omap-gpmc.c 63.1 KB
Newer Older
1 2 3 4 5 6 7
/*
 * GPMC support functions
 *
 * Copyright (C) 2005-2006 Nokia Corporation
 *
 * Author: Juha Yrjola
 *
8 9 10
 * Copyright (C) 2009 Texas Instruments
 * Added OMAP4 support - Santosh Shilimkar <santosh.shilimkar@ti.com>
 *
11 12 13 14
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
15
#include <linux/irq.h>
16 17 18 19
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/err.h>
#include <linux/clk.h>
20 21
#include <linux/ioport.h>
#include <linux/spinlock.h>
22
#include <linux/io.h>
23
#include <linux/module.h>
24
#include <linux/interrupt.h>
25
#include <linux/platform_device.h>
26
#include <linux/of.h>
27
#include <linux/of_address.h>
28 29
#include <linux/of_mtd.h>
#include <linux/of_device.h>
R
Robert ABEL 已提交
30
#include <linux/of_platform.h>
31
#include <linux/omap-gpmc.h>
32
#include <linux/mtd/nand.h>
33
#include <linux/pm_runtime.h>
34

A
Afzal Mohammed 已提交
35
#include <linux/platform_data/mtd-nand-omap2.h>
36
#include <linux/platform_data/mtd-onenand-omap2.h>
37

38
#include <asm/mach-types.h>
39

40 41
#define	DEVICE_NAME		"omap-gpmc"

42
/* GPMC register offsets */
43 44 45 46 47 48 49 50 51 52 53 54
#define GPMC_REVISION		0x00
#define GPMC_SYSCONFIG		0x10
#define GPMC_SYSSTATUS		0x14
#define GPMC_IRQSTATUS		0x18
#define GPMC_IRQENABLE		0x1c
#define GPMC_TIMEOUT_CONTROL	0x40
#define GPMC_ERR_ADDRESS	0x44
#define GPMC_ERR_TYPE		0x48
#define GPMC_CONFIG		0x50
#define GPMC_STATUS		0x54
#define GPMC_PREFETCH_CONFIG1	0x1e0
#define GPMC_PREFETCH_CONFIG2	0x1e4
55
#define GPMC_PREFETCH_CONTROL	0x1ec
56 57 58 59
#define GPMC_PREFETCH_STATUS	0x1f0
#define GPMC_ECC_CONFIG		0x1f4
#define GPMC_ECC_CONTROL	0x1f8
#define GPMC_ECC_SIZE_CONFIG	0x1fc
60
#define GPMC_ECC1_RESULT        0x200
61
#define GPMC_ECC_BCH_RESULT_0   0x240   /* not available on OMAP2 */
62 63 64
#define	GPMC_ECC_BCH_RESULT_1	0x244	/* not available on OMAP2 */
#define	GPMC_ECC_BCH_RESULT_2	0x248	/* not available on OMAP2 */
#define	GPMC_ECC_BCH_RESULT_3	0x24c	/* not available on OMAP2 */
65 66 67
#define	GPMC_ECC_BCH_RESULT_4	0x300	/* not available on OMAP2 */
#define	GPMC_ECC_BCH_RESULT_5	0x304	/* not available on OMAP2 */
#define	GPMC_ECC_BCH_RESULT_6	0x308	/* not available on OMAP2 */
68

69 70 71 72 73 74 75 76 77 78 79 80 81
/* GPMC ECC control settings */
#define GPMC_ECC_CTRL_ECCCLEAR		0x100
#define GPMC_ECC_CTRL_ECCDISABLE	0x000
#define GPMC_ECC_CTRL_ECCREG1		0x001
#define GPMC_ECC_CTRL_ECCREG2		0x002
#define GPMC_ECC_CTRL_ECCREG3		0x003
#define GPMC_ECC_CTRL_ECCREG4		0x004
#define GPMC_ECC_CTRL_ECCREG5		0x005
#define GPMC_ECC_CTRL_ECCREG6		0x006
#define GPMC_ECC_CTRL_ECCREG7		0x007
#define GPMC_ECC_CTRL_ECCREG8		0x008
#define GPMC_ECC_CTRL_ECCREG9		0x009

82 83
#define GPMC_CONFIG_LIMITEDADDRESS		BIT(1)

84 85 86 87 88 89 90
#define	GPMC_CONFIG2_CSEXTRADELAY		BIT(7)
#define	GPMC_CONFIG3_ADVEXTRADELAY		BIT(7)
#define	GPMC_CONFIG4_OEEXTRADELAY		BIT(7)
#define	GPMC_CONFIG4_WEEXTRADELAY		BIT(23)
#define	GPMC_CONFIG6_CYCLE2CYCLEDIFFCSEN	BIT(6)
#define	GPMC_CONFIG6_CYCLE2CYCLESAMECSEN	BIT(7)

91
#define GPMC_CS0_OFFSET		0x60
92
#define GPMC_CS_SIZE		0x30
93
#define	GPMC_BCH_SIZE		0x10
94

95 96 97 98 99
#define GPMC_MEM_END		0x3FFFFFFF

#define GPMC_CHUNK_SHIFT	24		/* 16 MB */
#define GPMC_SECTION_SHIFT	28		/* 128 MB */

100 101 102 103
#define CS_NUM_SHIFT		24
#define ENABLE_PREFETCH		(0x1 << 7)
#define DMA_MPU_MODE		2

104 105 106 107 108
#define	GPMC_REVISION_MAJOR(l)		((l >> 4) & 0xf)
#define	GPMC_REVISION_MINOR(l)		(l & 0xf)

#define	GPMC_HAS_WR_ACCESS		0x1
#define	GPMC_HAS_WR_DATA_MUX_BUS	0x2
109
#define	GPMC_HAS_MUX_AAD		0x4
110

111 112
#define GPMC_NR_WAITPINS		4

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
#define GPMC_CS_CONFIG1		0x00
#define GPMC_CS_CONFIG2		0x04
#define GPMC_CS_CONFIG3		0x08
#define GPMC_CS_CONFIG4		0x0c
#define GPMC_CS_CONFIG5		0x10
#define GPMC_CS_CONFIG6		0x14
#define GPMC_CS_CONFIG7		0x18
#define GPMC_CS_NAND_COMMAND	0x1c
#define GPMC_CS_NAND_ADDRESS	0x20
#define GPMC_CS_NAND_DATA	0x24

