rcar_drif.c 40.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
/*
 * R-Car Gen3 Digital Radio Interface (DRIF) driver
 *
 * Copyright (C) 2017 Renesas Electronics Corporation
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

/*
 * The R-Car DRIF is a receive only MSIOF like controller with an
 * external master device driving the SCK. It receives data into a FIFO,
 * then this driver uses the SYS-DMAC engine to move the data from
 * the device to memory.
 *
 * Each DRIF channel DRIFx (as per datasheet) contains two internal
 * channels DRIFx0 & DRIFx1 within itself with each having its own resources
 * like module clk, register set, irq and dma. These internal channels share
 * common CLK & SYNC from master. The two data pins D0 & D1 shall be
 * considered to represent the two internal channels. This internal split
 * is not visible to the master device.
 *
 * Depending on the master device, a DRIF channel can use
 *  (1) both internal channels (D0 & D1) to receive data in parallel (or)
 *  (2) one internal channel (D0 or D1) to receive data
 *
 * The primary design goal of this controller is to act as a Digital Radio
 * Interface that receives digital samples from a tuner device. Hence the
 * driver exposes the device as a V4L2 SDR device. In order to qualify as
 * a V4L2 SDR device, it should possess a tuner interface as mandated by the
 * framework. This driver expects a tuner driver (sub-device) to bind
 * asynchronously with this device and the combined drivers shall expose
 * a V4L2 compliant SDR device. The DRIF driver is independent of the
 * tuner vendor.
 *
 * The DRIF h/w can support I2S mode and Frame start synchronization pulse mode.
 * This driver is tested for I2S mode only because of the availability of
 * suitable master devices. Hence, not all configurable options of DRIF h/w
 * like lsb/msb first, syncdl, dtdl etc. are exposed via DT and I2S defaults
 * are used. These can be exposed later if needed after testing.
 */
#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/ioctl.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/of_graph.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/sched.h>
#include <media/v4l2-async.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-device.h>
#include <media/v4l2-event.h>
#include <media/v4l2-fh.h>
#include <media/v4l2-ioctl.h>
#include <media/videobuf2-v4l2.h>
#include <media/videobuf2-vmalloc.h>

/* DRIF register offsets */
#define RCAR_DRIF_SITMDR1			0x00
#define RCAR_DRIF_SITMDR2			0x04
#define RCAR_DRIF_SITMDR3			0x08
#define RCAR_DRIF_SIRMDR1			0x10
#define RCAR_DRIF_SIRMDR2			0x14
#define RCAR_DRIF_SIRMDR3			0x18
#define RCAR_DRIF_SICTR				0x28
#define RCAR_DRIF_SIFCTR			0x30
#define RCAR_DRIF_SISTR				0x40
#define RCAR_DRIF_SIIER				0x44
#define RCAR_DRIF_SIRFDR			0x60

#define RCAR_DRIF_RFOVF			BIT(3)	/* Receive FIFO overflow */
#define RCAR_DRIF_RFUDF			BIT(4)	/* Receive FIFO underflow */
#define RCAR_DRIF_RFSERR		BIT(5)	/* Receive frame sync error */
#define RCAR_DRIF_REOF			BIT(7)	/* Frame reception end */
#define RCAR_DRIF_RDREQ			BIT(12) /* Receive data xfer req */
#define RCAR_DRIF_RFFUL			BIT(13)	/* Receive FIFO full */

/* SIRMDR1 */
#define RCAR_DRIF_SIRMDR1_SYNCMD_FRAME		(0 << 28)
#define RCAR_DRIF_SIRMDR1_SYNCMD_LR		(3 << 28)

#define RCAR_DRIF_SIRMDR1_SYNCAC_POL_HIGH	(0 << 25)
#define RCAR_DRIF_SIRMDR1_SYNCAC_POL_LOW	(1 << 25)

#define RCAR_DRIF_SIRMDR1_MSB_FIRST		(0 << 24)
#define RCAR_DRIF_SIRMDR1_LSB_FIRST		(1 << 24)

#define RCAR_DRIF_SIRMDR1_DTDL_0		(0 << 20)
#define RCAR_DRIF_SIRMDR1_DTDL_1		(1 << 20)
#define RCAR_DRIF_SIRMDR1_DTDL_2		(2 << 20)
#define RCAR_DRIF_SIRMDR1_DTDL_0PT5		(5 << 20)
#define RCAR_DRIF_SIRMDR1_DTDL_1PT5		(6 << 20)

#define RCAR_DRIF_SIRMDR1_SYNCDL_0		(0 << 20)
#define RCAR_DRIF_SIRMDR1_SYNCDL_1		(1 << 20)
#define RCAR_DRIF_SIRMDR1_SYNCDL_2		(2 << 20)
#define RCAR_DRIF_SIRMDR1_SYNCDL_3		(3 << 20)
#define RCAR_DRIF_SIRMDR1_SYNCDL_0PT5		(5 << 20)
#define RCAR_DRIF_SIRMDR1_SYNCDL_1PT5		(6 << 20)

#define RCAR_DRIF_MDR_GRPCNT(n)			(((n) - 1) << 30)
#define RCAR_DRIF_MDR_BITLEN(n)			(((n) - 1) << 24)
#define RCAR_DRIF_MDR_WDCNT(n)			(((n) - 1) << 16)

/* Hidden Transmit register that controls CLK & SYNC */
#define RCAR_DRIF_SITMDR1_PCON			BIT(30)

#define RCAR_DRIF_SICTR_RX_RISING_EDGE		BIT(26)
#define RCAR_DRIF_SICTR_RX_EN			BIT(8)
#define RCAR_DRIF_SICTR_RESET			BIT(0)

/* Constants */
#define RCAR_DRIF_NUM_HWBUFS			32
#define RCAR_DRIF_MAX_DEVS			4
#define RCAR_DRIF_DEFAULT_NUM_HWBUFS		16
#define RCAR_DRIF_DEFAULT_HWBUF_SIZE		(4 * PAGE_SIZE)
#define RCAR_DRIF_MAX_CHANNEL			2
#define RCAR_SDR_BUFFER_SIZE			SZ_64K

/* Internal buffer status flags */
#define RCAR_DRIF_BUF_DONE			BIT(0)	/* DMA completed */
#define RCAR_DRIF_BUF_OVERFLOW			BIT(1)	/* Overflow detected */

#define to_rcar_drif_buf_pair(sdr, ch_num, idx)			\
	(&((sdr)->ch[!(ch_num)]->buf[(idx)]))

#define for_each_rcar_drif_channel(ch, ch_mask)			\
	for_each_set_bit(ch, ch_mask, RCAR_DRIF_MAX_CHANNEL)

/* Debug */
#define rdrif_dbg(sdr, fmt, arg...)				\
	dev_dbg(sdr->v4l2_dev.dev, fmt, ## arg)

#define rdrif_err(sdr, fmt, arg...)				\
	dev_err(sdr->v4l2_dev.dev, fmt, ## arg)

/* Stream formats */
struct rcar_drif_format {
	u32	pixelformat;
	u32	buffersize;
	u32	bitlen;
	u32	wdcnt;
	u32	num_ch;
};

