation descriptors of all types to the queued
 * invalidation interface(QI). Multiple descriptors can be submitted at a
 * time, a wait descriptor will be appended to each submission to ensure
 * hardware has completed the invalidation before return. Wait descriptors
 * can be part of the submission but it will not be polled for completion.
1232
 */
1233 1234
int qi_submit_sync(struct intel_iommu *iommu, struct qi_desc *desc,
		   unsigned int count, unsigned long options)
1235 1236
{
	struct q_inval *qi = iommu->qi;
1237
	struct qi_desc wait_desc;
1238 1239
	int wait_index, index;
	unsigned long flags;
1240 1241
	int offset, shift;
	int rc, i;
1242 1243

	if (!qi)
1244
		return 0;
1245

1246 1247 1248
restart:
	rc = 0;

1249
	raw_spin_lock_irqsave(&qi->q_lock, flags);
1250 1251 1252 1253 1254 1255
	/*
	 * Check if we have enough empty slots in the queue to submit,
	 * the calculation is based on:
	 * # of desc + 1 wait desc + 1 space between head and tail
	 */
	while (qi->free_cnt < count + 2) {
1256
		raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1257
		cpu_relax();
1258
		raw_spin_lock_irqsave(&qi->q_lock, flags);
1259 1260 1261
	}

	index = qi->free_head;
1262
	wait_index = (index + count) % QI_LENGTH;
1263
	shift = qi_shift(iommu);
1264

1265 1266 1267 1268 1269 1270
	for (i = 0; i < count; i++) {
		offset = ((index + i) % QI_LENGTH) << shift;
		memcpy(qi->desc + offset, &desc[i], 1 << shift);
		qi->desc_status[(index + i) % QI_LENGTH] = QI_IN_USE;
	}
	qi->desc_status[wait_index] = QI_IN_USE;
1271

1272
	wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) |
1273
			QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
1274 1275
	if (options & QI_OPT_WAIT_DRAIN)
		wait_desc.qw0 |= QI_IWD_PRQ_DRAIN;
1276 1277 1278
	wait_desc.qw1 = virt_to_phys(&qi->desc_status[wait_index]);
	wait_desc.qw2 = 0;
	wait_desc.qw3 = 0;
1279

1280
	offset = wait_index << shift;
1281
	memcpy(qi->desc + offset, &wait_desc, 1 << shift);
1282

1283 1284
	qi->free_head = (qi->free_head + count + 1) % QI_LENGTH;
	qi->free_cnt -= count + 1;
1285 1286 1287 1288 1289

	/*
	 * update the HW tail register indicating the presence of
	 * new descriptors.
	 */
1290
	writel(qi->free_head << shift, iommu->reg + DMAR_IQT_REG);
1291 1292

	while (qi->desc_status[wait_index] != QI_DONE) {
1293 1294 1295 1296 1297 1298 1299
		/*
		 * We will leave the interrupts disabled, to prevent interrupt
		 * context to queue another cmd while a cmd is already submitted
		 * and waiting for completion on this cpu. This is to avoid
		 * a deadlock where the interrupt context can wait indefinitely
		 * for free slots in the queue.
		 */
1300
		rc = qi_check_fault(iommu, index, wait_index);
1301
		if (rc)
1302
			break;
1303

1304
		raw_spin_unlock(&qi->q_lock);
1305
		cpu_relax();
1306
		raw_spin_lock(&qi->q_lock);
1307
	}
1308

1309 1310
	for (i = 0; i < count; i++)
		qi->desc_status[(index + i) % QI_LENGTH] = QI_DONE;
1311 1312

	reclaim_free_desc(qi);
1313
	raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1314

1315 1316 1317
	if (rc == -EAGAIN)
		goto restart;

1318
	return rc;
1319 1320 1321 1322 1323 1324 1325 1326 1327
}

/*
 * Flush the global interrupt entry cache.
 */
void qi_global_iec(struct intel_iommu *iommu)
{
	struct qi_desc desc;

1328 1329 1330 1331
	desc.qw0 = QI_IEC_TYPE;
	desc.qw1 = 0;
	desc.qw2 = 0;
	desc.qw3 = 0;
1332

1333
	/* should never fail */
1334
	qi_submit_sync(iommu, &desc, 1, 0);
1335 1336
}