/* Control Commands */
#define GPMC_CONFIG_RDY_BSY	0x00000001
#define GPMC_CONFIG_DEV_SIZE	0x00000002
#define GPMC_CONFIG_DEV_TYPE	0x00000003
#define GPMC_SET_IRQ_STATUS	0x00000004

#define GPMC_CONFIG1_WRAPBURST_SUPP     (1 << 31)
#define GPMC_CONFIG1_READMULTIPLE_SUPP  (1 << 30)
#define GPMC_CONFIG1_READTYPE_ASYNC     (0 << 29)
#define GPMC_CONFIG1_READTYPE_SYNC      (1 << 29)
#define GPMC_CONFIG1_WRITEMULTIPLE_SUPP (1 << 28)
#define GPMC_CONFIG1_WRITETYPE_ASYNC    (0 << 27)
#define GPMC_CONFIG1_WRITETYPE_SYNC     (1 << 27)
#define GPMC_CONFIG1_CLKACTIVATIONTIME(val) ((val & 3) << 25)
138 139
/** CLKACTIVATIONTIME Max Ticks */
#define GPMC_CONFIG1_CLKACTIVATIONTIME_MAX 2
140
#define GPMC_CONFIG1_PAGE_LEN(val)      ((val & 3) << 23)
141 142
/** ATTACHEDDEVICEPAGELENGTH Max Value */
#define GPMC_CONFIG1_ATTACHEDDEVICEPAGELENGTH_MAX 2
143 144
#define GPMC_CONFIG1_WAIT_READ_MON      (1 << 22)
#define GPMC_CONFIG1_WAIT_WRITE_MON     (1 << 21)
145 146 147
#define GPMC_CONFIG1_WAIT_MON_TIME(val) ((val & 3) << 18)
/** WAITMONITORINGTIME Max Ticks */
#define GPMC_CONFIG1_WAITMONITORINGTIME_MAX  2
148 149 150
#define GPMC_CONFIG1_WAIT_PIN_SEL(val)  ((val & 3) << 16)
#define GPMC_CONFIG1_DEVICESIZE(val)    ((val & 3) << 12)
#define GPMC_CONFIG1_DEVICESIZE_16      GPMC_CONFIG1_DEVICESIZE(1)
151 152
/** DEVICESIZE Max Value */
#define GPMC_CONFIG1_DEVICESIZE_MAX     1
153 154 155 156 157 158 159 160 161 162
#define GPMC_CONFIG1_DEVICETYPE(val)    ((val & 3) << 10)
#define GPMC_CONFIG1_DEVICETYPE_NOR     GPMC_CONFIG1_DEVICETYPE(0)
#define GPMC_CONFIG1_MUXTYPE(val)       ((val & 3) << 8)
#define GPMC_CONFIG1_TIME_PARA_GRAN     (1 << 4)
#define GPMC_CONFIG1_FCLK_DIV(val)      (val & 3)
#define GPMC_CONFIG1_FCLK_DIV2          (GPMC_CONFIG1_FCLK_DIV(1))
#define GPMC_CONFIG1_FCLK_DIV3          (GPMC_CONFIG1_FCLK_DIV(2))
#define GPMC_CONFIG1_FCLK_DIV4          (GPMC_CONFIG1_FCLK_DIV(3))
#define GPMC_CONFIG7_CSVALID		(1 << 6)

163 164 165 166 167 168 169 170 171
#define GPMC_CONFIG7_BASEADDRESS_MASK	0x3f
#define GPMC_CONFIG7_CSVALID_MASK	BIT(6)
#define GPMC_CONFIG7_MASKADDRESS_OFFSET	8
#define GPMC_CONFIG7_MASKADDRESS_MASK	(0xf << GPMC_CONFIG7_MASKADDRESS_OFFSET)
/* All CONFIG7 bits except reserved bits */
#define GPMC_CONFIG7_MASK		(GPMC_CONFIG7_BASEADDRESS_MASK | \
					 GPMC_CONFIG7_CSVALID_MASK |     \
					 GPMC_CONFIG7_MASKADDRESS_MASK)

172 173 174 175 176 177 178 179 180 181 182 183
#define GPMC_DEVICETYPE_NOR		0
#define GPMC_DEVICETYPE_NAND		2
#define GPMC_CONFIG_WRITEPROTECT	0x00000010
#define WR_RD_PIN_MONITORING		0x00600000

#define GPMC_ENABLE_IRQ		0x0000000d

/* ECC commands */
#define GPMC_ECC_READ		0 /* Reset Hardware ECC for read */
#define GPMC_ECC_WRITE		1 /* Reset Hardware ECC for write */
#define GPMC_ECC_READSYN	2 /* Reset before syndrom is read back */

184 185 186 187
/* XXX: Only NAND irq has been considered,currently these are the only ones used
 */
#define	GPMC_NR_IRQ		2

188 189 190 191 192
enum gpmc_clk_domain {
	GPMC_CD_FCLK,
	GPMC_CD_CLK
};

193 194 195 196 197 198 199 200 201
struct gpmc_cs_data {
	const char *name;

#define GPMC_CS_RESERVED	(1 << 0)
	u32 flags;

	struct resource mem;
};

202 203 204 205 206
struct gpmc_client_irq	{
	unsigned		irq;
	u32			bitmask;
};

207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
/* Structure to save gpmc cs context */
struct gpmc_cs_config {
	u32 config1;
	u32 config2;
	u32 config3;
	u32 config4;
	u32 config5;
	u32 config6;
	u32 config7;
	int is_valid;
};

/*
 * Structure to save/restore gpmc context
 * to support core off on OMAP3
 */
struct omap3_gpmc_regs {
	u32 sysconfig;
	u32 irqenable;
	u32 timeout_ctrl;
	u32 config;
	u32 prefetch_config1;
	u32 prefetch_config2;
	u32 prefetch_control;
	struct gpmc_cs_config cs_context[GPMC_CS_NUM];
};

