nand_base.c 77.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 *  drivers/mtd/nand.c
 *
 *  Overview:
 *   This is the generic MTD driver for NAND flash devices. It should be
 *   capable of working with almost all NAND chips currently available.
 *   Basic support for AG-AND chips is provided.
 *   
 *	Additional technical information is available on
 *	http://www.linux-mtd.infradead.org/tech/nand.html
 *	
 *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
 * 		  2002 Thomas Gleixner (tglx@linutronix.de)
 *
 *  02-08-2004  tglx: support for strange chips, which cannot auto increment 
 *		pages on read / read_oob
 *
 *  03-17-2004  tglx: Check ready before auto increment check. Simon Bayes
 *		pointed this out, as he marked an auto increment capable chip
 *		as NOAUTOINCR in the board driver.
 *		Make reads over block boundaries work too
 *
 *  04-14-2004	tglx: first working version for 2k page size chips
 *  
 *  05-19-2004  tglx: Basic support for Renesas AG-AND chips
 *
 *  09-24-2004  tglx: add support for hardware controllers (e.g. ECC) shared
 *		among multiple independend devices. Suggestions and initial patch
 *		from Ben Dooks <ben-mtd@fluff.org>
 *
31 32 33 34 35 36 37 38 39 40 41 42 43 44
 *  12-05-2004	dmarlin: add workaround for Renesas AG-AND chips "disturb" issue.
 *		Basically, any block not rewritten may lose data when surrounding blocks
 *		are rewritten many times.  JFFS2 ensures this doesn't happen for blocks 
 *		it uses, but the Bad Block Table(s) may not be rewritten.  To ensure they
 *		do not lose data, force them to be rewritten when some of the surrounding
 *		blocks are erased.  Rather than tracking a specific nearby block (which 
 *		could itself go bad), use a page address 'mask' to select several blocks 
 *		in the same area, and rewrite the BBT when any of them are erased.
 *
 *  01-03-2005	dmarlin: added support for the device recovery command sequence for Renesas 
 *		AG-AND chips.  If there was a sudden loss of power during an erase operation,
 * 		a "device recovery" operation must be performed when power is restored
 * 		to ensure correct operation.
 *
45 46 47 48
 *  01-20-2005	dmarlin: added support for optional hardware specific callback routine to 
 *		perform extra error status checks on erase and write failures.  This required
 *		adding a wrapper function for nand_read_ecc.
 *
L
Linus Torvalds 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61
 * Credits:
 *	David Woodhouse for adding multichip support  
 *	
 *	Aleph One Ltd. and Toby Churchill Ltd. for supporting the
 *	rework for 2K page size chips
 *
 * TODO:
 *	Enable cached programming for 2k page size chips
 *	Check, if mtd->ecctype should be set to MTD_ECC_HW
 *	if we have HW ecc support.
 *	The AG-AND chips have nice features for speed improvement,
 *	which are not supported yet. Read / program 4 pages in one go.
 *
62
 * $Id: nand_base.c,v 1.141 2005/04/06 20:13:05 dbrown Exp $
L
Linus Torvalds 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 */

#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/nand_ecc.h>
#include <linux/mtd/compatmac.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <asm/io.h>

#ifdef CONFIG_MTD_PARTITIONS
#include <linux/mtd/partitions.h>
#endif

/* Define default oob placement schemes for large and small page devices */
static struct nand_oobinfo nand_oob_8 = {
	.useecc = MTD_NANDECC_AUTOPLACE,
	.eccbytes = 3,
	.eccpos = {0, 1, 2},
	.oobfree = { {3, 2}, {6, 2} }
};

static struct nand_oobinfo nand_oob_16 = {
	.useecc = MTD_NANDECC_AUTOPLACE,
	.eccbytes = 6,
	.eccpos = {0, 1, 2, 3, 6, 7},
	.oobfree = { {8, 8} }
};

static struct nand_oobinfo nand_oob_64 = {
	.useecc = MTD_NANDECC_AUTOPLACE,
	.eccbytes = 24,
	.eccpos = {
		40, 41, 42, 43, 44, 45, 46, 47, 
		48, 49, 50, 51, 52, 53, 54, 55, 
		56, 57, 58, 59, 60, 61, 62, 63},
	.oobfree = { {2, 38} }
};

/* This is used for padding purposes in nand_write_oob */
static u_char ffchars[] = {
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
};

/*
 * NAND low-level MTD interface functions
 */
static void nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len);
static void nand_read_buf(struct mtd_info *mtd, u_char *buf, int len);
static int nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len);

static int nand_read (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf);
static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
			  size_t * retlen, u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel);
static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf);
static int nand_write (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf);
static int nand_write_ecc (struct mtd_info *mtd, loff_t to, size_t len,
			   size_t * retlen, const u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel);
static int nand_write_oob (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char *buf);
static int nand_writev (struct mtd_info *mtd, const struct kvec *vecs,
			unsigned long count, loff_t to, size_t * retlen);
static int nand_writev_ecc (struct mtd_info *mtd, const struct kvec *vecs,
			unsigned long count, loff_t to, size_t * retlen, u_char *eccbuf, struct nand_oobinfo *oobsel);
static int nand_erase (struct mtd_info *mtd, struct erase_info *instr);
static void nand_sync (struct mtd_info *mtd);

/* Some internal functions */
static int nand_write_page (struct mtd_info *mtd, struct nand_chip *this, int page, u_char *oob_buf,
		struct nand_oobinfo *oobsel, int mode);
#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
static int nand_verify_pages (struct mtd_info *mtd, struct nand_chip *this, int page, int numpages, 
	u_char *oob_buf, struct nand_oobinfo *oobsel, int chipnr, int oobmode);
#else
#define nand_verify_pages(...) (0)
#endif
		
static void nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int new_state);

/**
 * nand_release_device - [GENERIC] release chip
 * @mtd:	MTD device structure
 * 
 * Deselect, release chip lock and wake up anyone waiting on the device 
 */
static void nand_release_device (struct mtd_info *mtd)
{
	struct nand_chip *this = mtd->priv;

	/* De-select the NAND device */
	this->select_chip(mtd, -1);
	/* Do we have a hardware controller ? */
	if (this->controller) {
		spin_lock(&this->controller->lock);
		this->controller->active = NULL;
		spin_unlock(&this->controller->lock);
	}
	/* Release the chip */
	spin_lock (&this->chip_lock);
	this->state = FL_READY;
	wake_up (&this->wq);
	spin_unlock (&this->chip_lock);
}

/**
 * nand_read_byte - [DEFAULT] read one byte from the chip
 * @mtd:	MTD device structure
 *
 * Default read function for 8bit buswith
 */
static u_char nand_read_byte(struct mtd_info *mtd)
{
	struct nand_chip *this = mtd->priv;
	return readb(this->IO_ADDR_R);
}

/**
 * nand_write_byte - [DEFAULT] write one byte to the chip
 * @mtd:	MTD device structure
 * @byte:	pointer to data byte to write
 *
 * Default write function for 8it buswith
 */
static void nand_write_byte(struct mtd_info *mtd, u_char byte)
{
	struct nand_chip *this = mtd->priv;
	writeb(byte, this->IO_ADDR_W);
}

/**
 * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
 * @mtd:	MTD device structure
 *
 * Default read function for 16bit buswith with 
 * endianess conversion
 */
static u_char nand_read_byte16(struct mtd_info *mtd)
{
	struct nand_chip *this = mtd->priv;
	return (u_char) cpu_to_le16(readw(this->IO_ADDR_R));
}

/**
 * nand_write_byte16 - [DEFAULT] write one byte endianess aware to the chip
 * @mtd:	MTD device structure
 * @byte:	pointer to data byte to write
 *
 * Default write function for 16bit buswith with
 * endianess conversion
 */
static void nand_write_byte16(struct mtd_info *mtd, u_char byte)
{
	struct nand_chip *this = mtd->priv;
	writew(le16_to_cpu((u16) byte), this->IO_ADDR_W);
}

/**
 * nand_read_word - [DEFAULT] read one word from the chip
 * @mtd:	MTD device structure
 *
 * Default read function for 16bit buswith without 
 * endianess conversion
 */
static u16 nand_read_word(struct mtd_info *mtd)
{
	struct nand_chip *this = mtd->priv;
	return readw(this->IO_ADDR_R);
}

/**
 * nand_write_word - [DEFAULT] write one word to the chip
 * @mtd:	MTD device structure
 * @word:	data word to write
 *
 * Default write function for 16bit buswith without 
 * endianess conversion
 */
static void nand_write_word(struct mtd_info *mtd, u16 word)
{
	struct nand_chip *this = mtd->priv;
	writew(word, this->IO_ADDR_W);
}

/**
 * nand_select_chip - [DEFAULT] control CE line
 * @mtd:	MTD device structure
 * @chip:	chipnumber to select, -1 for deselect
 *
 * Default select function for 1 chip devices.
 */
static void nand_select_chip(struct mtd_info *mtd, int chip)
{
	struct nand_chip *this = mtd->priv;
	switch(chip) {
	case -1:
		this->hwcontrol(mtd, NAND_CTL_CLRNCE);	
		break;
	case 0:
		this->hwcontrol(mtd, NAND_CTL_SETNCE);
		break;

	default:
		BUG();
	}
}

/**
 * nand_write_buf - [DEFAULT] write buffer to chip
 * @mtd:	MTD device structure
 * @buf:	data buffer
 * @len:	number of bytes to write
 *
 * Default write function for 8bit buswith
 */
static void nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
{
	int i;
	struct nand_chip *this = mtd->priv;

	for (i=0; i<len; i++)
		writeb(buf[i], this->IO_ADDR_W);
}

/**
 * nand_read_buf - [DEFAULT] read chip data into buffer 
 * @mtd:	MTD device structure
 * @buf:	buffer to store date
 * @len:	number of bytes to read
 *
 * Default read function for 8bit buswith
 */
static void nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
{
	int i;
	struct nand_chip *this = mtd->priv;

	for (i=0; i<len; i++)
		buf[i] = readb(this->IO_ADDR_R);
}

/**
 * nand_verify_buf - [DEFAULT] Verify chip data against buffer 
 * @mtd:	MTD device structure
 * @buf:	buffer containing the data to compare
 * @len:	number of bytes to compare
 *
 * Default verify function for 8bit buswith
 */
static int nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
{
	int i;
	struct nand_chip *this = mtd->priv;

	for (i=0; i<len; i++)
		if (buf[i] != readb(this->IO_ADDR_R))
			return -EFAULT;

	return 0;
}

/**
 * nand_write_buf16 - [DEFAULT] write buffer to chip
 * @mtd:	MTD device structure
 * @buf:	data buffer
 * @len:	number of bytes to write
 *
 * Default write function for 16bit buswith
 */
static void nand_write_buf16(struct mtd_info *mtd, const u_char *buf, int len)
{
	int i;
	struct nand_chip *this = mtd->priv;
	u16 *p = (u16 *) buf;
	len >>= 1;
	
	for (i=0; i<len; i++)
		writew(p[i], this->IO_ADDR_W);
		