/* Format descriptions for capture */
static const struct rcar_drif_format formats[] = {
	{
		.pixelformat	= V4L2_SDR_FMT_PCU16BE,
		.buffersize	= RCAR_SDR_BUFFER_SIZE,
		.bitlen		= 16,
		.wdcnt		= 1,
		.num_ch		= 2,
	},
	{
		.pixelformat	= V4L2_SDR_FMT_PCU18BE,
		.buffersize	= RCAR_SDR_BUFFER_SIZE,
		.bitlen		= 18,
		.wdcnt		= 1,
		.num_ch		= 2,
	},
	{
		.pixelformat	= V4L2_SDR_FMT_PCU20BE,
		.buffersize	= RCAR_SDR_BUFFER_SIZE,
		.bitlen		= 20,
		.wdcnt		= 1,
		.num_ch		= 2,
	},
};

/* Buffer for a received frame from one or both internal channels */
struct rcar_drif_frame_buf {
	/* Common v4l buffer stuff -- must be first */
	struct vb2_v4l2_buffer vb;
	struct list_head list;
};

/* OF graph endpoint's V4L2 async data */
struct rcar_drif_graph_ep {
	struct v4l2_subdev *subdev;	/* Async matched subdev */
	struct v4l2_async_subdev asd;	/* Async sub-device descriptor */
};

/* DMA buffer */
struct rcar_drif_hwbuf {
	void *addr;			/* CPU-side address */
	unsigned int status;		/* Buffer status flags */
};

/* Internal channel */
struct rcar_drif {
	struct rcar_drif_sdr *sdr;	/* Group device */
	struct platform_device *pdev;	/* Channel's pdev */
	void __iomem *base;		/* Base register address */
	resource_size_t start;		/* I/O resource offset */
	struct dma_chan *dmach;		/* Reserved DMA channel */
	struct clk *clk;		/* Module clock */
	struct rcar_drif_hwbuf buf[RCAR_DRIF_NUM_HWBUFS]; /* H/W bufs */
	dma_addr_t dma_handle;		/* Handle for all bufs */
	unsigned int num;		/* Channel number */
	bool acting_sdr;		/* Channel acting as SDR device */
};

/* DRIF V4L2 SDR */
struct rcar_drif_sdr {
	struct device *dev;		/* Platform device */
	struct video_device *vdev;	/* V4L2 SDR device */
	struct v4l2_device v4l2_dev;	/* V4L2 device */

	/* Videobuf2 queue and queued buffers list */
	struct vb2_queue vb_queue;
	struct list_head queued_bufs;
	spinlock_t queued_bufs_lock;	/* Protects queued_bufs */
	spinlock_t dma_lock;		/* To serialize DMA cb of channels */

	struct mutex v4l2_mutex;	/* To serialize ioctls */
	struct mutex vb_queue_mutex;	/* To serialize streaming ioctls */
	struct v4l2_ctrl_handler ctrl_hdl;	/* SDR control handler */
	struct v4l2_async_notifier notifier;	/* For subdev (tuner) */
	struct rcar_drif_graph_ep ep;	/* Endpoint V4L2 async data */

	/* Current V4L2 SDR format ptr */
	const struct rcar_drif_format *fmt;

	/* Device tree SYNC properties */
	u32 mdr1;

	/* Internals */
	struct rcar_drif *ch[RCAR_DRIF_MAX_CHANNEL]; /* DRIFx0,1 */
	unsigned long hw_ch_mask;	/* Enabled channels per DT */
	unsigned long cur_ch_mask;	/* Used channels for an SDR FMT */
	u32 num_hw_ch;			/* Num of DT enabled channels */
	u32 num_cur_ch;			/* Num of used channels */
	u32 hwbuf_size;			/* Each DMA buffer size */
	u32 produced;			/* Buffers produced by sdr dev */
};

/* Register access functions */
static void rcar_drif_write(struct rcar_drif *ch, u32 offset, u32 data)
{
	writel(data, ch->base + offset);
}

static u32 rcar_drif_read(struct rcar_drif *ch, u32 offset)
{
	return readl(ch->base + offset);
}

/* Release DMA channels */
static void rcar_drif_release_dmachannels(struct rcar_drif_sdr *sdr)
{
	unsigned int i;

	for_each_rcar_drif_channel(i, &sdr->cur_ch_mask)
		if (sdr->ch[i]->dmach) {
			dma_release_channel(sdr->ch[i]->dmach);
			sdr->ch[i]->dmach = NULL;
		}
}

/* Allocate DMA channels */
static int rcar_drif_alloc_dmachannels(struct rcar_drif_sdr *sdr)
{
	struct dma_slave_config dma_cfg;
	unsigned int i;
277
	int ret;
278 279 280 281 282 283 284

	for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
		struct rcar_drif *ch = sdr->ch[i];

		ch->dmach = dma_request_slave_channel(&ch->pdev->dev, "rx");
		if (!ch->dmach) {
			rdrif_err(sdr, "ch%u: dma channel req failed\n", i);
285
			ret = -ENODEV;
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
			goto dmach_error;
		}

		/* Configure slave */
		memset(&dma_cfg, 0, sizeof(dma_cfg));
		dma_cfg.src_addr = (phys_addr_t)(ch->start + RCAR_DRIF_SIRFDR);
		dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
		ret = dmaengine_slave_config(ch->dmach, &dma_cfg);
		if (ret) {
			rdrif_err(sdr, "ch%u: dma slave config failed\n", i);
			goto dmach_error;
		}
	}
	return 0;

dmach_error:
	rcar_drif_release_dmachannels(sdr);
	return ret;
}

/* Release queued vb2 buffers */
static void rcar_drif_release_queued_bufs(struct rcar_drif_sdr *sdr,
					  enum vb2_buffer_state state)
{
	struct rcar_drif_frame_buf *fbuf, *tmp;
	unsigned long flags;

	spin_lock_irqsave(&sdr->queued_bufs_lock, flags);
	list_for_each_entry_safe(fbuf, tmp, &sdr->queued_bufs, list) {
		list_del(&fbuf->list);
		vb2_buffer_done(&fbuf->vb.vb2_buf, state);
	}
	spin_unlock_irqrestore(&sdr->queued_bufs_lock, flags);
}

/* Set MDR defaults */
static inline void rcar_drif_set_mdr1(struct rcar_drif_sdr *sdr)
{
	unsigned int i;

	/* Set defaults for enabled internal channels */
	for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
		/* Refer MSIOF section in manual for this register setting */
		rcar_drif_write(sdr->ch[i], RCAR_DRIF_SITMDR1,
				RCAR_DRIF_SITMDR1_PCON);

		/* Setup MDR1 value */
		rcar_drif_write(sdr->ch[i], RCAR_DRIF_SIRMDR1, sdr->mdr1);

		rdrif_dbg(sdr, "ch%u: mdr1 = 0x%08x",
			  i, rcar_drif_read(sdr->ch[i], RCAR_DRIF_SIRMDR1));
	}
}

