slub.c 106.4 KB
Newer Older
C
Christoph Lameter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * SLUB: A slab allocator that limits cache line use instead of queuing
 * objects in per cpu and per node lists.
 *
 * The allocator synchronizes using per slab locks and only
 * uses a centralized lock to manage a pool of partial slabs.
 *
 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/seq_file.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
#include <linux/kallsyms.h>
23
#include <linux/memory.h>
C
Christoph Lameter 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

/*
 * Lock order:
 *   1. slab_lock(page)
 *   2. slab->list_lock
 *
 *   The slab_lock protects operations on the object of a particular
 *   slab and its metadata in the page struct. If the slab lock
 *   has been taken then no allocations nor frees can be performed
 *   on the objects in the slab nor can the slab be added or removed
 *   from the partial or full lists since this would mean modifying
 *   the page_struct of the slab.
 *
 *   The list_lock protects the partial and full list on each node and
 *   the partial slab counter. If taken then no new slabs may be added or
 *   removed from the lists nor make the number of partial slabs be modified.
 *   (Note that the total number of slabs is an atomic value that may be
 *   modified without taking the list lock).
 *
 *   The list_lock is a centralized lock and thus we avoid taking it as
 *   much as possible. As long as SLUB does not have to handle partial
 *   slabs, operations can continue without any centralized lock. F.e.
 *   allocating a long series of objects that fill up slabs does not require
 *   the list lock.
 *
 *   The lock order is sometimes inverted when we are trying to get a slab
 *   off a list. We take the list_lock and then look for a page on the list
 *   to use. While we do that objects in the slabs may be freed. We can
 *   only operate on the slab if we have also taken the slab_lock. So we use
 *   a slab_trylock() on the slab. If trylock was successful then no frees
 *   can occur anymore and we can use the slab for allocations etc. If the
 *   slab_trylock() does not succeed then frees are in progress in the slab and
 *   we must stay away from it for a while since we may cause a bouncing
 *   cacheline if we try to acquire the lock. So go onto the next slab.
 *   If all pages are busy then we may allocate a new slab instead of reusing
 *   a partial slab. A new slab has noone operating on it and thus there is
 *   no danger of cacheline contention.
 *
 *   Interrupts are disabled during allocation and deallocation in order to
 *   make the slab allocator safe to use in the context of an irq. In addition
 *   interrupts are disabled to ensure that the processor does not change
 *   while handling per_cpu slabs, due to kernel preemption.
 *
 * SLUB assigns one slab for allocation to each processor.
 * Allocations only occur from these slabs called cpu slabs.
 *
C
Christoph Lameter 已提交
70 71
 * Slabs with free elements are kept on a partial list and during regular
 * operations no list for full slabs is used. If an object in a full slab is
C
Christoph Lameter 已提交
72
 * freed then the slab will show up again on the partial lists.
C
Christoph Lameter 已提交
73 74
 * We track full slabs for debugging purposes though because otherwise we
 * cannot scan all objects.
C
Christoph Lameter 已提交
75 76 77 78 79 80 81
 *
 * Slabs are freed when they become empty. Teardown and setup is
 * minimal so we rely on the page allocators per cpu caches for
 * fast frees and allocs.
 *
 * Overloading of page flags that are otherwise used for LRU management.
 *
82 83 84 85 86 87 88 89 90 91 92 93
 * PageActive 		The slab is frozen and exempt from list processing.
 * 			This means that the slab is dedicated to a purpose
 * 			such as satisfying allocations for a specific
 * 			processor. Objects may be freed in the slab while
 * 			it is frozen but slab_free will then skip the usual
 * 			list operations. It is up to the processor holding
 * 			the slab to integrate the slab into the slab lists
 * 			when the slab is no longer needed.
 *
 * 			One use of this flag is to mark slabs that are
 * 			used for allocations. Then such a slab becomes a cpu
 * 			slab. The cpu slab may be equipped with an additional
94
 * 			freelist that allows lockless access to
95 96
 * 			free objects in addition to the regular freelist
 * 			that requires the slab lock.
C
Christoph Lameter 已提交
97 98 99
 *
 * PageError		Slab requires special handling due to debug
 * 			options set. This moves	slab handling out of
100
 * 			the fast path and disables lockless freelists.
C
Christoph Lameter 已提交
101 102
 */

103 104 105 106 107 108 109 110
#define FROZEN (1 << PG_active)

#ifdef CONFIG_SLUB_DEBUG
#define SLABDEBUG (1 << PG_error)
#else
#define SLABDEBUG 0
#endif

111 112
static inline int SlabFrozen(struct page *page)
{
113
	return page->flags & FROZEN;
114 115 116 117
}

static inline void SetSlabFrozen(struct page *page)
{
118
	page->flags |= FROZEN;
119 120 121 122
}

static inline void ClearSlabFrozen(struct page *page)
{
123
	page->flags &= ~FROZEN;
124 125
}

126 127
static inline int SlabDebug(struct page *page)
{
128
	return page->flags & SLABDEBUG;
129 130 131 132
}

static inline void SetSlabDebug(struct page *page)
{
133
	page->flags |= SLABDEBUG;
134 135 136 137
}

static inline void ClearSlabDebug(struct page *page)
{
138
	page->flags &= ~SLABDEBUG;
139 140
}

C
Christoph Lameter 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
/*
 * Issues still to be resolved:
 *
 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 *
 * - Variable sizing of the per node arrays
 */

/* Enable to test recovery from slab corruption on boot */
#undef SLUB_RESILIENCY_TEST

#if PAGE_SHIFT <= 12

/*
 * Small page size. Make sure that we do not fragment memory
 */
#define DEFAULT_MAX_ORDER 1
#define DEFAULT_MIN_OBJECTS 4

#else

/*
 * Large page machines are customarily able to handle larger
 * page orders.
 */
#define DEFAULT_MAX_ORDER 2
#define DEFAULT_MIN_OBJECTS 8

#endif

171 172 173 174
/*
 * Mininum number of partial slabs. These will be left on the partial
 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 */
C
Christoph Lameter 已提交
175
#define MIN_PARTIAL 5
C
Christoph Lameter 已提交
176

177 178 179 180 181 182 183
/*
 * Maximum number of desirable partial slabs.
 * The existence of more partial slabs makes kmem_cache_shrink
 * sort the partial list by the number of objects in the.
 */
#define MAX_PARTIAL 10

C
Christoph Lameter 已提交
184 185
#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
				SLAB_POISON | SLAB_STORE_USER)
C
Christoph Lameter 已提交
186

C
Christoph Lameter 已提交
187 188 189 190 191 192 193 194 195 196
/*
 * Set of flags that will prevent slab merging
 */
#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
		SLAB_TRACE | SLAB_DESTROY_BY_RCU)

#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
		SLAB_CACHE_DMA)

#ifndef ARCH_KMALLOC_MINALIGN
197
#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
C
Christoph Lameter 已提交
198 199 200
#endif

#ifndef ARCH_SLAB_MINALIGN
201
#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
C
Christoph Lameter 已提交
202 203 204
#endif

/* Internal SLUB flags */
205 206
#define __OBJECT_POISON		0x80000000 /* Poison object */
#define __SYSFS_ADD_DEFERRED	0x40000000 /* Not yet visible via sysfs */
207 208
#define __KMALLOC_CACHE		0x20000000 /* objects freed using kfree */
#define __PAGE_ALLOC_FALLBACK	0x10000000 /* Allow fallback to page alloc */
C
Christoph Lameter 已提交
209

210 211 212 213 214
/* Not all arches define cache_line_size */
#ifndef cache_line_size
#define cache_line_size()	L1_CACHE_BYTES
#endif

C
Christoph Lameter 已提交
215 216 217 218 219 220 221 222 223
static int kmem_size = sizeof(struct kmem_cache);

#ifdef CONFIG_SMP
static struct notifier_block slab_notifier;
#endif

static enum {
	DOWN,		/* No slab functionality available */
	PARTIAL,	/* kmem_cache_open() works but kmalloc does not */
C
Christoph Lameter 已提交
224
	UP,		/* Everything works but does not show up in sysfs */
C
Christoph Lameter 已提交
225 226 227 228 229
	SYSFS		/* Sysfs up */
} slab_state = DOWN;

/* A list of all slab caches on the system */
static DECLARE_RWSEM(slub_lock);
A
Adrian Bunk 已提交
230
static LIST_HEAD(slab_caches);
C
Christoph Lameter 已提交
231

232 233 234 235 236 237 238 239 240 241 242 243
/*
 * Tracking user of a slab.
 */
struct track {
	void *addr;		/* Called from address */
	int cpu;		/* Was running on cpu */
	int pid;		/* Pid context */
	unsigned long when;	/* When did the operation occur */
};

enum track_item { TRACK_ALLOC, TRACK_FREE };

C
Christoph Lameter 已提交
244
#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
C
Christoph Lameter 已提交
245 246 247
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
static void sysfs_slab_remove(struct kmem_cache *);
248

C
Christoph Lameter 已提交
249
#else
250 251 252
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
							{ return 0; }
C
Christoph Lameter 已提交
253 254 255 256
static inline void sysfs_slab_remove(struct kmem_cache *s)
{
	kfree(s);
}
257

C
Christoph Lameter 已提交
258 259
#endif

260 261 262 263 264 265 266
static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
{
#ifdef CONFIG_SLUB_STATS
	c->stat[si]++;
#endif
}

C
Christoph Lameter 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
/********************************************************************
 * 			Core slab cache functions
 *******************************************************************/

int slab_is_available(void)
{
	return slab_state >= UP;
}

static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
{
#ifdef CONFIG_NUMA
	return s->node[node];
#else
	return &s->local_node;
#endif
}

285 286
static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
{
287 288 289 290 291
#ifdef CONFIG_SMP
	return s->cpu_slab[cpu];
#else
	return &s->cpu_slab;
#endif
292 293
}

C
Christoph Lameter 已提交
294
/* Verify that a pointer has an address that is valid within a slab page */
295 296 297 298 299
static inline int check_valid_pointer(struct kmem_cache *s,
				struct page *page, const void *object)
{
	void *base;

300
	if (!object)
301 302
		return 1;

303
	base = page_address(page);
304
	if (object < base || object >= base + page->objects * s->size ||
305 306 307 308 309 310 311
		(object - base) % s->size) {
		return 0;
	}

	return 1;
}

312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
/*
 * Slow version of get and set free pointer.
 *
 * This version requires touching the cache lines of kmem_cache which
 * we avoid to do in the fast alloc free paths. There we obtain the offset
 * from the page struct.
 */
static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
	return *(void **)(object + s->offset);
}

static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
	*(void **)(object + s->offset) = fp;
}

/* Loop over all objects in a slab */
330 331
#define for_each_object(__p, __s, __addr, __objects) \
	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
332 333 334 335
			__p += (__s)->size)

/* Scan freelist */
#define for_each_free_object(__p, __s, __free) \
336
	for (__p = (__free); __p; __p = get_freepointer((__s), __p))
337 338 339 340 341 342 343

/* Determine object index from a given position */
static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
{
	return (p - addr) / s->size;
}

344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
static inline struct kmem_cache_order_objects oo_make(int order,
						unsigned long size)
{
	struct kmem_cache_order_objects x = {
		(order << 16) + (PAGE_SIZE << order) / size
	};

	return x;
}

static inline int oo_order(struct kmem_cache_order_objects x)
{
	return x.x >> 16;
}

static inline int oo_objects(struct kmem_cache_order_objects x)
{
	return x.x & ((1 << 16) - 1);
}

C
Christoph Lameter 已提交
364 365 366 367
#ifdef CONFIG_SLUB_DEBUG
/*
 * Debug settings:
 */
368 369 370
#ifdef CONFIG_SLUB_DEBUG_ON
static int slub_debug = DEBUG_DEFAULT_FLAGS;
#else
C
Christoph Lameter 已提交
371
static int slub_debug;
372
#endif
C
Christoph Lameter 已提交
373 374 375

static char *slub_debug_slabs;

C
Christoph Lameter 已提交
376 377 378 379 380 381 382 383 384 385 386 387 388
/*
 * Object debugging
 */
static void print_section(char *text, u8 *addr, unsigned int length)
{
	int i, offset;
	int newline = 1;
	char ascii[17];

	ascii[16] = 0;

	for (i = 0; i < length; i++) {
		if (newline) {
389
			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
C
Christoph Lameter 已提交
390 391
			newline = 0;
		}
P
Pekka Enberg 已提交
392
		printk(KERN_CONT " %02x", addr[i]);
C
Christoph Lameter 已提交
393 394 395
		offset = i % 16;
		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
		if (offset == 15) {
P
Pekka Enberg 已提交
396
			printk(KERN_CONT " %s\n", ascii);
C
Christoph Lameter 已提交
397 398 399 400 401 402
			newline = 1;
		}
	}
	if (!newline) {
		i %= 16;
		while (i < 16) {
P
Pekka Enberg 已提交
403
			printk(KERN_CONT "   ");
C
Christoph Lameter 已提交
404 405 406
			ascii[i] = ' ';
			i++;
		}
P
Pekka Enberg 已提交
407
		printk(KERN_CONT " %s\n", ascii);
C
Christoph Lameter 已提交
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
	}
}

static struct track *get_track(struct kmem_cache *s, void *object,
	enum track_item alloc)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	return p + alloc;
}

static void set_track(struct kmem_cache *s, void *object,
				enum track_item alloc, void *addr)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	p += alloc;
	if (addr) {
		p->addr = addr;
		p->cpu = smp_processor_id();
		p->pid = current ? current->pid : -1;
		p->when = jiffies;
	} else
		memset(p, 0, sizeof(struct track));
}

static void init_tracking(struct kmem_cache *s, void *object)
{
446 447 448 449 450
	if (!(s->flags & SLAB_STORE_USER))
		return;

	set_track(s, object, TRACK_FREE, NULL);
	set_track(s, object, TRACK_ALLOC, NULL);
C
Christoph Lameter 已提交
451 452 453 454 455 456 457
}

static void print_track(const char *s, struct track *t)
{
	if (!t->addr)
		return;

458
	printk(KERN_ERR "INFO: %s in ", s);
C
Christoph Lameter 已提交
459
	__print_symbol("%s", (unsigned long)t->addr);
460 461 462 463 464 465 466 467 468 469 470 471 472 473
	printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
}

static void print_tracking(struct kmem_cache *s, void *object)
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
	print_track("Freed", get_track(s, object, TRACK_FREE));
}

static void print_page_info(struct page *page)
{
474 475
	printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
		page, page->objects, page->inuse, page->freelist, page->flags);
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491

}

static void slab_bug(struct kmem_cache *s, char *fmt, ...)
{
	va_list args;
	char buf[100];

	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
	va_end(args);
	printk(KERN_ERR "========================================"
			"=====================================\n");
	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
	printk(KERN_ERR "----------------------------------------"
			"-------------------------------------\n\n");
C
Christoph Lameter 已提交
492 493
}

494 495 496 497 498 499 500 501 502 503 504 505
static void slab_fix(struct kmem_cache *s, char *fmt, ...)
{
	va_list args;
	char buf[100];

	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
	va_end(args);
	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
}

static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
C
Christoph Lameter 已提交
506 507
{
	unsigned int off;	/* Offset of last byte */
508
	u8 *addr = page_address(page);
509 510 511 512 513 514 515 516 517 518 519 520

	print_tracking(s, p);

	print_page_info(page);

	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
			p, p - addr, get_freepointer(s, p));

	if (p > addr + 16)
		print_section("Bytes b4", p - 16, 16);

	print_section("Object", p, min(s->objsize, 128));
C
Christoph Lameter 已提交
521 522 523 524 525 526 527 528 529 530

	if (s->flags & SLAB_RED_ZONE)
		print_section("Redzone", p + s->objsize,
			s->inuse - s->objsize);

	if (s->offset)
		off = s->offset + sizeof(void *);
	else
		off = s->inuse;

531
	if (s->flags & SLAB_STORE_USER)
C
Christoph Lameter 已提交
532 533 534 535
		off += 2 * sizeof(struct track);

	if (off != s->size)
		/* Beginning of the filler is the free pointer */
536 537 538
		print_section("Padding", p + off, s->size - off);

	dump_stack();
C
Christoph Lameter 已提交
539 540 541 542 543
}

static void object_err(struct kmem_cache *s, struct page *page,
			u8 *object, char *reason)
{
544
	slab_bug(s, "%s", reason);
545
	print_trailer(s, page, object);
C
Christoph Lameter 已提交
546 547
}

548
static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
C
Christoph Lameter 已提交
549 550 551 552
{
	va_list args;
	char buf[100];

553 554
	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
C
Christoph Lameter 已提交
555
	va_end(args);
556
	slab_bug(s, "%s", buf);
557
	print_page_info(page);
C
Christoph Lameter 已提交
558 559 560 561 562 563 564 565 566
	dump_stack();
}

static void init_object(struct kmem_cache *s, void *object, int active)
{
	u8 *p = object;

	if (s->flags & __OBJECT_POISON) {
		memset(p, POISON_FREE, s->objsize - 1);
P
Pekka Enberg 已提交
567
		p[s->objsize - 1] = POISON_END;
C
Christoph Lameter 已提交
568 569 570 571 572 573 574 575
	}

	if (s->flags & SLAB_RED_ZONE)
		memset(p + s->objsize,
			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
			s->inuse - s->objsize);
}

576
static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
C
Christoph Lameter 已提交
577 578 579
{
	while (bytes) {
		if (*start != (u8)value)
580
			return start;
C
Christoph Lameter 已提交
581 582 583
		start++;
		bytes--;
	}
584 585 586 587 588 589 590 591 592 593 594 595
	return NULL;
}

static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
						void *from, void *to)
{
	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
	memset(from, data, to - from);
}

static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
			u8 *object, char *what,
P
Pekka Enberg 已提交
596
			u8 *start, unsigned int value, unsigned int bytes)
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
{
	u8 *fault;
	u8 *end;

	fault = check_bytes(start, value, bytes);
	if (!fault)
		return 1;

	end = start + bytes;
	while (end > fault && end[-1] == value)
		end--;

	slab_bug(s, "%s overwritten", what);
	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
					fault, end - 1, fault[0], value);
	print_trailer(s, page, object);

	restore_bytes(s, what, value, fault, end);
	return 0;
C
Christoph Lameter 已提交
616 617 618 619 620 621 622 623 624
}