}

/**
 * nand_read_buf16 - [DEFAULT] read chip data into buffer 
 * @mtd:	MTD device structure
 * @buf:	buffer to store date
 * @len:	number of bytes to read
 *
 * Default read function for 16bit buswith
 */
static void nand_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
{
	int i;
	struct nand_chip *this = mtd->priv;
	u16 *p = (u16 *) buf;
	len >>= 1;

	for (i=0; i<len; i++)
		p[i] = readw(this->IO_ADDR_R);
}

/**
 * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer 
 * @mtd:	MTD device structure
 * @buf:	buffer containing the data to compare
 * @len:	number of bytes to compare
 *
 * Default verify function for 16bit buswith
 */
static int nand_verify_buf16(struct mtd_info *mtd, const u_char *buf, int len)
{
	int i;
	struct nand_chip *this = mtd->priv;
	u16 *p = (u16 *) buf;
	len >>= 1;

	for (i=0; i<len; i++)
		if (p[i] != readw(this->IO_ADDR_R))
			return -EFAULT;

	return 0;
}

/**
 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
 * @mtd:	MTD device structure
 * @ofs:	offset from device start
 * @getchip:	0, if the chip is already selected
 *
 * Check, if the block is bad. 
 */
static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
{
	int page, chipnr, res = 0;
	struct nand_chip *this = mtd->priv;
	u16 bad;

	if (getchip) {
		page = (int)(ofs >> this->page_shift);
		chipnr = (int)(ofs >> this->chip_shift);

		/* Grab the lock and see if the device is available */
		nand_get_device (this, mtd, FL_READING);

		/* Select the NAND device */
		this->select_chip(mtd, chipnr);
	} else 
		page = (int) ofs;	

	if (this->options & NAND_BUSWIDTH_16) {
		this->cmdfunc (mtd, NAND_CMD_READOOB, this->badblockpos & 0xFE, page & this->pagemask);
		bad = cpu_to_le16(this->read_word(mtd));
		if (this->badblockpos & 0x1)
			bad >>= 1;
		if ((bad & 0xFF) != 0xff)
			res = 1;
	} else {
		this->cmdfunc (mtd, NAND_CMD_READOOB, this->badblockpos, page & this->pagemask);
		if (this->read_byte(mtd) != 0xff)
			res = 1;
	}
		
	if (getchip) {
		/* Deselect and wake up anyone waiting on the device */
		nand_release_device(mtd);
	}	
	
	return res;
}

/**
 * nand_default_block_markbad - [DEFAULT] mark a block bad
 * @mtd:	MTD device structure
 * @ofs:	offset from device start
 *
 * This is the default implementation, which can be overridden by
 * a hardware specific driver.
*/
static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
{
	struct nand_chip *this = mtd->priv;
	u_char buf[2] = {0, 0};
	size_t	retlen;
	int block;
	
	/* Get block number */
	block = ((int) ofs) >> this->bbt_erase_shift;
464 465
	if (this->bbt)
		this->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
L
Linus Torvalds 已提交
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487

	/* Do we have a flash based bad block table ? */
	if (this->options & NAND_USE_FLASH_BBT)
		return nand_update_bbt (mtd, ofs);
		
	/* We write two bytes, so we dont have to mess with 16 bit access */
	ofs += mtd->oobsize + (this->badblockpos & ~0x01);
	return nand_write_oob (mtd, ofs , 2, &retlen, buf);
}

/** 
 * nand_check_wp - [GENERIC] check if the chip is write protected
 * @mtd:	MTD device structure
 * Check, if the device is write protected 
 *
 * The function expects, that the device is already selected 
 */
static int nand_check_wp (struct mtd_info *mtd)
{
	struct nand_chip *this = mtd->priv;
	/* Check the WP bit */
	this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1);
488
	return (this->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1; 
L
Linus Torvalds 已提交
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
}

/**
 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
 * @mtd:	MTD device structure
 * @ofs:	offset from device start
 * @getchip:	0, if the chip is already selected
 * @allowbbt:	1, if its allowed to access the bbt area
 *
 * Check, if the block is bad. Either by reading the bad block table or
 * calling of the scan function.
 */
static int nand_block_checkbad (struct mtd_info *mtd, loff_t ofs, int getchip, int allowbbt)
{
	struct nand_chip *this = mtd->priv;
	
	if (!this->bbt)
		return this->block_bad(mtd, ofs, getchip);
	
	/* Return info from the table */
	return nand_isbad_bbt (mtd, ofs, allowbbt);
}

512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
/* 
 * Wait for the ready pin, after a command
 * The timeout is catched later.
 */
static void nand_wait_ready(struct mtd_info *mtd)
{
	struct nand_chip *this = mtd->priv;
	unsigned long	timeo = jiffies + 2;

	/* wait until command is processed or timeout occures */
	do {
		if (this->dev_ready(mtd))
			return;
	} while (time_before(jiffies, timeo));	
}

L
Linus Torvalds 已提交
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
/**
 * nand_command - [DEFAULT] Send command to NAND device
 * @mtd:	MTD device structure
 * @command:	the command to be sent
 * @column:	the column address for this command, -1 if none
 * @page_addr:	the page address for this command, -1 if none
 *
 * Send command to NAND device. This function is used for small page
 * devices (256/512 Bytes per page)
 */
static void nand_command (struct mtd_info *mtd, unsigned command, int column, int page_addr)
{
	register struct nand_chip *this = mtd->priv;

	/* Begin command latch cycle */
	this->hwcontrol(mtd, NAND_CTL_SETCLE);
	/*
	 * Write out the command to the device.
	 */
	if (command == NAND_CMD_SEQIN) {
		int readcmd;

		if (column >= mtd->oobblock) {
			/* OOB area */
			column -= mtd->oobblock;
			readcmd = NAND_CMD_READOOB;
		} else if (column < 256) {
			/* First 256 bytes --> READ0 */
			readcmd = NAND_CMD_READ0;
		} else {
			column -= 256;
			readcmd = NAND_CMD_READ1;
		}
		this->write_byte(mtd, readcmd);
	}
	this->write_byte(mtd, command);

	/* Set ALE and clear CLE to start address cycle */
	this->hwcontrol(mtd, NAND_CTL_CLRCLE);

	if (column != -1 || page_addr != -1) {
		this->hwcontrol(mtd, NAND_CTL_SETALE);

		/* Serially input address */
		if (column != -1) {
			/* Adjust columns for 16 bit buswidth */
			if (this->options & NAND_BUSWIDTH_16)
				column >>= 1;
			this->write_byte(mtd, column);
		}
		if (page_addr != -1) {
			this->write_byte(mtd, (unsigned char) (page_addr & 0xff));
			this->write_byte(mtd, (unsigned char) ((page_addr >> 8) & 0xff));
			/* One more address cycle for devices > 32MiB */
			if (this->chipsize > (32 << 20))
				this->write_byte(mtd, (unsigned char) ((page_addr >> 16) & 0x0f));
		}
		/* Latch in address */
		this->hwcontrol(mtd, NAND_CTL_CLRALE);
	}
	
	/* 
	 * program and erase have their own busy handlers 
	 * status and sequential in needs no delay
	*/
	switch (command) {
			
	case NAND_CMD_PAGEPROG:
	case NAND_CMD_ERASE1:
	case NAND_CMD_ERASE2:
	case NAND_CMD_SEQIN:
	case NAND_CMD_STATUS:
		return;

	case NAND_CMD_RESET:
		if (this->dev_ready)	
			break;
		udelay(this->chip_delay);
		this->hwcontrol(mtd, NAND_CTL_SETCLE);
		this->write_byte(mtd, NAND_CMD_STATUS);
		this->hwcontrol(mtd, NAND_CTL_CLRCLE);
609
		while ( !(this->read_byte(mtd) & NAND_STATUS_READY));
L
Linus Torvalds 已提交
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
		return;

	/* This applies to read commands */	
	default:
		/* 
		 * If we don't have access to the busy pin, we apply the given
		 * command delay
		*/
		if (!this->dev_ready) {
			udelay (this->chip_delay);
			return;
		}	
	}
	/* Apply this short delay always to ensure that we do wait tWB in
	 * any case on any machine. */
	ndelay (100);
626 627

	nand_wait_ready(mtd);
L
Linus Torvalds 已提交
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
}

/**
 * nand_command_lp - [DEFAULT] Send command to NAND large page device
 * @mtd:	MTD device structure
 * @command:	the command to be sent
 * @column:	the column address for this command, -1 if none
 * @page_addr:	the page address for this command, -1 if none
 *
 * Send command to NAND device. This is the version for the new large page devices
 * We dont have the seperate regions as we have in the small page devices.
 * We must emulate NAND_CMD_READOOB to keep the code compatible.
 *
 */
static void nand_command_lp (struct mtd_info *mtd, unsigned command, int column, int page_addr)
{
	register struct nand_chip *this = mtd->priv;

	/* Emulate NAND_CMD_READOOB */
	if (command == NAND_CMD_READOOB) {
		column += mtd->oobblock;
		command = NAND_CMD_READ0;
	}
	
		
	/* Begin command latch cycle */
	this->hwcontrol(mtd, NAND_CTL_SETCLE);
	/* Write out the command to the device. */
656
	this->write_byte(mtd, (command & 0xff));
L
Linus Torvalds 已提交
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
	/* End command latch cycle */
	this->hwcontrol(mtd, NAND_CTL_CLRCLE);

	if (column != -1 || page_addr != -1) {
		this->hwcontrol(mtd, NAND_CTL_SETALE);

		/* Serially input address */
		if (column != -1) {
			/* Adjust columns for 16 bit buswidth */
			if (this->options & NAND_BUSWIDTH_16)
				column >>= 1;
			this->write_byte(mtd, column & 0xff);
			this->write_byte(mtd, column >> 8);
		}	
		if (page_addr != -1) {
			this->write_byte(mtd, (unsigned char) (page_addr & 0xff));
			this->write_byte(mtd, (unsigned char) ((page_addr >> 8) & 0xff));
			/* One more address cycle for devices > 128MiB */
			if (this->chipsize > (128 << 20))
				this->write_byte(mtd, (unsigned char) ((page_addr >> 16) & 0xff));
		}
		/* Latch in address */
		this->hwcontrol(mtd, NAND_CTL_CLRALE);
	}
	
	/* 
	 * program and erase have their own busy handlers 
684 685
	 * status, sequential in, and deplete1 need no delay
	 */
L
Linus Torvalds 已提交
686 687 688 689 690 691 692 693
	switch (command) {
			
	case NAND_CMD_CACHEDPROG:
	case NAND_CMD_PAGEPROG:
	case NAND_CMD_ERASE1:
	case NAND_CMD_ERASE2:
	case NAND_CMD_SEQIN:
	case NAND_CMD_STATUS:
694
	case NAND_CMD_DEPLETE1:
L
Linus Torvalds 已提交
695 696
		return;

697 698 699 700 701 702 703 704 705 706
	/* 
	 * read error status commands require only a short delay
	 */
	case NAND_CMD_STATUS_ERROR:
	case NAND_CMD_STATUS_ERROR0:
	case NAND_CMD_STATUS_ERROR1:
	case NAND_CMD_STATUS_ERROR2:
	case NAND_CMD_STATUS_ERROR3:
		udelay(this->chip_delay);
		return;
L
Linus Torvalds 已提交
707 708 709 710 711 712 713 714

	case NAND_CMD_RESET:
		if (this->dev_ready)	
			break;
		udelay(this->chip_delay);
		this->hwcontrol(mtd, NAND_CTL_SETCLE);
		this->write_byte(mtd, NAND_CMD_STATUS);
		this->hwcontrol(mtd, NAND_CTL_CLRCLE);
715
		while ( !(this->read_byte(mtd) & NAND_STATUS_READY));
L
Linus Torvalds 已提交
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
		return;

	case NAND_CMD_READ0:
		/* Begin command latch cycle */
		this->hwcontrol(mtd, NAND_CTL_SETCLE);
		/* Write out the start read command */
		this->write_byte(mtd, NAND_CMD_READSTART);
		/* End command latch cycle */
		this->hwcontrol(mtd, NAND_CTL_CLRCLE);
		/* Fall through into ready check */
		