/* Set DRIF receive format */
static int rcar_drif_set_format(struct rcar_drif_sdr *sdr)
{
	unsigned int i;

	rdrif_dbg(sdr, "setfmt: bitlen %u wdcnt %u num_ch %u\n",
		  sdr->fmt->bitlen, sdr->fmt->wdcnt, sdr->fmt->num_ch);

	/* Sanity check */
	if (sdr->fmt->num_ch > sdr->num_cur_ch) {
		rdrif_err(sdr, "fmt num_ch %u cur_ch %u mismatch\n",
			  sdr->fmt->num_ch, sdr->num_cur_ch);
		return -EINVAL;
	}

	/* Setup group, bitlen & wdcnt */
	for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
		u32 mdr;

		/* Two groups */
		mdr = RCAR_DRIF_MDR_GRPCNT(2) |
			RCAR_DRIF_MDR_BITLEN(sdr->fmt->bitlen) |
			RCAR_DRIF_MDR_WDCNT(sdr->fmt->wdcnt);
		rcar_drif_write(sdr->ch[i], RCAR_DRIF_SIRMDR2, mdr);

		mdr = RCAR_DRIF_MDR_BITLEN(sdr->fmt->bitlen) |
			RCAR_DRIF_MDR_WDCNT(sdr->fmt->wdcnt);
		rcar_drif_write(sdr->ch[i], RCAR_DRIF_SIRMDR3, mdr);

		rdrif_dbg(sdr, "ch%u: new mdr[2,3] = 0x%08x, 0x%08x\n",
			  i, rcar_drif_read(sdr->ch[i], RCAR_DRIF_SIRMDR2),
			  rcar_drif_read(sdr->ch[i], RCAR_DRIF_SIRMDR3));
	}
	return 0;
}

/* Release DMA buffers */
static void rcar_drif_release_buf(struct rcar_drif_sdr *sdr)
{
	unsigned int i;

	for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
		struct rcar_drif *ch = sdr->ch[i];

		/* First entry contains the dma buf ptr */
		if (ch->buf[0].addr) {
			dma_free_coherent(&ch->pdev->dev,
				sdr->hwbuf_size * RCAR_DRIF_NUM_HWBUFS,
				ch->buf[0].addr, ch->dma_handle);
			ch->buf[0].addr = NULL;
		}
	}
}

/* Request DMA buffers */
static int rcar_drif_request_buf(struct rcar_drif_sdr *sdr)
{
	int ret = -ENOMEM;
	unsigned int i, j;
	void *addr;

	for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
		struct rcar_drif *ch = sdr->ch[i];

		/* Allocate DMA buffers */
		addr = dma_alloc_coherent(&ch->pdev->dev,
				sdr->hwbuf_size * RCAR_DRIF_NUM_HWBUFS,
				&ch->dma_handle, GFP_KERNEL);
		if (!addr) {
			rdrif_err(sdr,
			"ch%u: dma alloc failed. num hwbufs %u size %u\n",
			i, RCAR_DRIF_NUM_HWBUFS, sdr->hwbuf_size);
			goto error;
		}

		/* Split the chunk and populate bufctxt */
		for (j = 0; j < RCAR_DRIF_NUM_HWBUFS; j++) {
			ch->buf[j].addr = addr + (j * sdr->hwbuf_size);
			ch->buf[j].status = 0;
		}
	}
	return 0;
error:
	return ret;
}

/* Setup vb_queue minimum buffer requirements */
static int rcar_drif_queue_setup(struct vb2_queue *vq,
			unsigned int *num_buffers, unsigned int *num_planes,
			unsigned int sizes[], struct device *alloc_devs[])
{
	struct rcar_drif_sdr *sdr = vb2_get_drv_priv(vq);

	/* Need at least 16 buffers */
	if (vq->num_buffers + *num_buffers < 16)
		*num_buffers = 16 - vq->num_buffers;

	*num_planes = 1;
	sizes[0] = PAGE_ALIGN(sdr->fmt->buffersize);
	rdrif_dbg(sdr, "num_bufs %d sizes[0] %d\n", *num_buffers, sizes[0]);

	return 0;
}

/* Enqueue buffer */
static void rcar_drif_buf_queue(struct vb2_buffer *vb)
{
	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
	struct rcar_drif_sdr *sdr = vb2_get_drv_priv(vb->vb2_queue);
	struct rcar_drif_frame_buf *fbuf =
			container_of(vbuf, struct rcar_drif_frame_buf, vb);
	unsigned long flags;

	rdrif_dbg(sdr, "buf_queue idx %u\n", vb->index);
	spin_lock_irqsave(&sdr->queued_bufs_lock, flags);
	list_add_tail(&fbuf->list, &sdr->queued_bufs);
	spin_unlock_irqrestore(&sdr->queued_bufs_lock, flags);
}

/* Get a frame buf from list */
static struct rcar_drif_frame_buf *
rcar_drif_get_fbuf(struct rcar_drif_sdr *sdr)
{
	struct rcar_drif_frame_buf *fbuf;
	unsigned long flags;

	spin_lock_irqsave(&sdr->queued_bufs_lock, flags);
	fbuf = list_first_entry_or_null(&sdr->queued_bufs, struct
					rcar_drif_frame_buf, list);
	if (!fbuf) {
		/*
		 * App is late in enqueing buffers. Samples lost & there will
		 * be a gap in sequence number when app recovers
		 */
		rdrif_dbg(sdr, "\napp late: prod %u\n", sdr->produced);
		spin_unlock_irqrestore(&sdr->queued_bufs_lock, flags);
		return NULL;
	}
	list_del(&fbuf->list);
	spin_unlock_irqrestore(&sdr->queued_bufs_lock, flags);

	return fbuf;
}

/* Helpers to set/clear buf pair status */
static inline bool rcar_drif_bufs_done(struct rcar_drif_hwbuf **buf)
{
	return (buf[0]->status & buf[1]->status & RCAR_DRIF_BUF_DONE);
}

static inline bool rcar_drif_bufs_overflow(struct rcar_drif_hwbuf **buf)
{
	return ((buf[0]->status | buf[1]->status) & RCAR_DRIF_BUF_OVERFLOW);
}

static inline void rcar_drif_bufs_clear(struct rcar_drif_hwbuf **buf,
					unsigned int bit)
{
	unsigned int i;

	for (i = 0; i < RCAR_DRIF_MAX_CHANNEL; i++)
		buf[i]->status &= ~bit;
}

/* Channel DMA complete */
static void rcar_drif_channel_complete(struct rcar_drif *ch, u32 idx)
{
	u32 str;

	ch->buf[idx].status |= RCAR_DRIF_BUF_DONE;

	/* Check for DRIF errors */
	str = rcar_drif_read(ch, RCAR_DRIF_SISTR);
	if (unlikely(str & RCAR_DRIF_RFOVF)) {
		/* Writing the same clears it */
		rcar_drif_write(ch, RCAR_DRIF_SISTR, str);

		/* Overflow: some samples are lost */
		ch->buf[idx].status |= RCAR_DRIF_BUF_OVERFLOW;
	}
}