234 235
static struct gpmc_client_irq gpmc_client_irq[GPMC_NR_IRQ];
static struct irq_chip gpmc_irq_chip;
236
static int gpmc_irq_start;
237

238
static struct resource	gpmc_mem_root;
239
static struct gpmc_cs_data gpmc_cs[GPMC_CS_NUM];
240
static DEFINE_SPINLOCK(gpmc_mem_lock);
241
/* Define chip-selects as reserved by default until probe completes */
242
static unsigned int gpmc_cs_num = GPMC_CS_NUM;
243
static unsigned int gpmc_nr_waitpins;
244 245 246 247
static struct device *gpmc_dev;
static int gpmc_irq;
static resource_size_t phys_base, mem_size;
static unsigned gpmc_capability;
248
static void __iomem *gpmc_base;
249

250
static struct clk *gpmc_l3_clk;
251

252 253
static irqreturn_t gpmc_handle_irq(int irq, void *dev);

254 255
static void gpmc_write_reg(int idx, u32 val)
{
256
	writel_relaxed(val, gpmc_base + idx);
257 258 259 260
}

static u32 gpmc_read_reg(int idx)
{
261
	return readl_relaxed(gpmc_base + idx);
262 263 264 265 266 267
}

void gpmc_cs_write_reg(int cs, int idx, u32 val)
{
	void __iomem *reg_addr;

268
	reg_addr = gpmc_base + GPMC_CS0_OFFSET + (cs * GPMC_CS_SIZE) + idx;
269
	writel_relaxed(val, reg_addr);
270 271
}

272
static u32 gpmc_cs_read_reg(int cs, int idx)
273
{
274 275
	void __iomem *reg_addr;

276
	reg_addr = gpmc_base + GPMC_CS0_OFFSET + (cs * GPMC_CS_SIZE) + idx;
277
	return readl_relaxed(reg_addr);
278 279
}

280
/* TODO: Add support for gpmc_fck to clock framework and use it */
281
static unsigned long gpmc_get_fclk_period(void)
282
{
283 284 285 286 287 288
	unsigned long rate = clk_get_rate(gpmc_l3_clk);

	rate /= 1000;
	rate = 1000000000 / rate;	/* In picoseconds */

	return rate;
289 290
}

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
/**
 * gpmc_get_clk_period - get period of selected clock domain in ps
 * @cs Chip Select Region.
 * @cd Clock Domain.
 *
 * GPMC_CS_CONFIG1 GPMCFCLKDIVIDER for cs has to be setup
 * prior to calling this function with GPMC_CD_CLK.
 */
static unsigned long gpmc_get_clk_period(int cs, enum gpmc_clk_domain cd)
{

	unsigned long tick_ps = gpmc_get_fclk_period();
	u32 l;
	int div;

	switch (cd) {
	case GPMC_CD_CLK:
		/* get current clk divider */
		l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG1);
		div = (l & 0x03) + 1;
		/* get GPMC_CLK period */
		tick_ps *= div;
		break;
	case GPMC_CD_FCLK:
		/* FALL-THROUGH */
	default:
		break;
	}

	return tick_ps;

}

static unsigned int gpmc_ns_to_clk_ticks(unsigned int time_ns, int cs,
					 enum gpmc_clk_domain cd)
326 327 328 329
{
	unsigned long tick_ps;

	/* Calculate in picosecs to yield more exact results */
330
	tick_ps = gpmc_get_clk_period(cs, cd);
331 332 333 334

	return (time_ns * 1000 + tick_ps - 1) / tick_ps;
}

335 336 337 338 339
static unsigned int gpmc_ns_to_ticks(unsigned int time_ns)
{
	return gpmc_ns_to_clk_ticks(time_ns, /* any CS */ 0, GPMC_CD_FCLK);
}

340
static unsigned int gpmc_ps_to_ticks(unsigned int time_ps)
341 342 343 344 345 346 347 348 349
{
	unsigned long tick_ps;

	/* Calculate in picosecs to yield more exact results */
	tick_ps = gpmc_get_fclk_period();

	return (time_ps + tick_ps - 1) / tick_ps;
}

350 351 352 353 354 355
unsigned int gpmc_clk_ticks_to_ns(unsigned ticks, int cs,
				  enum gpmc_clk_domain cd)
{
	return ticks * gpmc_get_clk_period(cs, cd) / 1000;
}

356 357
unsigned int gpmc_ticks_to_ns(unsigned int ticks)
{
358
	return gpmc_clk_ticks_to_ns(ticks, /* any CS */ 0, GPMC_CD_FCLK);
359 360
}

361 362 363 364 365 366 367 368 369 370 371 372
static unsigned int gpmc_ticks_to_ps(unsigned int ticks)
{
	return ticks * gpmc_get_fclk_period();
}

static unsigned int gpmc_round_ps_to_ticks(unsigned int time_ps)
{
	unsigned long ticks = gpmc_ps_to_ticks(time_ps);

	return ticks * gpmc_get_fclk_period();
}

373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
static inline void gpmc_cs_modify_reg(int cs, int reg, u32 mask, bool value)
{
	u32 l;

	l = gpmc_cs_read_reg(cs, reg);
	if (value)
		l |= mask;
	else
		l &= ~mask;
	gpmc_cs_write_reg(cs, reg, l);
}

static void gpmc_cs_bool_timings(int cs, const struct gpmc_bool_timings *p)
{
	gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG1,
			   GPMC_CONFIG1_TIME_PARA_GRAN,
			   p->time_para_granularity);
	gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG2,
			   GPMC_CONFIG2_CSEXTRADELAY, p->cs_extra_delay);
	gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG3,
			   GPMC_CONFIG3_ADVEXTRADELAY, p->adv_extra_delay);
	gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG4,
			   GPMC_CONFIG4_OEEXTRADELAY, p->oe_extra_delay);
	gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG4,
			   GPMC_CONFIG4_OEEXTRADELAY, p->we_extra_delay);
	gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG6,
			   GPMC_CONFIG6_CYCLE2CYCLESAMECSEN,
			   p->cycle2cyclesamecsen);
	gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG6,
			   GPMC_CONFIG6_CYCLE2CYCLEDIFFCSEN,
			   p->cycle2cyclediffcsen);
}