	/* This applies to read commands */	
	default:
		/* 
		 * If we don't have access to the busy pin, we apply the given
		 * command delay
		*/
		if (!this->dev_ready) {
			udelay (this->chip_delay);
			return;
		}	
	}
738

L
Linus Torvalds 已提交
739 740 741
	/* Apply this short delay always to ensure that we do wait tWB in
	 * any case on any machine. */
	ndelay (100);
742 743

	nand_wait_ready(mtd);
L
Linus Torvalds 已提交
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
}

/**
 * nand_get_device - [GENERIC] Get chip for selected access
 * @this:	the nand chip descriptor
 * @mtd:	MTD device structure
 * @new_state:	the state which is requested 
 *
 * Get the device and lock it for exclusive access
 */
static void nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int new_state)
{
	struct nand_chip *active = this;

	DECLARE_WAITQUEUE (wait, current);

	/* 
	 * Grab the lock and see if the device is available 
	*/
retry:
	/* Hardware controller shared among independend devices */
	if (this->controller) {
		spin_lock (&this->controller->lock);
		if (this->controller->active)
			active = this->controller->active;
		else
			this->controller->active = this;
		spin_unlock (&this->controller->lock);
	}
	
	if (active == this) {
		spin_lock (&this->chip_lock);
		if (this->state == FL_READY) {
			this->state = new_state;
			spin_unlock (&this->chip_lock);
			return;
		}
	}	
	set_current_state (TASK_UNINTERRUPTIBLE);
	add_wait_queue (&active->wq, &wait);
	spin_unlock (&active->chip_lock);
	schedule ();
	remove_wait_queue (&active->wq, &wait);
	goto retry;
}

/**
 * nand_wait - [DEFAULT]  wait until the command is done
 * @mtd:	MTD device structure
 * @this:	NAND chip structure
 * @state:	state to select the max. timeout value
 *
 * Wait for command done. This applies to erase and program only
 * Erase can take up to 400ms and program up to 20ms according to 
 * general NAND and SmartMedia specs
 *
*/
static int nand_wait(struct mtd_info *mtd, struct nand_chip *this, int state)
{

	unsigned long	timeo = jiffies;
	int	status;
	
	if (state == FL_ERASING)
		 timeo += (HZ * 400) / 1000;
	else
		 timeo += (HZ * 20) / 1000;

	/* Apply this short delay always to ensure that we do wait tWB in
	 * any case on any machine. */
	ndelay (100);

	if ((state == FL_ERASING) && (this->options & NAND_IS_AND))
		this->cmdfunc (mtd, NAND_CMD_STATUS_MULTI, -1, -1);
	else	
		this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1);

	while (time_before(jiffies, timeo)) {		
		/* Check, if we were interrupted */
		if (this->state != state)
			return 0;

		if (this->dev_ready) {
			if (this->dev_ready(mtd))
				break;	
		} else {
			if (this->read_byte(mtd) & NAND_STATUS_READY)
				break;
		}
833
		cond_resched();
L
Linus Torvalds 已提交
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
	}
	status = (int) this->read_byte(mtd);
	return status;
}

/**
 * nand_write_page - [GENERIC] write one page
 * @mtd:	MTD device structure
 * @this:	NAND chip structure
 * @page: 	startpage inside the chip, must be called with (page & this->pagemask)
 * @oob_buf:	out of band data buffer
 * @oobsel:	out of band selecttion structre
 * @cached:	1 = enable cached programming if supported by chip
 *
 * Nand_page_program function is used for write and writev !
 * This function will always program a full page of data
 * If you call it with a non page aligned buffer, you're lost :)
 *
 * Cached programming is not supported yet.
 */
static int nand_write_page (struct mtd_info *mtd, struct nand_chip *this, int page, 
	u_char *oob_buf,  struct nand_oobinfo *oobsel, int cached)
{
	int 	i, status;
858
	u_char	ecc_code[oobsel->eccbytes];
L
Linus Torvalds 已提交
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
	int	eccmode = oobsel->useecc ? this->eccmode : NAND_ECC_NONE;
	int  	*oob_config = oobsel->eccpos;
	int	datidx = 0, eccidx = 0, eccsteps = this->eccsteps;
	int	eccbytes = 0;
	
	/* FIXME: Enable cached programming */
	cached = 0;
	
	/* Send command to begin auto page programming */
	this->cmdfunc (mtd, NAND_CMD_SEQIN, 0x00, page);

	/* Write out complete page of data, take care of eccmode */
	switch (eccmode) {
	/* No ecc, write all */
	case NAND_ECC_NONE:
		printk (KERN_WARNING "Writing data without ECC to NAND-FLASH is not recommended\n");
		this->write_buf(mtd, this->data_poi, mtd->oobblock);
		break;
		
	/* Software ecc 3/256, write all */
	case NAND_ECC_SOFT:
		for (; eccsteps; eccsteps--) {
			this->calculate_ecc(mtd, &this->data_poi[datidx], ecc_code);
			for (i = 0; i < 3; i++, eccidx++)
				oob_buf[oob_config[eccidx]] = ecc_code[i];
			datidx += this->eccsize;
		}
		this->write_buf(mtd, this->data_poi, mtd->oobblock);
		break;
	default:
		eccbytes = this->eccbytes;
		for (; eccsteps; eccsteps--) {
			/* enable hardware ecc logic for write */
			this->enable_hwecc(mtd, NAND_ECC_WRITE);
			this->write_buf(mtd, &this->data_poi[datidx], this->eccsize);
			this->calculate_ecc(mtd, &this->data_poi[datidx], ecc_code);
			for (i = 0; i < eccbytes; i++, eccidx++)
				oob_buf[oob_config[eccidx]] = ecc_code[i];
			/* If the hardware ecc provides syndromes then
			 * the ecc code must be written immidiately after
			 * the data bytes (words) */
			if (this->options & NAND_HWECC_SYNDROME)
				this->write_buf(mtd, ecc_code, eccbytes);
			datidx += this->eccsize;
		}
		break;
	}
										
	/* Write out OOB data */
	if (this->options & NAND_HWECC_SYNDROME)
		this->write_buf(mtd, &oob_buf[oobsel->eccbytes], mtd->oobsize - oobsel->eccbytes);
	else 
		this->write_buf(mtd, oob_buf, mtd->oobsize);

	/* Send command to actually program the data */
	this->cmdfunc (mtd, cached ? NAND_CMD_CACHEDPROG : NAND_CMD_PAGEPROG, -1, -1);

	if (!cached) {
		/* call wait ready function */
		status = this->waitfunc (mtd, this, FL_WRITING);
919 920 921 922 923 924

		/* See if operation failed and additional status checks are available */
		if ((status & NAND_STATUS_FAIL) && (this->errstat)) {
			status = this->errstat(mtd, this, FL_WRITING, status, page);
		}

L
Linus Torvalds 已提交
925
		/* See if device thinks it succeeded */
926
		if (status & NAND_STATUS_FAIL) {
L
Linus Torvalds 已提交
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
			DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write, page 0x%08x, ", __FUNCTION__, page);
			return -EIO;
		}
	} else {
		/* FIXME: Implement cached programming ! */
		/* wait until cache is ready*/
		// status = this->waitfunc (mtd, this, FL_CACHEDRPG);
	}
	return 0;	
}

#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
/**
 * nand_verify_pages - [GENERIC] verify the chip contents after a write
 * @mtd:	MTD device structure
 * @this:	NAND chip structure
 * @page: 	startpage inside the chip, must be called with (page & this->pagemask)
 * @numpages:	number of pages to verify
 * @oob_buf:	out of band data buffer
 * @oobsel:	out of band selecttion structre
 * @chipnr:	number of the current chip
 * @oobmode:	1 = full buffer verify, 0 = ecc only
 *
 * The NAND device assumes that it is always writing to a cleanly erased page.
 * Hence, it performs its internal write verification only on bits that 
 * transitioned from 1 to 0. The device does NOT verify the whole page on a
 * byte by byte basis. It is possible that the page was not completely erased 
 * or the page is becoming unusable due to wear. The read with ECC would catch 
 * the error later when the ECC page check fails, but we would rather catch 
 * it early in the page write stage. Better to write no data than invalid data.
 */
static int nand_verify_pages (struct mtd_info *mtd, struct nand_chip *this, int page, int numpages, 
	u_char *oob_buf, struct nand_oobinfo *oobsel, int chipnr, int oobmode)
{
	int 	i, j, datidx = 0, oobofs = 0, res = -EIO;
	int	eccsteps = this->eccsteps;
	int	hweccbytes; 
964
	u_char 	oobdata[mtd->oobsize];
L
Linus Torvalds 已提交
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028

	hweccbytes = (this->options & NAND_HWECC_SYNDROME) ? (oobsel->eccbytes / eccsteps) : 0;

	/* Send command to read back the first page */
	this->cmdfunc (mtd, NAND_CMD_READ0, 0, page);

	for(;;) {
		for (j = 0; j < eccsteps; j++) {
			/* Loop through and verify the data */
			if (this->verify_buf(mtd, &this->data_poi[datidx], mtd->eccsize)) {
				DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
				goto out;
			}
			datidx += mtd->eccsize;
			/* Have we a hw generator layout ? */
			if (!hweccbytes)
				continue;
			if (this->verify_buf(mtd, &this->oob_buf[oobofs], hweccbytes)) {
				DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
				goto out;
			}
			oobofs += hweccbytes;
		}

		/* check, if we must compare all data or if we just have to
		 * compare the ecc bytes
		 */
		if (oobmode) {
			if (this->verify_buf(mtd, &oob_buf[oobofs], mtd->oobsize - hweccbytes * eccsteps)) {
				DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
				goto out;
			}
		} else {
			/* Read always, else autoincrement fails */
			this->read_buf(mtd, oobdata, mtd->oobsize - hweccbytes * eccsteps);

			if (oobsel->useecc != MTD_NANDECC_OFF && !hweccbytes) {
				int ecccnt = oobsel->eccbytes;
		
				for (i = 0; i < ecccnt; i++) {
					int idx = oobsel->eccpos[i];
					if (oobdata[idx] != oob_buf[oobofs + idx] ) {
						DEBUG (MTD_DEBUG_LEVEL0,
					       	"%s: Failed ECC write "
						"verify, page 0x%08x, " "%6i bytes were succesful\n", __FUNCTION__, page, i);
						goto out;
					}
				}
			}	
		}
		oobofs += mtd->oobsize - hweccbytes * eccsteps;
		page++;
		numpages--;

		/* Apply delay or wait for ready/busy pin 
		 * Do this before the AUTOINCR check, so no problems
		 * arise if a chip which does auto increment
		 * is marked as NOAUTOINCR by the board driver.
		 * Do this also before returning, so the chip is
		 * ready for the next command.
		*/
		if (!this->dev_ready) 
			udelay (this->chip_delay);
		else
1029
			nand_wait_ready(mtd);
L
Linus Torvalds 已提交
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050

		/* All done, return happy */
		if (!numpages)
			return 0;
		
			
		/* Check, if the chip supports auto page increment */ 
		if (!NAND_CANAUTOINCR(this))
			this->cmdfunc (mtd, NAND_CMD_READ0, 0x00, page);
	}
	/* 
	 * Terminate the read command. We come here in case of an error
	 * So we must issue a reset command.
	 */
out:	 
	this->cmdfunc (mtd, NAND_CMD_RESET, -1, -1);
	return res;
}
#endif