/* DMA callback for each stage */
static void rcar_drif_dma_complete(void *dma_async_param)
{
	struct rcar_drif *ch = dma_async_param;
	struct rcar_drif_sdr *sdr = ch->sdr;
	struct rcar_drif_hwbuf *buf[RCAR_DRIF_MAX_CHANNEL];
	struct rcar_drif_frame_buf *fbuf;
	bool overflow = false;
	u32 idx, produced;
	unsigned int i;

	spin_lock(&sdr->dma_lock);

	/* DMA can be terminated while the callback was waiting on lock */
	if (!vb2_is_streaming(&sdr->vb_queue)) {
		spin_unlock(&sdr->dma_lock);
		return;
	}

	idx = sdr->produced % RCAR_DRIF_NUM_HWBUFS;
	rcar_drif_channel_complete(ch, idx);

	if (sdr->num_cur_ch == RCAR_DRIF_MAX_CHANNEL) {
		buf[0] = ch->num ? to_rcar_drif_buf_pair(sdr, ch->num, idx) :
				&ch->buf[idx];
		buf[1] = ch->num ? &ch->buf[idx] :
				to_rcar_drif_buf_pair(sdr, ch->num, idx);

		/* Check if both DMA buffers are done */
		if (!rcar_drif_bufs_done(buf)) {
			spin_unlock(&sdr->dma_lock);
			return;
		}

		/* Clear buf done status */
		rcar_drif_bufs_clear(buf, RCAR_DRIF_BUF_DONE);

		if (rcar_drif_bufs_overflow(buf)) {
			overflow = true;
			/* Clear the flag in status */
			rcar_drif_bufs_clear(buf, RCAR_DRIF_BUF_OVERFLOW);
		}
	} else {
		buf[0] = &ch->buf[idx];
		if (buf[0]->status & RCAR_DRIF_BUF_OVERFLOW) {
			overflow = true;
			/* Clear the flag in status */
			buf[0]->status &= ~RCAR_DRIF_BUF_OVERFLOW;
		}
	}

	/* Buffer produced for consumption */
	produced = sdr->produced++;
	spin_unlock(&sdr->dma_lock);

	rdrif_dbg(sdr, "ch%u: prod %u\n", ch->num, produced);

	/* Get fbuf */
	fbuf = rcar_drif_get_fbuf(sdr);
	if (!fbuf)
		return;

	for (i = 0; i < RCAR_DRIF_MAX_CHANNEL; i++)
		memcpy(vb2_plane_vaddr(&fbuf->vb.vb2_buf, 0) +
		       i * sdr->hwbuf_size, buf[i]->addr, sdr->hwbuf_size);

	fbuf->vb.field = V4L2_FIELD_NONE;
	fbuf->vb.sequence = produced;
	fbuf->vb.vb2_buf.timestamp = ktime_get_ns();
	vb2_set_plane_payload(&fbuf->vb.vb2_buf, 0, sdr->fmt->buffersize);

	/* Set error state on overflow */
	vb2_buffer_done(&fbuf->vb.vb2_buf,
			overflow ? VB2_BUF_STATE_ERROR : VB2_BUF_STATE_DONE);
}

static int rcar_drif_qbuf(struct rcar_drif *ch)
{
	struct rcar_drif_sdr *sdr = ch->sdr;
	dma_addr_t addr = ch->dma_handle;
	struct dma_async_tx_descriptor *rxd;
	dma_cookie_t cookie;
	int ret = -EIO;

	/* Setup cyclic DMA with given buffers */
	rxd = dmaengine_prep_dma_cyclic(ch->dmach, addr,
					sdr->hwbuf_size * RCAR_DRIF_NUM_HWBUFS,
					sdr->hwbuf_size, DMA_DEV_TO_MEM,
					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
	if (!rxd) {
		rdrif_err(sdr, "ch%u: prep dma cyclic failed\n", ch->num);
		return ret;
	}

	/* Submit descriptor */
	rxd->callback = rcar_drif_dma_complete;
	rxd->callback_param = ch;
	cookie = dmaengine_submit(rxd);
	if (dma_submit_error(cookie)) {
		rdrif_err(sdr, "ch%u: dma submit failed\n", ch->num);
		return ret;
	}

	dma_async_issue_pending(ch->dmach);
	return 0;
}

/* Enable reception */
static int rcar_drif_enable_rx(struct rcar_drif_sdr *sdr)
{
	unsigned int i;
	u32 ctr;
634
	int ret = -EINVAL;
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110

	/*
	 * When both internal channels are enabled, they can be synchronized
	 * only by the master
	 */

	/* Enable receive */
	for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
		ctr = rcar_drif_read(sdr->ch[i], RCAR_DRIF_SICTR);
		ctr |= (RCAR_DRIF_SICTR_RX_RISING_EDGE |
			 RCAR_DRIF_SICTR_RX_EN);
		rcar_drif_write(sdr->ch[i], RCAR_DRIF_SICTR, ctr);
	}

	/* Check receive enabled */
	for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
		ret = readl_poll_timeout(sdr->ch[i]->base + RCAR_DRIF_SICTR,
				ctr, ctr & RCAR_DRIF_SICTR_RX_EN, 7, 100000);
		if (ret) {
			rdrif_err(sdr, "ch%u: rx en failed. ctr 0x%08x\n", i,
				  rcar_drif_read(sdr->ch[i], RCAR_DRIF_SICTR));
			break;
		}
	}
	return ret;
}

/* Disable reception */
static void rcar_drif_disable_rx(struct rcar_drif_sdr *sdr)
{
	unsigned int i;
	u32 ctr;
	int ret;

	/* Disable receive */
	for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
		ctr = rcar_drif_read(sdr->ch[i], RCAR_DRIF_SICTR);
		ctr &= ~RCAR_DRIF_SICTR_RX_EN;
		rcar_drif_write(sdr->ch[i], RCAR_DRIF_SICTR, ctr);
	}

	/* Check receive disabled */
	for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
		ret = readl_poll_timeout(sdr->ch[i]->base + RCAR_DRIF_SICTR,
				ctr, !(ctr & RCAR_DRIF_SICTR_RX_EN), 7, 100000);
		if (ret)
			dev_warn(&sdr->vdev->dev,
			"ch%u: failed to disable rx. ctr 0x%08x\n",
			i, rcar_drif_read(sdr->ch[i], RCAR_DRIF_SICTR));
	}
}

/* Stop channel */
static void rcar_drif_stop_channel(struct rcar_drif *ch)
{
	/* Disable DMA receive interrupt */
	rcar_drif_write(ch, RCAR_DRIF_SIIER, 0x00000000);

	/* Terminate all DMA transfers */
	dmaengine_terminate_sync(ch->dmach);
}

/* Stop receive operation */
static void rcar_drif_stop(struct rcar_drif_sdr *sdr)
{
	unsigned int i;

	/* Disable Rx */
	rcar_drif_disable_rx(sdr);

	for_each_rcar_drif_channel(i, &sdr->cur_ch_mask)
		rcar_drif_stop_channel(sdr->ch[i]);
}

/* Start channel */
static int rcar_drif_start_channel(struct rcar_drif *ch)
{
	struct rcar_drif_sdr *sdr = ch->sdr;
	u32 ctr, str;
	int ret;