1337 1338
void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
		      u64 type)
1339 1340 1341
{
	struct qi_desc desc;

1342
	desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1343
			| QI_CC_GRAN(type) | QI_CC_TYPE;
1344 1345 1346
	desc.qw1 = 0;
	desc.qw2 = 0;
	desc.qw3 = 0;
1347

1348
	qi_submit_sync(iommu, &desc, 1, 0);
1349 1350
}

1351 1352
void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
		    unsigned int size_order, u64 type)
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
{
	u8 dw = 0, dr = 0;

	struct qi_desc desc;
	int ih = 0;

	if (cap_write_drain(iommu->cap))
		dw = 1;

	if (cap_read_drain(iommu->cap))
		dr = 1;

1365
	desc.qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1366
		| QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1367
	desc.qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1368
		| QI_IOTLB_AM(size_order);
1369 1370
	desc.qw2 = 0;
	desc.qw3 = 0;
1371

1372
	qi_submit_sync(iommu, &desc, 1, 0);
1373 1374
}

J
Jacob Pan 已提交
1375 1376
void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid,
			u16 qdep, u64 addr, unsigned mask)
1377 1378 1379 1380
{
	struct qi_desc desc;

	if (mask) {
1381
		addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1382
		desc.qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1383
	} else
1384
		desc.qw1 = QI_DEV_IOTLB_ADDR(addr);
1385 1386 1387 1388

	if (qdep >= QI_DEV_IOTLB_MAX_INVS)
		qdep = 0;

1389
	desc.qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
J
Jacob Pan 已提交
1390
		   QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid);
1391 1392
	desc.qw2 = 0;
	desc.qw3 = 0;
1393

1394
	qi_submit_sync(iommu, &desc, 1, 0);
1395 1396
}

1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
/* PASID-based IOTLB invalidation */
void qi_flush_piotlb(struct intel_iommu *iommu, u16 did, u32 pasid, u64 addr,
		     unsigned long npages, bool ih)
{
	struct qi_desc desc = {.qw2 = 0, .qw3 = 0};

	/*
	 * npages == -1 means a PASID-selective invalidation, otherwise,
	 * a positive value for Page-selective-within-PASID invalidation.
	 * 0 is not a valid input.
	 */
	if (WARN_ON(!npages)) {
		pr_err("Invalid input npages = %ld\n", npages);
		return;
	}

	if (npages == -1) {
		desc.qw0 = QI_EIOTLB_PASID(pasid) |
				QI_EIOTLB_DID(did) |
				QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) |
				QI_EIOTLB_TYPE;
		desc.qw1 = 0;
	} else {
		int mask = ilog2(__roundup_pow_of_two(npages));
		unsigned long align = (1ULL << (VTD_PAGE_SHIFT + mask));

		if (WARN_ON_ONCE(!ALIGN(addr, align)))
			addr &= ~(align - 1);

		desc.qw0 = QI_EIOTLB_PASID(pasid) |
				QI_EIOTLB_DID(did) |
				QI_EIOTLB_GRAN(QI_GRAN_PSI_PASID) |
				QI_EIOTLB_TYPE;
		desc.qw1 = QI_EIOTLB_ADDR(addr) |
				QI_EIOTLB_IH(ih) |
				QI_EIOTLB_AM(mask);
	}

1435
	qi_submit_sync(iommu, &desc, 1, 0);
1436 1437
}

1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
/* PASID-based device IOTLB Invalidate */
void qi_flush_dev_iotlb_pasid(struct intel_iommu *iommu, u16 sid, u16 pfsid,
			      u32 pasid,  u16 qdep, u64 addr,
			      unsigned int size_order, u64 granu)
{
	unsigned long mask = 1UL << (VTD_PAGE_SHIFT + size_order - 1);
	struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};

	desc.qw0 = QI_DEV_EIOTLB_PASID(pasid) | QI_DEV_EIOTLB_SID(sid) |
		QI_DEV_EIOTLB_QDEP(qdep) | QI_DEIOTLB_TYPE |
		QI_DEV_IOTLB_PFSID(pfsid);
	desc.qw1 = QI_DEV_EIOTLB_GLOB(granu);