/*
 * Object layout:
 *
 * object address
 * 	Bytes of the object to be managed.
 * 	If the freepointer may overlay the object then the free
 * 	pointer is the first word of the object.
C
Christoph Lameter 已提交
625
 *
C
Christoph Lameter 已提交
626 627 628 629 630
 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 * 	0xa5 (POISON_END)
 *
 * object + s->objsize
 * 	Padding to reach word boundary. This is also used for Redzoning.
C
Christoph Lameter 已提交
631 632 633
 * 	Padding is extended by another word if Redzoning is enabled and
 * 	objsize == inuse.
 *
C
Christoph Lameter 已提交
634 635 636 637
 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 * 	0xcc (RED_ACTIVE) for objects in use.
 *
 * object + s->inuse
C
Christoph Lameter 已提交
638 639
 * 	Meta data starts here.
 *
C
Christoph Lameter 已提交
640 641
 * 	A. Free pointer (if we cannot overwrite object on free)
 * 	B. Tracking data for SLAB_STORE_USER
C
Christoph Lameter 已提交
642
 * 	C. Padding to reach required alignment boundary or at mininum
C
Christoph Lameter 已提交
643
 * 		one word if debugging is on to be able to detect writes
C
Christoph Lameter 已提交
644 645 646
 * 		before the word boundary.
 *
 *	Padding is done using 0x5a (POISON_INUSE)
C
Christoph Lameter 已提交
647 648
 *
 * object + s->size
C
Christoph Lameter 已提交
649
 * 	Nothing is used beyond s->size.
C
Christoph Lameter 已提交
650
 *
C
Christoph Lameter 已提交
651 652
 * If slabcaches are merged then the objsize and inuse boundaries are mostly
 * ignored. And therefore no slab options that rely on these boundaries
C
Christoph Lameter 已提交
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
 * may be used with merged slabcaches.
 */

static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
{
	unsigned long off = s->inuse;	/* The end of info */

	if (s->offset)
		/* Freepointer is placed after the object. */
		off += sizeof(void *);

	if (s->flags & SLAB_STORE_USER)
		/* We also have user information there */
		off += 2 * sizeof(struct track);

	if (s->size == off)
		return 1;

671 672
	return check_bytes_and_report(s, page, p, "Object padding",
				p + off, POISON_INUSE, s->size - off);
C
Christoph Lameter 已提交
673 674
}

675
/* Check the pad bytes at the end of a slab page */
C
Christoph Lameter 已提交
676 677
static int slab_pad_check(struct kmem_cache *s, struct page *page)
{
678 679 680 681 682
	u8 *start;
	u8 *fault;
	u8 *end;
	int length;
	int remainder;
C
Christoph Lameter 已提交
683 684 685 686

	if (!(s->flags & SLAB_POISON))
		return 1;

687
	start = page_address(page);
688
	length = (PAGE_SIZE << compound_order(page));
689 690
	end = start + length;
	remainder = length % s->size;
C
Christoph Lameter 已提交
691 692 693
	if (!remainder)
		return 1;

694
	fault = check_bytes(end - remainder, POISON_INUSE, remainder);
695 696 697 698 699 700
	if (!fault)
		return 1;
	while (end > fault && end[-1] == POISON_INUSE)
		end--;

	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
701
	print_section("Padding", end - remainder, remainder);
702 703 704

	restore_bytes(s, "slab padding", POISON_INUSE, start, end);
	return 0;
C
Christoph Lameter 已提交
705 706 707 708 709 710 711 712 713 714 715 716
}

static int check_object(struct kmem_cache *s, struct page *page,
					void *object, int active)
{
	u8 *p = object;
	u8 *endobject = object + s->objsize;

	if (s->flags & SLAB_RED_ZONE) {
		unsigned int red =
			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;

717 718
		if (!check_bytes_and_report(s, page, object, "Redzone",
			endobject, red, s->inuse - s->objsize))
C
Christoph Lameter 已提交
719 720
			return 0;
	} else {
I
Ingo Molnar 已提交
721 722 723 724
		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
			check_bytes_and_report(s, page, p, "Alignment padding",
				endobject, POISON_INUSE, s->inuse - s->objsize);
		}
C
Christoph Lameter 已提交
725 726 727 728
	}

	if (s->flags & SLAB_POISON) {
		if (!active && (s->flags & __OBJECT_POISON) &&
729 730 731
			(!check_bytes_and_report(s, page, p, "Poison", p,
					POISON_FREE, s->objsize - 1) ||
			 !check_bytes_and_report(s, page, p, "Poison",
P
Pekka Enberg 已提交
732
				p + s->objsize - 1, POISON_END, 1)))
C
Christoph Lameter 已提交
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
			return 0;
		/*
		 * check_pad_bytes cleans up on its own.
		 */
		check_pad_bytes(s, page, p);
	}

	if (!s->offset && active)
		/*
		 * Object and freepointer overlap. Cannot check
		 * freepointer while object is allocated.
		 */
		return 1;

	/* Check free pointer validity */
	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
		object_err(s, page, p, "Freepointer corrupt");
		/*
		 * No choice but to zap it and thus loose the remainder
		 * of the free objects in this slab. May cause
C
Christoph Lameter 已提交
753
		 * another error because the object count is now wrong.
C
Christoph Lameter 已提交
754
		 */
755
		set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
756 757 758 759 760 761 762
		return 0;
	}
	return 1;
}

static int check_slab(struct kmem_cache *s, struct page *page)
{
763 764
	int maxobj;

C
Christoph Lameter 已提交
765 766 767
	VM_BUG_ON(!irqs_disabled());

	if (!PageSlab(page)) {
768
		slab_err(s, page, "Not a valid slab page");
C
Christoph Lameter 已提交
769 770
		return 0;
	}
771 772 773 774 775 776 777 778

	maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
	if (page->objects > maxobj) {
		slab_err(s, page, "objects %u > max %u",
			s->name, page->objects, maxobj);
		return 0;
	}
	if (page->inuse > page->objects) {
779
		slab_err(s, page, "inuse %u > max %u",
780
			s->name, page->inuse, page->objects);
C
Christoph Lameter 已提交
781 782 783 784 785 786 787 788
		return 0;
	}
	/* Slab_pad_check fixes things up after itself */
	slab_pad_check(s, page);
	return 1;
}

/*
C
Christoph Lameter 已提交
789 790
 * Determine if a certain object on a page is on the freelist. Must hold the
 * slab lock to guarantee that the chains are in a consistent state.
C
Christoph Lameter 已提交
791 792 793 794 795 796
 */
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
	int nr = 0;
	void *fp = page->freelist;
	void *object = NULL;
797
	unsigned long max_objects;
C
Christoph Lameter 已提交
798

799
	while (fp && nr <= page->objects) {
C
Christoph Lameter 已提交
800 801 802 803 804 805
		if (fp == search)
			return 1;
		if (!check_valid_pointer(s, page, fp)) {
			if (object) {
				object_err(s, page, object,
					"Freechain corrupt");
806
				set_freepointer(s, object, NULL);
C
Christoph Lameter 已提交
807 808
				break;
			} else {
809
				slab_err(s, page, "Freepointer corrupt");
810
				page->freelist = NULL;
811
				page->inuse = page->objects;
812
				slab_fix(s, "Freelist cleared");
C
Christoph Lameter 已提交
813 814 815 816 817 818 819 820 821
				return 0;
			}
			break;
		}
		object = fp;
		fp = get_freepointer(s, object);
		nr++;
	}

822 823 824 825 826 827 828 829 830 831
	max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
	if (max_objects > 65535)
		max_objects = 65535;

	if (page->objects != max_objects) {
		slab_err(s, page, "Wrong number of objects. Found %d but "
			"should be %d", page->objects, max_objects);
		page->objects = max_objects;
		slab_fix(s, "Number of objects adjusted.");
	}
832
	if (page->inuse != page->objects - nr) {
833
		slab_err(s, page, "Wrong object count. Counter is %d but "
834 835
			"counted were %d", page->inuse, page->objects - nr);
		page->inuse = page->objects - nr;
836
		slab_fix(s, "Object count adjusted.");
C
Christoph Lameter 已提交
837 838 839 840
	}
	return search == NULL;
}

C
Christoph Lameter 已提交
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
{
	if (s->flags & SLAB_TRACE) {
		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
			s->name,
			alloc ? "alloc" : "free",
			object, page->inuse,
			page->freelist);

		if (!alloc)
			print_section("Object", (void *)object, s->objsize);

		dump_stack();
	}
}

857
/*
C
Christoph Lameter 已提交
858
 * Tracking of fully allocated slabs for debugging purposes.
859
 */
C
Christoph Lameter 已提交
860
static void add_full(struct kmem_cache_node *n, struct page *page)
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
{
	spin_lock(&n->list_lock);
	list_add(&page->lru, &n->full);
	spin_unlock(&n->list_lock);
}

static void remove_full(struct kmem_cache *s, struct page *page)
{
	struct kmem_cache_node *n;

	if (!(s->flags & SLAB_STORE_USER))
		return;

	n = get_node(s, page_to_nid(page));

	spin_lock(&n->list_lock);
	list_del(&page->lru);
	spin_unlock(&n->list_lock);
}

881 882 883 884 885 886 887 888
/* Tracking of the number of slabs for debugging purposes */
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
{
	struct kmem_cache_node *n = get_node(s, node);

	return atomic_long_read(&n->nr_slabs);
}

889
static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
890 891 892 893 894 895 896 897 898
{
	struct kmem_cache_node *n = get_node(s, node);

	/*
	 * May be called early in order to allocate a slab for the
	 * kmem_cache_node structure. Solve the chicken-egg
	 * dilemma by deferring the increment of the count during
	 * bootstrap (see early_kmem_cache_node_alloc).
	 */
899
	if (!NUMA_BUILD || n) {
900
		atomic_long_inc(&n->nr_slabs);
901 902
		atomic_long_add(objects, &n->total_objects);
	}
903
}
904
static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
905 906 907 908
{
	struct kmem_cache_node *n = get_node(s, node);

	atomic_long_dec(&n->nr_slabs);
909
	atomic_long_sub(objects, &n->total_objects);
910 911 912
}

/* Object debug checks for alloc/free paths */
C
Christoph Lameter 已提交
913 914 915 916 917 918 919 920 921 922 923 924
static void setup_object_debug(struct kmem_cache *s, struct page *page,
								void *object)
{
	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
		return;

	init_object(s, object, 0);
	init_tracking(s, object);
}

static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
						void *object, void *addr)
C
Christoph Lameter 已提交
925 926 927 928
{
	if (!check_slab(s, page))
		goto bad;

929
	if (!on_freelist(s, page, object)) {
930
		object_err(s, page, object, "Object already allocated");
931
		goto bad;
C
Christoph Lameter 已提交
932 933 934 935
	}

	if (!check_valid_pointer(s, page, object)) {
		object_err(s, page, object, "Freelist Pointer check fails");
936
		goto bad;
C
Christoph Lameter 已提交
937 938
	}

939
	if (!check_object(s, page, object, 0))
C
Christoph Lameter 已提交
940 941
		goto bad;

C
Christoph Lameter 已提交
942 943 944 945 946
	/* Success perform special debug activities for allocs */
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_ALLOC, addr);
	trace(s, page, object, 1);
	init_object(s, object, 1);
C
Christoph Lameter 已提交
947
	return 1;
C
Christoph Lameter 已提交
948

C
Christoph Lameter 已提交
949 950 951 952 953
bad:
	if (PageSlab(page)) {
		/*
		 * If this is a slab page then lets do the best we can
		 * to avoid issues in the future. Marking all objects
C
Christoph Lameter 已提交
954
		 * as used avoids touching the remaining objects.
C
Christoph Lameter 已提交
955
		 */
956
		slab_fix(s, "Marking all objects used");
957
		page->inuse = page->objects;
958
		page->freelist = NULL;
C
Christoph Lameter 已提交
959 960 961 962
	}
	return 0;
}

C
Christoph Lameter 已提交
963 964
static int free_debug_processing(struct kmem_cache *s, struct page *page,
						void *object, void *addr)
C
Christoph Lameter 已提交
965 966 967 968 969
{
	if (!check_slab(s, page))
		goto fail;

	if (!check_valid_pointer(s, page, object)) {
970
		slab_err(s, page, "Invalid object pointer 0x%p", object);
C
Christoph Lameter 已提交
971 972 973 974
		goto fail;
	}

	if (on_freelist(s, page, object)) {
975
		object_err(s, page, object, "Object already free");
C
Christoph Lameter 已提交
976 977 978 979 980 981 982
		goto fail;
	}

	if (!check_object(s, page, object, 1))
		return 0;

	if (unlikely(s != page->slab)) {
I
Ingo Molnar 已提交
983
		if (!PageSlab(page)) {
984 985
			slab_err(s, page, "Attempt to free object(0x%p) "
				"outside of slab", object);
I
Ingo Molnar 已提交
986
		} else if (!page->slab) {
C
Christoph Lameter 已提交
987
			printk(KERN_ERR
988
				"SLUB <none>: no slab for object 0x%p.\n",
C
Christoph Lameter 已提交
989
						object);
990
			dump_stack();
P
Pekka Enberg 已提交
991
		} else
992 993
			object_err(s, page, object,
					"page slab pointer corrupt.");
C
Christoph Lameter 已提交
994 995
		goto fail;
	}
C
Christoph Lameter 已提交
996 997

	/* Special debug activities for freeing objects */
998
	if (!SlabFrozen(page) && !page->freelist)
C
Christoph Lameter 已提交
999 1000 1001 1002 1003
		remove_full(s, page);
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_FREE, addr);
	trace(s, page, object, 0);
	init_object(s, object, 0);
C
Christoph Lameter 已提交
1004
	return 1;
C
Christoph Lameter 已提交
1005

C
Christoph Lameter 已提交
1006
fail:
1007
	slab_fix(s, "Object at 0x%p not freed", object);
C
Christoph Lameter 已提交
1008 1009 1010
	return 0;
}

C
Christoph Lameter 已提交
1011 1012
static int __init setup_slub_debug(char *str)
{
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
	slub_debug = DEBUG_DEFAULT_FLAGS;
	if (*str++ != '=' || !*str)
		/*
		 * No options specified. Switch on full debugging.
		 */
		goto out;

	if (*str == ',')
		/*
		 * No options but restriction on slabs. This means full
		 * debugging for slabs matching a pattern.
		 */
		goto check_slabs;

	slub_debug = 0;
	if (*str == '-')
		/*
		 * Switch off all debugging measures.
		 */
		goto out;

	/*
	 * Determine which debug features should be switched on
	 */
P
Pekka Enberg 已提交
1037
	for (; *str && *str != ','; str++) {
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
		switch (tolower(*str)) {
		case 'f':
			slub_debug |= SLAB_DEBUG_FREE;
			break;
		case 'z':
			slub_debug |= SLAB_RED_ZONE;
			break;
		case 'p':
			slub_debug |= SLAB_POISON;
			break;
		case 'u':
			slub_debug |= SLAB_STORE_USER;
			break;
		case 't':
			slub_debug |= SLAB_TRACE;
			break;
		default:
			printk(KERN_ERR "slub_debug option '%c' "
P
Pekka Enberg 已提交
1056
				"unknown. skipped\n", *str);
1057
		}
C
Christoph Lameter 已提交
1058 1059
	}

1060
check_slabs:
C
Christoph Lameter 已提交
1061 1062
	if (*str == ',')
		slub_debug_slabs = str + 1;
1063
out:
C
Christoph Lameter 已提交
1064 1065 1066 1067 1068
	return 1;
}

__setup("slub_debug", setup_slub_debug);

1069 1070
static unsigned long kmem_cache_flags(unsigned long objsize,
	unsigned long flags, const char *name,
1071
	void (*ctor)(struct kmem_cache *, void *))
C
Christoph Lameter 已提交
1072 1073
{
	/*
1074
	 * Enable debugging if selected on the kernel commandline.
C
Christoph Lameter 已提交
1075
	 */
1076 1077 1078
	if (slub_debug && (!slub_debug_slabs ||
	    strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
			flags |= slub_debug;
1079 1080

	return flags;
C
Christoph Lameter 已提交
1081 1082
}
#else
C
Christoph Lameter 已提交
1083 1084
static inline void setup_object_debug(struct kmem_cache *s,
			struct page *page, void *object) {}
C
Christoph Lameter 已提交
1085

C
Christoph Lameter 已提交
1086 1087
static inline int alloc_debug_processing(struct kmem_cache *s,
	struct page *page, void *object, void *addr) { return 0; }
C
Christoph Lameter 已提交
1088

C
Christoph Lameter 已提交
1089 1090
static inline int free_debug_processing(struct kmem_cache *s,
	struct page *page, void *object, void *addr) { return 0; }
C
Christoph Lameter 已提交
1091 1092 1093 1094 1095

static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
			{ return 1; }
static inline int check_object(struct kmem_cache *s, struct page *page,
			void *object, int active) { return 1; }
C
Christoph Lameter 已提交
1096
static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1097 1098
static inline unsigned long kmem_cache_flags(unsigned long objsize,
	unsigned long flags, const char *name,
1099
	void (*ctor)(struct kmem_cache *, void *))
1100 1101 1102
{
	return flags;
}
C
Christoph Lameter 已提交
1103
#define slub_debug 0
1104 1105 1106

static inline unsigned long slabs_node(struct kmem_cache *s, int node)
							{ return 0; }
1107 1108 1109 1110
static inline void inc_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
static inline void dec_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
C
Christoph Lameter 已提交
1111
#endif
1112