	/* Reset receive */
	rcar_drif_write(ch, RCAR_DRIF_SICTR, RCAR_DRIF_SICTR_RESET);
	ret = readl_poll_timeout(ch->base + RCAR_DRIF_SICTR, ctr,
				 !(ctr & RCAR_DRIF_SICTR_RESET), 7, 100000);
	if (ret) {
		rdrif_err(sdr, "ch%u: failed to reset rx. ctr 0x%08x\n",
			  ch->num, rcar_drif_read(ch, RCAR_DRIF_SICTR));
		return ret;
	}

	/* Queue buffers for DMA */
	ret = rcar_drif_qbuf(ch);
	if (ret)
		return ret;

	/* Clear status register flags */
	str = RCAR_DRIF_RFFUL | RCAR_DRIF_REOF | RCAR_DRIF_RFSERR |
		RCAR_DRIF_RFUDF | RCAR_DRIF_RFOVF;
	rcar_drif_write(ch, RCAR_DRIF_SISTR, str);

	/* Enable DMA receive interrupt */
	rcar_drif_write(ch, RCAR_DRIF_SIIER, 0x00009000);

	return ret;
}

/* Start receive operation */
static int rcar_drif_start(struct rcar_drif_sdr *sdr)
{
	unsigned long enabled = 0;
	unsigned int i;
	int ret;

	for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
		ret = rcar_drif_start_channel(sdr->ch[i]);
		if (ret)
			goto start_error;
		enabled |= BIT(i);
	}

	ret = rcar_drif_enable_rx(sdr);
	if (ret)
		goto enable_error;

	sdr->produced = 0;
	return ret;

enable_error:
	rcar_drif_disable_rx(sdr);
start_error:
	for_each_rcar_drif_channel(i, &enabled)
		rcar_drif_stop_channel(sdr->ch[i]);

	return ret;
}

/* Start streaming */
static int rcar_drif_start_streaming(struct vb2_queue *vq, unsigned int count)
{
	struct rcar_drif_sdr *sdr = vb2_get_drv_priv(vq);
	unsigned long enabled = 0;
	unsigned int i;
	int ret;

	mutex_lock(&sdr->v4l2_mutex);

	for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
		ret = clk_prepare_enable(sdr->ch[i]->clk);
		if (ret)
			goto error;
		enabled |= BIT(i);
	}

	/* Set default MDRx settings */
	rcar_drif_set_mdr1(sdr);

	/* Set new format */
	ret = rcar_drif_set_format(sdr);
	if (ret)
		goto error;

	if (sdr->num_cur_ch == RCAR_DRIF_MAX_CHANNEL)
		sdr->hwbuf_size = sdr->fmt->buffersize / RCAR_DRIF_MAX_CHANNEL;
	else
		sdr->hwbuf_size = sdr->fmt->buffersize;

	rdrif_dbg(sdr, "num hwbufs %u, hwbuf_size %u\n",
		RCAR_DRIF_NUM_HWBUFS, sdr->hwbuf_size);

	/* Alloc DMA channel */
	ret = rcar_drif_alloc_dmachannels(sdr);
	if (ret)
		goto error;

	/* Request buffers */
	ret = rcar_drif_request_buf(sdr);
	if (ret)
		goto error;

	/* Start Rx */
	ret = rcar_drif_start(sdr);
	if (ret)
		goto error;

	mutex_unlock(&sdr->v4l2_mutex);

	return ret;

error:
	rcar_drif_release_queued_bufs(sdr, VB2_BUF_STATE_QUEUED);
	rcar_drif_release_buf(sdr);
	rcar_drif_release_dmachannels(sdr);
	for_each_rcar_drif_channel(i, &enabled)
		clk_disable_unprepare(sdr->ch[i]->clk);

	mutex_unlock(&sdr->v4l2_mutex);

	return ret;
}

/* Stop streaming */
static void rcar_drif_stop_streaming(struct vb2_queue *vq)
{
	struct rcar_drif_sdr *sdr = vb2_get_drv_priv(vq);
	unsigned int i;

	mutex_lock(&sdr->v4l2_mutex);

	/* Stop hardware streaming */
	rcar_drif_stop(sdr);

	/* Return all queued buffers to vb2 */
	rcar_drif_release_queued_bufs(sdr, VB2_BUF_STATE_ERROR);

	/* Release buf */
	rcar_drif_release_buf(sdr);

	/* Release DMA channel resources */
	rcar_drif_release_dmachannels(sdr);

	for_each_rcar_drif_channel(i, &sdr->cur_ch_mask)
		clk_disable_unprepare(sdr->ch[i]->clk);

	mutex_unlock(&sdr->v4l2_mutex);
}

/* Vb2 ops */
static const struct vb2_ops rcar_drif_vb2_ops = {
	.queue_setup            = rcar_drif_queue_setup,
	.buf_queue              = rcar_drif_buf_queue,
	.start_streaming        = rcar_drif_start_streaming,
	.stop_streaming         = rcar_drif_stop_streaming,
	.wait_prepare		= vb2_ops_wait_prepare,
	.wait_finish		= vb2_ops_wait_finish,
};

static int rcar_drif_querycap(struct file *file, void *fh,
			      struct v4l2_capability *cap)
{
	struct rcar_drif_sdr *sdr = video_drvdata(file);

	strlcpy(cap->driver, KBUILD_MODNAME, sizeof(cap->driver));
	strlcpy(cap->card, sdr->vdev->name, sizeof(cap->card));
	snprintf(cap->bus_info, sizeof(cap->bus_info), "platform:%s",
		 sdr->vdev->name);

	return 0;
}

static int rcar_drif_set_default_format(struct rcar_drif_sdr *sdr)
{
	unsigned int i;

	for (i = 0; i < ARRAY_SIZE(formats); i++) {
		/* Matching fmt based on required channels is set as default */
		if (sdr->num_hw_ch == formats[i].num_ch) {
			sdr->fmt = &formats[i];
			sdr->cur_ch_mask = sdr->hw_ch_mask;
			sdr->num_cur_ch = sdr->num_hw_ch;
			dev_dbg(sdr->dev, "default fmt[%u]: mask %lu num %u\n",
				i, sdr->cur_ch_mask, sdr->num_cur_ch);
			return 0;
		}
	}
	return -EINVAL;
}

static int rcar_drif_enum_fmt_sdr_cap(struct file *file, void *priv,
				      struct v4l2_fmtdesc *f)
{
	if (f->index >= ARRAY_SIZE(formats))
		return -EINVAL;

	f->pixelformat = formats[f->index].pixelformat;

	return 0;
}

static int rcar_drif_g_fmt_sdr_cap(struct file *file, void *priv,
				   struct v4l2_format *f)
{
	struct rcar_drif_sdr *sdr = video_drvdata(file);

	f->fmt.sdr.pixelformat = sdr->fmt->pixelformat;
	f->fmt.sdr.buffersize = sdr->fmt->buffersize;

	return 0;
}

static int rcar_drif_s_fmt_sdr_cap(struct file *file, void *priv,
				   struct v4l2_format *f)
{
	struct rcar_drif_sdr *sdr = video_drvdata(file);
	struct vb2_queue *q = &sdr->vb_queue;
	unsigned int i;

	if (vb2_is_busy(q))
		return -EBUSY;

	for (i = 0; i < ARRAY_SIZE(formats); i++) {
		if (formats[i].pixelformat == f->fmt.sdr.pixelformat)
			break;
	}

	if (i == ARRAY_SIZE(formats))
		i = 0;		/* Set the 1st format as default on no match */

	sdr->fmt = &formats[i];
	f->fmt.sdr.pixelformat = sdr->fmt->pixelformat;
	f->fmt.sdr.buffersize = formats[i].buffersize;
	memset(f->fmt.sdr.reserved, 0, sizeof(f->fmt.sdr.reserved));