	/*
	 * If S bit is 0, we only flush a single page. If S bit is set,
	 * The least significant zero bit indicates the invalidation address
	 * range. VT-d spec 6.5.2.6.
	 * e.g. address bit 12[0] indicates 8KB, 13[0] indicates 16KB.
	 * size order = 0 is PAGE_SIZE 4KB
	 * Max Invs Pending (MIP) is set to 0 for now until we have DIT in
	 * ECAP.
	 */
	desc.qw1 |= addr & ~mask;
	if (size_order)
		desc.qw1 |= QI_DEV_EIOTLB_SIZE;

1464
	qi_submit_sync(iommu, &desc, 1, 0);
1465 1466 1467 1468 1469 1470 1471 1472 1473
}

void qi_flush_pasid_cache(struct intel_iommu *iommu, u16 did,
			  u64 granu, int pasid)
{
	struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};

	desc.qw0 = QI_PC_PASID(pasid) | QI_PC_DID(did) |
			QI_PC_GRAN(granu) | QI_PC_TYPE;
1474
	qi_submit_sync(iommu, &desc, 1, 0);
1475 1476
}

1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
/*
 * Disable Queued Invalidation interface.
 */
void dmar_disable_qi(struct intel_iommu *iommu)
{
	unsigned long flags;
	u32 sts;
	cycles_t start_time = get_cycles();

	if (!ecap_qis(iommu->ecap))
		return;

1489
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1490

1491
	sts =  readl(iommu->reg + DMAR_GSTS_REG);
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
	if (!(sts & DMA_GSTS_QIES))
		goto end;

	/*
	 * Give a chance to HW to complete the pending invalidation requests.
	 */
	while ((readl(iommu->reg + DMAR_IQT_REG) !=
		readl(iommu->reg + DMAR_IQH_REG)) &&
		(DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
		cpu_relax();

	iommu->gcmd &= ~DMA_GCMD_QIE;
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);

	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
		      !(sts & DMA_GSTS_QIES), sts);
end:
1509
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1510 1511
}

1512 1513 1514 1515 1516
/*
 * Enable queued invalidation.
 */
static void __dmar_enable_qi(struct intel_iommu *iommu)
{
1517
	u32 sts;
1518 1519
	unsigned long flags;
	struct q_inval *qi = iommu->qi;
1520
	u64 val = virt_to_phys(qi->desc);
1521 1522 1523 1524

	qi->free_head = qi->free_tail = 0;
	qi->free_cnt = QI_LENGTH;

1525 1526 1527 1528 1529 1530 1531
	/*
	 * Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability
	 * is present.
	 */
	if (ecap_smts(iommu->ecap))
		val |= (1 << 11) | 1;

1532
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1533 1534 1535 1536

	/* write zero to the tail reg */
	writel(0, iommu->reg + DMAR_IQT_REG);

1537
	dmar_writeq(iommu->reg + DMAR_IQA_REG, val);
1538 1539

	iommu->gcmd |= DMA_GCMD_QIE;
1540
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1541 1542 1543 1544

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);

1545
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1546 1547
}

1548 1549 1550 1551 1552 1553 1554 1555
/*
 * Enable Queued Invalidation interface. This is a must to support
 * interrupt-remapping. Also used by DMA-remapping, which replaces
 * register based IOTLB invalidation.
 */
int dmar_enable_qi(struct intel_iommu *iommu)
{
	struct q_inval *qi;
1556
	struct page *desc_page;
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566

	if (!ecap_qis(iommu->ecap))
		return -ENOENT;

	/*
	 * queued invalidation is already setup and enabled.
	 */
	if (iommu->qi)
		return 0;

1567
	iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1568 1569 1570 1571 1572
	if (!iommu->qi)
		return -ENOMEM;

	qi = iommu->qi;

1573 1574 1575 1576 1577 1578
	/*
	 * Need two pages to accommodate 256 descriptors of 256 bits each
	 * if the remapping hardware supports scalable mode translation.
	 */
	desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO,
				     !!ecap_smts(iommu->ecap));
1579
	if (!desc_page) {
1580
		kfree(qi);
1581
		iommu->qi = NULL;
1582 1583 1584
		return -ENOMEM;
	}

1585 1586
	qi->desc = page_address(desc_page);

K
Kees Cook 已提交
1587
	qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC);
1588 1589 1590
	if (!qi->desc_status) {
		free_page((unsigned long) qi->desc);
		kfree(qi);
1591
		iommu->qi = NULL;
1592 1593 1594
		return -ENOMEM;
	}