C
Christoph Lameter 已提交
1113 1114 1115
/*
 * Slab allocation and freeing
 */
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
static inline struct page *alloc_slab_page(gfp_t flags, int node,
					struct kmem_cache_order_objects oo)
{
	int order = oo_order(oo);

	if (node == -1)
		return alloc_pages(flags, order);
	else
		return alloc_pages_node(node, flags, order);
}

C
Christoph Lameter 已提交
1127 1128
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
P
Pekka Enberg 已提交
1129
	struct page *page;
1130
	struct kmem_cache_order_objects oo = s->oo;
C
Christoph Lameter 已提交
1131

1132
	flags |= s->allocflags;
1133

1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
	page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
									oo);
	if (unlikely(!page)) {
		oo = s->min;
		/*
		 * Allocation may have failed due to fragmentation.
		 * Try a lower order alloc if possible
		 */
		page = alloc_slab_page(flags, node, oo);
		if (!page)
			return NULL;
C
Christoph Lameter 已提交
1145

1146 1147
		stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
	}
1148
	page->objects = oo_objects(oo);
C
Christoph Lameter 已提交
1149 1150 1151
	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1152
		1 << oo_order(oo));
C
Christoph Lameter 已提交
1153 1154 1155 1156 1157 1158 1159

	return page;
}

static void setup_object(struct kmem_cache *s, struct page *page,
				void *object)
{
C
Christoph Lameter 已提交
1160
	setup_object_debug(s, page, object);
1161
	if (unlikely(s->ctor))
1162
		s->ctor(s, object);
C
Christoph Lameter 已提交
1163 1164 1165 1166 1167 1168 1169 1170 1171
}

static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page *page;
	void *start;
	void *last;
	void *p;

C
Christoph Lameter 已提交
1172
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
C
Christoph Lameter 已提交
1173

C
Christoph Lameter 已提交
1174 1175
	page = allocate_slab(s,
		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
C
Christoph Lameter 已提交
1176 1177 1178
	if (!page)
		goto out;

1179
	inc_slabs_node(s, page_to_nid(page), page->objects);
C
Christoph Lameter 已提交
1180 1181 1182 1183
	page->slab = s;
	page->flags |= 1 << PG_slab;
	if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
			SLAB_STORE_USER | SLAB_TRACE))
1184
		SetSlabDebug(page);
C
Christoph Lameter 已提交
1185 1186 1187 1188

	start = page_address(page);

	if (unlikely(s->flags & SLAB_POISON))
1189
		memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
C
Christoph Lameter 已提交
1190 1191

	last = start;
1192
	for_each_object(p, s, start, page->objects) {
C
Christoph Lameter 已提交
1193 1194 1195 1196 1197
		setup_object(s, page, last);
		set_freepointer(s, last, p);
		last = p;
	}
	setup_object(s, page, last);
1198
	set_freepointer(s, last, NULL);
C
Christoph Lameter 已提交
1199 1200 1201 1202 1203 1204 1205 1206 1207

	page->freelist = start;
	page->inuse = 0;
out:
	return page;
}

static void __free_slab(struct kmem_cache *s, struct page *page)
{
1208 1209
	int order = compound_order(page);
	int pages = 1 << order;
C
Christoph Lameter 已提交
1210

1211
	if (unlikely(SlabDebug(page))) {
C
Christoph Lameter 已提交
1212 1213 1214
		void *p;

		slab_pad_check(s, page);
1215 1216
		for_each_object(p, s, page_address(page),
						page->objects)
C
Christoph Lameter 已提交
1217
			check_object(s, page, p, 0);
1218
		ClearSlabDebug(page);
C
Christoph Lameter 已提交
1219 1220 1221 1222 1223
	}

	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
P
Pekka Enberg 已提交
1224
		-pages);
C
Christoph Lameter 已提交
1225

1226 1227
	__ClearPageSlab(page);
	reset_page_mapcount(page);
1228
	__free_pages(page, order);
C
Christoph Lameter 已提交
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
}

static void rcu_free_slab(struct rcu_head *h)
{
	struct page *page;

	page = container_of((struct list_head *)h, struct page, lru);
	__free_slab(page->slab, page);
}

static void free_slab(struct kmem_cache *s, struct page *page)
{
	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
		/*
		 * RCU free overloads the RCU head over the LRU
		 */
		struct rcu_head *head = (void *)&page->lru;

		call_rcu(head, rcu_free_slab);
	} else
		__free_slab(s, page);
}

static void discard_slab(struct kmem_cache *s, struct page *page)
{
1254
	dec_slabs_node(s, page_to_nid(page), page->objects);
C
Christoph Lameter 已提交
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
	free_slab(s, page);
}

/*
 * Per slab locking using the pagelock
 */
static __always_inline void slab_lock(struct page *page)
{
	bit_spin_lock(PG_locked, &page->flags);
}

static __always_inline void slab_unlock(struct page *page)
{
N
Nick Piggin 已提交
1268
	__bit_spin_unlock(PG_locked, &page->flags);
C
Christoph Lameter 已提交
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
}

static __always_inline int slab_trylock(struct page *page)
{
	int rc = 1;

	rc = bit_spin_trylock(PG_locked, &page->flags);
	return rc;
}

/*
 * Management of partially allocated slabs
 */
1282 1283
static void add_partial(struct kmem_cache_node *n,
				struct page *page, int tail)
C
Christoph Lameter 已提交
1284
{
C
Christoph Lameter 已提交
1285 1286
	spin_lock(&n->list_lock);
	n->nr_partial++;
1287 1288 1289 1290
	if (tail)
		list_add_tail(&page->lru, &n->partial);
	else
		list_add(&page->lru, &n->partial);
C
Christoph Lameter 已提交
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
	spin_unlock(&n->list_lock);
}

static void remove_partial(struct kmem_cache *s,
						struct page *page)
{
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));

	spin_lock(&n->list_lock);
	list_del(&page->lru);
	n->nr_partial--;
	spin_unlock(&n->list_lock);
}

/*
C
Christoph Lameter 已提交
1306
 * Lock slab and remove from the partial list.
C
Christoph Lameter 已提交
1307
 *
C
Christoph Lameter 已提交
1308
 * Must hold list_lock.
C
Christoph Lameter 已提交
1309
 */
1310
static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
C
Christoph Lameter 已提交
1311 1312 1313 1314
{
	if (slab_trylock(page)) {
		list_del(&page->lru);
		n->nr_partial--;
1315
		SetSlabFrozen(page);
C
Christoph Lameter 已提交
1316 1317 1318 1319 1320 1321
		return 1;
	}
	return 0;
}

/*
C
Christoph Lameter 已提交
1322
 * Try to allocate a partial slab from a specific node.
C
Christoph Lameter 已提交
1323 1324 1325 1326 1327 1328 1329 1330
 */
static struct page *get_partial_node(struct kmem_cache_node *n)
{
	struct page *page;

	/*
	 * Racy check. If we mistakenly see no partial slabs then we
	 * just allocate an empty slab. If we mistakenly try to get a
C
Christoph Lameter 已提交
1331 1332
	 * partial slab and there is none available then get_partials()
	 * will return NULL.
C
Christoph Lameter 已提交
1333 1334 1335 1336 1337 1338
	 */
	if (!n || !n->nr_partial)
		return NULL;

	spin_lock(&n->list_lock);
	list_for_each_entry(page, &n->partial, lru)
1339
		if (lock_and_freeze_slab(n, page))
C
Christoph Lameter 已提交
1340 1341 1342 1343 1344 1345 1346 1347
			goto out;
	page = NULL;
out:
	spin_unlock(&n->list_lock);
	return page;
}

/*
C
Christoph Lameter 已提交
1348
 * Get a page from somewhere. Search in increasing NUMA distances.
C
Christoph Lameter 已提交
1349 1350 1351 1352 1353 1354 1355 1356 1357
 */
static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
{
#ifdef CONFIG_NUMA
	struct zonelist *zonelist;
	struct zone **z;
	struct page *page;

	/*
C
Christoph Lameter 已提交
1358 1359 1360 1361
	 * The defrag ratio allows a configuration of the tradeoffs between
	 * inter node defragmentation and node local allocations. A lower
	 * defrag_ratio increases the tendency to do local allocations
	 * instead of attempting to obtain partial slabs from other nodes.
C
Christoph Lameter 已提交
1362
	 *
C
Christoph Lameter 已提交
1363 1364 1365 1366
	 * If the defrag_ratio is set to 0 then kmalloc() always
	 * returns node local objects. If the ratio is higher then kmalloc()
	 * may return off node objects because partial slabs are obtained
	 * from other nodes and filled up.
C
Christoph Lameter 已提交
1367
	 *
C
Christoph Lameter 已提交
1368
	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
C
Christoph Lameter 已提交
1369 1370 1371 1372 1373
	 * defrag_ratio = 1000) then every (well almost) allocation will
	 * first attempt to defrag slab caches on other nodes. This means
	 * scanning over all nodes to look for partial slabs which may be
	 * expensive if we do it every time we are trying to find a slab
	 * with available objects.
C
Christoph Lameter 已提交
1374
	 */
1375 1376
	if (!s->remote_node_defrag_ratio ||
			get_cycles() % 1024 > s->remote_node_defrag_ratio)
C
Christoph Lameter 已提交
1377 1378
		return NULL;

I
Ingo Molnar 已提交
1379 1380
	zonelist = &NODE_DATA(
		slab_node(current->mempolicy))->node_zonelists[gfp_zone(flags)];
C
Christoph Lameter 已提交
1381 1382 1383 1384 1385 1386
	for (z = zonelist->zones; *z; z++) {
		struct kmem_cache_node *n;

		n = get_node(s, zone_to_nid(*z));

		if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
C
Christoph Lameter 已提交
1387
				n->nr_partial > MIN_PARTIAL) {
C
Christoph Lameter 已提交
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
			page = get_partial_node(n);
			if (page)
				return page;
		}
	}
#endif
	return NULL;
}

/*
 * Get a partial page, lock it and return it.
 */
static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page *page;
	int searchnode = (node == -1) ? numa_node_id() : node;

	page = get_partial_node(get_node(s, searchnode));
	if (page || (flags & __GFP_THISNODE))
		return page;

	return get_any_partial(s, flags);
}

/*
 * Move a page back to the lists.
 *
 * Must be called with the slab lock held.
 *
 * On exit the slab lock will have been dropped.
 */
1419
static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
C
Christoph Lameter 已提交
1420
{
C
Christoph Lameter 已提交
1421
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1422
	struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
1423

1424
	ClearSlabFrozen(page);
C
Christoph Lameter 已提交
1425
	if (page->inuse) {
C
Christoph Lameter 已提交
1426

1427
		if (page->freelist) {
1428
			add_partial(n, page, tail);
1429 1430 1431 1432 1433 1434
			stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
		} else {
			stat(c, DEACTIVATE_FULL);
			if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
				add_full(n, page);
		}
C
Christoph Lameter 已提交
1435 1436
		slab_unlock(page);
	} else {
1437
		stat(c, DEACTIVATE_EMPTY);
C
Christoph Lameter 已提交
1438 1439
		if (n->nr_partial < MIN_PARTIAL) {
			/*
C
Christoph Lameter 已提交
1440 1441 1442
			 * Adding an empty slab to the partial slabs in order
			 * to avoid page allocator overhead. This slab needs
			 * to come after the other slabs with objects in
C
Christoph Lameter 已提交
1443 1444 1445 1446 1447
			 * so that the others get filled first. That way the
			 * size of the partial list stays small.
			 *
			 * kmem_cache_shrink can reclaim any empty slabs from the
			 * partial list.
C
Christoph Lameter 已提交
1448
			 */
1449
			add_partial(n, page, 1);
C
Christoph Lameter 已提交
1450 1451 1452
			slab_unlock(page);
		} else {
			slab_unlock(page);
1453
			stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
C
Christoph Lameter 已提交
1454 1455
			discard_slab(s, page);
		}
C
Christoph Lameter 已提交
1456 1457 1458 1459 1460 1461
	}
}

/*
 * Remove the cpu slab
 */
1462
static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1463
{
1464
	struct page *page = c->page;
1465
	int tail = 1;
1466

1467
	if (page->freelist)
1468
		stat(c, DEACTIVATE_REMOTE_FREES);
1469
	/*
C
Christoph Lameter 已提交
1470
	 * Merge cpu freelist into slab freelist. Typically we get here
1471 1472 1473
	 * because both freelists are empty. So this is unlikely
	 * to occur.
	 */
1474
	while (unlikely(c->freelist)) {
1475 1476
		void **object;

1477 1478
		tail = 0;	/* Hot objects. Put the slab first */

1479
		/* Retrieve object from cpu_freelist */
1480
		object = c->freelist;
1481
		c->freelist = c->freelist[c->offset];
1482 1483

		/* And put onto the regular freelist */
1484
		object[c->offset] = page->freelist;
1485 1486 1487
		page->freelist = object;
		page->inuse--;
	}
1488
	c->page = NULL;
1489
	unfreeze_slab(s, page, tail);
C
Christoph Lameter 已提交
1490 1491
}

1492
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1493
{
1494
	stat(c, CPUSLAB_FLUSH);
1495 1496
	slab_lock(c->page);
	deactivate_slab(s, c);
C
Christoph Lameter 已提交
1497 1498 1499 1500
}

/*
 * Flush cpu slab.
C
Christoph Lameter 已提交
1501
 *
C
Christoph Lameter 已提交
1502 1503
 * Called from IPI handler with interrupts disabled.
 */
1504
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
C
Christoph Lameter 已提交
1505
{
1506
	struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
C
Christoph Lameter 已提交
1507

1508 1509
	if (likely(c && c->page))
		flush_slab(s, c);
C
Christoph Lameter 已提交
1510 1511 1512 1513 1514 1515
}

static void flush_cpu_slab(void *d)
{
	struct kmem_cache *s = d;

1516
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
}

static void flush_all(struct kmem_cache *s)
{
#ifdef CONFIG_SMP
	on_each_cpu(flush_cpu_slab, s, 1, 1);
#else
	unsigned long flags;

	local_irq_save(flags);
	flush_cpu_slab(s);
	local_irq_restore(flags);
#endif
}

1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
/*
 * Check if the objects in a per cpu structure fit numa
 * locality expectations.
 */
static inline int node_match(struct kmem_cache_cpu *c, int node)
{
#ifdef CONFIG_NUMA
	if (node != -1 && c->node != node)
		return 0;
#endif
	return 1;
}

C
Christoph Lameter 已提交
1545
/*
1546 1547 1548 1549
 * Slow path. The lockless freelist is empty or we need to perform
 * debugging duties.
 *
 * Interrupts are disabled.
C
Christoph Lameter 已提交
1550
 *
1551 1552 1553
 * Processing is still very fast if new objects have been freed to the
 * regular freelist. In that case we simply take over the regular freelist
 * as the lockless freelist and zap the regular freelist.
C
Christoph Lameter 已提交
1554
 *
1555 1556 1557
 * If that is not working then we fall back to the partial lists. We take the
 * first element of the freelist as the object to allocate now and move the
 * rest of the freelist to the lockless freelist.
C
Christoph Lameter 已提交
1558
 *
1559
 * And if we were unable to get a new slab from the partial slab lists then
C
Christoph Lameter 已提交
1560 1561
 * we need to allocate a new slab. This is the slowest path since it involves
 * a call to the page allocator and the setup of a new slab.
C
Christoph Lameter 已提交
1562
 */
1563
static void *__slab_alloc(struct kmem_cache *s,
1564
		gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1565 1566
{
	void **object;
1567
	struct page *new;
C
Christoph Lameter 已提交
1568

1569 1570 1571
	/* We handle __GFP_ZERO in the caller */
	gfpflags &= ~__GFP_ZERO;

1572
	if (!c->page)
C
Christoph Lameter 已提交
1573 1574
		goto new_slab;

1575 1576
	slab_lock(c->page);
	if (unlikely(!node_match(c, node)))
C
Christoph Lameter 已提交
1577
		goto another_slab;
C
Christoph Lameter 已提交
1578

1579
	stat(c, ALLOC_REFILL);
C
Christoph Lameter 已提交
1580

1581
load_freelist:
1582
	object = c->page->freelist;
1583
	if (unlikely(!object))
C
Christoph Lameter 已提交
1584
		goto another_slab;
1585
	if (unlikely(SlabDebug(c->page)))
C
Christoph Lameter 已提交
1586 1587
		goto debug;

1588
	c->freelist = object[c->offset];
1589
	c->page->inuse = c->page->objects;
1590
	c->page->freelist = NULL;
1591
	c->node = page_to_nid(c->page);
1592
unlock_out:
1593
	slab_unlock(c->page);
1594
	stat(c, ALLOC_SLOWPATH);
C
Christoph Lameter 已提交
1595 1596 1597
	return object;

another_slab:
1598
	deactivate_slab(s, c);
C
Christoph Lameter 已提交
1599 1600

new_slab:
1601 1602 1603
	new = get_partial(s, gfpflags, node);
	if (new) {
		c->page = new;
1604
		stat(c, ALLOC_FROM_PARTIAL);
1605
		goto load_freelist;
C
Christoph Lameter 已提交
1606 1607
	}

1608 1609 1610
	if (gfpflags & __GFP_WAIT)
		local_irq_enable();

1611
	new = new_slab(s, gfpflags, node);
1612 1613 1614 1615

	if (gfpflags & __GFP_WAIT)
		local_irq_disable();

1616 1617
	if (new) {
		c = get_cpu_slab(s, smp_processor_id());
1618
		stat(c, ALLOC_SLAB);
1619
		if (c->page)
1620 1621 1622 1623
			flush_slab(s, c);
		slab_lock(new);
		SetSlabFrozen(new);
		c->page = new;
1624
		goto load_freelist;
C
Christoph Lameter 已提交
1625
	}
1626