	/*
	 * If a format demands one channel only out of two
	 * enabled channels, pick the 0th channel.
	 */
	if (formats[i].num_ch < sdr->num_hw_ch) {
		sdr->cur_ch_mask = BIT(0);
		sdr->num_cur_ch = formats[i].num_ch;
	} else {
		sdr->cur_ch_mask = sdr->hw_ch_mask;
		sdr->num_cur_ch = sdr->num_hw_ch;
	}

	rdrif_dbg(sdr, "cur: idx %u mask %lu num %u\n",
		  i, sdr->cur_ch_mask, sdr->num_cur_ch);

	return 0;
}

static int rcar_drif_try_fmt_sdr_cap(struct file *file, void *priv,
				     struct v4l2_format *f)
{
	unsigned int i;

	for (i = 0; i < ARRAY_SIZE(formats); i++) {
		if (formats[i].pixelformat == f->fmt.sdr.pixelformat) {
			f->fmt.sdr.buffersize = formats[i].buffersize;
			return 0;
		}
	}

	f->fmt.sdr.pixelformat = formats[0].pixelformat;
	f->fmt.sdr.buffersize = formats[0].buffersize;
	memset(f->fmt.sdr.reserved, 0, sizeof(f->fmt.sdr.reserved));

	return 0;
}

/* Tuner subdev ioctls */
static int rcar_drif_enum_freq_bands(struct file *file, void *priv,
				     struct v4l2_frequency_band *band)
{
	struct rcar_drif_sdr *sdr = video_drvdata(file);

	return v4l2_subdev_call(sdr->ep.subdev, tuner, enum_freq_bands, band);
}

static int rcar_drif_g_frequency(struct file *file, void *priv,
				 struct v4l2_frequency *f)
{
	struct rcar_drif_sdr *sdr = video_drvdata(file);

	return v4l2_subdev_call(sdr->ep.subdev, tuner, g_frequency, f);
}

static int rcar_drif_s_frequency(struct file *file, void *priv,
				 const struct v4l2_frequency *f)
{
	struct rcar_drif_sdr *sdr = video_drvdata(file);

	return v4l2_subdev_call(sdr->ep.subdev, tuner, s_frequency, f);
}

static int rcar_drif_g_tuner(struct file *file, void *priv,
			     struct v4l2_tuner *vt)
{
	struct rcar_drif_sdr *sdr = video_drvdata(file);

	return v4l2_subdev_call(sdr->ep.subdev, tuner, g_tuner, vt);
}

static int rcar_drif_s_tuner(struct file *file, void *priv,
			     const struct v4l2_tuner *vt)
{
	struct rcar_drif_sdr *sdr = video_drvdata(file);

	return v4l2_subdev_call(sdr->ep.subdev, tuner, s_tuner, vt);
}

static const struct v4l2_ioctl_ops rcar_drif_ioctl_ops = {
	.vidioc_querycap          = rcar_drif_querycap,

	.vidioc_enum_fmt_sdr_cap  = rcar_drif_enum_fmt_sdr_cap,
	.vidioc_g_fmt_sdr_cap     = rcar_drif_g_fmt_sdr_cap,
	.vidioc_s_fmt_sdr_cap     = rcar_drif_s_fmt_sdr_cap,
	.vidioc_try_fmt_sdr_cap   = rcar_drif_try_fmt_sdr_cap,

	.vidioc_reqbufs           = vb2_ioctl_reqbufs,
	.vidioc_create_bufs       = vb2_ioctl_create_bufs,
	.vidioc_prepare_buf       = vb2_ioctl_prepare_buf,
	.vidioc_querybuf          = vb2_ioctl_querybuf,
	.vidioc_qbuf              = vb2_ioctl_qbuf,
	.vidioc_dqbuf             = vb2_ioctl_dqbuf,

	.vidioc_streamon          = vb2_ioctl_streamon,
	.vidioc_streamoff         = vb2_ioctl_streamoff,

	.vidioc_s_frequency       = rcar_drif_s_frequency,
	.vidioc_g_frequency       = rcar_drif_g_frequency,
	.vidioc_s_tuner		  = rcar_drif_s_tuner,
	.vidioc_g_tuner		  = rcar_drif_g_tuner,
	.vidioc_enum_freq_bands   = rcar_drif_enum_freq_bands,
	.vidioc_subscribe_event   = v4l2_ctrl_subscribe_event,
	.vidioc_unsubscribe_event = v4l2_event_unsubscribe,
	.vidioc_log_status        = v4l2_ctrl_log_status,
};

static const struct v4l2_file_operations rcar_drif_fops = {
	.owner                    = THIS_MODULE,
	.open                     = v4l2_fh_open,
	.release                  = vb2_fop_release,
	.read                     = vb2_fop_read,
	.poll                     = vb2_fop_poll,
	.mmap                     = vb2_fop_mmap,
	.unlocked_ioctl           = video_ioctl2,
};

static int rcar_drif_sdr_register(struct rcar_drif_sdr *sdr)
{
	int ret;

	/* Init video_device structure */
	sdr->vdev = video_device_alloc();
	if (!sdr->vdev)
		return -ENOMEM;

	snprintf(sdr->vdev->name, sizeof(sdr->vdev->name), "R-Car DRIF");
	sdr->vdev->fops = &rcar_drif_fops;
	sdr->vdev->ioctl_ops = &rcar_drif_ioctl_ops;
	sdr->vdev->release = video_device_release;
	sdr->vdev->lock = &sdr->v4l2_mutex;
	sdr->vdev->queue = &sdr->vb_queue;
	sdr->vdev->queue->lock = &sdr->vb_queue_mutex;
	sdr->vdev->ctrl_handler = &sdr->ctrl_hdl;
	sdr->vdev->v4l2_dev = &sdr->v4l2_dev;
	sdr->vdev->device_caps = V4L2_CAP_SDR_CAPTURE | V4L2_CAP_TUNER |
		V4L2_CAP_STREAMING | V4L2_CAP_READWRITE;
	video_set_drvdata(sdr->vdev, sdr);