1595
	raw_spin_lock_init(&qi->q_lock);
1596

1597
	__dmar_enable_qi(iommu);
1598 1599 1600

	return 0;
}
1601 1602 1603

/* iommu interrupt handling. Most stuff are MSI-like. */

1604 1605 1606 1607 1608 1609 1610
enum faulttype {
	DMA_REMAP,
	INTR_REMAP,
	UNKNOWN,
};

static const char *dma_remap_fault_reasons[] =
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
{
	"Software",
	"Present bit in root entry is clear",
	"Present bit in context entry is clear",
	"Invalid context entry",
	"Access beyond MGAW",
	"PTE Write access is not set",
	"PTE Read access is not set",
	"Next page table ptr is invalid",
	"Root table address invalid",
	"Context table ptr is invalid",
	"non-zero reserved fields in RTP",
	"non-zero reserved fields in CTP",
	"non-zero reserved fields in PTE",
1625
	"PCE for translation request specifies blocking",
1626
};
1627

1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
static const char * const dma_remap_sm_fault_reasons[] = {
	"SM: Invalid Root Table Address",
	"SM: TTM 0 for request with PASID",
	"SM: TTM 0 for page group request",
	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x33-0x37 */
	"SM: Error attempting to access Root Entry",
	"SM: Present bit in Root Entry is clear",
	"SM: Non-zero reserved field set in Root Entry",
	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x3B-0x3F */
	"SM: Error attempting to access Context Entry",
	"SM: Present bit in Context Entry is clear",
	"SM: Non-zero reserved field set in the Context Entry",
	"SM: Invalid Context Entry",
	"SM: DTE field in Context Entry is clear",
	"SM: PASID Enable field in Context Entry is clear",
	"SM: PASID is larger than the max in Context Entry",
	"SM: PRE field in Context-Entry is clear",
	"SM: RID_PASID field error in Context-Entry",
	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x49-0x4F */
	"SM: Error attempting to access the PASID Directory Entry",
	"SM: Present bit in Directory Entry is clear",
	"SM: Non-zero reserved field set in PASID Directory Entry",
	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x53-0x57 */
	"SM: Error attempting to access PASID Table Entry",
	"SM: Present bit in PASID Table Entry is clear",
	"SM: Non-zero reserved field set in PASID Table Entry",
	"SM: Invalid Scalable-Mode PASID Table Entry",
	"SM: ERE field is clear in PASID Table Entry",
	"SM: SRE field is clear in PASID Table Entry",
	"Unknown", "Unknown",/* 0x5E-0x5F */
	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x60-0x67 */
	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x68-0x6F */
	"SM: Error attempting to access first-level paging entry",
	"SM: Present bit in first-level paging entry is clear",
	"SM: Non-zero reserved field set in first-level paging entry",
	"SM: Error attempting to access FL-PML4 entry",
	"SM: First-level entry address beyond MGAW in Nested translation",
	"SM: Read permission error in FL-PML4 entry in Nested translation",
	"SM: Read permission error in first-level paging entry in Nested translation",
	"SM: Write permission error in first-level paging entry in Nested translation",
	"SM: Error attempting to access second-level paging entry",
	"SM: Read/Write permission error in second-level paging entry",
	"SM: Non-zero reserved field set in second-level paging entry",
	"SM: Invalid second-level page table pointer",
	"SM: A/D bit update needed in second-level entry when set up in no snoop",
	"Unknown", "Unknown", "Unknown", /* 0x7D-0x7F */
	"SM: Address in first-level translation is not canonical",
	"SM: U/S set 0 for first-level translation with user privilege",
	"SM: No execute permission for request with PASID and ER=1",
	"SM: Address beyond the DMA hardware max",
	"SM: Second-level entry address beyond the max",
	"SM: No write permission for Write/AtomicOp request",
	"SM: No read permission for Read/AtomicOp request",
	"SM: Invalid address-interrupt address",
	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x88-0x8F */
	"SM: A/D bit update needed in first-level entry when set up in no snoop",
};

1686
static const char *irq_remap_fault_reasons[] =
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
{
	"Detected reserved fields in the decoded interrupt-remapped request",
	"Interrupt index exceeded the interrupt-remapping table size",
	"Present field in the IRTE entry is clear",
	"Error accessing interrupt-remapping table pointed by IRTA_REG",
	"Detected reserved fields in the IRTE entry",
	"Blocked a compatibility format interrupt request",
	"Blocked an interrupt request due to source-id verification failure",
};