406
#ifdef CONFIG_OMAP_GPMC_DEBUG
407 408 409 410 411 412
/**
 * get_gpmc_timing_reg - read a timing parameter and print DTS settings for it.
 * @cs:      Chip Select Region
 * @reg:     GPMC_CS_CONFIGn register offset.
 * @st_bit:  Start Bit
 * @end_bit: End Bit. Must be >= @st_bit.
413 414
 * @ma:x     Maximum parameter value (before optional @shift).
 *           If 0, maximum is as high as @st_bit and @end_bit allow.
415
 * @name:    DTS node name, w/o "gpmc,"
416 417
 * @cd:      Clock Domain of timing parameter.
 * @shift:   Parameter value left shifts @shift, which is then printed instead of value.
418 419 420 421
 * @raw:     Raw Format Option.
 *           raw format:  gpmc,name = <value>
 *           tick format: gpmc,name = <value> /&zwj;* x ns -- y ns; x ticks *&zwj;/
 *           Where x ns -- y ns result in the same tick value.
422
 *           When @max is exceeded, "invalid" is printed inside comment.
423 424 425 426
 * @noval:   Parameter values equal to 0 are not printed.
 * @return:  Specified timing parameter (after optional @shift).
 *
 */
427 428
static int get_gpmc_timing_reg(
	/* timing specifiers */
429
	int cs, int reg, int st_bit, int end_bit, int max,
430 431 432 433 434
	const char *name, const enum gpmc_clk_domain cd,
	/* value transform */
	int shift,
	/* format specifiers */
	bool raw, bool noval)
435 436
{
	u32 l;
437 438
	int nr_bits;
	int mask;
439
	bool invalid;
440 441 442

	l = gpmc_cs_read_reg(cs, reg);
	nr_bits = end_bit - st_bit + 1;
443 444
	mask = (1 << nr_bits) - 1;
	l = (l >> st_bit) & mask;
445 446 447
	if (!max)
		max = mask;
	invalid = l > max;
448 449 450 451 452
	if (shift)
		l = (shift << l);
	if (noval && (l == 0))
		return 0;
	if (!raw) {
453 454 455
		/* DTS tick format for timings in ns */
		unsigned int time_ns;
		unsigned int time_ns_min = 0;
456

457
		if (l)
458 459
			time_ns_min = gpmc_clk_ticks_to_ns(l - 1, cs, cd) + 1;
		time_ns = gpmc_clk_ticks_to_ns(l, cs, cd);
460 461 462
		pr_info("gpmc,%s = <%u> /* %u ns - %u ns; %i ticks%s*/\n",
			name, time_ns, time_ns_min, time_ns, l,
			invalid ? "; invalid " : " ");
463
	} else {
464
		/* raw format */
465 466
		pr_info("gpmc,%s = <%u>%s\n", name, l,
			invalid ? " /* invalid */" : "");
467 468 469 470 471 472 473 474 475
	}

	return l;
}

#define GPMC_PRINT_CONFIG(cs, config) \
	pr_info("cs%i %s: 0x%08x\n", cs, #config, \
		gpmc_cs_read_reg(cs, config))
#define GPMC_GET_RAW(reg, st, end, field) \
476 477 478
	get_gpmc_timing_reg(cs, (reg), (st), (end), 0, field, GPMC_CD_FCLK, 0, 1, 0)
#define GPMC_GET_RAW_MAX(reg, st, end, max, field) \
	get_gpmc_timing_reg(cs, (reg), (st), (end), (max), field, GPMC_CD_FCLK, 0, 1, 0)
479
#define GPMC_GET_RAW_BOOL(reg, st, end, field) \
480 481 482
	get_gpmc_timing_reg(cs, (reg), (st), (end), 0, field, GPMC_CD_FCLK, 0, 1, 1)
#define GPMC_GET_RAW_SHIFT_MAX(reg, st, end, shift, max, field) \
	get_gpmc_timing_reg(cs, (reg), (st), (end), (max), field, GPMC_CD_FCLK, (shift), 1, 1)
483
#define GPMC_GET_TICKS(reg, st, end, field) \
484
	get_gpmc_timing_reg(cs, (reg), (st), (end), 0, field, GPMC_CD_FCLK, 0, 0, 0)
485
#define GPMC_GET_TICKS_CD(reg, st, end, field, cd) \
486 487 488
	get_gpmc_timing_reg(cs, (reg), (st), (end), 0, field, (cd), 0, 0, 0)
#define GPMC_GET_TICKS_CD_MAX(reg, st, end, max, field, cd) \
	get_gpmc_timing_reg(cs, (reg), (st), (end), (max), field, (cd), 0, 0, 0)
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511

static void gpmc_show_regs(int cs, const char *desc)
{
	pr_info("gpmc cs%i %s:\n", cs, desc);
	GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG1);
	GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG2);
	GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG3);
	GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG4);
	GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG5);
	GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG6);
}

/*
 * Note that gpmc,wait-pin handing wrongly assumes bit 8 is available,
 * see commit c9fb809.
 */
static void gpmc_cs_show_timings(int cs, const char *desc)
{
	gpmc_show_regs(cs, desc);

	pr_info("gpmc cs%i access configuration:\n", cs);
	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1,  4,  4, "time-para-granularity");
	GPMC_GET_RAW(GPMC_CS_CONFIG1,  8,  9, "mux-add-data");
512 513
	GPMC_GET_RAW_MAX(GPMC_CS_CONFIG1, 12, 13,
			 GPMC_CONFIG1_DEVICESIZE_MAX, "device-width");
514 515 516
	GPMC_GET_RAW(GPMC_CS_CONFIG1, 16, 17, "wait-pin");
	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 21, 21, "wait-on-write");
	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 22, 22, "wait-on-read");
517 518 519
	GPMC_GET_RAW_SHIFT_MAX(GPMC_CS_CONFIG1, 23, 24, 4,
			       GPMC_CONFIG1_ATTACHEDDEVICEPAGELENGTH_MAX,
			       "burst-length");
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 27, 27, "sync-write");
	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 28, 28, "burst-write");
	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 29, 29, "gpmc,sync-read");
	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 30, 30, "burst-read");
	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 31, 31, "burst-wrap");