1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
	/*
	 * No memory available.
	 *
	 * If the slab uses higher order allocs but the object is
	 * smaller than a page size then we can fallback in emergencies
	 * to the page allocator via kmalloc_large. The page allocator may
	 * have failed to obtain a higher order page and we can try to
	 * allocate a single page if the object fits into a single page.
	 * That is only possible if certain conditions are met that are being
	 * checked when a slab is created.
	 */
1638 1639 1640 1641 1642 1643 1644 1645 1646
	if (!(gfpflags & __GFP_NORETRY) &&
				(s->flags & __PAGE_ALLOC_FALLBACK)) {
		if (gfpflags & __GFP_WAIT)
			local_irq_enable();
		object = kmalloc_large(s->objsize, gfpflags);
		if (gfpflags & __GFP_WAIT)
			local_irq_disable();
		return object;
	}
1647
	return NULL;
C
Christoph Lameter 已提交
1648
debug:
1649
	if (!alloc_debug_processing(s, c->page, object, addr))
C
Christoph Lameter 已提交
1650
		goto another_slab;
1651

1652
	c->page->inuse++;
1653
	c->page->freelist = object[c->offset];
1654
	c->node = -1;
1655
	goto unlock_out;
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
}

/*
 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
 * have the fastpath folded into their functions. So no function call
 * overhead for requests that can be satisfied on the fastpath.
 *
 * The fastpath works by first checking if the lockless freelist can be used.
 * If not then __slab_alloc is called for slow processing.
 *
 * Otherwise we can simply pick the next object from the lockless free list.
 */
P
Pekka Enberg 已提交
1668
static __always_inline void *slab_alloc(struct kmem_cache *s,
1669
		gfp_t gfpflags, int node, void *addr)
1670 1671
{
	void **object;
1672
	struct kmem_cache_cpu *c;
1673 1674
	unsigned long flags;

1675
	local_irq_save(flags);
1676
	c = get_cpu_slab(s, smp_processor_id());
1677
	if (unlikely(!c->freelist || !node_match(c, node)))
1678

1679
		object = __slab_alloc(s, gfpflags, node, addr, c);
1680 1681

	else {
1682
		object = c->freelist;
1683
		c->freelist = object[c->offset];
1684
		stat(c, ALLOC_FASTPATH);
1685 1686
	}
	local_irq_restore(flags);
1687 1688

	if (unlikely((gfpflags & __GFP_ZERO) && object))
1689
		memset(object, 0, c->objsize);
1690

1691
	return object;
C
Christoph Lameter 已提交
1692 1693 1694 1695
}

void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
1696
	return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
C
Christoph Lameter 已提交
1697 1698 1699 1700 1701 1702
}
EXPORT_SYMBOL(kmem_cache_alloc);

#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
{
1703
	return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
C
Christoph Lameter 已提交
1704 1705 1706 1707 1708
}
EXPORT_SYMBOL(kmem_cache_alloc_node);
#endif

/*
1709 1710
 * Slow patch handling. This may still be called frequently since objects
 * have a longer lifetime than the cpu slabs in most processing loads.
C
Christoph Lameter 已提交
1711
 *
1712 1713 1714
 * So we still attempt to reduce cache line usage. Just take the slab
 * lock and free the item. If there is no additional partial page
 * handling required then we can return immediately.
C
Christoph Lameter 已提交
1715
 */
1716
static void __slab_free(struct kmem_cache *s, struct page *page,
1717
				void *x, void *addr, unsigned int offset)
C
Christoph Lameter 已提交
1718 1719 1720
{
	void *prior;
	void **object = (void *)x;
1721
	struct kmem_cache_cpu *c;
C
Christoph Lameter 已提交
1722

1723 1724
	c = get_cpu_slab(s, raw_smp_processor_id());
	stat(c, FREE_SLOWPATH);
C
Christoph Lameter 已提交
1725 1726
	slab_lock(page);

1727
	if (unlikely(SlabDebug(page)))
C
Christoph Lameter 已提交
1728
		goto debug;
C
Christoph Lameter 已提交
1729

C
Christoph Lameter 已提交
1730
checks_ok:
1731
	prior = object[offset] = page->freelist;
C
Christoph Lameter 已提交
1732 1733 1734
	page->freelist = object;
	page->inuse--;

1735 1736
	if (unlikely(SlabFrozen(page))) {
		stat(c, FREE_FROZEN);
C
Christoph Lameter 已提交
1737
		goto out_unlock;
1738
	}
C
Christoph Lameter 已提交
1739 1740 1741 1742 1743

	if (unlikely(!page->inuse))
		goto slab_empty;

	/*
C
Christoph Lameter 已提交
1744
	 * Objects left in the slab. If it was not on the partial list before
C
Christoph Lameter 已提交
1745 1746
	 * then add it.
	 */
1747
	if (unlikely(!prior)) {
1748
		add_partial(get_node(s, page_to_nid(page)), page, 1);
1749 1750
		stat(c, FREE_ADD_PARTIAL);
	}
C
Christoph Lameter 已提交
1751 1752 1753 1754 1755 1756

out_unlock:
	slab_unlock(page);
	return;

slab_empty:
1757
	if (prior) {
C
Christoph Lameter 已提交
1758
		/*
C
Christoph Lameter 已提交
1759
		 * Slab still on the partial list.
C
Christoph Lameter 已提交
1760 1761
		 */
		remove_partial(s, page);
1762 1763
		stat(c, FREE_REMOVE_PARTIAL);
	}
C
Christoph Lameter 已提交
1764
	slab_unlock(page);
1765
	stat(c, FREE_SLAB);
C
Christoph Lameter 已提交
1766 1767 1768 1769
	discard_slab(s, page);
	return;

debug:
C
Christoph Lameter 已提交
1770
	if (!free_debug_processing(s, page, x, addr))
C
Christoph Lameter 已提交
1771 1772
		goto out_unlock;
	goto checks_ok;
C
Christoph Lameter 已提交
1773 1774
}

1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
/*
 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
 * can perform fastpath freeing without additional function calls.
 *
 * The fastpath is only possible if we are freeing to the current cpu slab
 * of this processor. This typically the case if we have just allocated
 * the item before.
 *
 * If fastpath is not possible then fall back to __slab_free where we deal
 * with all sorts of special processing.
 */
P
Pekka Enberg 已提交
1786
static __always_inline void slab_free(struct kmem_cache *s,
1787 1788 1789
			struct page *page, void *x, void *addr)
{
	void **object = (void *)x;
1790
	struct kmem_cache_cpu *c;
1791 1792
	unsigned long flags;

1793
	local_irq_save(flags);
1794
	c = get_cpu_slab(s, smp_processor_id());
1795
	debug_check_no_locks_freed(object, c->objsize);
1796
	if (likely(page == c->page && c->node >= 0)) {
1797
		object[c->offset] = c->freelist;
1798
		c->freelist = object;
1799
		stat(c, FREE_FASTPATH);
1800
	} else
1801
		__slab_free(s, page, x, addr, c->offset);
1802 1803 1804 1805

	local_irq_restore(flags);
}

C
Christoph Lameter 已提交
1806 1807
void kmem_cache_free(struct kmem_cache *s, void *x)
{
C
Christoph Lameter 已提交
1808
	struct page *page;
C
Christoph Lameter 已提交
1809

1810
	page = virt_to_head_page(x);
C
Christoph Lameter 已提交
1811

C
Christoph Lameter 已提交
1812
	slab_free(s, page, x, __builtin_return_address(0));
C
Christoph Lameter 已提交
1813 1814 1815 1816 1817 1818
}
EXPORT_SYMBOL(kmem_cache_free);

/* Figure out on which slab object the object resides */
static struct page *get_object_page(const void *x)
{
1819
	struct page *page = virt_to_head_page(x);
C
Christoph Lameter 已提交
1820 1821 1822 1823 1824 1825 1826 1827

	if (!PageSlab(page))
		return NULL;

	return page;
}

/*
C
Christoph Lameter 已提交
1828 1829 1830 1831
 * Object placement in a slab is made very easy because we always start at
 * offset 0. If we tune the size of the object to the alignment then we can
 * get the required alignment by putting one properly sized object after
 * another.
C
Christoph Lameter 已提交
1832 1833 1834 1835
 *
 * Notice that the allocation order determines the sizes of the per cpu
 * caches. Each processor has always one slab available for allocations.
 * Increasing the allocation order reduces the number of times that slabs
C
Christoph Lameter 已提交
1836
 * must be moved on and off the partial lists and is therefore a factor in
C
Christoph Lameter 已提交
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
 * locking overhead.
 */

/*
 * Mininum / Maximum order of slab pages. This influences locking overhead
 * and slab fragmentation. A higher order reduces the number of partial slabs
 * and increases the number of allocations possible without having to
 * take the list_lock.
 */
static int slub_min_order;
static int slub_max_order = DEFAULT_MAX_ORDER;
static int slub_min_objects = DEFAULT_MIN_OBJECTS;

/*
 * Merge control. If this is set then no merging of slab caches will occur.
C
Christoph Lameter 已提交
1852
 * (Could be removed. This was introduced to pacify the merge skeptics.)
C
Christoph Lameter 已提交
1853 1854 1855 1856 1857 1858
 */
static int slub_nomerge;

/*
 * Calculate the order of allocation given an slab object size.
 *
C
Christoph Lameter 已提交
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
 * The order of allocation has significant impact on performance and other
 * system components. Generally order 0 allocations should be preferred since
 * order 0 does not cause fragmentation in the page allocator. Larger objects
 * be problematic to put into order 0 slabs because there may be too much
 * unused space left. We go to a higher order if more than 1/8th of the slab
 * would be wasted.
 *
 * In order to reach satisfactory performance we must ensure that a minimum
 * number of objects is in one slab. Otherwise we may generate too much
 * activity on the partial lists which requires taking the list_lock. This is
 * less a concern for large slabs though which are rarely used.
C
Christoph Lameter 已提交
1870
 *
C
Christoph Lameter 已提交
1871 1872 1873 1874
 * slub_max_order specifies the order where we begin to stop considering the
 * number of objects in a slab as critical. If we reach slub_max_order then
 * we try to keep the page order as low as possible. So we accept more waste
 * of space in favor of a small page order.
C
Christoph Lameter 已提交
1875
 *
C
Christoph Lameter 已提交
1876 1877 1878 1879
 * Higher order allocations also allow the placement of more objects in a
 * slab and thereby reduce object handling overhead. If the user has
 * requested a higher mininum order then we start with that one instead of
 * the smallest order which will fit the object.
C
Christoph Lameter 已提交
1880
 */
1881 1882
static inline int slab_order(int size, int min_objects,
				int max_order, int fract_leftover)
C
Christoph Lameter 已提交
1883 1884 1885
{
	int order;
	int rem;
1886
	int min_order = slub_min_order;
C
Christoph Lameter 已提交
1887

1888 1889 1890
	if ((PAGE_SIZE << min_order) / size > 65535)
		return get_order(size * 65535) - 1;

1891
	for (order = max(min_order,
1892 1893
				fls(min_objects * size - 1) - PAGE_SHIFT);
			order <= max_order; order++) {
C
Christoph Lameter 已提交
1894

1895
		unsigned long slab_size = PAGE_SIZE << order;
C
Christoph Lameter 已提交
1896

1897
		if (slab_size < min_objects * size)
C
Christoph Lameter 已提交
1898 1899 1900 1901
			continue;

		rem = slab_size % size;

1902
		if (rem <= slab_size / fract_leftover)
C
Christoph Lameter 已提交
1903 1904 1905
			break;

	}
C
Christoph Lameter 已提交
1906

C
Christoph Lameter 已提交
1907 1908 1909
	return order;
}

1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
static inline int calculate_order(int size)
{
	int order;
	int min_objects;
	int fraction;

	/*
	 * Attempt to find best configuration for a slab. This
	 * works by first attempting to generate a layout with
	 * the best configuration and backing off gradually.
	 *
	 * First we reduce the acceptable waste in a slab. Then
	 * we reduce the minimum objects required in a slab.
	 */
	min_objects = slub_min_objects;
	while (min_objects > 1) {
		fraction = 8;
		while (fraction >= 4) {
			order = slab_order(size, min_objects,
						slub_max_order, fraction);
			if (order <= slub_max_order)
				return order;
			fraction /= 2;
		}
		min_objects /= 2;
	}

	/*
	 * We were unable to place multiple objects in a slab. Now
	 * lets see if we can place a single object there.
	 */
	order = slab_order(size, 1, slub_max_order, 1);
	if (order <= slub_max_order)
		return order;

	/*
	 * Doh this slab cannot be placed using slub_max_order.
	 */
	order = slab_order(size, 1, MAX_ORDER, 1);
	if (order <= MAX_ORDER)
		return order;
	return -ENOSYS;
}

C
Christoph Lameter 已提交
1954
/*
C
Christoph Lameter 已提交
1955
 * Figure out what the alignment of the objects will be.
C
Christoph Lameter 已提交
1956 1957 1958 1959 1960
 */
static unsigned long calculate_alignment(unsigned long flags,
		unsigned long align, unsigned long size)
{
	/*
C
Christoph Lameter 已提交
1961 1962
	 * If the user wants hardware cache aligned objects then follow that
	 * suggestion if the object is sufficiently large.
C
Christoph Lameter 已提交
1963
	 *
C
Christoph Lameter 已提交
1964 1965
	 * The hardware cache alignment cannot override the specified
	 * alignment though. If that is greater then use it.
C
Christoph Lameter 已提交
1966
	 */
1967 1968 1969 1970 1971 1972
	if (flags & SLAB_HWCACHE_ALIGN) {
		unsigned long ralign = cache_line_size();
		while (size <= ralign / 2)
			ralign /= 2;
		align = max(align, ralign);
	}
C
Christoph Lameter 已提交
1973 1974

	if (align < ARCH_SLAB_MINALIGN)
1975
		align = ARCH_SLAB_MINALIGN;
C
Christoph Lameter 已提交
1976 1977 1978 1979

	return ALIGN(align, sizeof(void *));
}

1980 1981 1982 1983
static void init_kmem_cache_cpu(struct kmem_cache *s,
			struct kmem_cache_cpu *c)
{
	c->page = NULL;
1984
	c->freelist = NULL;
1985
	c->node = 0;
1986 1987
	c->offset = s->offset / sizeof(void *);
	c->objsize = s->objsize;
P
Pekka Enberg 已提交
1988 1989 1990
#ifdef CONFIG_SLUB_STATS
	memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
#endif
1991 1992
}

C
Christoph Lameter 已提交
1993 1994 1995 1996 1997
static void init_kmem_cache_node(struct kmem_cache_node *n)
{
	n->nr_partial = 0;
	spin_lock_init(&n->list_lock);
	INIT_LIST_HEAD(&n->partial);
1998
#ifdef CONFIG_SLUB_DEBUG
1999
	atomic_long_set(&n->nr_slabs, 0);
2000
	INIT_LIST_HEAD(&n->full);
2001
#endif
C
Christoph Lameter 已提交
2002 2003
}

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
#ifdef CONFIG_SMP
/*
 * Per cpu array for per cpu structures.
 *
 * The per cpu array places all kmem_cache_cpu structures from one processor
 * close together meaning that it becomes possible that multiple per cpu
 * structures are contained in one cacheline. This may be particularly
 * beneficial for the kmalloc caches.
 *
 * A desktop system typically has around 60-80 slabs. With 100 here we are
 * likely able to get per cpu structures for all caches from the array defined
 * here. We must be able to cover all kmalloc caches during bootstrap.
 *
 * If the per cpu array is exhausted then fall back to kmalloc
 * of individual cachelines. No sharing is possible then.
 */
#define NR_KMEM_CACHE_CPU 100

static DEFINE_PER_CPU(struct kmem_cache_cpu,
				kmem_cache_cpu)[NR_KMEM_CACHE_CPU];

static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;

static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
							int cpu, gfp_t flags)
{
	struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);

	if (c)
		per_cpu(kmem_cache_cpu_free, cpu) =
				(void *)c->freelist;
	else {
		/* Table overflow: So allocate ourselves */
		c = kmalloc_node(
			ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
			flags, cpu_to_node(cpu));
		if (!c)
			return NULL;
	}

	init_kmem_cache_cpu(s, c);
	return c;
}

static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
{
	if (c < per_cpu(kmem_cache_cpu, cpu) ||
			c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
		kfree(c);
		return;
	}
	c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
	per_cpu(kmem_cache_cpu_free, cpu) = c;
}

static void free_kmem_cache_cpus(struct kmem_cache *s)
{
	int cpu;

	for_each_online_cpu(cpu) {
		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);

		if (c) {
			s->cpu_slab[cpu] = NULL;
			free_kmem_cache_cpu(c, cpu);
		}
	}
}

static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
{
	int cpu;

	for_each_online_cpu(cpu) {
		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);

		if (c)
			continue;

		c = alloc_kmem_cache_cpu(s, cpu, flags);
		if (!c) {
			free_kmem_cache_cpus(s);
			return 0;
		}
		s->cpu_slab[cpu] = c;
	}
	return 1;
}

/*
 * Initialize the per cpu array.
 */
static void init_alloc_cpu_cpu(int cpu)
{
	int i;

	if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
		return;

	for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
		free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);

	cpu_set(cpu, kmem_cach_cpu_free_init_once);
}

static void __init init_alloc_cpu(void)
{
	int cpu;

	for_each_online_cpu(cpu)
		init_alloc_cpu_cpu(cpu);
  }

#else
static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
static inline void init_alloc_cpu(void) {}

static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
{
	init_kmem_cache_cpu(s, &s->cpu_slab);
	return 1;
}
#endif

C
Christoph Lameter 已提交
2129 2130 2131 2132 2133 2134 2135
#ifdef CONFIG_NUMA
/*
 * No kmalloc_node yet so do it by hand. We know that this is the first
 * slab on the node for this slabcache. There are no concurrent accesses
 * possible.
 *
 * Note that this function only works on the kmalloc_node_cache
2136 2137
 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
 * memory on a fresh node that has no slab structures yet.
C
Christoph Lameter 已提交
2138
 */
2139 2140
static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
							   int node)
C
Christoph Lameter 已提交
2141 2142 2143
{
	struct page *page;
	struct kmem_cache_node *n;
R
root 已提交
2144
	unsigned long flags;
C
Christoph Lameter 已提交
2145 2146 2147

	BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));

2148
	page = new_slab(kmalloc_caches, gfpflags, node);
C
Christoph Lameter 已提交
2149 2150

	BUG_ON(!page);
2151 2152 2153 2154 2155 2156 2157
	if (page_to_nid(page) != node) {
		printk(KERN_ERR "SLUB: Unable to allocate memory from "
				"node %d\n", node);
		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
				"in order to be able to continue\n");
	}

C
Christoph Lameter 已提交
2158 2159 2160 2161 2162
	n = page->freelist;
	BUG_ON(!n);
	page->freelist = get_freepointer(kmalloc_caches, n);
	page->inuse++;
	kmalloc_caches->node[node] = n;
2163
#ifdef CONFIG_SLUB_DEBUG
2164 2165
	init_object(kmalloc_caches, n, 1);
	init_tracking(kmalloc_caches, n);
2166
#endif
C
Christoph Lameter 已提交
2167
	init_kmem_cache_node(n);
2168
	inc_slabs_node(kmalloc_caches, node, page->objects);
C
Christoph Lameter 已提交
2169

R
root 已提交
2170 2171 2172 2173 2174 2175
	/*
	 * lockdep requires consistent irq usage for each lock
	 * so even though there cannot be a race this early in
	 * the boot sequence, we still disable irqs.
	 */
	local_irq_save(flags);
2176
	add_partial(n, page, 0);
R
root 已提交
2177
	local_irq_restore(flags);
C
Christoph Lameter 已提交
2178 2179 2180 2181 2182 2183 2184
	return n;
}

static void free_kmem_cache_nodes(struct kmem_cache *s)
{
	int node;

C
Christoph Lameter 已提交
2185
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
		struct kmem_cache_node *n = s->node[node];
		if (n && n != &s->local_node)
			kmem_cache_free(kmalloc_caches, n);
		s->node[node] = NULL;
	}
}

static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
{
	int node;
	int local_node;

	if (slab_state >= UP)
		local_node = page_to_nid(virt_to_page(s));
	else
		local_node = 0;

C
Christoph Lameter 已提交
2203
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
		struct kmem_cache_node *n;

		if (local_node == node)
			n = &s->local_node;
		else {
			if (slab_state == DOWN) {
				n = early_kmem_cache_node_alloc(gfpflags,
								node);
				continue;
			}
			n = kmem_cache_alloc_node(kmalloc_caches,
							gfpflags, node);

			if (!n) {
				free_kmem_cache_nodes(s);
				return 0;
			}

		}
		s->node[node] = n;
		init_kmem_cache_node(n);
	}
	return 1;
}
#else
static void free_kmem_cache_nodes(struct kmem_cache *s)
{
}

static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
{
	init_kmem_cache_node(&s->local_node);
	return 1;
}
#endif

/*
 * calculate_sizes() determines the order and the distribution of data within
 * a slab object.
 */
static int calculate_sizes(struct kmem_cache *s)
{
	unsigned long flags = s->flags;
	unsigned long size = s->objsize;
	unsigned long align = s->align;
2249
	int order;
C
Christoph Lameter 已提交
2250

2251 2252 2253 2254 2255 2256 2257 2258
	/*
	 * Round up object size to the next word boundary. We can only
	 * place the free pointer at word boundaries and this determines
	 * the possible location of the free pointer.
	 */
	size = ALIGN(size, sizeof(void *));

#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
2259 2260 2261 2262 2263 2264
	/*
	 * Determine if we can poison the object itself. If the user of
	 * the slab may touch the object after free or before allocation
	 * then we should never poison the object itself.
	 */
	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2265
			!s->ctor)
C
Christoph Lameter 已提交
2266 2267 2268 2269 2270 2271
		s->flags |= __OBJECT_POISON;
	else
		s->flags &= ~__OBJECT_POISON;


	/*
C
Christoph Lameter 已提交
2272
	 * If we are Redzoning then check if there is some space between the
C
Christoph Lameter 已提交
2273
	 * end of the object and the free pointer. If not then add an
C
Christoph Lameter 已提交
2274
	 * additional word to have some bytes to store Redzone information.
C
Christoph Lameter 已提交
2275 2276 2277
	 */
	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
		size += sizeof(void *);
C
Christoph Lameter 已提交
2278
#endif
C
Christoph Lameter 已提交
2279 2280

	/*
C
Christoph Lameter 已提交
2281 2282
	 * With that we have determined the number of bytes in actual use
	 * by the object. This is the potential offset to the free pointer.
C
Christoph Lameter 已提交
2283 2284 2285 2286
	 */
	s->inuse = size;

	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2287
		s->ctor)) {
C
Christoph Lameter 已提交
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
		/*
		 * Relocate free pointer after the object if it is not
		 * permitted to overwrite the first word of the object on
		 * kmem_cache_free.
		 *
		 * This is the case if we do RCU, have a constructor or
		 * destructor or are poisoning the objects.
		 */
		s->offset = size;
		size += sizeof(void *);
	}

2300
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
2301 2302 2303 2304 2305 2306 2307
	if (flags & SLAB_STORE_USER)
		/*
		 * Need to store information about allocs and frees after
		 * the object.
		 */
		size += 2 * sizeof(struct track);

2308
	if (flags & SLAB_RED_ZONE)
C
Christoph Lameter 已提交
2309 2310 2311 2312 2313 2314 2315 2316
		/*
		 * Add some empty padding so that we can catch
		 * overwrites from earlier objects rather than let
		 * tracking information or the free pointer be
		 * corrupted if an user writes before the start
		 * of the object.
		 */
		size += sizeof(void *);
C
Christoph Lameter 已提交
2317
#endif
C
Christoph Lameter 已提交
2318

C
Christoph Lameter 已提交
2319 2320
	/*
	 * Determine the alignment based on various parameters that the
2321 2322
	 * user specified and the dynamic determination of cache line size
	 * on bootup.
C
Christoph Lameter 已提交
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
	 */
	align = calculate_alignment(flags, align, s->objsize);

	/*
	 * SLUB stores one object immediately after another beginning from
	 * offset 0. In order to align the objects we have to simply size
	 * each object to conform to the alignment.
	 */
	size = ALIGN(size, align);
	s->size = size;

2334 2335 2336 2337 2338 2339 2340 2341
	if ((flags & __KMALLOC_CACHE) &&
			PAGE_SIZE / size < slub_min_objects) {
		/*
		 * Kmalloc cache that would not have enough objects in
		 * an order 0 page. Kmalloc slabs can fallback to
		 * page allocator order 0 allocs so take a reasonably large
		 * order that will allows us a good number of objects.
		 */
2342
		order = max(slub_max_order, PAGE_ALLOC_COSTLY_ORDER);
2343 2344 2345
		s->flags |= __PAGE_ALLOC_FALLBACK;
		s->allocflags |= __GFP_NOWARN;
	} else
2346
		order = calculate_order(size);
2347

2348
	if (order < 0)
C
Christoph Lameter 已提交
2349 2350
		return 0;

2351
	s->allocflags = 0;
2352
	if (order)
2353 2354 2355 2356 2357 2358 2359 2360
		s->allocflags |= __GFP_COMP;

	if (s->flags & SLAB_CACHE_DMA)
		s->allocflags |= SLUB_DMA;

	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		s->allocflags |= __GFP_RECLAIMABLE;

C
Christoph Lameter 已提交
2361 2362 2363
	/*
	 * Determine the number of objects per slab
	 */
2364
	s->oo = oo_make(order, size);
2365
	s->min = oo_make(get_order(size), size);
2366 2367
	if (oo_objects(s->oo) > oo_objects(s->max))
		s->max = s->oo;
C
Christoph Lameter 已提交
2368

2369
	return !!oo_objects(s->oo);
C
Christoph Lameter 已提交
2370 2371 2372 2373 2374 2375

}

static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
		const char *name, size_t size,
		size_t align, unsigned long flags,
2376
		void (*ctor)(struct kmem_cache *, void *))
C
Christoph Lameter 已提交
2377 2378 2379 2380 2381 2382
{
	memset(s, 0, kmem_size);
	s->name = name;
	s->ctor = ctor;
	s->objsize = size;
	s->align = align;
2383
	s->flags = kmem_cache_flags(size, flags, name, ctor);
C
Christoph Lameter 已提交
2384 2385 2386 2387 2388 2389

	if (!calculate_sizes(s))
		goto error;

	s->refcount = 1;
#ifdef CONFIG_NUMA
2390
	s->remote_node_defrag_ratio = 100;
C
Christoph Lameter 已提交
2391
#endif
2392 2393
	if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
		goto error;
C
Christoph Lameter 已提交
2394

2395
	if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
C
Christoph Lameter 已提交
2396
		return 1;
2397
	free_kmem_cache_nodes(s);
C
Christoph Lameter 已提交
2398 2399 2400 2401
error:
	if (flags & SLAB_PANIC)
		panic("Cannot create slab %s size=%lu realsize=%u "
			"order=%u offset=%u flags=%lx\n",
2402
			s->name, (unsigned long)size, s->size, oo_order(s->oo),
C
Christoph Lameter 已提交
2403 2404 2405 2406 2407 2408 2409 2410 2411
			s->offset, flags);
	return 0;
}

/*
 * Check if a given pointer is valid
 */
int kmem_ptr_validate(struct kmem_cache *s, const void *object)
{
P
Pekka Enberg 已提交
2412
	struct page *page;
C
Christoph Lameter 已提交
2413 2414 2415 2416 2417 2418 2419

	page = get_object_page(object);

	if (!page || s != page->slab)
		/* No slab or wrong slab */
		return 0;

2420
	if (!check_valid_pointer(s, page, object))
C
Christoph Lameter 已提交
2421 2422 2423 2424 2425
		return 0;

	/*
	 * We could also check if the object is on the slabs freelist.
	 * But this would be too expensive and it seems that the main
C
Christoph Lameter 已提交
2426
	 * purpose of kmem_ptr_valid() is to check if the object belongs
C
Christoph Lameter 已提交
2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
	 * to a certain slab.
	 */
	return 1;
}
EXPORT_SYMBOL(kmem_ptr_validate);

/*
 * Determine the size of a slab object
 */
unsigned int kmem_cache_size(struct kmem_cache *s)
{
	return s->objsize;
}
EXPORT_SYMBOL(kmem_cache_size);

const char *kmem_cache_name(struct kmem_cache *s)
{
	return s->name;
}
EXPORT_SYMBOL(kmem_cache_name);

2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
static void list_slab_objects(struct kmem_cache *s, struct page *page,
							const char *text)
{
#ifdef CONFIG_SLUB_DEBUG
	void *addr = page_address(page);
	void *p;
	DECLARE_BITMAP(map, page->objects);

	bitmap_zero(map, page->objects);
	slab_err(s, page, "%s", text);
	slab_lock(page);
	for_each_free_object(p, s, page->freelist)
		set_bit(slab_index(p, s, addr), map);

	for_each_object(p, s, addr, page->objects) {

		if (!test_bit(slab_index(p, s, addr), map)) {
			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
							p, p - addr);
			print_tracking(s, p);
		}
	}
	slab_unlock(page);
#endif
}

C
Christoph Lameter 已提交
2474
/*
C
Christoph Lameter 已提交
2475
 * Attempt to free all partial slabs on a node.
C
Christoph Lameter 已提交
2476
 */
C
Christoph Lameter 已提交
2477
static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
C
Christoph Lameter 已提交
2478 2479 2480 2481 2482
{
	unsigned long flags;
	struct page *page, *h;

	spin_lock_irqsave(&n->list_lock, flags);
2483
	list_for_each_entry_safe(page, h, &n->partial, lru) {
C
Christoph Lameter 已提交
2484 2485 2486
		if (!page->inuse) {
			list_del(&page->lru);
			discard_slab(s, page);
C
Christoph Lameter 已提交
2487
			n->nr_partial--;
2488 2489 2490
		} else {
			list_slab_objects(s, page,
				"Objects remaining on kmem_cache_close()");
C
Christoph Lameter 已提交
2491
		}
2492
	}
C
Christoph Lameter 已提交
2493 2494 2495 2496
	spin_unlock_irqrestore(&n->list_lock, flags);
}

/*
C
Christoph Lameter 已提交
2497
 * Release all resources used by a slab cache.
C
Christoph Lameter 已提交
2498
 */
2499
static inline int kmem_cache_close(struct kmem_cache *s)
C
Christoph Lameter 已提交
2500 2501 2502 2503 2504 2505
{
	int node;

	flush_all(s);

	/* Attempt to free all objects */
2506
	free_kmem_cache_cpus(s);
C
Christoph Lameter 已提交
2507
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2508 2509
		struct kmem_cache_node *n = get_node(s, node);

C
Christoph Lameter 已提交
2510 2511
		free_partial(s, n);
		if (n->nr_partial || slabs_node(s, node))
C
Christoph Lameter 已提交
2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
			return 1;
	}
	free_kmem_cache_nodes(s);
	return 0;
}

/*
 * Close a cache and release the kmem_cache structure
 * (must be used for caches created using kmem_cache_create)
 */
void kmem_cache_destroy(struct kmem_cache *s)
{
	down_write(&slub_lock);
	s->refcount--;
	if (!s->refcount) {
		list_del(&s->list);
2528
		up_write(&slub_lock);
2529 2530 2531 2532 2533
		if (kmem_cache_close(s)) {
			printk(KERN_ERR "SLUB %s: %s called for cache that "
				"still has objects.\n", s->name, __func__);
			dump_stack();
		}
C
Christoph Lameter 已提交
2534
		sysfs_slab_remove(s);
2535 2536
	} else
		up_write(&slub_lock);
C
Christoph Lameter 已提交
2537 2538 2539 2540 2541 2542 2543
}
EXPORT_SYMBOL(kmem_cache_destroy);

/********************************************************************
 *		Kmalloc subsystem
 *******************************************************************/

2544
struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
C
Christoph Lameter 已提交
2545 2546 2547 2548
EXPORT_SYMBOL(kmalloc_caches);

static int __init setup_slub_min_order(char *str)
{
P
Pekka Enberg 已提交
2549
	get_option(&str, &slub_min_order);
C
Christoph Lameter 已提交
2550 2551 2552 2553 2554 2555 2556 2557

	return 1;
}

__setup("slub_min_order=", setup_slub_min_order);

static int __init setup_slub_max_order(char *str)
{
P
Pekka Enberg 已提交
2558
	get_option(&str, &slub_max_order);
C
Christoph Lameter 已提交
2559 2560 2561 2562 2563 2564 2565 2566

	return 1;
}

__setup("slub_max_order=", setup_slub_max_order);

static int __init setup_slub_min_objects(char *str)
{
P
Pekka Enberg 已提交
2567
	get_option(&str, &slub_min_objects);
C
Christoph Lameter 已提交
2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591

	return 1;
}

__setup("slub_min_objects=", setup_slub_min_objects);

static int __init setup_slub_nomerge(char *str)
{
	slub_nomerge = 1;
	return 1;
}

__setup("slub_nomerge", setup_slub_nomerge);

static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
		const char *name, int size, gfp_t gfp_flags)
{
	unsigned int flags = 0;

	if (gfp_flags & SLUB_DMA)
		flags = SLAB_CACHE_DMA;

	down_write(&slub_lock);
	if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2592
			flags | __KMALLOC_CACHE, NULL))
C
Christoph Lameter 已提交
2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604
		goto panic;

	list_add(&s->list, &slab_caches);
	up_write(&slub_lock);
	if (sysfs_slab_add(s))
		goto panic;
	return s;

panic:
	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
}

2605
#ifdef CONFIG_ZONE_DMA
2606
static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623

static void sysfs_add_func(struct work_struct *w)
{
	struct kmem_cache *s;

	down_write(&slub_lock);
	list_for_each_entry(s, &slab_caches, list) {
		if (s->flags & __SYSFS_ADD_DEFERRED) {
			s->flags &= ~__SYSFS_ADD_DEFERRED;
			sysfs_slab_add(s);
		}
	}
	up_write(&slub_lock);
}

static DECLARE_WORK(sysfs_add_work, sysfs_add_func);

2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634
static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
{
	struct kmem_cache *s;
	char *text;
	size_t realsize;

	s = kmalloc_caches_dma[index];
	if (s)
		return s;

	/* Dynamically create dma cache */
2635 2636 2637 2638 2639 2640 2641 2642 2643
	if (flags & __GFP_WAIT)
		down_write(&slub_lock);
	else {
		if (!down_write_trylock(&slub_lock))
			goto out;
	}

	if (kmalloc_caches_dma[index])
		goto unlock_out;
2644

2645
	realsize = kmalloc_caches[index].objsize;
I
Ingo Molnar 已提交
2646 2647
	text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
			 (unsigned int)realsize);
2648 2649 2650 2651 2652 2653 2654 2655
	s = kmalloc(kmem_size, flags & ~SLUB_DMA);

	if (!s || !text || !kmem_cache_open(s, flags, text,
			realsize, ARCH_KMALLOC_MINALIGN,
			SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
		kfree(s);
		kfree(text);
		goto unlock_out;
2656
	}
2657 2658 2659 2660 2661 2662 2663

	list_add(&s->list, &slab_caches);
	kmalloc_caches_dma[index] = s;

	schedule_work(&sysfs_add_work);

unlock_out:
2664
	up_write(&slub_lock);
2665
out:
2666
	return kmalloc_caches_dma[index];
2667 2668 2669
}
#endif

2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702
/*
 * Conversion table for small slabs sizes / 8 to the index in the
 * kmalloc array. This is necessary for slabs < 192 since we have non power
 * of two cache sizes there. The size of larger slabs can be determined using
 * fls.
 */
static s8 size_index[24] = {
	3,	/* 8 */
	4,	/* 16 */
	5,	/* 24 */
	5,	/* 32 */
	6,	/* 40 */
	6,	/* 48 */
	6,	/* 56 */
	6,	/* 64 */
	1,	/* 72 */
	1,	/* 80 */
	1,	/* 88 */
	1,	/* 96 */
	7,	/* 104 */
	7,	/* 112 */
	7,	/* 120 */
	7,	/* 128 */
	2,	/* 136 */
	2,	/* 144 */
	2,	/* 152 */
	2,	/* 160 */
	2,	/* 168 */
	2,	/* 176 */
	2,	/* 184 */
	2	/* 192 */
};