/**
1051
 * nand_read - [MTD Interface] MTD compability function for nand_do_read_ecc
L
Linus Torvalds 已提交
1052 1053 1054 1055 1056 1057
 * @mtd:	MTD device structure
 * @from:	offset to read from
 * @len:	number of bytes to read
 * @retlen:	pointer to variable to store the number of read bytes
 * @buf:	the databuffer to put data
 *
1058 1059 1060
 * This function simply calls nand_do_read_ecc with oob buffer and oobsel = NULL
 * and flags = 0xff
 */
L
Linus Torvalds 已提交
1061 1062
static int nand_read (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf)
{
1063 1064
	return nand_do_read_ecc (mtd, from, len, retlen, buf, NULL, &mtd->oobinfo, 0xff);
}
L
Linus Torvalds 已提交
1065 1066 1067


/**
1068
 * nand_read_ecc - [MTD Interface] MTD compability function for nand_do_read_ecc
L
Linus Torvalds 已提交
1069 1070 1071 1072 1073 1074 1075 1076
 * @mtd:	MTD device structure
 * @from:	offset to read from
 * @len:	number of bytes to read
 * @retlen:	pointer to variable to store the number of read bytes
 * @buf:	the databuffer to put data
 * @oob_buf:	filesystem supplied oob data buffer
 * @oobsel:	oob selection structure
 *
1077
 * This function simply calls nand_do_read_ecc with flags = 0xff
L
Linus Torvalds 已提交
1078 1079 1080
 */
static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
			  size_t * retlen, u_char * buf, u_char * oob_buf, struct nand_oobinfo *oobsel)
1081
{
1082 1083 1084
	/* use userspace supplied oobinfo, if zero */
	if (oobsel == NULL)
		oobsel = &mtd->oobinfo;
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
	return nand_do_read_ecc(mtd, from, len, retlen, buf, oob_buf, oobsel, 0xff);
}


/**
 * nand_do_read_ecc - [MTD Interface] Read data with ECC
 * @mtd:	MTD device structure
 * @from:	offset to read from
 * @len:	number of bytes to read
 * @retlen:	pointer to variable to store the number of read bytes
 * @buf:	the databuffer to put data
1096
 * @oob_buf:	filesystem supplied oob data buffer (can be NULL)
1097
 * @oobsel:	oob selection structure
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
 * @flags:	flag to indicate if nand_get_device/nand_release_device should be preformed
 *		and how many corrected error bits are acceptable:
 *		  bits 0..7 - number of tolerable errors
 *		  bit  8    - 0 == do not get/release chip, 1 == get/release chip
 *
 * NAND read with ECC
 */
int nand_do_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
			     size_t * retlen, u_char * buf, u_char * oob_buf, 
			     struct nand_oobinfo *oobsel, int flags)
L
Linus Torvalds 已提交
1108
{
1109

L
Linus Torvalds 已提交
1110 1111 1112 1113
	int i, j, col, realpage, page, end, ecc, chipnr, sndcmd = 1;
	int read = 0, oob = 0, ecc_status = 0, ecc_failed = 0;
	struct nand_chip *this = mtd->priv;
	u_char *data_poi, *oob_data = oob_buf;
1114 1115
	u_char ecc_calc[oobsel->eccbytes];
	u_char ecc_code[oobsel->eccbytes];
L
Linus Torvalds 已提交
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
        int eccmode, eccsteps;
	int	*oob_config, datidx;
	int	blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;
	int	eccbytes;
	int	compareecc = 1;
	int	oobreadlen;


	DEBUG (MTD_DEBUG_LEVEL3, "nand_read_ecc: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);

	/* Do not allow reads past end of device */
	if ((from + len) > mtd->size) {
		DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: Attempt read beyond end of device\n");
		*retlen = 0;
		return -EINVAL;
	}

	/* Grab the lock and see if the device is available */
1134 1135
	if (flags & NAND_GET_DEVICE)
		nand_get_device (this, mtd, FL_READING);
L
Linus Torvalds 已提交
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234

	/* Autoplace of oob data ? Use the default placement scheme */
	if (oobsel->useecc == MTD_NANDECC_AUTOPLACE)
		oobsel = this->autooob;
		
	eccmode = oobsel->useecc ? this->eccmode : NAND_ECC_NONE;
	oob_config = oobsel->eccpos;

	/* Select the NAND device */
	chipnr = (int)(from >> this->chip_shift);
	this->select_chip(mtd, chipnr);

	/* First we calculate the starting page */
	realpage = (int) (from >> this->page_shift);
	page = realpage & this->pagemask;

	/* Get raw starting column */
	col = from & (mtd->oobblock - 1);

	end = mtd->oobblock;
	ecc = this->eccsize;
	eccbytes = this->eccbytes;
	
	if ((eccmode == NAND_ECC_NONE) || (this->options & NAND_HWECC_SYNDROME))
		compareecc = 0;

	oobreadlen = mtd->oobsize;
	if (this->options & NAND_HWECC_SYNDROME) 
		oobreadlen -= oobsel->eccbytes;

	/* Loop until all data read */
	while (read < len) {
		
		int aligned = (!col && (len - read) >= end);
		/* 
		 * If the read is not page aligned, we have to read into data buffer
		 * due to ecc, else we read into return buffer direct
		 */
		if (aligned)
			data_poi = &buf[read];
		else 
			data_poi = this->data_buf;
		
		/* Check, if we have this page in the buffer 
		 *
		 * FIXME: Make it work when we must provide oob data too,
		 * check the usage of data_buf oob field
		 */
		if (realpage == this->pagebuf && !oob_buf) {
			/* aligned read ? */
			if (aligned)
				memcpy (data_poi, this->data_buf, end);
			goto readdata;
		}

		/* Check, if we must send the read command */
		if (sndcmd) {
			this->cmdfunc (mtd, NAND_CMD_READ0, 0x00, page);
			sndcmd = 0;
		}	

		/* get oob area, if we have no oob buffer from fs-driver */
		if (!oob_buf || oobsel->useecc == MTD_NANDECC_AUTOPLACE)
			oob_data = &this->data_buf[end];

		eccsteps = this->eccsteps;
		
		switch (eccmode) {
		case NAND_ECC_NONE: {	/* No ECC, Read in a page */
			static unsigned long lastwhinge = 0;
			if ((lastwhinge / HZ) != (jiffies / HZ)) {
				printk (KERN_WARNING "Reading data from NAND FLASH without ECC is not recommended\n");
				lastwhinge = jiffies;
			}
			this->read_buf(mtd, data_poi, end);
			break;
		}
			
		case NAND_ECC_SOFT:	/* Software ECC 3/256: Read in a page + oob data */
			this->read_buf(mtd, data_poi, end);
			for (i = 0, datidx = 0; eccsteps; eccsteps--, i+=3, datidx += ecc) 
				this->calculate_ecc(mtd, &data_poi[datidx], &ecc_calc[i]);
			break;	

		default:
			for (i = 0, datidx = 0; eccsteps; eccsteps--, i+=eccbytes, datidx += ecc) {
				this->enable_hwecc(mtd, NAND_ECC_READ);
				this->read_buf(mtd, &data_poi[datidx], ecc);

				/* HW ecc with syndrome calculation must read the
				 * syndrome from flash immidiately after the data */
				if (!compareecc) {
					/* Some hw ecc generators need to know when the
					 * syndrome is read from flash */
					this->enable_hwecc(mtd, NAND_ECC_READSYN);
					this->read_buf(mtd, &oob_data[i], eccbytes);
					/* We calc error correction directly, it checks the hw
					 * generator for an error, reads back the syndrome and
					 * does the error correction on the fly */
1235 1236
					ecc_status = this->correct_data(mtd, &data_poi[datidx], &oob_data[i], &ecc_code[i]);
					if ((ecc_status == -1) || (ecc_status > (flags && 0xff))) {
L
Linus Torvalds 已提交
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
						DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: " 
							"Failed ECC read, page 0x%08x on chip %d\n", page, chipnr);
						ecc_failed++;
					}
				} else {
					this->calculate_ecc(mtd, &data_poi[datidx], &ecc_calc[i]);
				}	
			}
			break;						
		}

		/* read oobdata */
		this->read_buf(mtd, &oob_data[mtd->oobsize - oobreadlen], oobreadlen);

		/* Skip ECC check, if not requested (ECC_NONE or HW_ECC with syndromes) */
		if (!compareecc)
			goto readoob;	
		
		/* Pick the ECC bytes out of the oob data */
		for (j = 0; j < oobsel->eccbytes; j++)
			ecc_code[j] = oob_data[oob_config[j]];

		/* correct data, if neccecary */
		for (i = 0, j = 0, datidx = 0; i < this->eccsteps; i++, datidx += ecc) {
			ecc_status = this->correct_data(mtd, &data_poi[datidx], &ecc_code[j], &ecc_calc[j]);
			
			/* Get next chunk of ecc bytes */
			j += eccbytes;
			
			/* Check, if we have a fs supplied oob-buffer, 
			 * This is the legacy mode. Used by YAFFS1
			 * Should go away some day
			 */
			if (oob_buf && oobsel->useecc == MTD_NANDECC_PLACE) { 
				int *p = (int *)(&oob_data[mtd->oobsize]);
				p[i] = ecc_status;
			}
			
1275
			if ((ecc_status == -1) || (ecc_status > (flags && 0xff))) {	
L
Linus Torvalds 已提交
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
				DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: " "Failed ECC read, page 0x%08x\n", page);
				ecc_failed++;
			}
		}		

	readoob:
		/* check, if we have a fs supplied oob-buffer */
		if (oob_buf) {
			/* without autoplace. Legacy mode used by YAFFS1 */
			switch(oobsel->useecc) {
			case MTD_NANDECC_AUTOPLACE:
				/* Walk through the autoplace chunks */
1288
				for (i = 0; oobsel->oobfree[i][1]; i++) {
L
Linus Torvalds 已提交
1289 1290 1291
					int from = oobsel->oobfree[i][0];
					int num = oobsel->oobfree[i][1];
					memcpy(&oob_buf[oob], &oob_data[from], num);
1292
					oob += num;
L
Linus Torvalds 已提交
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
				}
				break;
			case MTD_NANDECC_PLACE:
				/* YAFFS1 legacy mode */
				oob_data += this->eccsteps * sizeof (int);
			default:
				oob_data += mtd->oobsize;
			}
		}
	readdata:
		/* Partial page read, transfer data into fs buffer */
		if (!aligned) { 
			for (j = col; j < end && read < len; j++)
				buf[read++] = data_poi[j];
			this->pagebuf = realpage;	
		} else		
			read += mtd->oobblock;

		/* Apply delay or wait for ready/busy pin 
		 * Do this before the AUTOINCR check, so no problems
		 * arise if a chip which does auto increment
		 * is marked as NOAUTOINCR by the board driver.
		*/
		if (!this->dev_ready) 
			udelay (this->chip_delay);
		else
1319
			nand_wait_ready(mtd);
L
Linus Torvalds 已提交
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
			
		if (read == len)
			break;	

		/* For subsequent reads align to page boundary. */
		col = 0;
		/* Increment page address */
		realpage++;

		page = realpage & this->pagemask;
		/* Check, if we cross a chip boundary */
		if (!page) {
			chipnr++;
			this->select_chip(mtd, -1);
			this->select_chip(mtd, chipnr);
		}
		/* Check, if the chip supports auto page increment 
		 * or if we have hit a block boundary. 
		*/ 
		if (!NAND_CANAUTOINCR(this) || !(page & blockcheck))
			sndcmd = 1;				
	}

	/* Deselect and wake up anyone waiting on the device */
1344 1345
	if (flags & NAND_GET_DEVICE)
		nand_release_device(mtd);
L
Linus Torvalds 已提交
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417