	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG2,  7,  7, "cs-extra-delay");

	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG3,  7,  7, "adv-extra-delay");

	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG4, 23, 23, "we-extra-delay");
	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG4,  7,  7, "oe-extra-delay");

	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG6,  7,  7, "cycle2cycle-samecsen");
	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG6,  6,  6, "cycle2cycle-diffcsen");

	pr_info("gpmc cs%i timings configuration:\n", cs);
	GPMC_GET_TICKS(GPMC_CS_CONFIG2,  0,  3, "cs-on-ns");
	GPMC_GET_TICKS(GPMC_CS_CONFIG2,  8, 12, "cs-rd-off-ns");
	GPMC_GET_TICKS(GPMC_CS_CONFIG2, 16, 20, "cs-wr-off-ns");

	GPMC_GET_TICKS(GPMC_CS_CONFIG3,  0,  3, "adv-on-ns");
	GPMC_GET_TICKS(GPMC_CS_CONFIG3,  8, 12, "adv-rd-off-ns");
	GPMC_GET_TICKS(GPMC_CS_CONFIG3, 16, 20, "adv-wr-off-ns");

	GPMC_GET_TICKS(GPMC_CS_CONFIG4,  0,  3, "oe-on-ns");
	GPMC_GET_TICKS(GPMC_CS_CONFIG4,  8, 12, "oe-off-ns");
	GPMC_GET_TICKS(GPMC_CS_CONFIG4, 16, 19, "we-on-ns");
	GPMC_GET_TICKS(GPMC_CS_CONFIG4, 24, 28, "we-off-ns");

	GPMC_GET_TICKS(GPMC_CS_CONFIG5,  0,  4, "rd-cycle-ns");
	GPMC_GET_TICKS(GPMC_CS_CONFIG5,  8, 12, "wr-cycle-ns");
	GPMC_GET_TICKS(GPMC_CS_CONFIG5, 16, 20, "access-ns");

	GPMC_GET_TICKS(GPMC_CS_CONFIG5, 24, 27, "page-burst-access-ns");

	GPMC_GET_TICKS(GPMC_CS_CONFIG6, 0, 3, "bus-turnaround-ns");
	GPMC_GET_TICKS(GPMC_CS_CONFIG6, 8, 11, "cycle2cycle-delay-ns");

559 560 561 562 563 564
	GPMC_GET_TICKS_CD_MAX(GPMC_CS_CONFIG1, 18, 19,
			      GPMC_CONFIG1_WAITMONITORINGTIME_MAX,
			      "wait-monitoring-ns", GPMC_CD_CLK);
	GPMC_GET_TICKS_CD_MAX(GPMC_CS_CONFIG1, 25, 26,
			      GPMC_CONFIG1_CLKACTIVATIONTIME_MAX,
			      "clk-activation-ns", GPMC_CD_FCLK);
565 566 567 568

	GPMC_GET_TICKS(GPMC_CS_CONFIG6, 16, 19, "wr-data-mux-bus-ns");
	GPMC_GET_TICKS(GPMC_CS_CONFIG6, 24, 28, "wr-access-ns");
}
569
#else
570 571 572
static inline void gpmc_cs_show_timings(int cs, const char *desc)
{
}
573
#endif
574

575 576 577 578 579 580 581 582 583
/**
 * set_gpmc_timing_reg - set a single timing parameter for Chip Select Region.
 * Caller is expected to have initialized CONFIG1 GPMCFCLKDIVIDER
 * prior to calling this function with @cd equal to GPMC_CD_CLK.
 *
 * @cs:      Chip Select Region.
 * @reg:     GPMC_CS_CONFIGn register offset.
 * @st_bit:  Start Bit
 * @end_bit: End Bit. Must be >= @st_bit.
584 585
 * @max:     Maximum parameter value.
 *           If 0, maximum is as high as @st_bit and @end_bit allow.
586 587 588 589 590
 * @time:    Timing parameter in ns.
 * @cd:      Timing parameter clock domain.
 * @name:    Timing parameter name.
 * @return:  0 on success, -1 on error.
 */
591
static int set_gpmc_timing_reg(int cs, int reg, int st_bit, int end_bit, int max,
592
			       int time, enum gpmc_clk_domain cd, const char *name)
593 594 595 596 597 598 599
{
	u32 l;
	int ticks, mask, nr_bits;

	if (time == 0)
		ticks = 0;
	else
600
		ticks = gpmc_ns_to_clk_ticks(time, cs, cd);
601
	nr_bits = end_bit - st_bit + 1;
602 603
	mask = (1 << nr_bits) - 1;

604 605 606 607
	if (!max)
		max = mask;

	if (ticks > max) {
608
		pr_err("%s: GPMC CS%d: %s %d ns, %d ticks > %d ticks\n",
609
		       __func__, cs, name, time, ticks, max);
610

611
		return -1;
D
David Brownell 已提交
612
	}
613 614

	l = gpmc_cs_read_reg(cs, reg);
615
#ifdef CONFIG_OMAP_GPMC_DEBUG
616
	pr_info(
617
		"GPMC CS%d: %-17s: %3d ticks, %3lu ns (was %3i ticks) %3d ns\n",
618
	       cs, name, ticks, gpmc_get_clk_period(cs, cd) * ticks / 1000,
D
David Brownell 已提交
619
			(l >> st_bit) & mask, time);
620 621 622 623 624 625 626 627
#endif
	l &= ~(mask << st_bit);
	l |= ticks << st_bit;
	gpmc_cs_write_reg(cs, reg, l);

	return 0;
}

628 629 630
#define GPMC_SET_ONE_CD_MAX(reg, st, end, max, field, cd)  \
	if (set_gpmc_timing_reg(cs, (reg), (st), (end), (max), \
	    t->field, (cd), #field) < 0)                       \
631 632
		return -1

633
#define GPMC_SET_ONE(reg, st, end, field) \
634
	GPMC_SET_ONE_CD_MAX(reg, st, end, 0, field, GPMC_CD_FCLK)
635