C
Christoph Lameter 已提交
2703 2704
static struct kmem_cache *get_slab(size_t size, gfp_t flags)
{
2705
	int index;
C
Christoph Lameter 已提交
2706

2707 2708 2709
	if (size <= 192) {
		if (!size)
			return ZERO_SIZE_PTR;
C
Christoph Lameter 已提交
2710

2711
		index = size_index[(size - 1) / 8];
2712
	} else
2713
		index = fls(size - 1);
C
Christoph Lameter 已提交
2714 2715

#ifdef CONFIG_ZONE_DMA
2716
	if (unlikely((flags & SLUB_DMA)))
2717
		return dma_kmalloc_cache(index, flags);
2718

C
Christoph Lameter 已提交
2719 2720 2721 2722 2723 2724
#endif
	return &kmalloc_caches[index];
}

void *__kmalloc(size_t size, gfp_t flags)
{
2725
	struct kmem_cache *s;
C
Christoph Lameter 已提交
2726

2727
	if (unlikely(size > PAGE_SIZE))
2728
		return kmalloc_large(size, flags);
2729 2730 2731 2732

	s = get_slab(size, flags);

	if (unlikely(ZERO_OR_NULL_PTR(s)))
2733 2734
		return s;

2735
	return slab_alloc(s, flags, -1, __builtin_return_address(0));
C
Christoph Lameter 已提交
2736 2737 2738
}
EXPORT_SYMBOL(__kmalloc);

2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
{
	struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
						get_order(size));

	if (page)
		return page_address(page);
	else
		return NULL;
}

C
Christoph Lameter 已提交
2750 2751 2752
#ifdef CONFIG_NUMA
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
2753
	struct kmem_cache *s;
C
Christoph Lameter 已提交
2754

2755
	if (unlikely(size > PAGE_SIZE))
2756
		return kmalloc_large_node(size, flags, node);
2757 2758 2759 2760

	s = get_slab(size, flags);

	if (unlikely(ZERO_OR_NULL_PTR(s)))
2761 2762
		return s;

2763
	return slab_alloc(s, flags, node, __builtin_return_address(0));
C
Christoph Lameter 已提交
2764 2765 2766 2767 2768 2769
}
EXPORT_SYMBOL(__kmalloc_node);
#endif

size_t ksize(const void *object)
{
2770
	struct page *page;
C
Christoph Lameter 已提交
2771 2772
	struct kmem_cache *s;

2773
	if (unlikely(object == ZERO_SIZE_PTR))
2774 2775
		return 0;

2776 2777 2778 2779 2780
	page = virt_to_head_page(object);

	if (unlikely(!PageSlab(page)))
		return PAGE_SIZE << compound_order(page);

C
Christoph Lameter 已提交
2781 2782
	s = page->slab;

2783
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
2784 2785 2786 2787 2788 2789 2790
	/*
	 * Debugging requires use of the padding between object
	 * and whatever may come after it.
	 */
	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
		return s->objsize;

2791
#endif
C
Christoph Lameter 已提交
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
	/*
	 * If we have the need to store the freelist pointer
	 * back there or track user information then we can
	 * only use the space before that information.
	 */
	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
		return s->inuse;
	/*
	 * Else we can use all the padding etc for the allocation
	 */
	return s->size;
}
EXPORT_SYMBOL(ksize);

void kfree(const void *x)
{
	struct page *page;
2809
	void *object = (void *)x;
C
Christoph Lameter 已提交
2810

2811
	if (unlikely(ZERO_OR_NULL_PTR(x)))
C
Christoph Lameter 已提交
2812 2813
		return;

2814
	page = virt_to_head_page(x);
2815 2816 2817 2818
	if (unlikely(!PageSlab(page))) {
		put_page(page);
		return;
	}
2819
	slab_free(page->slab, page, object, __builtin_return_address(0));
C
Christoph Lameter 已提交
2820 2821 2822
}
EXPORT_SYMBOL(kfree);

2823
/*
C
Christoph Lameter 已提交
2824 2825 2826 2827 2828 2829 2830 2831
 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
 * the remaining slabs by the number of items in use. The slabs with the
 * most items in use come first. New allocations will then fill those up
 * and thus they can be removed from the partial lists.
 *
 * The slabs with the least items are placed last. This results in them
 * being allocated from last increasing the chance that the last objects
 * are freed in them.
2832 2833 2834 2835 2836 2837 2838 2839
 */
int kmem_cache_shrink(struct kmem_cache *s)
{
	int node;
	int i;
	struct kmem_cache_node *n;
	struct page *page;
	struct page *t;
2840
	int objects = oo_objects(s->max);
2841
	struct list_head *slabs_by_inuse =
2842
		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2843 2844 2845 2846 2847 2848
	unsigned long flags;

	if (!slabs_by_inuse)
		return -ENOMEM;

	flush_all(s);
C
Christoph Lameter 已提交
2849
	for_each_node_state(node, N_NORMAL_MEMORY) {
2850 2851 2852 2853 2854
		n = get_node(s, node);

		if (!n->nr_partial)
			continue;

2855
		for (i = 0; i < objects; i++)
2856 2857 2858 2859 2860
			INIT_LIST_HEAD(slabs_by_inuse + i);

		spin_lock_irqsave(&n->list_lock, flags);

		/*
C
Christoph Lameter 已提交
2861
		 * Build lists indexed by the items in use in each slab.
2862
		 *
C
Christoph Lameter 已提交
2863 2864
		 * Note that concurrent frees may occur while we hold the
		 * list_lock. page->inuse here is the upper limit.
2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877
		 */
		list_for_each_entry_safe(page, t, &n->partial, lru) {
			if (!page->inuse && slab_trylock(page)) {
				/*
				 * Must hold slab lock here because slab_free
				 * may have freed the last object and be
				 * waiting to release the slab.
				 */
				list_del(&page->lru);
				n->nr_partial--;
				slab_unlock(page);
				discard_slab(s, page);
			} else {
2878 2879
				list_move(&page->lru,
				slabs_by_inuse + page->inuse);
2880 2881 2882 2883
			}
		}

		/*
C
Christoph Lameter 已提交
2884 2885
		 * Rebuild the partial list with the slabs filled up most
		 * first and the least used slabs at the end.
2886
		 */
2887
		for (i = objects - 1; i >= 0; i--)
2888 2889 2890 2891 2892 2893 2894 2895 2896 2897
			list_splice(slabs_by_inuse + i, n->partial.prev);

		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	kfree(slabs_by_inuse);
	return 0;
}
EXPORT_SYMBOL(kmem_cache_shrink);

2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
static int slab_mem_going_offline_callback(void *arg)
{
	struct kmem_cache *s;

	down_read(&slub_lock);
	list_for_each_entry(s, &slab_caches, list)
		kmem_cache_shrink(s);
	up_read(&slub_lock);

	return 0;
}

static void slab_mem_offline_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int offline_node;

	offline_node = marg->status_change_nid;

	/*
	 * If the node still has available memory. we need kmem_cache_node
	 * for it yet.
	 */
	if (offline_node < 0)
		return;

	down_read(&slub_lock);
	list_for_each_entry(s, &slab_caches, list) {
		n = get_node(s, offline_node);
		if (n) {
			/*
			 * if n->nr_slabs > 0, slabs still exist on the node
			 * that is going down. We were unable to free them,
			 * and offline_pages() function shoudn't call this
			 * callback. So, we must fail.
			 */
2937
			BUG_ON(slabs_node(s, offline_node));
2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012

			s->node[offline_node] = NULL;
			kmem_cache_free(kmalloc_caches, n);
		}
	}
	up_read(&slub_lock);
}

static int slab_mem_going_online_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int nid = marg->status_change_nid;
	int ret = 0;

	/*
	 * If the node's memory is already available, then kmem_cache_node is
	 * already created. Nothing to do.
	 */
	if (nid < 0)
		return 0;

	/*
	 * We are bringing a node online. No memory is availabe yet. We must
	 * allocate a kmem_cache_node structure in order to bring the node
	 * online.
	 */
	down_read(&slub_lock);
	list_for_each_entry(s, &slab_caches, list) {
		/*
		 * XXX: kmem_cache_alloc_node will fallback to other nodes
		 *      since memory is not yet available from the node that
		 *      is brought up.
		 */
		n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
		if (!n) {
			ret = -ENOMEM;
			goto out;
		}
		init_kmem_cache_node(n);
		s->node[nid] = n;
	}
out:
	up_read(&slub_lock);
	return ret;
}

static int slab_memory_callback(struct notifier_block *self,
				unsigned long action, void *arg)
{
	int ret = 0;

	switch (action) {
	case MEM_GOING_ONLINE:
		ret = slab_mem_going_online_callback(arg);
		break;
	case MEM_GOING_OFFLINE:
		ret = slab_mem_going_offline_callback(arg);
		break;
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
		slab_mem_offline_callback(arg);
		break;
	case MEM_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}

	ret = notifier_from_errno(ret);
	return ret;
}

#endif /* CONFIG_MEMORY_HOTPLUG */

C
Christoph Lameter 已提交
3013 3014 3015 3016 3017 3018 3019
/********************************************************************
 *			Basic setup of slabs
 *******************************************************************/

void __init kmem_cache_init(void)
{
	int i;
3020
	int caches = 0;
C
Christoph Lameter 已提交
3021

3022 3023
	init_alloc_cpu();

C
Christoph Lameter 已提交
3024 3025 3026
#ifdef CONFIG_NUMA
	/*
	 * Must first have the slab cache available for the allocations of the
C
Christoph Lameter 已提交
3027
	 * struct kmem_cache_node's. There is special bootstrap code in
C
Christoph Lameter 已提交
3028 3029 3030 3031
	 * kmem_cache_open for slab_state == DOWN.
	 */
	create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
		sizeof(struct kmem_cache_node), GFP_KERNEL);
3032
	kmalloc_caches[0].refcount = -1;
3033
	caches++;
3034 3035

	hotplug_memory_notifier(slab_memory_callback, 1);
C
Christoph Lameter 已提交
3036 3037 3038 3039 3040 3041
#endif

	/* Able to allocate the per node structures */
	slab_state = PARTIAL;

	/* Caches that are not of the two-to-the-power-of size */
3042 3043
	if (KMALLOC_MIN_SIZE <= 64) {
		create_kmalloc_cache(&kmalloc_caches[1],
C
Christoph Lameter 已提交
3044
				"kmalloc-96", 96, GFP_KERNEL);
3045 3046 3047 3048
		caches++;
	}
	if (KMALLOC_MIN_SIZE <= 128) {
		create_kmalloc_cache(&kmalloc_caches[2],
C
Christoph Lameter 已提交
3049
				"kmalloc-192", 192, GFP_KERNEL);
3050 3051
		caches++;
	}
C
Christoph Lameter 已提交
3052

3053
	for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
C
Christoph Lameter 已提交
3054 3055
		create_kmalloc_cache(&kmalloc_caches[i],
			"kmalloc", 1 << i, GFP_KERNEL);
3056 3057
		caches++;
	}
C
Christoph Lameter 已提交
3058

3059 3060 3061 3062

	/*
	 * Patch up the size_index table if we have strange large alignment
	 * requirements for the kmalloc array. This is only the case for
C
Christoph Lameter 已提交
3063
	 * MIPS it seems. The standard arches will not generate any code here.
3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
	 *
	 * Largest permitted alignment is 256 bytes due to the way we
	 * handle the index determination for the smaller caches.
	 *
	 * Make sure that nothing crazy happens if someone starts tinkering
	 * around with ARCH_KMALLOC_MINALIGN
	 */
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));

3074
	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
3075 3076
		size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;

C
Christoph Lameter 已提交
3077 3078 3079
	slab_state = UP;

	/* Provide the correct kmalloc names now that the caches are up */
3080
	for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
C
Christoph Lameter 已提交
3081 3082 3083 3084 3085
		kmalloc_caches[i]. name =
			kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);

#ifdef CONFIG_SMP
	register_cpu_notifier(&slab_notifier);
3086 3087 3088 3089
	kmem_size = offsetof(struct kmem_cache, cpu_slab) +
				nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
#else
	kmem_size = sizeof(struct kmem_cache);
C
Christoph Lameter 已提交
3090 3091
#endif

I
Ingo Molnar 已提交
3092 3093
	printk(KERN_INFO
		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3094 3095
		" CPUs=%d, Nodes=%d\n",
		caches, cache_line_size(),
C
Christoph Lameter 已提交
3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107
		slub_min_order, slub_max_order, slub_min_objects,
		nr_cpu_ids, nr_node_ids);
}

/*
 * Find a mergeable slab cache
 */
static int slab_unmergeable(struct kmem_cache *s)
{
	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
		return 1;

3108
	if ((s->flags & __PAGE_ALLOC_FALLBACK))
3109 3110
		return 1;

3111
	if (s->ctor)
C
Christoph Lameter 已提交
3112 3113
		return 1;

3114 3115 3116 3117 3118 3119
	/*
	 * We may have set a slab to be unmergeable during bootstrap.
	 */
	if (s->refcount < 0)
		return 1;

C
Christoph Lameter 已提交
3120 3121 3122 3123
	return 0;
}

static struct kmem_cache *find_mergeable(size_t size,
3124
		size_t align, unsigned long flags, const char *name,
3125
		void (*ctor)(struct kmem_cache *, void *))
C
Christoph Lameter 已提交
3126
{
3127
	struct kmem_cache *s;
C
Christoph Lameter 已提交
3128 3129 3130 3131

	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
		return NULL;

3132
	if (ctor)
C
Christoph Lameter 已提交
3133 3134 3135 3136 3137
		return NULL;

	size = ALIGN(size, sizeof(void *));
	align = calculate_alignment(flags, align, size);
	size = ALIGN(size, align);
3138
	flags = kmem_cache_flags(size, flags, name, NULL);
C
Christoph Lameter 已提交
3139

3140
	list_for_each_entry(s, &slab_caches, list) {
C
Christoph Lameter 已提交
3141 3142 3143 3144 3145 3146
		if (slab_unmergeable(s))
			continue;

		if (size > s->size)
			continue;

3147
		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
C
Christoph Lameter 已提交
3148 3149 3150 3151 3152
				continue;
		/*
		 * Check if alignment is compatible.
		 * Courtesy of Adrian Drzewiecki
		 */
P
Pekka Enberg 已提交
3153
		if ((s->size & ~(align - 1)) != s->size)
C
Christoph Lameter 已提交
3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165
			continue;

		if (s->size - size >= sizeof(void *))
			continue;

		return s;
	}
	return NULL;
}

struct kmem_cache *kmem_cache_create(const char *name, size_t size,
		size_t align, unsigned long flags,
3166
		void (*ctor)(struct kmem_cache *, void *))
C
Christoph Lameter 已提交
3167 3168 3169 3170
{
	struct kmem_cache *s;

	down_write(&slub_lock);
3171
	s = find_mergeable(size, align, flags, name, ctor);
C
Christoph Lameter 已提交
3172
	if (s) {
3173 3174
		int cpu;

C
Christoph Lameter 已提交
3175 3176 3177 3178 3179 3180
		s->refcount++;
		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
		s->objsize = max(s->objsize, (int)size);
3181 3182 3183 3184 3185 3186 3187

		/*
		 * And then we need to update the object size in the
		 * per cpu structures
		 */
		for_each_online_cpu(cpu)
			get_cpu_slab(s, cpu)->objsize = s->objsize;
C
Christoph Lameter 已提交
3188

C
Christoph Lameter 已提交
3189
		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3190
		up_write(&slub_lock);
C
Christoph Lameter 已提交
3191

C
Christoph Lameter 已提交
3192 3193
		if (sysfs_slab_alias(s, name))
			goto err;
3194 3195
		return s;
	}
C
Christoph Lameter 已提交
3196

3197 3198 3199
	s = kmalloc(kmem_size, GFP_KERNEL);
	if (s) {
		if (kmem_cache_open(s, GFP_KERNEL, name,
3200
				size, align, flags, ctor)) {
C
Christoph Lameter 已提交
3201
			list_add(&s->list, &slab_caches);
3202 3203 3204 3205 3206 3207
			up_write(&slub_lock);
			if (sysfs_slab_add(s))
				goto err;
			return s;
		}
		kfree(s);
C
Christoph Lameter 已提交
3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221
	}
	up_write(&slub_lock);

err:
	if (flags & SLAB_PANIC)
		panic("Cannot create slabcache %s\n", name);
	else
		s = NULL;
	return s;
}
EXPORT_SYMBOL(kmem_cache_create);

#ifdef CONFIG_SMP
/*
C
Christoph Lameter 已提交
3222 3223
 * Use the cpu notifier to insure that the cpu slabs are flushed when
 * necessary.
C
Christoph Lameter 已提交
3224 3225 3226 3227 3228
 */
static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
		unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
3229 3230
	struct kmem_cache *s;
	unsigned long flags;
C
Christoph Lameter 已提交
3231 3232

	switch (action) {
3233 3234 3235 3236 3237 3238 3239 3240 3241 3242
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
		init_alloc_cpu_cpu(cpu);
		down_read(&slub_lock);
		list_for_each_entry(s, &slab_caches, list)
			s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
							GFP_KERNEL);
		up_read(&slub_lock);
		break;

C
Christoph Lameter 已提交
3243
	case CPU_UP_CANCELED:
3244
	case CPU_UP_CANCELED_FROZEN:
C
Christoph Lameter 已提交
3245
	case CPU_DEAD:
3246
	case CPU_DEAD_FROZEN:
3247 3248
		down_read(&slub_lock);
		list_for_each_entry(s, &slab_caches, list) {
3249 3250
			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);