	/* Register V4L2 SDR device */
	ret = video_register_device(sdr->vdev, VFL_TYPE_SDR, -1);
	if (ret) {
		video_device_release(sdr->vdev);
		sdr->vdev = NULL;
		dev_err(sdr->dev, "failed video_register_device (%d)\n", ret);
	}

	return ret;
}

static void rcar_drif_sdr_unregister(struct rcar_drif_sdr *sdr)
{
	video_unregister_device(sdr->vdev);
	sdr->vdev = NULL;
}

/* Sub-device bound callback */
static int rcar_drif_notify_bound(struct v4l2_async_notifier *notifier,
				   struct v4l2_subdev *subdev,
				   struct v4l2_async_subdev *asd)
{
	struct rcar_drif_sdr *sdr =
		container_of(notifier, struct rcar_drif_sdr, notifier);

1111
	if (sdr->ep.asd.match.fwnode !=
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
	    of_fwnode_handle(subdev->dev->of_node)) {
		rdrif_err(sdr, "subdev %s cannot bind\n", subdev->name);
		return -EINVAL;
	}

	v4l2_set_subdev_hostdata(subdev, sdr);
	sdr->ep.subdev = subdev;
	rdrif_dbg(sdr, "bound asd %s\n", subdev->name);

	return 0;
}

/* Sub-device unbind callback */
static void rcar_drif_notify_unbind(struct v4l2_async_notifier *notifier,
				   struct v4l2_subdev *subdev,
				   struct v4l2_async_subdev *asd)
{
	struct rcar_drif_sdr *sdr =
		container_of(notifier, struct rcar_drif_sdr, notifier);

	if (sdr->ep.subdev != subdev) {
		rdrif_err(sdr, "subdev %s is not bound\n", subdev->name);
		return;
	}

	/* Free ctrl handler if initialized */
	v4l2_ctrl_handler_free(&sdr->ctrl_hdl);
	sdr->v4l2_dev.ctrl_handler = NULL;
	sdr->ep.subdev = NULL;

	rcar_drif_sdr_unregister(sdr);
	rdrif_dbg(sdr, "unbind asd %s\n", subdev->name);
}

/* Sub-device registered notification callback */
static int rcar_drif_notify_complete(struct v4l2_async_notifier *notifier)
{
	struct rcar_drif_sdr *sdr =
		container_of(notifier, struct rcar_drif_sdr, notifier);
	int ret;

	/*
	 * The subdev tested at this point uses 4 controls. Using 10 as a worst
	 * case scenario hint. When less controls are needed there will be some
	 * unused memory and when more controls are needed the framework uses
	 * hash to manage controls within this number.
	 */
	ret = v4l2_ctrl_handler_init(&sdr->ctrl_hdl, 10);
	if (ret)
		return -ENOMEM;

	sdr->v4l2_dev.ctrl_handler = &sdr->ctrl_hdl;
	ret = v4l2_device_register_subdev_nodes(&sdr->v4l2_dev);
	if (ret) {
		rdrif_err(sdr, "failed: register subdev nodes ret %d\n", ret);
		goto error;
	}

	ret = v4l2_ctrl_add_handler(&sdr->ctrl_hdl,
				    sdr->ep.subdev->ctrl_handler, NULL);
	if (ret) {
		rdrif_err(sdr, "failed: ctrl add hdlr ret %d\n", ret);
		goto error;
	}

	ret = rcar_drif_sdr_register(sdr);
	if (ret)
		goto error;

	return ret;

error:
	v4l2_ctrl_handler_free(&sdr->ctrl_hdl);

	return ret;
}

1189 1190 1191 1192 1193 1194
static const struct v4l2_async_notifier_operations rcar_drif_notify_ops = {
	.bound = rcar_drif_notify_bound,
	.unbind = rcar_drif_notify_unbind,
	.complete = rcar_drif_notify_complete,
};

1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
/* Read endpoint properties */
static void rcar_drif_get_ep_properties(struct rcar_drif_sdr *sdr,
					struct fwnode_handle *fwnode)
{
	u32 val;

	/* Set the I2S defaults for SIRMDR1*/
	sdr->mdr1 = RCAR_DRIF_SIRMDR1_SYNCMD_LR | RCAR_DRIF_SIRMDR1_MSB_FIRST |
		RCAR_DRIF_SIRMDR1_DTDL_1 | RCAR_DRIF_SIRMDR1_SYNCDL_0;

	/* Parse sync polarity from endpoint */
	if (!fwnode_property_read_u32(fwnode, "sync-active", &val))
		sdr->mdr1 |= val ? RCAR_DRIF_SIRMDR1_SYNCAC_POL_HIGH :
			RCAR_DRIF_SIRMDR1_SYNCAC_POL_LOW;
	else
		sdr->mdr1 |= RCAR_DRIF_SIRMDR1_SYNCAC_POL_HIGH; /* default */

	dev_dbg(sdr->dev, "mdr1 0x%08x\n", sdr->mdr1);
}

/* Parse sub-devs (tuner) to find a matching device */
static int rcar_drif_parse_subdevs(struct rcar_drif_sdr *sdr)
{
	struct v4l2_async_notifier *notifier = &sdr->notifier;
	struct fwnode_handle *fwnode, *ep;

	notifier->subdevs = devm_kzalloc(sdr->dev, sizeof(*notifier->subdevs),
					 GFP_KERNEL);
	if (!notifier->subdevs)
		return -ENOMEM;

	ep = fwnode_graph_get_next_endpoint(of_fwnode_handle(sdr->dev->of_node),
					    NULL);
	if (!ep)
		return 0;

	notifier->subdevs[notifier->num_subdevs] = &sdr->ep.asd;
	fwnode = fwnode_graph_get_remote_port_parent(ep);
	if (!fwnode) {
		dev_warn(sdr->dev, "bad remote port parent\n");
		fwnode_handle_put(ep);
		return -EINVAL;
	}

1239
	sdr->ep.asd.match.fwnode = fwnode;
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
	sdr->ep.asd.match_type = V4L2_ASYNC_MATCH_FWNODE;
	notifier->num_subdevs++;

	/* Get the endpoint properties */
	rcar_drif_get_ep_properties(sdr, ep);

	fwnode_handle_put(fwnode);
	fwnode_handle_put(ep);

	return 0;
}

/* Check if the given device is the primary bond */
static bool rcar_drif_primary_bond(struct platform_device *pdev)
{
	return of_property_read_bool(pdev->dev.of_node, "renesas,primary-bond");
}

/* Check if both devices of the bond are enabled */
static struct device_node *rcar_drif_bond_enabled(struct platform_device *p)
{
	struct device_node *np;

	np = of_parse_phandle(p->dev.of_node, "renesas,bonding", 0);
	if (np && of_device_is_available(np))
		return np;

	return NULL;
}

/* Check if the bonded device is probed */
static int rcar_drif_bond_available(struct rcar_drif_sdr *sdr,
				    struct device_node *np)
{
	struct platform_device *pdev;
	struct rcar_drif *ch;
	int ret = 0;

	pdev = of_find_device_by_node(np);
	if (!pdev) {
		dev_err(sdr->dev, "failed to get bonded device from node\n");
		return -ENODEV;
	}

	device_lock(&pdev->dev);
	ch = platform_get_drvdata(pdev);
	if (ch) {
		/* Update sdr data in the bonded device */
		ch->sdr = sdr;