	/*
	 * Return success, if no ECC failures, else -EBADMSG
	 * fs driver will take care of that, because
	 * retlen == desired len and result == -EBADMSG
	 */
	*retlen = read;
	return ecc_failed ? -EBADMSG : 0;
}

/**
 * nand_read_oob - [MTD Interface] NAND read out-of-band
 * @mtd:	MTD device structure
 * @from:	offset to read from
 * @len:	number of bytes to read
 * @retlen:	pointer to variable to store the number of read bytes
 * @buf:	the databuffer to put data
 *
 * NAND read out-of-band data from the spare area
 */
static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf)
{
	int i, col, page, chipnr;
	struct nand_chip *this = mtd->priv;
	int	blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;

	DEBUG (MTD_DEBUG_LEVEL3, "nand_read_oob: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);

	/* Shift to get page */
	page = (int)(from >> this->page_shift);
	chipnr = (int)(from >> this->chip_shift);
	
	/* Mask to get column */
	col = from & (mtd->oobsize - 1);

	/* Initialize return length value */
	*retlen = 0;

	/* Do not allow reads past end of device */
	if ((from + len) > mtd->size) {
		DEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: Attempt read beyond end of device\n");
		*retlen = 0;
		return -EINVAL;
	}

	/* Grab the lock and see if the device is available */
	nand_get_device (this, mtd , FL_READING);

	/* Select the NAND device */
	this->select_chip(mtd, chipnr);

	/* Send the read command */
	this->cmdfunc (mtd, NAND_CMD_READOOB, col, page & this->pagemask);
	/* 
	 * Read the data, if we read more than one page
	 * oob data, let the device transfer the data !
	 */
	i = 0;
	while (i < len) {
		int thislen = mtd->oobsize - col;
		thislen = min_t(int, thislen, len);
		this->read_buf(mtd, &buf[i], thislen);
		i += thislen;
		
		/* Apply delay or wait for ready/busy pin 
		 * Do this before the AUTOINCR check, so no problems
		 * arise if a chip which does auto increment
		 * is marked as NOAUTOINCR by the board driver.
		*/
		if (!this->dev_ready) 
			udelay (this->chip_delay);
		else
1418
			nand_wait_ready(mtd);
L
Linus Torvalds 已提交
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497

		/* Read more ? */
		if (i < len) {
			page++;
			col = 0;

			/* Check, if we cross a chip boundary */
			if (!(page & this->pagemask)) {
				chipnr++;
				this->select_chip(mtd, -1);
				this->select_chip(mtd, chipnr);
			}
				
			/* Check, if the chip supports auto page increment 
			 * or if we have hit a block boundary. 
			*/ 
			if (!NAND_CANAUTOINCR(this) || !(page & blockcheck)) {
				/* For subsequent page reads set offset to 0 */
			        this->cmdfunc (mtd, NAND_CMD_READOOB, 0x0, page & this->pagemask);
			}
		}
	}

	/* Deselect and wake up anyone waiting on the device */
	nand_release_device(mtd);

	/* Return happy */
	*retlen = len;
	return 0;
}

/**
 * nand_read_raw - [GENERIC] Read raw data including oob into buffer
 * @mtd:	MTD device structure
 * @buf:	temporary buffer
 * @from:	offset to read from
 * @len:	number of bytes to read
 * @ooblen:	number of oob data bytes to read
 *
 * Read raw data including oob into buffer
 */
int nand_read_raw (struct mtd_info *mtd, uint8_t *buf, loff_t from, size_t len, size_t ooblen)
{
	struct nand_chip *this = mtd->priv;
	int page = (int) (from >> this->page_shift);
	int chip = (int) (from >> this->chip_shift);
	int sndcmd = 1;
	int cnt = 0;
	int pagesize = mtd->oobblock + mtd->oobsize;
	int	blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;

	/* Do not allow reads past end of device */
	if ((from + len) > mtd->size) {
		DEBUG (MTD_DEBUG_LEVEL0, "nand_read_raw: Attempt read beyond end of device\n");
		return -EINVAL;
	}

	/* Grab the lock and see if the device is available */
	nand_get_device (this, mtd , FL_READING);

	this->select_chip (mtd, chip);
	
	/* Add requested oob length */
	len += ooblen;
	
	while (len) {
		if (sndcmd)
			this->cmdfunc (mtd, NAND_CMD_READ0, 0, page & this->pagemask);
		sndcmd = 0;	

		this->read_buf (mtd, &buf[cnt], pagesize);

		len -= pagesize;
		cnt += pagesize;
		page++;
		
		if (!this->dev_ready) 
			udelay (this->chip_delay);
		else
1498
			nand_wait_ready(mtd);
L
Linus Torvalds 已提交
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
			
		/* Check, if the chip supports auto page increment */ 
		if (!NAND_CANAUTOINCR(this) || !(page & blockcheck))
			sndcmd = 1;
	}

	/* Deselect and wake up anyone waiting on the device */
	nand_release_device(mtd);
	return 0;
}


/** 
 * nand_prepare_oobbuf - [GENERIC] Prepare the out of band buffer 
 * @mtd:	MTD device structure
 * @fsbuf:	buffer given by fs driver
 * @oobsel:	out of band selection structre
 * @autoplace:	1 = place given buffer into the oob bytes
 * @numpages:	number of pages to prepare
 *
 * Return:
 * 1. Filesystem buffer available and autoplacement is off,
 *    return filesystem buffer
 * 2. No filesystem buffer or autoplace is off, return internal
 *    buffer
 * 3. Filesystem buffer is given and autoplace selected
 *    put data from fs buffer into internal buffer and
 *    retrun internal buffer
 *
 * Note: The internal buffer is filled with 0xff. This must
 * be done only once, when no autoplacement happens
 * Autoplacement sets the buffer dirty flag, which
 * forces the 0xff fill before using the buffer again.
 *
*/
static u_char * nand_prepare_oobbuf (struct mtd_info *mtd, u_char *fsbuf, struct nand_oobinfo *oobsel,
		int autoplace, int numpages)
{
	struct nand_chip *this = mtd->priv;
	int i, len, ofs;

	/* Zero copy fs supplied buffer */
	if (fsbuf && !autoplace) 
		return fsbuf;

	/* Check, if the buffer must be filled with ff again */
	if (this->oobdirty) {	
		memset (this->oob_buf, 0xff, 
			mtd->oobsize << (this->phys_erase_shift - this->page_shift));
		this->oobdirty = 0;
	}	
	
	/* If we have no autoplacement or no fs buffer use the internal one */
	if (!autoplace || !fsbuf)
		return this->oob_buf;
	
	/* Walk through the pages and place the data */
	this->oobdirty = 1;
	ofs = 0;
	while (numpages--) {
		for (i = 0, len = 0; len < mtd->oobavail; i++) {
			int to = ofs + oobsel->oobfree[i][0];
			int num = oobsel->oobfree[i][1];
			memcpy (&this->oob_buf[to], fsbuf, num);
			len += num;
			fsbuf += num;
		}
		ofs += mtd->oobavail;
	}
	return this->oob_buf;
}

#define NOTALIGNED(x) (x & (mtd->oobblock-1)) != 0

/**
 * nand_write - [MTD Interface] compability function for nand_write_ecc
 * @mtd:	MTD device structure
 * @to:		offset to write to
 * @len:	number of bytes to write
 * @retlen:	pointer to variable to store the number of written bytes
 * @buf:	the data to write
 *
 * This function simply calls nand_write_ecc with oob buffer and oobsel = NULL
 *
*/
static int nand_write (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf)
{
	return (nand_write_ecc (mtd, to, len, retlen, buf, NULL, NULL));
}
			   
/**
 * nand_write_ecc - [MTD Interface] NAND write with ECC
 * @mtd:	MTD device structure
 * @to:		offset to write to
 * @len:	number of bytes to write
 * @retlen:	pointer to variable to store the number of written bytes
 * @buf:	the data to write
 * @eccbuf:	filesystem supplied oob data buffer
 * @oobsel:	oob selection structure
 *
 * NAND write with ECC
 */
static int nand_write_ecc (struct mtd_info *mtd, loff_t to, size_t len,
			   size_t * retlen, const u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel)
{
	int startpage, page, ret = -EIO, oob = 0, written = 0, chipnr;
	int autoplace = 0, numpages, totalpages;
	struct nand_chip *this = mtd->priv;
	u_char *oobbuf, *bufstart;
	int	ppblock = (1 << (this->phys_erase_shift - this->page_shift));

	DEBUG (MTD_DEBUG_LEVEL3, "nand_write_ecc: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);

	/* Initialize retlen, in case of early exit */
	*retlen = 0;

	/* Do not allow write past end of device */
	if ((to + len) > mtd->size) {
		DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: Attempt to write past end of page\n");
		return -EINVAL;
	}

	/* reject writes, which are not page aligned */	
	if (NOTALIGNED (to) || NOTALIGNED(len)) {
		printk (KERN_NOTICE "nand_write_ecc: Attempt to write not page aligned data\n");
		return -EINVAL;
	}

	/* Grab the lock and see if the device is available */
	nand_get_device (this, mtd, FL_WRITING);

	/* Calculate chipnr */
	chipnr = (int)(to >> this->chip_shift);
	/* Select the NAND device */
	this->select_chip(mtd, chipnr);

	/* Check, if it is write protected */
	if (nand_check_wp(mtd))
		goto out;

	/* if oobsel is NULL, use chip defaults */
	if (oobsel == NULL) 
		oobsel = &mtd->oobinfo;		
		
	/* Autoplace of oob data ? Use the default placement scheme */
	if (oobsel->useecc == MTD_NANDECC_AUTOPLACE) {
		oobsel = this->autooob;
		autoplace = 1;
	}	

	/* Setup variables and oob buffer */
	totalpages = len >> this->page_shift;
	page = (int) (to >> this->page_shift);
	/* Invalidate the page cache, if we write to the cached page */
	if (page <= this->pagebuf && this->pagebuf < (page + totalpages))  
		this->pagebuf = -1;
	
	/* Set it relative to chip */
	page &= this->pagemask;
	startpage = page;
	/* Calc number of pages we can write in one go */
	numpages = min (ppblock - (startpage  & (ppblock - 1)), totalpages);
	oobbuf = nand_prepare_oobbuf (mtd, eccbuf, oobsel, autoplace, numpages);
	bufstart = (u_char *)buf;

	/* Loop until all data is written */
	while (written < len) {

		this->data_poi = (u_char*) &buf[written];
		/* Write one page. If this is the last page to write
		 * or the last page in this block, then use the
		 * real pageprogram command, else select cached programming
		 * if supported by the chip.
		 */
		ret = nand_write_page (mtd, this, page, &oobbuf[oob], oobsel, (--numpages > 0));
		if (ret) {
			DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: write_page failed %d\n", ret);
			goto out;
		}	
		/* Next oob page */
		oob += mtd->oobsize;
		/* Update written bytes count */
		written += mtd->oobblock;
		if (written == len) 
			goto cmp;
		
		/* Increment page address */
		page++;