3251 3252 3253
			local_irq_save(flags);
			__flush_cpu_slab(s, cpu);
			local_irq_restore(flags);
3254 3255
			free_kmem_cache_cpu(c, cpu);
			s->cpu_slab[cpu] = NULL;
3256 3257
		}
		up_read(&slub_lock);
C
Christoph Lameter 已提交
3258 3259 3260 3261 3262 3263 3264
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

P
Pekka Enberg 已提交
3265
static struct notifier_block __cpuinitdata slab_notifier = {
I
Ingo Molnar 已提交
3266
	.notifier_call = slab_cpuup_callback
P
Pekka Enberg 已提交
3267
};
C
Christoph Lameter 已提交
3268 3269 3270 3271 3272

#endif

void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
{
3273 3274
	struct kmem_cache *s;

3275
	if (unlikely(size > PAGE_SIZE))
3276 3277
		return kmalloc_large(size, gfpflags);

3278
	s = get_slab(size, gfpflags);
C
Christoph Lameter 已提交
3279

3280
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3281
		return s;
C
Christoph Lameter 已提交
3282

3283
	return slab_alloc(s, gfpflags, -1, caller);
C
Christoph Lameter 已提交
3284 3285 3286 3287 3288
}

void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
					int node, void *caller)
{
3289 3290
	struct kmem_cache *s;

3291
	if (unlikely(size > PAGE_SIZE))
3292
		return kmalloc_large_node(size, gfpflags, node);
3293

3294
	s = get_slab(size, gfpflags);
C
Christoph Lameter 已提交
3295

3296
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3297
		return s;
C
Christoph Lameter 已提交
3298

3299
	return slab_alloc(s, gfpflags, node, caller);
C
Christoph Lameter 已提交
3300 3301
}

3302
#if (defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)) || defined(CONFIG_SLABINFO)
3303 3304
static unsigned long count_partial(struct kmem_cache_node *n,
					int (*get_count)(struct page *))
3305 3306 3307 3308 3309 3310 3311
{
	unsigned long flags;
	unsigned long x = 0;
	struct page *page;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry(page, &n->partial, lru)
3312
		x += get_count(page);
3313 3314 3315
	spin_unlock_irqrestore(&n->list_lock, flags);
	return x;
}
3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330

static int count_inuse(struct page *page)
{
	return page->inuse;
}

static int count_total(struct page *page)
{
	return page->objects;
}

static int count_free(struct page *page)
{
	return page->objects - page->inuse;
}
3331 3332
#endif

C
Christoph Lameter 已提交
3333
#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
3334 3335
static int validate_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3336 3337
{
	void *p;
3338
	void *addr = page_address(page);
3339 3340 3341 3342 3343 3344

	if (!check_slab(s, page) ||
			!on_freelist(s, page, NULL))
		return 0;

	/* Now we know that a valid freelist exists */
3345
	bitmap_zero(map, page->objects);
3346

3347 3348
	for_each_free_object(p, s, page->freelist) {
		set_bit(slab_index(p, s, addr), map);
3349 3350 3351 3352
		if (!check_object(s, page, p, 0))
			return 0;
	}

3353
	for_each_object(p, s, addr, page->objects)
3354
		if (!test_bit(slab_index(p, s, addr), map))
3355 3356 3357 3358 3359
			if (!check_object(s, page, p, 1))
				return 0;
	return 1;
}

3360 3361
static void validate_slab_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3362 3363
{
	if (slab_trylock(page)) {
3364
		validate_slab(s, page, map);
3365 3366 3367 3368 3369 3370
		slab_unlock(page);
	} else
		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
			s->name, page);

	if (s->flags & DEBUG_DEFAULT_FLAGS) {
3371 3372
		if (!SlabDebug(page))
			printk(KERN_ERR "SLUB %s: SlabDebug not set "
3373 3374
				"on slab 0x%p\n", s->name, page);
	} else {
3375 3376
		if (SlabDebug(page))
			printk(KERN_ERR "SLUB %s: SlabDebug set on "
3377 3378 3379 3380
				"slab 0x%p\n", s->name, page);
	}
}

3381 3382
static int validate_slab_node(struct kmem_cache *s,
		struct kmem_cache_node *n, unsigned long *map)
3383 3384 3385 3386 3387 3388 3389 3390
{
	unsigned long count = 0;
	struct page *page;
	unsigned long flags;

	spin_lock_irqsave(&n->list_lock, flags);

	list_for_each_entry(page, &n->partial, lru) {
3391
		validate_slab_slab(s, page, map);
3392 3393 3394 3395 3396 3397 3398 3399 3400 3401
		count++;
	}
	if (count != n->nr_partial)
		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
			"counter=%ld\n", s->name, count, n->nr_partial);

	if (!(s->flags & SLAB_STORE_USER))
		goto out;

	list_for_each_entry(page, &n->full, lru) {
3402
		validate_slab_slab(s, page, map);
3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414
		count++;
	}
	if (count != atomic_long_read(&n->nr_slabs))
		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
			"counter=%ld\n", s->name, count,
			atomic_long_read(&n->nr_slabs));

out:
	spin_unlock_irqrestore(&n->list_lock, flags);
	return count;
}

3415
static long validate_slab_cache(struct kmem_cache *s)
3416 3417 3418
{
	int node;
	unsigned long count = 0;
3419
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3420 3421 3422 3423
				sizeof(unsigned long), GFP_KERNEL);

	if (!map)
		return -ENOMEM;
3424 3425

	flush_all(s);
C
Christoph Lameter 已提交
3426
	for_each_node_state(node, N_NORMAL_MEMORY) {
3427 3428
		struct kmem_cache_node *n = get_node(s, node);

3429
		count += validate_slab_node(s, n, map);
3430
	}
3431
	kfree(map);
3432 3433 3434
	return count;
}

3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454
#ifdef SLUB_RESILIENCY_TEST
static void resiliency_test(void)
{
	u8 *p;

	printk(KERN_ERR "SLUB resiliency testing\n");
	printk(KERN_ERR "-----------------------\n");
	printk(KERN_ERR "A. Corruption after allocation\n");

	p = kzalloc(16, GFP_KERNEL);
	p[16] = 0x12;
	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
			" 0x12->0x%p\n\n", p + 16);

	validate_slab_cache(kmalloc_caches + 4);

	/* Hmmm... The next two are dangerous */
	p = kzalloc(32, GFP_KERNEL);
	p[32 + sizeof(void *)] = 0x34;
	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
I
Ingo Molnar 已提交
3455 3456 3457
			" 0x34 -> -0x%p\n", p);
	printk(KERN_ERR
		"If allocated object is overwritten then not detectable\n\n");
3458 3459 3460 3461 3462 3463 3464

	validate_slab_cache(kmalloc_caches + 5);
	p = kzalloc(64, GFP_KERNEL);
	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
	*p = 0x56;
	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
									p);
I
Ingo Molnar 已提交
3465 3466
	printk(KERN_ERR
		"If allocated object is overwritten then not detectable\n\n");
3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478
	validate_slab_cache(kmalloc_caches + 6);

	printk(KERN_ERR "\nB. Corruption after free\n");
	p = kzalloc(128, GFP_KERNEL);
	kfree(p);
	*p = 0x78;
	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches + 7);

	p = kzalloc(256, GFP_KERNEL);
	kfree(p);
	p[50] = 0x9a;
I
Ingo Molnar 已提交
3479 3480
	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
			p);
3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492
	validate_slab_cache(kmalloc_caches + 8);

	p = kzalloc(512, GFP_KERNEL);
	kfree(p);
	p[512] = 0xab;
	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches + 9);
}
#else
static void resiliency_test(void) {};
#endif

3493
/*
C
Christoph Lameter 已提交
3494
 * Generate lists of code addresses where slabcache objects are allocated
3495 3496 3497 3498 3499 3500
 * and freed.
 */

struct location {
	unsigned long count;
	void *addr;
3501 3502 3503 3504 3505 3506 3507
	long long sum_time;
	long min_time;
	long max_time;
	long min_pid;
	long max_pid;
	cpumask_t cpus;
	nodemask_t nodes;
3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522
};

struct loc_track {
	unsigned long max;
	unsigned long count;
	struct location *loc;
};

static void free_loc_track(struct loc_track *t)
{
	if (t->max)
		free_pages((unsigned long)t->loc,
			get_order(sizeof(struct location) * t->max));
}

3523
static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3524 3525 3526 3527 3528 3529
{
	struct location *l;
	int order;

	order = get_order(sizeof(struct location) * max);

3530
	l = (void *)__get_free_pages(flags, order);
3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543
	if (!l)
		return 0;

	if (t->count) {
		memcpy(l, t->loc, sizeof(struct location) * t->count);
		free_loc_track(t);
	}
	t->max = max;
	t->loc = l;
	return 1;
}

static int add_location(struct loc_track *t, struct kmem_cache *s,
3544
				const struct track *track)
3545 3546 3547 3548
{
	long start, end, pos;
	struct location *l;
	void *caddr;
3549
	unsigned long age = jiffies - track->when;
3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564

	start = -1;
	end = t->count;

	for ( ; ; ) {
		pos = start + (end - start + 1) / 2;

		/*
		 * There is nothing at "end". If we end up there
		 * we need to add something to before end.
		 */
		if (pos == end)
			break;

		caddr = t->loc[pos].addr;
3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583
		if (track->addr == caddr) {

			l = &t->loc[pos];
			l->count++;
			if (track->when) {
				l->sum_time += age;
				if (age < l->min_time)
					l->min_time = age;
				if (age > l->max_time)
					l->max_time = age;

				if (track->pid < l->min_pid)
					l->min_pid = track->pid;
				if (track->pid > l->max_pid)
					l->max_pid = track->pid;

				cpu_set(track->cpu, l->cpus);
			}
			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3584 3585 3586
			return 1;
		}

3587
		if (track->addr < caddr)
3588 3589 3590 3591 3592 3593
			end = pos;
		else
			start = pos;
	}

	/*
C
Christoph Lameter 已提交
3594
	 * Not found. Insert new tracking element.
3595
	 */
3596
	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3597 3598 3599 3600 3601 3602 3603 3604
		return 0;

	l = t->loc + pos;
	if (pos < t->count)
		memmove(l + 1, l,
			(t->count - pos) * sizeof(struct location));
	t->count++;
	l->count = 1;
3605 3606 3607 3608 3609 3610 3611 3612 3613 3614
	l->addr = track->addr;
	l->sum_time = age;
	l->min_time = age;
	l->max_time = age;
	l->min_pid = track->pid;
	l->max_pid = track->pid;
	cpus_clear(l->cpus);
	cpu_set(track->cpu, l->cpus);
	nodes_clear(l->nodes);
	node_set(page_to_nid(virt_to_page(track)), l->nodes);
3615 3616 3617 3618 3619 3620
	return 1;
}

static void process_slab(struct loc_track *t, struct kmem_cache *s,
		struct page *page, enum track_item alloc)
{
3621
	void *addr = page_address(page);
3622
	DECLARE_BITMAP(map, page->objects);
3623 3624
	void *p;

3625
	bitmap_zero(map, page->objects);
3626 3627
	for_each_free_object(p, s, page->freelist)
		set_bit(slab_index(p, s, addr), map);
3628

3629
	for_each_object(p, s, addr, page->objects)
3630 3631
		if (!test_bit(slab_index(p, s, addr), map))
			add_location(t, s, get_track(s, p, alloc));
3632 3633 3634 3635 3636
}

static int list_locations(struct kmem_cache *s, char *buf,
					enum track_item alloc)
{
3637
	int len = 0;
3638
	unsigned long i;
3639
	struct loc_track t = { 0, 0, NULL };
3640 3641
	int node;

3642
	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3643
			GFP_TEMPORARY))
3644
		return sprintf(buf, "Out of memory\n");
3645 3646 3647 3648

	/* Push back cpu slabs */
	flush_all(s);

C
Christoph Lameter 已提交
3649
	for_each_node_state(node, N_NORMAL_MEMORY) {
3650 3651 3652 3653
		struct kmem_cache_node *n = get_node(s, node);
		unsigned long flags;
		struct page *page;

3654
		if (!atomic_long_read(&n->nr_slabs))
3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665
			continue;

		spin_lock_irqsave(&n->list_lock, flags);
		list_for_each_entry(page, &n->partial, lru)
			process_slab(&t, s, page, alloc);
		list_for_each_entry(page, &n->full, lru)
			process_slab(&t, s, page, alloc);
		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	for (i = 0; i < t.count; i++) {
3666
		struct location *l = &t.loc[i];
3667

3668
		if (len > PAGE_SIZE - 100)
3669
			break;
3670
		len += sprintf(buf + len, "%7ld ", l->count);
3671 3672

		if (l->addr)
3673
			len += sprint_symbol(buf + len, (unsigned long)l->addr);
3674
		else
3675
			len += sprintf(buf + len, "<not-available>");
3676 3677 3678 3679

		if (l->sum_time != l->min_time) {
			unsigned long remainder;

3680
			len += sprintf(buf + len, " age=%ld/%ld/%ld",
3681 3682 3683 3684
			l->min_time,
			div_long_long_rem(l->sum_time, l->count, &remainder),
			l->max_time);
		} else
3685
			len += sprintf(buf + len, " age=%ld",
3686 3687 3688
				l->min_time);

		if (l->min_pid != l->max_pid)
3689
			len += sprintf(buf + len, " pid=%ld-%ld",
3690 3691
				l->min_pid, l->max_pid);
		else
3692
			len += sprintf(buf + len, " pid=%ld",
3693 3694
				l->min_pid);

3695
		if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3696 3697 3698
				len < PAGE_SIZE - 60) {
			len += sprintf(buf + len, " cpus=");
			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3699 3700 3701
					l->cpus);
		}

3702
		if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3703 3704 3705
				len < PAGE_SIZE - 60) {
			len += sprintf(buf + len, " nodes=");
			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3706 3707 3708
					l->nodes);
		}

3709
		len += sprintf(buf + len, "\n");
3710 3711 3712 3713
	}

	free_loc_track(&t);
	if (!t.count)
3714 3715
		len += sprintf(buf, "No data\n");
	return len;
3716 3717
}

C
Christoph Lameter 已提交
3718
enum slab_stat_type {
3719 3720 3721 3722 3723
	SL_ALL,			/* All slabs */
	SL_PARTIAL,		/* Only partially allocated slabs */
	SL_CPU,			/* Only slabs used for cpu caches */
	SL_OBJECTS,		/* Determine allocated objects not slabs */
	SL_TOTAL		/* Determine object capacity not slabs */
C
Christoph Lameter 已提交
3724 3725
};

3726
#define SO_ALL		(1 << SL_ALL)
C
Christoph Lameter 已提交
3727 3728 3729
#define SO_PARTIAL	(1 << SL_PARTIAL)
#define SO_CPU		(1 << SL_CPU)
#define SO_OBJECTS	(1 << SL_OBJECTS)
3730
#define SO_TOTAL	(1 << SL_TOTAL)
C
Christoph Lameter 已提交
3731

3732 3733
static ssize_t show_slab_objects(struct kmem_cache *s,
			    char *buf, unsigned long flags)
C
Christoph Lameter 已提交
3734 3735 3736 3737 3738 3739 3740 3741
{
	unsigned long total = 0;
	int node;
	int x;
	unsigned long *nodes;
	unsigned long *per_cpu;

	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3742 3743
	if (!nodes)
		return -ENOMEM;
C
Christoph Lameter 已提交
3744 3745
	per_cpu = nodes + nr_node_ids;

3746 3747
	if (flags & SO_CPU) {
		int cpu;
C
Christoph Lameter 已提交
3748

3749 3750
		for_each_possible_cpu(cpu) {
			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3751

3752 3753 3754 3755 3756 3757 3758 3759
			if (!c || c->node < 0)
				continue;

			if (c->page) {
					if (flags & SO_TOTAL)
						x = c->page->objects;
				else if (flags & SO_OBJECTS)
					x = c->page->inuse;
C
Christoph Lameter 已提交
3760 3761
				else
					x = 1;
3762

C
Christoph Lameter 已提交
3763
				total += x;
3764
				nodes[c->node] += x;
C
Christoph Lameter 已提交
3765
			}
3766
			per_cpu[c->node]++;
C
Christoph Lameter 已提交
3767 3768 3769
		}
	}

3770 3771 3772 3773 3774 3775 3776 3777 3778
	if (flags & SO_ALL) {
		for_each_node_state(node, N_NORMAL_MEMORY) {
			struct kmem_cache_node *n = get_node(s, node);

		if (flags & SO_TOTAL)
			x = atomic_long_read(&n->total_objects);
		else if (flags & SO_OBJECTS)
			x = atomic_long_read(&n->total_objects) -
				count_partial(n, count_free);
C
Christoph Lameter 已提交
3779 3780

			else
3781
				x = atomic_long_read(&n->nr_slabs);
C
Christoph Lameter 已提交
3782 3783 3784 3785
			total += x;
			nodes[node] += x;
		}

3786 3787 3788
	} else if (flags & SO_PARTIAL) {
		for_each_node_state(node, N_NORMAL_MEMORY) {
			struct kmem_cache_node *n = get_node(s, node);
C
Christoph Lameter 已提交
3789

3790 3791 3792 3793
			if (flags & SO_TOTAL)
				x = count_partial(n, count_total);
			else if (flags & SO_OBJECTS)
				x = count_partial(n, count_inuse);
C
Christoph Lameter 已提交
3794
			else
3795
				x = n->nr_partial;
C
Christoph Lameter 已提交
3796 3797 3798 3799 3800 3801
			total += x;
			nodes[node] += x;
		}
	}
	x = sprintf(buf, "%lu", total);
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
3802
	for_each_node_state(node, N_NORMAL_MEMORY)
C
Christoph Lameter 已提交
3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815
		if (nodes[node])
			x += sprintf(buf + x, " N%d=%lu",
					node, nodes[node]);
#endif
	kfree(nodes);
	return x + sprintf(buf + x, "\n");
}

static int any_slab_objects(struct kmem_cache *s)
{
	int node;
	int cpu;