		/* Update sdr with bonded device data */
		sdr->ch[ch->num] = ch;
		sdr->hw_ch_mask |= BIT(ch->num);
	} else {
		/* Defer */
		dev_info(sdr->dev, "defer probe\n");
		ret = -EPROBE_DEFER;
	}
	device_unlock(&pdev->dev);

	put_device(&pdev->dev);

	return ret;
}

/* V4L2 SDR device probe */
static int rcar_drif_sdr_probe(struct rcar_drif_sdr *sdr)
{
	int ret;

	/* Validate any supported format for enabled channels */
	ret = rcar_drif_set_default_format(sdr);
	if (ret) {
		dev_err(sdr->dev, "failed to set default format\n");
		return ret;
	}

	/* Set defaults */
	sdr->hwbuf_size = RCAR_DRIF_DEFAULT_HWBUF_SIZE;

	mutex_init(&sdr->v4l2_mutex);
	mutex_init(&sdr->vb_queue_mutex);
	spin_lock_init(&sdr->queued_bufs_lock);
	spin_lock_init(&sdr->dma_lock);
	INIT_LIST_HEAD(&sdr->queued_bufs);

	/* Init videobuf2 queue structure */
	sdr->vb_queue.type = V4L2_BUF_TYPE_SDR_CAPTURE;
	sdr->vb_queue.io_modes = VB2_READ | VB2_MMAP | VB2_DMABUF;
	sdr->vb_queue.drv_priv = sdr;
	sdr->vb_queue.buf_struct_size = sizeof(struct rcar_drif_frame_buf);
	sdr->vb_queue.ops = &rcar_drif_vb2_ops;
	sdr->vb_queue.mem_ops = &vb2_vmalloc_memops;
	sdr->vb_queue.timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC;

	/* Init videobuf2 queue */
	ret = vb2_queue_init(&sdr->vb_queue);
	if (ret) {
		dev_err(sdr->dev, "failed: vb2_queue_init ret %d\n", ret);
		return ret;
	}

	/* Register the v4l2_device */
	ret = v4l2_device_register(sdr->dev, &sdr->v4l2_dev);
	if (ret) {
		dev_err(sdr->dev, "failed: v4l2_device_register ret %d\n", ret);
		return ret;
	}

	/*
	 * Parse subdevs after v4l2_device_register because if the subdev
	 * is already probed, bound and complete will be called immediately
	 */
	ret = rcar_drif_parse_subdevs(sdr);
	if (ret)
		goto error;

1357
	sdr->notifier.ops = &rcar_drif_notify_ops;
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503

	/* Register notifier */
	ret = v4l2_async_notifier_register(&sdr->v4l2_dev, &sdr->notifier);
	if (ret < 0) {
		dev_err(sdr->dev, "failed: notifier register ret %d\n", ret);
		goto error;
	}

	return ret;

error:
	v4l2_device_unregister(&sdr->v4l2_dev);

	return ret;
}

/* V4L2 SDR device remove */
static void rcar_drif_sdr_remove(struct rcar_drif_sdr *sdr)
{
	v4l2_async_notifier_unregister(&sdr->notifier);
	v4l2_device_unregister(&sdr->v4l2_dev);
}

/* DRIF channel probe */
static int rcar_drif_probe(struct platform_device *pdev)
{
	struct rcar_drif_sdr *sdr;
	struct device_node *np;
	struct rcar_drif *ch;
	struct resource	*res;
	int ret;

	/* Reserve memory for enabled channel */
	ch = devm_kzalloc(&pdev->dev, sizeof(*ch), GFP_KERNEL);
	if (!ch)
		return -ENOMEM;

	ch->pdev = pdev;

	/* Module clock */
	ch->clk = devm_clk_get(&pdev->dev, "fck");
	if (IS_ERR(ch->clk)) {
		ret = PTR_ERR(ch->clk);
		dev_err(&pdev->dev, "clk get failed (%d)\n", ret);
		return ret;
	}

	/* Register map */
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	ch->base = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(ch->base)) {
		ret = PTR_ERR(ch->base);
		dev_err(&pdev->dev, "ioremap failed (%d)\n", ret);
		return ret;
	}
	ch->start = res->start;
	platform_set_drvdata(pdev, ch);

	/* Check if both channels of the bond are enabled */
	np = rcar_drif_bond_enabled(pdev);
	if (np) {
		/* Check if current channel acting as primary-bond */
		if (!rcar_drif_primary_bond(pdev)) {
			ch->num = 1;	/* Primary bond is channel 0 always */
			of_node_put(np);
			return 0;
		}
	}

	/* Reserve memory for SDR structure */
	sdr = devm_kzalloc(&pdev->dev, sizeof(*sdr), GFP_KERNEL);
	if (!sdr) {
		of_node_put(np);
		return -ENOMEM;
	}
	ch->sdr = sdr;
	sdr->dev = &pdev->dev;

	/* Establish links between SDR and channel(s) */
	sdr->ch[ch->num] = ch;
	sdr->hw_ch_mask = BIT(ch->num);
	if (np) {
		/* Check if bonded device is ready */
		ret = rcar_drif_bond_available(sdr, np);
		of_node_put(np);
		if (ret)
			return ret;
	}
	sdr->num_hw_ch = hweight_long(sdr->hw_ch_mask);

	return rcar_drif_sdr_probe(sdr);
}

/* DRIF channel remove */
static int rcar_drif_remove(struct platform_device *pdev)
{
	struct rcar_drif *ch = platform_get_drvdata(pdev);
	struct rcar_drif_sdr *sdr = ch->sdr;

	/* Channel 0 will be the SDR instance */
	if (ch->num)
		return 0;

	/* SDR instance */
	rcar_drif_sdr_remove(sdr);

	return 0;
}

/* FIXME: Implement suspend/resume support */
static int __maybe_unused rcar_drif_suspend(struct device *dev)
{
	return 0;
}

static int __maybe_unused rcar_drif_resume(struct device *dev)
{
	return 0;
}

static SIMPLE_DEV_PM_OPS(rcar_drif_pm_ops, rcar_drif_suspend,
			 rcar_drif_resume);

static const struct of_device_id rcar_drif_of_table[] = {
	{ .compatible = "renesas,rcar-gen3-drif" },
	{ }
};
MODULE_DEVICE_TABLE(of, rcar_drif_of_table);

#define RCAR_DRIF_DRV_NAME "rcar_drif"
static struct platform_driver rcar_drif_driver = {
	.driver = {
		.name = RCAR_DRIF_DRV_NAME,
		.of_match_table = of_match_ptr(rcar_drif_of_table),
		.pm = &rcar_drif_pm_ops,
		},
	.probe = rcar_drif_probe,
	.remove = rcar_drif_remove,
};

module_platform_driver(rcar_drif_driver);

MODULE_DESCRIPTION("Renesas R-Car Gen3 DRIF driver");
MODULE_ALIAS("platform:" RCAR_DRIF_DRV_NAME);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Ramesh Shanmugasundaram <ramesh.shanmugasundaram@bp.renesas.com>");