		/* Have we hit a block boundary ? Then we have to verify and
		 * if verify is ok, we have to setup the oob buffer for
		 * the next pages.
		*/
		if (!(page & (ppblock - 1))){
			int ofs;
			this->data_poi = bufstart;
			ret = nand_verify_pages (mtd, this, startpage, 
				page - startpage,
				oobbuf, oobsel, chipnr, (eccbuf != NULL));
			if (ret) {
				DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: verify_pages failed %d\n", ret);
				goto out;
			}	
			*retlen = written;

			ofs = autoplace ? mtd->oobavail : mtd->oobsize;
			if (eccbuf)
				eccbuf += (page - startpage) * ofs;
			totalpages -= page - startpage;
			numpages = min (totalpages, ppblock);
			page &= this->pagemask;
			startpage = page;
			oobbuf = nand_prepare_oobbuf (mtd, eccbuf, oobsel, 
					autoplace, numpages);
			/* Check, if we cross a chip boundary */
			if (!page) {
				chipnr++;
				this->select_chip(mtd, -1);
				this->select_chip(mtd, chipnr);
			}
		}
	}
	/* Verify the remaining pages */
cmp:
	this->data_poi = bufstart;
 	ret = nand_verify_pages (mtd, this, startpage, totalpages,
		oobbuf, oobsel, chipnr, (eccbuf != NULL));
	if (!ret)
		*retlen = written;
	else	
		DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: verify_pages failed %d\n", ret);

out:
	/* Deselect and wake up anyone waiting on the device */
	nand_release_device(mtd);

	return ret;
}


/**
 * nand_write_oob - [MTD Interface] NAND write out-of-band
 * @mtd:	MTD device structure
 * @to:		offset to write to
 * @len:	number of bytes to write
 * @retlen:	pointer to variable to store the number of written bytes
 * @buf:	the data to write
 *
 * NAND write out-of-band
 */
static int nand_write_oob (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf)
{
	int column, page, status, ret = -EIO, chipnr;
	struct nand_chip *this = mtd->priv;

	DEBUG (MTD_DEBUG_LEVEL3, "nand_write_oob: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);

	/* Shift to get page */
	page = (int) (to >> this->page_shift);
	chipnr = (int) (to >> this->chip_shift);

	/* Mask to get column */
	column = to & (mtd->oobsize - 1);

	/* Initialize return length value */
	*retlen = 0;

	/* Do not allow write past end of page */
	if ((column + len) > mtd->oobsize) {
		DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: Attempt to write past end of page\n");
		return -EINVAL;
	}

	/* Grab the lock and see if the device is available */
	nand_get_device (this, mtd, FL_WRITING);

	/* Select the NAND device */
	this->select_chip(mtd, chipnr);

	/* Reset the chip. Some chips (like the Toshiba TC5832DC found
	   in one of my DiskOnChip 2000 test units) will clear the whole
	   data page too if we don't do this. I have no clue why, but
	   I seem to have 'fixed' it in the doc2000 driver in
	   August 1999.  dwmw2. */
	this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);

	/* Check, if it is write protected */
	if (nand_check_wp(mtd))
		goto out;
	
	/* Invalidate the page cache, if we write to the cached page */
	if (page == this->pagebuf)
		this->pagebuf = -1;

	if (NAND_MUST_PAD(this)) {
		/* Write out desired data */
		this->cmdfunc (mtd, NAND_CMD_SEQIN, mtd->oobblock, page & this->pagemask);
		/* prepad 0xff for partial programming */
		this->write_buf(mtd, ffchars, column);
		/* write data */
		this->write_buf(mtd, buf, len);
		/* postpad 0xff for partial programming */
		this->write_buf(mtd, ffchars, mtd->oobsize - (len+column));
	} else {
		/* Write out desired data */
		this->cmdfunc (mtd, NAND_CMD_SEQIN, mtd->oobblock + column, page & this->pagemask);
		/* write data */
		this->write_buf(mtd, buf, len);
	}
	/* Send command to program the OOB data */
	this->cmdfunc (mtd, NAND_CMD_PAGEPROG, -1, -1);

	status = this->waitfunc (mtd, this, FL_WRITING);

	/* See if device thinks it succeeded */
1814
	if (status & NAND_STATUS_FAIL) {
L
Linus Torvalds 已提交
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
		DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write, page 0x%08x\n", page);
		ret = -EIO;
		goto out;
	}
	/* Return happy */
	*retlen = len;

#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
	/* Send command to read back the data */
	this->cmdfunc (mtd, NAND_CMD_READOOB, column, page & this->pagemask);

	if (this->verify_buf(mtd, buf, len)) {
		DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write verify, page 0x%08x\n", page);
		ret = -EIO;
		goto out;
	}
#endif
	ret = 0;
out:
	/* Deselect and wake up anyone waiting on the device */
	nand_release_device(mtd);

	return ret;
}


/**
 * nand_writev - [MTD Interface] compabilty function for nand_writev_ecc
 * @mtd:	MTD device structure
 * @vecs:	the iovectors to write
 * @count:	number of vectors
 * @to:		offset to write to
 * @retlen:	pointer to variable to store the number of written bytes
 *
 * NAND write with kvec. This just calls the ecc function
 */
static int nand_writev (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count, 
		loff_t to, size_t * retlen)
{
	return (nand_writev_ecc (mtd, vecs, count, to, retlen, NULL, NULL));	
}

/**
 * nand_writev_ecc - [MTD Interface] write with iovec with ecc
 * @mtd:	MTD device structure
 * @vecs:	the iovectors to write
 * @count:	number of vectors
 * @to:		offset to write to
 * @retlen:	pointer to variable to store the number of written bytes
 * @eccbuf:	filesystem supplied oob data buffer
 * @oobsel:	oob selection structure
 *
 * NAND write with iovec with ecc
 */
static int nand_writev_ecc (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count, 
		loff_t to, size_t * retlen, u_char *eccbuf, struct nand_oobinfo *oobsel)
{
	int i, page, len, total_len, ret = -EIO, written = 0, chipnr;
	int oob, numpages, autoplace = 0, startpage;
	struct nand_chip *this = mtd->priv;
	int	ppblock = (1 << (this->phys_erase_shift - this->page_shift));
	u_char *oobbuf, *bufstart;

	/* Preset written len for early exit */
	*retlen = 0;

	/* Calculate total length of data */
	total_len = 0;
	for (i = 0; i < count; i++)
		total_len += (int) vecs[i].iov_len;

	DEBUG (MTD_DEBUG_LEVEL3,
	       "nand_writev: to = 0x%08x, len = %i, count = %ld\n", (unsigned int) to, (unsigned int) total_len, count);

	/* Do not allow write past end of page */
	if ((to + total_len) > mtd->size) {
		DEBUG (MTD_DEBUG_LEVEL0, "nand_writev: Attempted write past end of device\n");
		return -EINVAL;
	}

	/* reject writes, which are not page aligned */	
	if (NOTALIGNED (to) || NOTALIGNED(total_len)) {
		printk (KERN_NOTICE "nand_write_ecc: Attempt to write not page aligned data\n");
		return -EINVAL;
	}

	/* Grab the lock and see if the device is available */
	nand_get_device (this, mtd, FL_WRITING);

	/* Get the current chip-nr */
	chipnr = (int) (to >> this->chip_shift);
	/* Select the NAND device */
	this->select_chip(mtd, chipnr);

	/* Check, if it is write protected */
	if (nand_check_wp(mtd))
		goto out;

	/* if oobsel is NULL, use chip defaults */
	if (oobsel == NULL) 
		oobsel = &mtd->oobinfo;		

	/* Autoplace of oob data ? Use the default placement scheme */
	if (oobsel->useecc == MTD_NANDECC_AUTOPLACE) {
		oobsel = this->autooob;
		autoplace = 1;
	}	

	/* Setup start page */
	page = (int) (to >> this->page_shift);
	/* Invalidate the page cache, if we write to the cached page */
	if (page <= this->pagebuf && this->pagebuf < ((to + total_len) >> this->page_shift))  
		this->pagebuf = -1;

	startpage = page & this->pagemask;

	/* Loop until all kvec' data has been written */
	len = 0;
	while (count) {
		/* If the given tuple is >= pagesize then
		 * write it out from the iov
		 */
		if ((vecs->iov_len - len) >= mtd->oobblock) {
			/* Calc number of pages we can write
			 * out of this iov in one go */
			numpages = (vecs->iov_len - len) >> this->page_shift;
			/* Do not cross block boundaries */
			numpages = min (ppblock - (startpage & (ppblock - 1)), numpages);
			oobbuf = nand_prepare_oobbuf (mtd, NULL, oobsel, autoplace, numpages);
			bufstart = (u_char *)vecs->iov_base;
			bufstart += len;
			this->data_poi = bufstart;
			oob = 0;
			for (i = 1; i <= numpages; i++) {
				/* Write one page. If this is the last page to write
				 * then use the real pageprogram command, else select 
				 * cached programming if supported by the chip.
				 */
				ret = nand_write_page (mtd, this, page & this->pagemask, 
					&oobbuf[oob], oobsel, i != numpages);
				if (ret)
					goto out;
				this->data_poi += mtd->oobblock;
				len += mtd->oobblock;
				oob += mtd->oobsize;
				page++;
			}
			/* Check, if we have to switch to the next tuple */
			if (len >= (int) vecs->iov_len) {
				vecs++;
				len = 0;
				count--;
			}
		} else {
			/* We must use the internal buffer, read data out of each 
			 * tuple until we have a full page to write
			 */
			int cnt = 0;
			while (cnt < mtd->oobblock) {
				if (vecs->iov_base != NULL && vecs->iov_len) 
					this->data_buf[cnt++] = ((u_char *) vecs->iov_base)[len++];
				/* Check, if we have to switch to the next tuple */
				if (len >= (int) vecs->iov_len) {
					vecs++;
					len = 0;
					count--;
				}
			}
			this->pagebuf = page;	
			this->data_poi = this->data_buf;	
			bufstart = this->data_poi;
			numpages = 1;		
			oobbuf = nand_prepare_oobbuf (mtd, NULL, oobsel, autoplace, numpages);
			ret = nand_write_page (mtd, this, page & this->pagemask,
				oobbuf, oobsel, 0);
			if (ret)
				goto out;
			page++;
		}

		this->data_poi = bufstart;
		ret = nand_verify_pages (mtd, this, startpage, numpages, oobbuf, oobsel, chipnr, 0);
		if (ret)
			goto out;
			
		written += mtd->oobblock * numpages;
		/* All done ? */
		if (!count)
			break;

		startpage = page & this->pagemask;
		/* Check, if we cross a chip boundary */
		if (!startpage) {
			chipnr++;
			this->select_chip(mtd, -1);
			this->select_chip(mtd, chipnr);
		}
	}
	ret = 0;
out:
	/* Deselect and wake up anyone waiting on the device */
	nand_release_device(mtd);

	*retlen = written;
	return ret;
}

/**
 * single_erease_cmd - [GENERIC] NAND standard block erase command function
 * @mtd:	MTD device structure
 * @page:	the page address of the block which will be erased
 *
 * Standard erase command for NAND chips
 */
static void single_erase_cmd (struct mtd_info *mtd, int page)
{
	struct nand_chip *this = mtd->priv;
	/* Send commands to erase a block */
	this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page);
	this->cmdfunc (mtd, NAND_CMD_ERASE2, -1, -1);
}

/**
 * multi_erease_cmd - [GENERIC] AND specific block erase command function
 * @mtd:	MTD device structure
 * @page:	the page address of the block which will be erased
 *
 * AND multi block erase command function
 * Erase 4 consecutive blocks
 */
static void multi_erase_cmd (struct mtd_info *mtd, int page)
{
	struct nand_chip *this = mtd->priv;
	/* Send commands to erase a block */
	this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++);
	this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++);
	this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++);
	this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page);
	this->cmdfunc (mtd, NAND_CMD_ERASE2, -1, -1);
}

/**
 * nand_erase - [MTD Interface] erase block(s)
 * @mtd:	MTD device structure
 * @instr:	erase instruction
 *
 * Erase one ore more blocks
 */
static int nand_erase (struct mtd_info *mtd, struct erase_info *instr)
{
	return nand_erase_nand (mtd, instr, 0);
}
 