3816 3817 3818 3819
	for_each_possible_cpu(cpu) {
		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);

		if (c && c->page)
C
Christoph Lameter 已提交
3820
			return 1;
3821
	}
C
Christoph Lameter 已提交
3822

3823
	for_each_online_node(node) {
C
Christoph Lameter 已提交
3824 3825
		struct kmem_cache_node *n = get_node(s, node);

3826 3827 3828
		if (!n)
			continue;

3829
		if (n->nr_partial || atomic_long_read(&n->nr_slabs))
C
Christoph Lameter 已提交
3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870
			return 1;
	}
	return 0;
}

#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
#define to_slab(n) container_of(n, struct kmem_cache, kobj);

struct slab_attribute {
	struct attribute attr;
	ssize_t (*show)(struct kmem_cache *s, char *buf);
	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
};

#define SLAB_ATTR_RO(_name) \
	static struct slab_attribute _name##_attr = __ATTR_RO(_name)

#define SLAB_ATTR(_name) \
	static struct slab_attribute _name##_attr =  \
	__ATTR(_name, 0644, _name##_show, _name##_store)

static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->size);
}
SLAB_ATTR_RO(slab_size);

static ssize_t align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->align);
}
SLAB_ATTR_RO(align);

static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->objsize);
}
SLAB_ATTR_RO(object_size);

static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
{
3871
	return sprintf(buf, "%d\n", oo_objects(s->oo));
C
Christoph Lameter 已提交
3872 3873 3874 3875 3876
}
SLAB_ATTR_RO(objs_per_slab);

static ssize_t order_show(struct kmem_cache *s, char *buf)
{
3877
	return sprintf(buf, "%d\n", oo_order(s->oo));
C
Christoph Lameter 已提交
3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899
}
SLAB_ATTR_RO(order);

static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
	if (s->ctor) {
		int n = sprint_symbol(buf, (unsigned long)s->ctor);

		return n + sprintf(buf + n, "\n");
	}
	return 0;
}
SLAB_ATTR_RO(ctor);

static ssize_t aliases_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->refcount - 1);
}
SLAB_ATTR_RO(aliases);

static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
3900
	return show_slab_objects(s, buf, SO_ALL);
C
Christoph Lameter 已提交
3901 3902 3903 3904 3905
}
SLAB_ATTR_RO(slabs);

static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
3906
	return show_slab_objects(s, buf, SO_PARTIAL);
C
Christoph Lameter 已提交
3907 3908 3909 3910 3911
}
SLAB_ATTR_RO(partial);

static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
3912
	return show_slab_objects(s, buf, SO_CPU);
C
Christoph Lameter 已提交
3913 3914 3915 3916 3917
}
SLAB_ATTR_RO(cpu_slabs);

static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
3918
	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
C
Christoph Lameter 已提交
3919 3920 3921
}
SLAB_ATTR_RO(objects);

3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933
static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
}
SLAB_ATTR_RO(objects_partial);

static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
}
SLAB_ATTR_RO(total_objects);

C
Christoph Lameter 已提交
3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980
static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
}

static ssize_t sanity_checks_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_DEBUG_FREE;
	if (buf[0] == '1')
		s->flags |= SLAB_DEBUG_FREE;
	return length;
}
SLAB_ATTR(sanity_checks);

static ssize_t trace_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
}

static ssize_t trace_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
	s->flags &= ~SLAB_TRACE;
	if (buf[0] == '1')
		s->flags |= SLAB_TRACE;
	return length;
}
SLAB_ATTR(trace);

static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
}

static ssize_t reclaim_account_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
	if (buf[0] == '1')
		s->flags |= SLAB_RECLAIM_ACCOUNT;
	return length;
}
SLAB_ATTR(reclaim_account);

static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
{
3981
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
C
Christoph Lameter 已提交
3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055
}
SLAB_ATTR_RO(hwcache_align);

#ifdef CONFIG_ZONE_DMA
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
}
SLAB_ATTR_RO(cache_dma);
#endif

static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
}
SLAB_ATTR_RO(destroy_by_rcu);

static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
}

static ssize_t red_zone_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_RED_ZONE;
	if (buf[0] == '1')
		s->flags |= SLAB_RED_ZONE;
	calculate_sizes(s);
	return length;
}
SLAB_ATTR(red_zone);

static ssize_t poison_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
}

static ssize_t poison_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_POISON;
	if (buf[0] == '1')
		s->flags |= SLAB_POISON;
	calculate_sizes(s);
	return length;
}
SLAB_ATTR(poison);

static ssize_t store_user_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
}

static ssize_t store_user_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_STORE_USER;
	if (buf[0] == '1')
		s->flags |= SLAB_STORE_USER;
	calculate_sizes(s);
	return length;
}
SLAB_ATTR(store_user);

4056 4057 4058 4059 4060 4061 4062 4063
static ssize_t validate_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t validate_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
4064 4065 4066 4067 4068 4069 4070 4071
	int ret = -EINVAL;

	if (buf[0] == '1') {
		ret = validate_slab_cache(s);
		if (ret >= 0)
			ret = length;
	}
	return ret;
4072 4073 4074
}
SLAB_ATTR(validate);

4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093
static ssize_t shrink_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t shrink_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
	if (buf[0] == '1') {
		int rc = kmem_cache_shrink(s);

		if (rc)
			return rc;
	} else
		return -EINVAL;
	return length;
}
SLAB_ATTR(shrink);

4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109
static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_ALLOC);
}
SLAB_ATTR_RO(alloc_calls);

static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_FREE);
}
SLAB_ATTR_RO(free_calls);

C
Christoph Lameter 已提交
4110
#ifdef CONFIG_NUMA
4111
static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
C
Christoph Lameter 已提交
4112
{
4113
	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
C
Christoph Lameter 已提交
4114 4115
}

4116
static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
C
Christoph Lameter 已提交
4117 4118 4119 4120 4121
				const char *buf, size_t length)
{
	int n = simple_strtoul(buf, NULL, 10);

	if (n < 100)
4122
		s->remote_node_defrag_ratio = n * 10;
C
Christoph Lameter 已提交
4123 4124
	return length;
}
4125
SLAB_ATTR(remote_node_defrag_ratio);
C
Christoph Lameter 已提交
4126 4127
#endif

4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147
#ifdef CONFIG_SLUB_STATS
static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
{
	unsigned long sum  = 0;
	int cpu;
	int len;
	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);

	if (!data)
		return -ENOMEM;

	for_each_online_cpu(cpu) {
		unsigned x = get_cpu_slab(s, cpu)->stat[si];

		data[cpu] = x;
		sum += x;
	}

	len = sprintf(buf, "%lu", sum);

4148
#ifdef CONFIG_SMP
4149 4150
	for_each_online_cpu(cpu) {
		if (data[cpu] && len < PAGE_SIZE - 20)
4151
			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4152
	}
4153
#endif
4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181
	kfree(data);
	return len + sprintf(buf + len, "\n");
}

#define STAT_ATTR(si, text) 					\
static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
{								\
	return show_stat(s, buf, si);				\
}								\
SLAB_ATTR_RO(text);						\

STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
STAT_ATTR(FREE_FASTPATH, free_fastpath);
STAT_ATTR(FREE_SLOWPATH, free_slowpath);
STAT_ATTR(FREE_FROZEN, free_frozen);
STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
STAT_ATTR(ALLOC_SLAB, alloc_slab);
STAT_ATTR(ALLOC_REFILL, alloc_refill);
STAT_ATTR(FREE_SLAB, free_slab);
STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4182
STAT_ATTR(ORDER_FALLBACK, order_fallback);
4183 4184
#endif

P
Pekka Enberg 已提交
4185
static struct attribute *slab_attrs[] = {
C
Christoph Lameter 已提交
4186 4187 4188 4189 4190
	&slab_size_attr.attr,
	&object_size_attr.attr,
	&objs_per_slab_attr.attr,
	&order_attr.attr,
	&objects_attr.attr,
4191 4192
	&objects_partial_attr.attr,
	&total_objects_attr.attr,
C
Christoph Lameter 已提交
4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206
	&slabs_attr.attr,
	&partial_attr.attr,
	&cpu_slabs_attr.attr,
	&ctor_attr.attr,
	&aliases_attr.attr,
	&align_attr.attr,
	&sanity_checks_attr.attr,
	&trace_attr.attr,
	&hwcache_align_attr.attr,
	&reclaim_account_attr.attr,
	&destroy_by_rcu_attr.attr,
	&red_zone_attr.attr,
	&poison_attr.attr,
	&store_user_attr.attr,
4207
	&validate_attr.attr,
4208
	&shrink_attr.attr,
4209 4210
	&alloc_calls_attr.attr,
	&free_calls_attr.attr,
C
Christoph Lameter 已提交
4211 4212 4213 4214
#ifdef CONFIG_ZONE_DMA
	&cache_dma_attr.attr,
#endif
#ifdef CONFIG_NUMA
4215
	&remote_node_defrag_ratio_attr.attr,
4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234
#endif
#ifdef CONFIG_SLUB_STATS
	&alloc_fastpath_attr.attr,
	&alloc_slowpath_attr.attr,
	&free_fastpath_attr.attr,
	&free_slowpath_attr.attr,
	&free_frozen_attr.attr,
	&free_add_partial_attr.attr,
	&free_remove_partial_attr.attr,
	&alloc_from_partial_attr.attr,
	&alloc_slab_attr.attr,
	&alloc_refill_attr.attr,
	&free_slab_attr.attr,
	&cpuslab_flush_attr.attr,
	&deactivate_full_attr.attr,
	&deactivate_empty_attr.attr,
	&deactivate_to_head_attr.attr,
	&deactivate_to_tail_attr.attr,
	&deactivate_remote_frees_attr.attr,
4235
	&order_fallback_attr.attr,
C
Christoph Lameter 已提交
4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281
#endif
	NULL
};

static struct attribute_group slab_attr_group = {
	.attrs = slab_attrs,
};

static ssize_t slab_attr_show(struct kobject *kobj,
				struct attribute *attr,
				char *buf)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->show)
		return -EIO;

	err = attribute->show(s, buf);

	return err;
}

static ssize_t slab_attr_store(struct kobject *kobj,
				struct attribute *attr,
				const char *buf, size_t len)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->store)
		return -EIO;

	err = attribute->store(s, buf, len);

	return err;
}

C
Christoph Lameter 已提交
4282 4283 4284 4285 4286 4287 4288
static void kmem_cache_release(struct kobject *kobj)
{
	struct kmem_cache *s = to_slab(kobj);

	kfree(s);
}

C
Christoph Lameter 已提交
4289 4290 4291 4292 4293 4294 4295
static struct sysfs_ops slab_sysfs_ops = {
	.show = slab_attr_show,
	.store = slab_attr_store,
};

static struct kobj_type slab_ktype = {
	.sysfs_ops = &slab_sysfs_ops,
C
Christoph Lameter 已提交
4296
	.release = kmem_cache_release
C
Christoph Lameter 已提交
4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311
};

static int uevent_filter(struct kset *kset, struct kobject *kobj)
{
	struct kobj_type *ktype = get_ktype(kobj);

	if (ktype == &slab_ktype)
		return 1;
	return 0;
}

static struct kset_uevent_ops slab_uevent_ops = {
	.filter = uevent_filter,
};

4312
static struct kset *slab_kset;
C
Christoph Lameter 已提交
4313 4314 4315 4316

#define ID_STR_LENGTH 64

/* Create a unique string id for a slab cache:
C
Christoph Lameter 已提交
4317 4318
 *
 * Format	:[flags-]size
C
Christoph Lameter 已提交
4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364
 */
static char *create_unique_id(struct kmem_cache *s)
{
	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
	char *p = name;

	BUG_ON(!name);

	*p++ = ':';
	/*
	 * First flags affecting slabcache operations. We will only
	 * get here for aliasable slabs so we do not need to support
	 * too many flags. The flags here must cover all flags that
	 * are matched during merging to guarantee that the id is
	 * unique.
	 */
	if (s->flags & SLAB_CACHE_DMA)
		*p++ = 'd';
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		*p++ = 'a';
	if (s->flags & SLAB_DEBUG_FREE)
		*p++ = 'F';
	if (p != name + 1)
		*p++ = '-';
	p += sprintf(p, "%07d", s->size);
	BUG_ON(p > name + ID_STR_LENGTH - 1);
	return name;
}

static int sysfs_slab_add(struct kmem_cache *s)
{
	int err;
	const char *name;
	int unmergeable;

	if (slab_state < SYSFS)
		/* Defer until later */
		return 0;

	unmergeable = slab_unmergeable(s);
	if (unmergeable) {
		/*
		 * Slabcache can never be merged so we can use the name proper.
		 * This is typically the case for debug situations. In that
		 * case we can catch duplicate names easily.
		 */
4365
		sysfs_remove_link(&slab_kset->kobj, s->name);
C
Christoph Lameter 已提交
4366 4367 4368 4369 4370 4371 4372 4373 4374
		name = s->name;
	} else {
		/*
		 * Create a unique name for the slab as a target
		 * for the symlinks.
		 */
		name = create_unique_id(s);
	}

4375
	s->kobj.kset = slab_kset;
4376 4377 4378
	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
	if (err) {
		kobject_put(&s->kobj);
C
Christoph Lameter 已提交
4379
		return err;
4380
	}
C
Christoph Lameter 已提交
4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397

	err = sysfs_create_group(&s->kobj, &slab_attr_group);
	if (err)
		return err;
	kobject_uevent(&s->kobj, KOBJ_ADD);
	if (!unmergeable) {
		/* Setup first alias */
		sysfs_slab_alias(s, s->name);
		kfree(name);
	}
	return 0;
}

static void sysfs_slab_remove(struct kmem_cache *s)
{
	kobject_uevent(&s->kobj, KOBJ_REMOVE);
	kobject_del(&s->kobj);
C
Christoph Lameter 已提交
4398
	kobject_put(&s->kobj);
C
Christoph Lameter 已提交
4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410
}

/*
 * Need to buffer aliases during bootup until sysfs becomes
 * available lest we loose that information.
 */
struct saved_alias {
	struct kmem_cache *s;
	const char *name;
	struct saved_alias *next;
};

A
Adrian Bunk 已提交
4411
static struct saved_alias *alias_list;
C
Christoph Lameter 已提交
4412 4413 4414 4415 4416 4417 4418 4419 4420

static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
{
	struct saved_alias *al;

	if (slab_state == SYSFS) {
		/*
		 * If we have a leftover link then remove it.
		 */
4421 4422
		sysfs_remove_link(&slab_kset->kobj, name);
		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
C
Christoph Lameter 已提交
4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437
	}

	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
	if (!al)
		return -ENOMEM;

	al->s = s;
	al->name = name;
	al->next = alias_list;
	alias_list = al;
	return 0;
}

static int __init slab_sysfs_init(void)
{
4438
	struct kmem_cache *s;
C
Christoph Lameter 已提交
4439 4440
	int err;

4441
	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4442
	if (!slab_kset) {
C
Christoph Lameter 已提交
4443 4444 4445 4446
		printk(KERN_ERR "Cannot register slab subsystem.\n");
		return -ENOSYS;
	}

4447 4448
	slab_state = SYSFS;

4449
	list_for_each_entry(s, &slab_caches, list) {
4450
		err = sysfs_slab_add(s);
4451 4452 4453
		if (err)
			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
						" to sysfs\n", s->name);
4454
	}
C
Christoph Lameter 已提交
4455 4456 4457 4458 4459 4460

	while (alias_list) {
		struct saved_alias *al = alias_list;

		alias_list = alias_list->next;
		err = sysfs_slab_alias(al->s, al->name);
4461 4462 4463
		if (err)
			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
					" %s to sysfs\n", s->name);
C
Christoph Lameter 已提交
4464 4465 4466 4467 4468 4469 4470 4471 4472
		kfree(al);
	}

	resiliency_test();
	return 0;
}

__initcall(slab_sysfs_init);
#endif
P
Pekka J Enberg 已提交
4473 4474 4475 4476

/*
 * The /proc/slabinfo ABI
 */
4477 4478 4479 4480 4481 4482 4483 4484
#ifdef CONFIG_SLABINFO

ssize_t slabinfo_write(struct file *file, const char __user * buffer,
                       size_t count, loff_t *ppos)
{
	return -EINVAL;
}

P
Pekka J Enberg 已提交
4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521

static void print_slabinfo_header(struct seq_file *m)
{
	seq_puts(m, "slabinfo - version: 2.1\n");
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;

	down_read(&slub_lock);
	if (!n)
		print_slabinfo_header(m);

	return seq_list_start(&slab_caches, *pos);
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
	return seq_list_next(p, &slab_caches, pos);
}

static void s_stop(struct seq_file *m, void *p)
{
	up_read(&slub_lock);
}

static int s_show(struct seq_file *m, void *p)
{
	unsigned long nr_partials = 0;
	unsigned long nr_slabs = 0;
	unsigned long nr_inuse = 0;
4522 4523
	unsigned long nr_objs = 0;
	unsigned long nr_free = 0;
P
Pekka J Enberg 已提交
4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536
	struct kmem_cache *s;
	int node;

	s = list_entry(p, struct kmem_cache, list);

	for_each_online_node(node) {
		struct kmem_cache_node *n = get_node(s, node);

		if (!n)
			continue;

		nr_partials += n->nr_partial;
		nr_slabs += atomic_long_read(&n->nr_slabs);
4537 4538
		nr_objs += atomic_long_read(&n->total_objects);
		nr_free += count_partial(n, count_free);
P
Pekka J Enberg 已提交
4539 4540
	}

4541
	nr_inuse = nr_objs - nr_free;
P
Pekka J Enberg 已提交
4542 4543

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4544 4545
		   nr_objs, s->size, oo_objects(s->oo),
		   (1 << oo_order(s->oo)));
P
Pekka J Enberg 已提交
4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559
	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
		   0UL);
	seq_putc(m, '\n');
	return 0;
}

const struct seq_operations slabinfo_op = {
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
};

4560
#endif /* CONFIG_SLABINFO */