636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
/**
 * gpmc_calc_waitmonitoring_divider - calculate proper GPMCFCLKDIVIDER based on WAITMONITORINGTIME
 * WAITMONITORINGTIME will be _at least_ as long as desired, i.e.
 * read  --> don't sample bus too early
 * write --> data is longer on bus
 *
 * Formula:
 * gpmc_clk_div + 1 = ceil(ceil(waitmonitoringtime_ns / gpmc_fclk_ns)
 *                    / waitmonitoring_ticks)
 * WAITMONITORINGTIME resulting in 0 or 1 tick with div = 1 are caught by
 * div <= 0 check.
 *
 * @wait_monitoring: WAITMONITORINGTIME in ns.
 * @return:          -1 on failure to scale, else proper divider > 0.
 */
static int gpmc_calc_waitmonitoring_divider(unsigned int wait_monitoring)
{

	int div = gpmc_ns_to_ticks(wait_monitoring);

	div += GPMC_CONFIG1_WAITMONITORINGTIME_MAX - 1;
	div /= GPMC_CONFIG1_WAITMONITORINGTIME_MAX;

	if (div > 4)
		return -1;
	if (div <= 0)
		div = 1;

	return div;

}

/**
 * gpmc_calc_divider - calculate GPMC_FCLK divider for sync_clk GPMC_CLK period.
 * @sync_clk: GPMC_CLK period in ps.
 * @return:   Returns at least 1 if GPMC_FCLK can be divided to GPMC_CLK.
 *            Else, returns -1.
 */
674
int gpmc_calc_divider(unsigned int sync_clk)
675
{
676
	int div = gpmc_ps_to_ticks(sync_clk);
677 678 679

	if (div > 4)
		return -1;
D
David Brownell 已提交
680
	if (div <= 0)
681 682 683 684 685
		div = 1;

	return div;
}

686 687 688 689 690 691 692 693 694
/**
 * gpmc_cs_set_timings - program timing parameters for Chip Select Region.
 * @cs:     Chip Select Region.
 * @t:      GPMC timing parameters.
 * @s:      GPMC timing settings.
 * @return: 0 on success, -1 on error.
 */
int gpmc_cs_set_timings(int cs, const struct gpmc_timings *t,
			const struct gpmc_settings *s)
695 696 697 698
{
	int div;
	u32 l;

699
	gpmc_cs_show_timings(cs, "before gpmc_cs_set_timings");
700
	div = gpmc_calc_divider(t->sync_clk);
701
	if (div < 0)
702
		return div;
703

704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
	/*
	 * See if we need to change the divider for waitmonitoringtime.
	 *
	 * Calculate GPMCFCLKDIVIDER independent of gpmc,sync-clk-ps in DT for
	 * pure asynchronous accesses, i.e. both read and write asynchronous.
	 * However, only do so if WAITMONITORINGTIME is actually used, i.e.
	 * either WAITREADMONITORING or WAITWRITEMONITORING is set.
	 *
	 * This statement must not change div to scale async WAITMONITORINGTIME
	 * to protect mixed synchronous and asynchronous accesses.
	 *
	 * We raise an error later if WAITMONITORINGTIME does not fit.
	 */
	if (!s->sync_read && !s->sync_write &&
	    (s->wait_on_read || s->wait_on_write)
	   ) {

		div = gpmc_calc_waitmonitoring_divider(t->wait_monitoring);
		if (div < 0) {
			pr_err("%s: waitmonitoringtime %3d ns too large for greatest gpmcfclkdivider.\n",
			       __func__,
			       t->wait_monitoring
			       );
			return -1;
		}
	}

731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
	GPMC_SET_ONE(GPMC_CS_CONFIG2,  0,  3, cs_on);
	GPMC_SET_ONE(GPMC_CS_CONFIG2,  8, 12, cs_rd_off);
	GPMC_SET_ONE(GPMC_CS_CONFIG2, 16, 20, cs_wr_off);

	GPMC_SET_ONE(GPMC_CS_CONFIG3,  0,  3, adv_on);
	GPMC_SET_ONE(GPMC_CS_CONFIG3,  8, 12, adv_rd_off);
	GPMC_SET_ONE(GPMC_CS_CONFIG3, 16, 20, adv_wr_off);

	GPMC_SET_ONE(GPMC_CS_CONFIG4,  0,  3, oe_on);
	GPMC_SET_ONE(GPMC_CS_CONFIG4,  8, 12, oe_off);
	GPMC_SET_ONE(GPMC_CS_CONFIG4, 16, 19, we_on);
	GPMC_SET_ONE(GPMC_CS_CONFIG4, 24, 28, we_off);

	GPMC_SET_ONE(GPMC_CS_CONFIG5,  0,  4, rd_cycle);
	GPMC_SET_ONE(GPMC_CS_CONFIG5,  8, 12, wr_cycle);
	GPMC_SET_ONE(GPMC_CS_CONFIG5, 16, 20, access);

	GPMC_SET_ONE(GPMC_CS_CONFIG5, 24, 27, page_burst_access);

750 751 752
	GPMC_SET_ONE(GPMC_CS_CONFIG6, 0, 3, bus_turnaround);
	GPMC_SET_ONE(GPMC_CS_CONFIG6, 8, 11, cycle2cycle_delay);

753
	if (gpmc_capability & GPMC_HAS_WR_DATA_MUX_BUS)
754
		GPMC_SET_ONE(GPMC_CS_CONFIG6, 16, 19, wr_data_mux_bus);
755
	if (gpmc_capability & GPMC_HAS_WR_ACCESS)
756 757
		GPMC_SET_ONE(GPMC_CS_CONFIG6, 24, 28, wr_access);

D
David Brownell 已提交
758
	l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG1);
759 760 761 762
	l &= ~0x03;
	l |= (div - 1);
	gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1, l);

763 764 765 766 767 768
	GPMC_SET_ONE_CD_MAX(GPMC_CS_CONFIG1, 18, 19,
			    GPMC_CONFIG1_WAITMONITORINGTIME_MAX,
			    wait_monitoring, GPMC_CD_CLK);
	GPMC_SET_ONE_CD_MAX(GPMC_CS_CONFIG1, 25, 26,
			    GPMC_CONFIG1_CLKACTIVATIONTIME_MAX,
			    clk_activation, GPMC_CD_FCLK);
769