2068
#define BBT_PAGE_MASK	0xffffff3f
L
Linus Torvalds 已提交
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
/**
 * nand_erase_intern - [NAND Interface] erase block(s)
 * @mtd:	MTD device structure
 * @instr:	erase instruction
 * @allowbbt:	allow erasing the bbt area
 *
 * Erase one ore more blocks
 */
int nand_erase_nand (struct mtd_info *mtd, struct erase_info *instr, int allowbbt)
{
	int page, len, status, pages_per_block, ret, chipnr;
	struct nand_chip *this = mtd->priv;
2081 2082 2083 2084
	int rewrite_bbt[NAND_MAX_CHIPS]={0};	/* flags to indicate the page, if bbt needs to be rewritten. */
	unsigned int bbt_masked_page;		/* bbt mask to compare to page being erased. */
						/* It is used to see if the current page is in the same */
						/*   256 block group and the same bank as the bbt. */
L
Linus Torvalds 已提交
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129

	DEBUG (MTD_DEBUG_LEVEL3,
	       "nand_erase: start = 0x%08x, len = %i\n", (unsigned int) instr->addr, (unsigned int) instr->len);

	/* Start address must align on block boundary */
	if (instr->addr & ((1 << this->phys_erase_shift) - 1)) {
		DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Unaligned address\n");
		return -EINVAL;
	}

	/* Length must align on block boundary */
	if (instr->len & ((1 << this->phys_erase_shift) - 1)) {
		DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Length not block aligned\n");
		return -EINVAL;
	}

	/* Do not allow erase past end of device */
	if ((instr->len + instr->addr) > mtd->size) {
		DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Erase past end of device\n");
		return -EINVAL;
	}

	instr->fail_addr = 0xffffffff;

	/* Grab the lock and see if the device is available */
	nand_get_device (this, mtd, FL_ERASING);

	/* Shift to get first page */
	page = (int) (instr->addr >> this->page_shift);
	chipnr = (int) (instr->addr >> this->chip_shift);

	/* Calculate pages in each block */
	pages_per_block = 1 << (this->phys_erase_shift - this->page_shift);

	/* Select the NAND device */
	this->select_chip(mtd, chipnr);

	/* Check the WP bit */
	/* Check, if it is write protected */
	if (nand_check_wp(mtd)) {
		DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Device is write protected!!!\n");
		instr->state = MTD_ERASE_FAILED;
		goto erase_exit;
	}

2130 2131 2132 2133 2134 2135 2136
	/* if BBT requires refresh, set the BBT page mask to see if the BBT should be rewritten */
	if (this->options & BBT_AUTO_REFRESH) {
		bbt_masked_page = this->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
	} else {
		bbt_masked_page = 0xffffffff;	/* should not match anything */
	}

L
Linus Torvalds 已提交
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
	/* Loop through the pages */
	len = instr->len;

	instr->state = MTD_ERASING;

	while (len) {
		/* Check if we have a bad block, we do not erase bad blocks ! */
		if (nand_block_checkbad(mtd, ((loff_t) page) << this->page_shift, 0, allowbbt)) {
			printk (KERN_WARNING "nand_erase: attempt to erase a bad block at page 0x%08x\n", page);
			instr->state = MTD_ERASE_FAILED;
			goto erase_exit;
		}
		
		/* Invalidate the page cache, if we erase the block which contains 
		   the current cached page */
		if (page <= this->pagebuf && this->pagebuf < (page + pages_per_block))
			this->pagebuf = -1;

		this->erase_cmd (mtd, page & this->pagemask);
		
		status = this->waitfunc (mtd, this, FL_ERASING);

2159 2160 2161 2162 2163
		/* See if operation failed and additional status checks are available */
		if ((status & NAND_STATUS_FAIL) && (this->errstat)) {
			status = this->errstat(mtd, this, FL_ERASING, status, page);
		}

L
Linus Torvalds 已提交
2164
		/* See if block erase succeeded */
2165
		if (status & NAND_STATUS_FAIL) {
L
Linus Torvalds 已提交
2166 2167 2168 2169 2170
			DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: " "Failed erase, page 0x%08x\n", page);
			instr->state = MTD_ERASE_FAILED;
			instr->fail_addr = (page << this->page_shift);
			goto erase_exit;
		}
2171 2172 2173 2174 2175 2176 2177 2178

		/* if BBT requires refresh, set the BBT rewrite flag to the page being erased */
		if (this->options & BBT_AUTO_REFRESH) {
			if (((page & BBT_PAGE_MASK) == bbt_masked_page) && 
			     (page != this->bbt_td->pages[chipnr])) {
				rewrite_bbt[chipnr] = (page << this->page_shift);
			}
		}
L
Linus Torvalds 已提交
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
		
		/* Increment page address and decrement length */
		len -= (1 << this->phys_erase_shift);
		page += pages_per_block;

		/* Check, if we cross a chip boundary */
		if (len && !(page & this->pagemask)) {
			chipnr++;
			this->select_chip(mtd, -1);
			this->select_chip(mtd, chipnr);
2189 2190 2191 2192 2193 2194 2195

			/* if BBT requires refresh and BBT-PERCHIP, 
			 *   set the BBT page mask to see if this BBT should be rewritten */
			if ((this->options & BBT_AUTO_REFRESH) && (this->bbt_td->options & NAND_BBT_PERCHIP)) {
				bbt_masked_page = this->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
			}

L
Linus Torvalds 已提交
2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
		}
	}
	instr->state = MTD_ERASE_DONE;

erase_exit:

	ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
	/* Do call back function */
	if (!ret)
		mtd_erase_callback(instr);

	/* Deselect and wake up anyone waiting on the device */
	nand_release_device(mtd);

2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
	/* if BBT requires refresh and erase was successful, rewrite any selected bad block tables */
	if ((this->options & BBT_AUTO_REFRESH) && (!ret)) {
		for (chipnr = 0; chipnr < this->numchips; chipnr++) {
			if (rewrite_bbt[chipnr]) {
				/* update the BBT for chip */
				DEBUG (MTD_DEBUG_LEVEL0, "nand_erase_nand: nand_update_bbt (%d:0x%0x 0x%0x)\n", 
					chipnr, rewrite_bbt[chipnr], this->bbt_td->pages[chipnr]);
				nand_update_bbt (mtd, rewrite_bbt[chipnr]);
			}
		}
	}

L
Linus Torvalds 已提交
2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
	/* Return more or less happy */
	return ret;
}

/**
 * nand_sync - [MTD Interface] sync
 * @mtd:	MTD device structure
 *
 * Sync is actually a wait for chip ready function
 */
static void nand_sync (struct mtd_info *mtd)
{
	struct nand_chip *this = mtd->priv;

	DEBUG (MTD_DEBUG_LEVEL3, "nand_sync: called\n");

	/* Grab the lock and see if the device is available */
	nand_get_device (this, mtd, FL_SYNCING);
	/* Release it and go back */
	nand_release_device (mtd);
}


/**
 * nand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
 * @mtd:	MTD device structure
 * @ofs:	offset relative to mtd start
 */
static int nand_block_isbad (struct mtd_info *mtd, loff_t ofs)
{
	/* Check for invalid offset */
	if (ofs > mtd->size) 
		return -EINVAL;
	
	return nand_block_checkbad (mtd, ofs, 1, 0);
}

/**
 * nand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
 * @mtd:	MTD device structure
 * @ofs:	offset relative to mtd start
 */
static int nand_block_markbad (struct mtd_info *mtd, loff_t ofs)
{
	struct nand_chip *this = mtd->priv;
	int ret;

        if ((ret = nand_block_isbad(mtd, ofs))) {
        	/* If it was bad already, return success and do nothing. */
		if (ret > 0)
			return 0;
        	return ret;
        }

	return this->block_markbad(mtd, ofs);
}

/**
 * nand_scan - [NAND Interface] Scan for the NAND device
 * @mtd:	MTD device structure
 * @maxchips:	Number of chips to scan for
 *
 * This fills out all the not initialized function pointers
 * with the defaults.
 * The flash ID is read and the mtd/chip structures are
 * filled with the appropriate values. Buffers are allocated if
 * they are not provided by the board driver
 *
 */
int nand_scan (struct mtd_info *mtd, int maxchips)
{
2293
	int i, nand_maf_id, nand_dev_id, busw, maf_id;
L
Linus Torvalds 已提交
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
	struct nand_chip *this = mtd->priv;

	/* Get buswidth to select the correct functions*/
	busw = this->options & NAND_BUSWIDTH_16;

	/* check for proper chip_delay setup, set 20us if not */
	if (!this->chip_delay)
		this->chip_delay = 20;

	/* check, if a user supplied command function given */
	if (this->cmdfunc == NULL)
		this->cmdfunc = nand_command;

	/* check, if a user supplied wait function given */
	if (this->waitfunc == NULL)
		this->waitfunc = nand_wait;

	if (!this->select_chip)
		this->select_chip = nand_select_chip;
	if (!this->write_byte)
		this->write_byte = busw ? nand_write_byte16 : nand_write_byte;
	if (!this->read_byte)
		this->read_byte = busw ? nand_read_byte16 : nand_read_byte;
	if (!this->write_word)
		this->write_word = nand_write_word;
	if (!this->read_word)
		this->read_word = nand_read_word;
	if (!this->block_bad)
		this->block_bad = nand_block_bad;
	if (!this->block_markbad)
		this->block_markbad = nand_default_block_markbad;
	if (!this->write_buf)
		this->write_buf = busw ? nand_write_buf16 : nand_write_buf;
	if (!this->read_buf)
		this->read_buf = busw ? nand_read_buf16 : nand_read_buf;
	if (!this->verify_buf)
		this->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
	if (!this->scan_bbt)
		this->scan_bbt = nand_default_bbt;

	/* Select the device */
	this->select_chip(mtd, 0);

	/* Send the command for reading device ID */
	this->cmdfunc (mtd, NAND_CMD_READID, 0x00, -1);

	/* Read manufacturer and device IDs */
	nand_maf_id = this->read_byte(mtd);
	nand_dev_id = this->read_byte(mtd);

	/* Print and store flash device information */
	for (i = 0; nand_flash_ids[i].name != NULL; i++) {
				
		if (nand_dev_id != nand_flash_ids[i].id) 
			continue;

		if (!mtd->name) mtd->name = nand_flash_ids[i].name;
		this->chipsize = nand_flash_ids[i].chipsize << 20;
		
		/* New devices have all the information in additional id bytes */
		if (!nand_flash_ids[i].pagesize) {
			int extid;
			/* The 3rd id byte contains non relevant data ATM */
			extid = this->read_byte(mtd);
			/* The 4th id byte is the important one */
			extid = this->read_byte(mtd);
			/* Calc pagesize */
			mtd->oobblock = 1024 << (extid & 0x3);
			extid >>= 2;
			/* Calc oobsize */
			mtd->oobsize = (8 << (extid & 0x03)) * (mtd->oobblock / 512);
			extid >>= 2;
			/* Calc blocksize. Blocksize is multiples of 64KiB */
			mtd->erasesize = (64 * 1024)  << (extid & 0x03);
			extid >>= 2;
			/* Get buswidth information */
			busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
		
		} else {
			/* Old devices have this data hardcoded in the
			 * device id table */
			mtd->erasesize = nand_flash_ids[i].erasesize;
			mtd->oobblock = nand_flash_ids[i].pagesize;
			mtd->oobsize = mtd->oobblock / 32;
			busw = nand_flash_ids[i].options & NAND_BUSWIDTH_16;
		}