1697
static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1698
{
1699 1700
	if (fault_reason >= 0x20 && (fault_reason - 0x20 <
					ARRAY_SIZE(irq_remap_fault_reasons))) {
1701
		*fault_type = INTR_REMAP;
1702
		return irq_remap_fault_reasons[fault_reason - 0x20];
1703 1704 1705 1706
	} else if (fault_reason >= 0x30 && (fault_reason - 0x30 <
			ARRAY_SIZE(dma_remap_sm_fault_reasons))) {
		*fault_type = DMA_REMAP;
		return dma_remap_sm_fault_reasons[fault_reason - 0x30];
1707 1708 1709 1710 1711
	} else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
		*fault_type = DMA_REMAP;
		return dma_remap_fault_reasons[fault_reason];
	} else {
		*fault_type = UNKNOWN;
1712
		return "Unknown";
1713
	}
1714 1715
}

1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726

static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq)
{
	if (iommu->irq == irq)
		return DMAR_FECTL_REG;
	else if (iommu->pr_irq == irq)
		return DMAR_PECTL_REG;
	else
		BUG();
}

1727
void dmar_msi_unmask(struct irq_data *data)
1728
{
1729
	struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1730
	int reg = dmar_msi_reg(iommu, data->irq);
1731 1732 1733
	unsigned long flag;

	/* unmask it */
1734
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1735
	writel(0, iommu->reg + reg);
1736
	/* Read a reg to force flush the post write */
1737
	readl(iommu->reg + reg);
1738
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1739 1740
}

1741
void dmar_msi_mask(struct irq_data *data)
1742
{
1743
	struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1744 1745
	int reg = dmar_msi_reg(iommu, data->irq);
	unsigned long flag;
1746 1747

	/* mask it */
1748
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1749
	writel(DMA_FECTL_IM, iommu->reg + reg);
1750
	/* Read a reg to force flush the post write */
1751
	readl(iommu->reg + reg);
1752
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1753 1754 1755 1756
}

void dmar_msi_write(int irq, struct msi_msg *msg)
{
1757
	struct intel_iommu *iommu = irq_get_handler_data(irq);
1758
	int reg = dmar_msi_reg(iommu, irq);
1759 1760
	unsigned long flag;

1761
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1762 1763 1764
	writel(msg->data, iommu->reg + reg + 4);
	writel(msg->address_lo, iommu->reg + reg + 8);
	writel(msg->address_hi, iommu->reg + reg + 12);
1765
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1766 1767 1768 1769
}

void dmar_msi_read(int irq, struct msi_msg *msg)
{
1770
	struct intel_iommu *iommu = irq_get_handler_data(irq);
1771
	int reg = dmar_msi_reg(iommu, irq);
1772 1773
	unsigned long flag;

1774
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1775 1776 1777
	msg->data = readl(iommu->reg + reg + 4);
	msg->address_lo = readl(iommu->reg + reg + 8);
	msg->address_hi = readl(iommu->reg + reg + 12);
1778
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1779 1780 1781
}

static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1782 1783
		u8 fault_reason, int pasid, u16 source_id,
		unsigned long long addr)
1784 1785
{
	const char *reason;
1786
	int fault_type;
1787

1788
	reason = dmar_get_fault_reason(fault_reason, &fault_type);
1789

1790
	if (fault_type == INTR_REMAP)
1791 1792
		pr_err("[INTR-REMAP] Request device [%02x:%02x.%d] fault index %llx [fault reason %02d] %s\n",
			source_id >> 8, PCI_SLOT(source_id & 0xFF),
1793 1794 1795
			PCI_FUNC(source_id & 0xFF), addr >> 48,
			fault_reason, reason);
	else
1796
		pr_err("[%s] Request device [%02x:%02x.%d] PASID %x fault addr %llx [fault reason %02d] %s\n",
1797 1798
		       type ? "DMA Read" : "DMA Write",
		       source_id >> 8, PCI_SLOT(source_id & 0xFF),
1799 1800
		       PCI_FUNC(source_id & 0xFF), pasid, addr,
		       fault_reason, reason);
1801 1802 1803 1804
	return 0;
}