770
#ifdef CONFIG_OMAP_GPMC_DEBUG
771 772
	pr_info("GPMC CS%d CLK period is %lu ns (div %d)\n",
			cs, (div * gpmc_get_fclk_period()) / 1000, div);
773 774
#endif

775
	gpmc_cs_bool_timings(cs, &t->bool_timings);
776
	gpmc_cs_show_timings(cs, "after gpmc_cs_set_timings");
777

778 779 780
	return 0;
}

781
static int gpmc_cs_set_memconf(int cs, u32 base, u32 size)
782 783 784 785
{
	u32 l;
	u32 mask;

786 787 788 789 790 791 792
	/*
	 * Ensure that base address is aligned on a
	 * boundary equal to or greater than size.
	 */
	if (base & (size - 1))
		return -EINVAL;

793
	base >>= GPMC_CHUNK_SHIFT;
794
	mask = (1 << GPMC_SECTION_SHIFT) - size;
795 796 797
	mask >>= GPMC_CHUNK_SHIFT;
	mask <<= GPMC_CONFIG7_MASKADDRESS_OFFSET;

798
	l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
799 800 801
	l &= ~GPMC_CONFIG7_MASK;
	l |= base & GPMC_CONFIG7_BASEADDRESS_MASK;
	l |= mask & GPMC_CONFIG7_MASKADDRESS_MASK;
802
	l |= GPMC_CONFIG7_CSVALID;
803
	gpmc_cs_write_reg(cs, GPMC_CS_CONFIG7, l);
804 805

	return 0;
806 807
}

808 809 810 811 812 813 814 815 816
static void gpmc_cs_enable_mem(int cs)
{
	u32 l;

	l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
	l |= GPMC_CONFIG7_CSVALID;
	gpmc_cs_write_reg(cs, GPMC_CS_CONFIG7, l);
}

817 818 819 820 821
static void gpmc_cs_disable_mem(int cs)
{
	u32 l;

	l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
822
	l &= ~GPMC_CONFIG7_CSVALID;
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
	gpmc_cs_write_reg(cs, GPMC_CS_CONFIG7, l);
}

static void gpmc_cs_get_memconf(int cs, u32 *base, u32 *size)
{
	u32 l;
	u32 mask;

	l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
	*base = (l & 0x3f) << GPMC_CHUNK_SHIFT;
	mask = (l >> 8) & 0x0f;
	*size = (1 << GPMC_SECTION_SHIFT) - (mask << GPMC_CHUNK_SHIFT);
}

static int gpmc_cs_mem_enabled(int cs)
{
	u32 l;

	l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
842
	return l & GPMC_CONFIG7_CSVALID;
843 844
}

845
static void gpmc_cs_set_reserved(int cs, int reserved)
846
{
847 848 849
	struct gpmc_cs_data *gpmc = &gpmc_cs[cs];

	gpmc->flags |= GPMC_CS_RESERVED;
850 851
}

852
static bool gpmc_cs_reserved(int cs)
853
{
854 855 856 857 858 859 860 861 862 863 864 865
	struct gpmc_cs_data *gpmc = &gpmc_cs[cs];

	return gpmc->flags & GPMC_CS_RESERVED;
}

static void gpmc_cs_set_name(int cs, const char *name)
{
	struct gpmc_cs_data *gpmc = &gpmc_cs[cs];

	gpmc->name = name;
}

866
static const char *gpmc_cs_get_name(int cs)
867 868 869 870
{
	struct gpmc_cs_data *gpmc = &gpmc_cs[cs];

	return gpmc->name;
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
}

static unsigned long gpmc_mem_align(unsigned long size)
{
	int order;

	size = (size - 1) >> (GPMC_CHUNK_SHIFT - 1);
	order = GPMC_CHUNK_SHIFT - 1;
	do {
		size >>= 1;
		order++;
	} while (size);
	size = 1 << order;
	return size;
}

static int gpmc_cs_insert_mem(int cs, unsigned long base, unsigned long size)
{
889 890
	struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
	struct resource *res = &gpmc->mem;
891 892 893 894 895 896 897 898 899 900 901 902
	int r;

	size = gpmc_mem_align(size);
	spin_lock(&gpmc_mem_lock);
	res->start = base;
	res->end = base + size - 1;
	r = request_resource(&gpmc_mem_root, res);
	spin_unlock(&gpmc_mem_lock);

	return r;
}

903 904
static int gpmc_cs_delete_mem(int cs)
{
905 906
	struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
	struct resource *res = &gpmc->mem;
907 908 909
	int r;

	spin_lock(&gpmc_mem_lock);
910
	r = release_resource(res);
911 912 913 914 915 916 917
	res->start = 0;
	res->end = 0;
	spin_unlock(&gpmc_mem_lock);

	return r;
}

918 919 920 921 922 923 924 925 926 927 928 929 930 931
/**
 * gpmc_cs_remap - remaps a chip-select physical base address
 * @cs:		chip-select to remap
 * @base:	physical base address to re-map chip-select to
 *
 * Re-maps a chip-select to a new physical base address specified by
 * "base". Returns 0 on success and appropriate negative error code
 * on failure.
 */
static int gpmc_cs_remap(int cs, u32 base)
{
	int ret;
	u32 old_base, size;

932 933
	if (cs > gpmc_cs_num) {
		pr_err("%s: requested chip-select is disabled\n", __func__);
934
		return -ENODEV;
935
	}
936 937 938 939 940 941 942 943

	/*
	 * Make sure we ignore any device offsets from the GPMC partition
	 * allocated for the chip select and that the new base confirms
	 * to the GPMC 16MB minimum granularity.
	 */ 
	base &= ~(SZ_16M - 1);

944 945 946
	gpmc_cs_get_memconf(cs, &old_base, &size);
	if (base == old_base)
		return 0;
947