2381 2382 2383 2384 2385 2386
		/* Try to identify manufacturer */
		for (maf_id = 0; nand_manuf_ids[maf_id].id != 0x0; maf_id++) {
			if (nand_manuf_ids[maf_id].id == nand_maf_id)
				break;
		}

L
Linus Torvalds 已提交
2387 2388 2389 2390 2391
		/* Check, if buswidth is correct. Hardware drivers should set
		 * this correct ! */
		if (busw != (this->options & NAND_BUSWIDTH_16)) {
			printk (KERN_INFO "NAND device: Manufacturer ID:"
				" 0x%02x, Chip ID: 0x%02x (%s %s)\n", nand_maf_id, nand_dev_id, 
2392
				nand_manuf_ids[maf_id].name , mtd->name);
L
Linus Torvalds 已提交
2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
			printk (KERN_WARNING 
				"NAND bus width %d instead %d bit\n", 
					(this->options & NAND_BUSWIDTH_16) ? 16 : 8,
					busw ? 16 : 8);
			this->select_chip(mtd, -1);
			return 1;	
		}
		
		/* Calculate the address shift from the page size */	
		this->page_shift = ffs(mtd->oobblock) - 1;
		this->bbt_erase_shift = this->phys_erase_shift = ffs(mtd->erasesize) - 1;
		this->chip_shift = ffs(this->chipsize) - 1;

		/* Set the bad block position */
		this->badblockpos = mtd->oobblock > 512 ? 
			NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS;

		/* Get chip options, preserve non chip based options */
		this->options &= ~NAND_CHIPOPTIONS_MSK;
		this->options |= nand_flash_ids[i].options & NAND_CHIPOPTIONS_MSK;
		/* Set this as a default. Board drivers can override it, if neccecary */
		this->options |= NAND_NO_AUTOINCR;
		/* Check if this is a not a samsung device. Do not clear the options
		 * for chips which are not having an extended id.
		 */	
		if (nand_maf_id != NAND_MFR_SAMSUNG && !nand_flash_ids[i].pagesize)
			this->options &= ~NAND_SAMSUNG_LP_OPTIONS;
		
		/* Check for AND chips with 4 page planes */
		if (this->options & NAND_4PAGE_ARRAY)
			this->erase_cmd = multi_erase_cmd;
		else
			this->erase_cmd = single_erase_cmd;

		/* Do not replace user supplied command function ! */
		if (mtd->oobblock > 512 && this->cmdfunc == nand_command)
			this->cmdfunc = nand_command_lp;
				
		printk (KERN_INFO "NAND device: Manufacturer ID:"
			" 0x%02x, Chip ID: 0x%02x (%s %s)\n", nand_maf_id, nand_dev_id, 
2433
			nand_manuf_ids[maf_id].name , nand_flash_ids[i].name);
L
Linus Torvalds 已提交
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513
		break;
	}

	if (!nand_flash_ids[i].name) {
		printk (KERN_WARNING "No NAND device found!!!\n");
		this->select_chip(mtd, -1);
		return 1;
	}

	for (i=1; i < maxchips; i++) {
		this->select_chip(mtd, i);

		/* Send the command for reading device ID */
		this->cmdfunc (mtd, NAND_CMD_READID, 0x00, -1);

		/* Read manufacturer and device IDs */
		if (nand_maf_id != this->read_byte(mtd) ||
		    nand_dev_id != this->read_byte(mtd))
			break;
	}
	if (i > 1)
		printk(KERN_INFO "%d NAND chips detected\n", i);
	
	/* Allocate buffers, if neccecary */
	if (!this->oob_buf) {
		size_t len;
		len = mtd->oobsize << (this->phys_erase_shift - this->page_shift);
		this->oob_buf = kmalloc (len, GFP_KERNEL);
		if (!this->oob_buf) {
			printk (KERN_ERR "nand_scan(): Cannot allocate oob_buf\n");
			return -ENOMEM;
		}
		this->options |= NAND_OOBBUF_ALLOC;
	}
	
	if (!this->data_buf) {
		size_t len;
		len = mtd->oobblock + mtd->oobsize;
		this->data_buf = kmalloc (len, GFP_KERNEL);
		if (!this->data_buf) {
			if (this->options & NAND_OOBBUF_ALLOC)
				kfree (this->oob_buf);
			printk (KERN_ERR "nand_scan(): Cannot allocate data_buf\n");
			return -ENOMEM;
		}
		this->options |= NAND_DATABUF_ALLOC;
	}

	/* Store the number of chips and calc total size for mtd */
	this->numchips = i;
	mtd->size = i * this->chipsize;
	/* Convert chipsize to number of pages per chip -1. */
	this->pagemask = (this->chipsize >> this->page_shift) - 1;
	/* Preset the internal oob buffer */
	memset(this->oob_buf, 0xff, mtd->oobsize << (this->phys_erase_shift - this->page_shift));

	/* If no default placement scheme is given, select an
	 * appropriate one */
	if (!this->autooob) {
		/* Select the appropriate default oob placement scheme for
		 * placement agnostic filesystems */
		switch (mtd->oobsize) { 
		case 8:
			this->autooob = &nand_oob_8;
			break;
		case 16:
			this->autooob = &nand_oob_16;
			break;
		case 64:
			this->autooob = &nand_oob_64;
			break;
		default:
			printk (KERN_WARNING "No oob scheme defined for oobsize %d\n",
				mtd->oobsize);
			BUG();
		}
	}
	
	/* The number of bytes available for the filesystem to place fs dependend
	 * oob data */
2514 2515 2516
	mtd->oobavail = 0;
	for (i = 0; this->autooob->oobfree[i][1]; i++)
		mtd->oobavail += this->autooob->oobfree[i][1];
L
Linus Torvalds 已提交
2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646

	/* 
	 * check ECC mode, default to software
	 * if 3byte/512byte hardware ECC is selected and we have 256 byte pagesize
	 * fallback to software ECC 
	*/
	this->eccsize = 256;	/* set default eccsize */	
	this->eccbytes = 3;

	switch (this->eccmode) {
	case NAND_ECC_HW12_2048:
		if (mtd->oobblock < 2048) {
			printk(KERN_WARNING "2048 byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
			       mtd->oobblock);
			this->eccmode = NAND_ECC_SOFT;
			this->calculate_ecc = nand_calculate_ecc;
			this->correct_data = nand_correct_data;
		} else
			this->eccsize = 2048;
		break;

	case NAND_ECC_HW3_512: 
	case NAND_ECC_HW6_512: 
	case NAND_ECC_HW8_512: 
		if (mtd->oobblock == 256) {
			printk (KERN_WARNING "512 byte HW ECC not possible on 256 Byte pagesize, fallback to SW ECC \n");
			this->eccmode = NAND_ECC_SOFT;
			this->calculate_ecc = nand_calculate_ecc;
			this->correct_data = nand_correct_data;
		} else 
			this->eccsize = 512; /* set eccsize to 512 */
		break;
			
	case NAND_ECC_HW3_256:
		break;
		
	case NAND_ECC_NONE: 
		printk (KERN_WARNING "NAND_ECC_NONE selected by board driver. This is not recommended !!\n");
		this->eccmode = NAND_ECC_NONE;
		break;

	case NAND_ECC_SOFT:	
		this->calculate_ecc = nand_calculate_ecc;
		this->correct_data = nand_correct_data;
		break;

	default:
		printk (KERN_WARNING "Invalid NAND_ECC_MODE %d\n", this->eccmode);
		BUG();	
	}	

	/* Check hardware ecc function availability and adjust number of ecc bytes per 
	 * calculation step
	*/
	switch (this->eccmode) {
	case NAND_ECC_HW12_2048:
		this->eccbytes += 4;
	case NAND_ECC_HW8_512: 
		this->eccbytes += 2;
	case NAND_ECC_HW6_512: 
		this->eccbytes += 3;
	case NAND_ECC_HW3_512: 
	case NAND_ECC_HW3_256:
		if (this->calculate_ecc && this->correct_data && this->enable_hwecc)
			break;
		printk (KERN_WARNING "No ECC functions supplied, Hardware ECC not possible\n");
		BUG();	
	}
		
	mtd->eccsize = this->eccsize;
	
	/* Set the number of read / write steps for one page to ensure ECC generation */
	switch (this->eccmode) {
	case NAND_ECC_HW12_2048:
		this->eccsteps = mtd->oobblock / 2048;
		break;
	case NAND_ECC_HW3_512:
	case NAND_ECC_HW6_512:
	case NAND_ECC_HW8_512:
		this->eccsteps = mtd->oobblock / 512;
		break;
	case NAND_ECC_HW3_256:
	case NAND_ECC_SOFT:	
		this->eccsteps = mtd->oobblock / 256;
		break;
		
	case NAND_ECC_NONE: 
		this->eccsteps = 1;
		break;
	}
	
	/* Initialize state, waitqueue and spinlock */
	this->state = FL_READY;
	init_waitqueue_head (&this->wq);
	spin_lock_init (&this->chip_lock);

	/* De-select the device */
	this->select_chip(mtd, -1);

	/* Invalidate the pagebuffer reference */
	this->pagebuf = -1;

	/* Fill in remaining MTD driver data */
	mtd->type = MTD_NANDFLASH;
	mtd->flags = MTD_CAP_NANDFLASH | MTD_ECC;
	mtd->ecctype = MTD_ECC_SW;
	mtd->erase = nand_erase;
	mtd->point = NULL;
	mtd->unpoint = NULL;
	mtd->read = nand_read;
	mtd->write = nand_write;
	mtd->read_ecc = nand_read_ecc;
	mtd->write_ecc = nand_write_ecc;
	mtd->read_oob = nand_read_oob;
	mtd->write_oob = nand_write_oob;
	mtd->readv = NULL;
	mtd->writev = nand_writev;
	mtd->writev_ecc = nand_writev_ecc;
	mtd->sync = nand_sync;
	mtd->lock = NULL;
	mtd->unlock = NULL;
	mtd->suspend = NULL;
	mtd->resume = NULL;
	mtd->block_isbad = nand_block_isbad;
	mtd->block_markbad = nand_block_markbad;

	/* and make the autooob the default one */
	memcpy(&mtd->oobinfo, this->autooob, sizeof(mtd->oobinfo));

	mtd->owner = THIS_MODULE;
2647 2648 2649 2650
	
	/* Check, if we should skip the bad block table scan */
	if (this->options & NAND_SKIP_BBTSCAN)
		return 0;
L
Linus Torvalds 已提交
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687

	/* Build bad block table */
	return this->scan_bbt (mtd);
}

/**
 * nand_release - [NAND Interface] Free resources held by the NAND device 
 * @mtd:	MTD device structure
*/
void nand_release (struct mtd_info *mtd)
{
	struct nand_chip *this = mtd->priv;

#ifdef CONFIG_MTD_PARTITIONS
	/* Deregister partitions */
	del_mtd_partitions (mtd);
#endif
	/* Deregister the device */
	del_mtd_device (mtd);

	/* Free bad block table memory, if allocated */
	if (this->bbt)
		kfree (this->bbt);
	/* Buffer allocated by nand_scan ? */
	if (this->options & NAND_OOBBUF_ALLOC)
		kfree (this->oob_buf);
	/* Buffer allocated by nand_scan ? */
	if (this->options & NAND_DATABUF_ALLOC)
		kfree (this->data_buf);
}

EXPORT_SYMBOL (nand_scan);
EXPORT_SYMBOL (nand_release);

MODULE_LICENSE ("GPL");
MODULE_AUTHOR ("Steven J. Hill <sjhill@realitydiluted.com>, Thomas Gleixner <tglx@linutronix.de>");
MODULE_DESCRIPTION ("Generic NAND flash driver code");