#define PRIMARY_FAULT_REG_LEN (16)
1805
irqreturn_t dmar_fault(int irq, void *dev_id)
1806 1807 1808 1809 1810
{
	struct intel_iommu *iommu = dev_id;
	int reg, fault_index;
	u32 fault_status;
	unsigned long flag;
1811 1812 1813 1814
	static DEFINE_RATELIMIT_STATE(rs,
				      DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

1815
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1816
	fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1817
	if (fault_status && __ratelimit(&rs))
1818
		pr_err("DRHD: handling fault status reg %x\n", fault_status);
1819 1820 1821

	/* TBD: ignore advanced fault log currently */
	if (!(fault_status & DMA_FSTS_PPF))
1822
		goto unlock_exit;
1823 1824 1825 1826

	fault_index = dma_fsts_fault_record_index(fault_status);
	reg = cap_fault_reg_offset(iommu->cap);
	while (1) {
1827 1828
		/* Disable printing, simply clear the fault when ratelimited */
		bool ratelimited = !__ratelimit(&rs);
1829 1830 1831
		u8 fault_reason;
		u16 source_id;
		u64 guest_addr;
1832
		int type, pasid;
1833
		u32 data;
1834
		bool pasid_present;
1835 1836 1837 1838 1839 1840 1841

		/* highest 32 bits */
		data = readl(iommu->reg + reg +
				fault_index * PRIMARY_FAULT_REG_LEN + 12);
		if (!(data & DMA_FRCD_F))
			break;

1842 1843 1844
		if (!ratelimited) {
			fault_reason = dma_frcd_fault_reason(data);
			type = dma_frcd_type(data);
1845

1846
			pasid = dma_frcd_pasid_value(data);
1847 1848 1849 1850
			data = readl(iommu->reg + reg +
				     fault_index * PRIMARY_FAULT_REG_LEN + 8);
			source_id = dma_frcd_source_id(data);

1851
			pasid_present = dma_frcd_pasid_present(data);
1852 1853 1854 1855
			guest_addr = dmar_readq(iommu->reg + reg +
					fault_index * PRIMARY_FAULT_REG_LEN);
			guest_addr = dma_frcd_page_addr(guest_addr);
		}
1856 1857 1858 1859 1860

		/* clear the fault */
		writel(DMA_FRCD_F, iommu->reg + reg +
			fault_index * PRIMARY_FAULT_REG_LEN + 12);

1861
		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1862

1863
		if (!ratelimited)
1864
			/* Using pasid -1 if pasid is not present */
1865
			dmar_fault_do_one(iommu, type, fault_reason,
1866
					  pasid_present ? pasid : -1,
1867
					  source_id, guest_addr);
1868 1869

		fault_index++;
1870
		if (fault_index >= cap_num_fault_regs(iommu->cap))
1871
			fault_index = 0;
1872
		raw_spin_lock_irqsave(&iommu->register_lock, flag);
1873 1874
	}

1875 1876
	writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO,
	       iommu->reg + DMAR_FSTS_REG);
1877 1878

unlock_exit:
1879
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1880 1881 1882 1883 1884 1885 1886
	return IRQ_HANDLED;
}

int dmar_set_interrupt(struct intel_iommu *iommu)
{
	int irq, ret;

1887 1888 1889 1890 1891 1892
	/*
	 * Check if the fault interrupt is already initialized.
	 */
	if (iommu->irq)
		return 0;

1893 1894 1895 1896
	irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu);
	if (irq > 0) {
		iommu->irq = irq;
	} else {
J
Joerg Roedel 已提交
1897
		pr_err("No free IRQ vectors\n");
1898 1899 1900
		return -EINVAL;
	}

1901
	ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
1902
	if (ret)
J
Joerg Roedel 已提交
1903
		pr_err("Can't request irq\n");
1904 1905
	return ret;
}
1906 1907 1908 1909

int __init enable_drhd_fault_handling(void)
{
	struct dmar_drhd_unit *drhd;
1910
	struct intel_iommu *iommu;
1911 1912 1913 1914

	/*
	 * Enable fault control interrupt.
	 */
1915
	for_each_iommu(iommu, drhd) {
1916
		u32 fault_status;
1917
		int ret = dmar_set_interrupt(iommu);
1918 1919

		if (ret) {
1920
			pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
1921 1922 1923
			       (unsigned long long)drhd->reg_base_addr, ret);
			return -1;
		}
1924 1925 1926 1927 1928

		/*
		 * Clear any previous faults.
		 */
		dmar_fault(iommu->irq, iommu);
1929 1930
		fault_status = readl(iommu->reg + DMAR_FSTS_REG);
		writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1931 1932 1933 1934
	}

	return 0;
}
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959

/*
 * Re-enable Queued Invalidation interface.
 */
int dmar_reenable_qi(struct intel_iommu *iommu)
{
	if (!ecap_qis(iommu->ecap))
		return -ENOENT;

	if (!iommu->qi)
		return -ENOENT;

	/*
	 * First disable queued invalidation.
	 */
	dmar_disable_qi(iommu);
	/*
	 * Then enable queued invalidation again. Since there is no pending
	 * invalidation requests now, it's safe to re-enable queued
	 * invalidation.
	 */
	__dmar_enable_qi(iommu);

	return 0;
}
1960 1961 1962 1963

/*
 * Check interrupt remapping support in DMAR table description.
 */
1964
int __init dmar_ir_support(void)
1965 1966 1967
{
	struct acpi_table_dmar *dmar;
	dmar = (struct acpi_table_dmar *)dmar_tbl;
1968 1969
	if (!dmar)
		return 0;
1970 1971
	return dmar->flags & 0x1;
}
1972

1973 1974 1975 1976 1977 1978
/* Check whether DMAR units are in use */
static inline bool dmar_in_use(void)
{
	return irq_remapping_enabled || intel_iommu_enabled;
}

1979 1980 1981 1982
static int __init dmar_free_unused_resources(void)
{
	struct dmar_drhd_unit *dmaru, *dmaru_n;

1983
	if (dmar_in_use())
1984 1985
		return 0;

1986 1987
	if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units))
		bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb);
1988

1989
	down_write(&dmar_global_lock);
1990 1991 1992 1993
	list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
		list_del(&dmaru->list);
		dmar_free_drhd(dmaru);
	}
1994
	up_write(&dmar_global_lock);
1995 1996 1997 1998 1999

	return 0;
}

late_initcall(dmar_free_unused_resources);
2000
IOMMU_INIT_POST(detect_intel_iommu);
2001 2002 2003 2004 2005 2006 2007

/*
 * DMAR Hotplug Support
 * For more details, please refer to Intel(R) Virtualization Technology
 * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8
 * "Remapping Hardware Unit Hot Plug".
 */
2008 2009 2010
static guid_t dmar_hp_guid =
	GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B,
		  0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF);
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

/*
 * Currently there's only one revision and BIOS will not check the revision id,
 * so use 0 for safety.
 */
#define	DMAR_DSM_REV_ID			0
#define	DMAR_DSM_FUNC_DRHD		1
#define	DMAR_DSM_FUNC_ATSR		2
#define	DMAR_DSM_FUNC_RHSA		3

static inline bool dmar_detect_dsm(acpi_handle handle, int func)
{
2023
	return acpi_check_dsm(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 1 << func);
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
}

static int dmar_walk_dsm_resource(acpi_handle handle, int func,
				  dmar_res_handler_t handler, void *arg)
{
	int ret = -ENODEV;
	union acpi_object *obj;
	struct acpi_dmar_header *start;
	struct dmar_res_callback callback;
	static int res_type[] = {
		[DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT,
		[DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS,
		[DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY,
	};

	if (!dmar_detect_dsm(handle, func))
		return 0;

2042
	obj = acpi_evaluate_dsm_typed(handle, &dmar_hp_guid, DMAR_DSM_REV_ID,
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
				      func, NULL, ACPI_TYPE_BUFFER);
	if (!obj)
		return -ENODEV;

	memset(&callback, 0, sizeof(callback));
	callback.cb[res_type[func]] = handler;
	callback.arg[res_type[func]] = arg;
	start = (struct acpi_dmar_header *)obj->buffer.pointer;
	ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback);

	ACPI_FREE(obj);

	return ret;
}

static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg)
{
	int ret;
	struct dmar_drhd_unit *dmaru;

	dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
	if (!dmaru)
		return -ENODEV;

	ret = dmar_ir_hotplug(dmaru, true);
	if (ret == 0)
		ret = dmar_iommu_hotplug(dmaru, true);

	return ret;
}

static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg)
{
	int i, ret;
	struct device *dev;
	struct dmar_drhd_unit *dmaru;

	dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
	if (!dmaru)
		return 0;

	/*
	 * All PCI devices managed by this unit should have been destroyed.
	 */
2087
	if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) {
2088 2089 2090
		for_each_active_dev_scope(dmaru->devices,
					  dmaru->devices_cnt, i, dev)
			return -EBUSY;
2091
	}
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183

	ret = dmar_ir_hotplug(dmaru, false);
	if (ret == 0)
		ret = dmar_iommu_hotplug(dmaru, false);

	return ret;
}

static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg)
{
	struct dmar_drhd_unit *dmaru;

	dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
	if (dmaru) {
		list_del_rcu(&dmaru->list);
		synchronize_rcu();
		dmar_free_drhd(dmaru);
	}

	return 0;
}

static int dmar_hotplug_insert(acpi_handle handle)
{
	int ret;
	int drhd_count = 0;

	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
				     &dmar_validate_one_drhd, (void *)1);
	if (ret)
		goto out;

	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
				     &dmar_parse_one_drhd, (void *)&drhd_count);
	if (ret == 0 && drhd_count == 0) {
		pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n");
		goto out;
	} else if (ret) {
		goto release_drhd;
	}

	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA,
				     &dmar_parse_one_rhsa, NULL);
	if (ret)
		goto release_drhd;

	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
				     &dmar_parse_one_atsr, NULL);
	if (ret)
		goto release_atsr;

	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
				     &dmar_hp_add_drhd, NULL);
	if (!ret)
		return 0;

	dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
			       &dmar_hp_remove_drhd, NULL);
release_atsr:
	dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
			       &dmar_release_one_atsr, NULL);
release_drhd:
	dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
			       &dmar_hp_release_drhd, NULL);
out:
	return ret;
}

static int dmar_hotplug_remove(acpi_handle handle)
{
	int ret;

	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
				     &dmar_check_one_atsr, NULL);
	if (ret)
		return ret;

	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
				     &dmar_hp_remove_drhd, NULL);
	if (ret == 0) {
		WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
					       &dmar_release_one_atsr, NULL));
		WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
					       &dmar_hp_release_drhd, NULL));
	} else {
		dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
				       &dmar_hp_add_drhd, NULL);
	}

	return ret;
}

2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl,
				       void *context, void **retval)
{
	acpi_handle *phdl = retval;

	if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
		*phdl = handle;
		return AE_CTRL_TERMINATE;
	}

	return AE_OK;
}

2197 2198 2199
static int dmar_device_hotplug(acpi_handle handle, bool insert)
{
	int ret;
2200 2201
	acpi_handle tmp = NULL;
	acpi_status status;
2202 2203 2204 2205

	if (!dmar_in_use())
		return 0;

2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
	if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
		tmp = handle;
	} else {
		status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
					     ACPI_UINT32_MAX,
					     dmar_get_dsm_handle,
					     NULL, NULL, &tmp);
		if (ACPI_FAILURE(status)) {
			pr_warn("Failed to locate _DSM method.\n");
			return -ENXIO;
		}
	}
	if (tmp == NULL)
2219 2220 2221 2222
		return 0;

	down_write(&dmar_global_lock);
	if (insert)
2223
		ret = dmar_hotplug_insert(tmp);
2224
	else
2225
		ret = dmar_hotplug_remove(tmp);
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
	up_write(&dmar_global_lock);

	return ret;
}

int dmar_device_add(acpi_handle handle)
{
	return dmar_device_hotplug(handle, true);
}

int dmar_device_remove(acpi_handle handle)
{
	return dmar_device_hotplug(handle, false);
}
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264

/*
 * dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table
 *
 * Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in
 * the ACPI DMAR table. This means that the platform boot firmware has made
 * sure no device can issue DMA outside of RMRR regions.
 */
bool dmar_platform_optin(void)
{
	struct acpi_table_dmar *dmar;
	acpi_status status;
	bool ret;

	status = acpi_get_table(ACPI_SIG_DMAR, 0,
				(struct acpi_table_header **)&dmar);
	if (ACPI_FAILURE(status))
		return false;

	ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN);
	acpi_put_table((struct acpi_table_header *)dmar);

	return ret;
}
EXPORT_SYMBOL_GPL(dmar_platform_optin);