948 949 950
	ret = gpmc_cs_delete_mem(cs);
	if (ret < 0)
		return ret;
951

952
	ret = gpmc_cs_insert_mem(cs, base, size);
953 954
	if (ret < 0)
		return ret;
955

956 957 958
	ret = gpmc_cs_set_memconf(cs, base, size);

	return ret;
959 960
}

961 962
int gpmc_cs_request(int cs, unsigned long size, unsigned long *base)
{
963 964
	struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
	struct resource *res = &gpmc->mem;
965 966
	int r = -1;

967 968
	if (cs > gpmc_cs_num) {
		pr_err("%s: requested chip-select is disabled\n", __func__);
969
		return -ENODEV;
970
	}
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
	size = gpmc_mem_align(size);
	if (size > (1 << GPMC_SECTION_SHIFT))
		return -ENOMEM;

	spin_lock(&gpmc_mem_lock);
	if (gpmc_cs_reserved(cs)) {
		r = -EBUSY;
		goto out;
	}
	if (gpmc_cs_mem_enabled(cs))
		r = adjust_resource(res, res->start & ~(size - 1), size);
	if (r < 0)
		r = allocate_resource(&gpmc_mem_root, res, size, 0, ~0,
				      size, NULL, NULL);
	if (r < 0)
		goto out;

988 989 990 991
	/* Disable CS while changing base address and size mask */
	gpmc_cs_disable_mem(cs);

	r = gpmc_cs_set_memconf(cs, res->start, resource_size(res));
992 993 994 995 996
	if (r < 0) {
		release_resource(res);
		goto out;
	}

997 998
	/* Enable CS */
	gpmc_cs_enable_mem(cs);
999 1000 1001 1002 1003 1004
	*base = res->start;
	gpmc_cs_set_reserved(cs, 1);
out:
	spin_unlock(&gpmc_mem_lock);
	return r;
}
1005
EXPORT_SYMBOL(gpmc_cs_request);
1006 1007 1008

void gpmc_cs_free(int cs)
{
1009 1010
	struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
	struct resource *res = &gpmc->mem;
1011

1012
	spin_lock(&gpmc_mem_lock);
1013
	if (cs >= gpmc_cs_num || cs < 0 || !gpmc_cs_reserved(cs)) {
1014 1015 1016 1017 1018 1019
		printk(KERN_ERR "Trying to free non-reserved GPMC CS%d\n", cs);
		BUG();
		spin_unlock(&gpmc_mem_lock);
		return;
	}
	gpmc_cs_disable_mem(cs);
1020 1021
	if (res->flags)
		release_resource(res);
1022 1023 1024
	gpmc_cs_set_reserved(cs, 0);
	spin_unlock(&gpmc_mem_lock);
}
1025
EXPORT_SYMBOL(gpmc_cs_free);
1026

1027
/**
1028
 * gpmc_configure - write request to configure gpmc
1029 1030 1031 1032
 * @cmd: command type
 * @wval: value to write
 * @return status of the operation
 */
1033
int gpmc_configure(int cmd, int wval)
1034
{
1035
	u32 regval;
1036 1037

	switch (cmd) {
1038 1039 1040 1041
	case GPMC_ENABLE_IRQ:
		gpmc_write_reg(GPMC_IRQENABLE, wval);
		break;

1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
	case GPMC_SET_IRQ_STATUS:
		gpmc_write_reg(GPMC_IRQSTATUS, wval);
		break;

	case GPMC_CONFIG_WP:
		regval = gpmc_read_reg(GPMC_CONFIG);
		if (wval)
			regval &= ~GPMC_CONFIG_WRITEPROTECT; /* WP is ON */
		else
			regval |= GPMC_CONFIG_WRITEPROTECT;  /* WP is OFF */
		gpmc_write_reg(GPMC_CONFIG, regval);
		break;

	default:
1056 1057
		pr_err("%s: command not supported\n", __func__);
		return -EINVAL;
1058 1059
	}

1060
	return 0;
1061
}
1062
EXPORT_SYMBOL(gpmc_configure);
1063

1064 1065
void gpmc_update_nand_reg(struct gpmc_nand_regs *reg, int cs)
{
1066 1067
	int i;

1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
	reg->gpmc_status = gpmc_base + GPMC_STATUS;
	reg->gpmc_nand_command = gpmc_base + GPMC_CS0_OFFSET +
				GPMC_CS_NAND_COMMAND + GPMC_CS_SIZE * cs;
	reg->gpmc_nand_address = gpmc_base + GPMC_CS0_OFFSET +
				GPMC_CS_NAND_ADDRESS + GPMC_CS_SIZE * cs;
	reg->gpmc_nand_data = gpmc_base + GPMC_CS0_OFFSET +
				GPMC_CS_NAND_DATA + GPMC_CS_SIZE * cs;
	reg->gpmc_prefetch_config1 = gpmc_base + GPMC_PREFETCH_CONFIG1;
	reg->gpmc_prefetch_config2 = gpmc_base + GPMC_PREFETCH_CONFIG2;
	reg->gpmc_prefetch_control = gpmc_base + GPMC_PREFETCH_CONTROL;
	reg->gpmc_prefetch_status = gpmc_base + GPMC_PREFETCH_STATUS;
	reg->gpmc_ecc_config = gpmc_base + GPMC_ECC_CONFIG;
	reg->gpmc_ecc_control = gpmc_base + GPMC_ECC_CONTROL;
	reg->gpmc_ecc_size_config = gpmc_base + GPMC_ECC_SIZE_CONFIG;
	reg->gpmc_ecc1_result = gpmc_base + GPMC_ECC1_RESULT;
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092

	for (i = 0; i < GPMC_BCH_NUM_REMAINDER; i++) {
		reg->gpmc_bch_result0[i] = gpmc_base + GPMC_ECC_BCH_RESULT_0 +
					   GPMC_BCH_SIZE * i;
		reg->gpmc_bch_result1[i] = gpmc_base + GPMC_ECC_BCH_RESULT_1 +
					   GPMC_BCH_SIZE * i;
		reg->gpmc_bch_result2[i] = gpmc_base + GPMC_ECC_BCH_RESULT_2 +
					   GPMC_BCH_SIZE * i;
		reg->gpmc_bch_result3[i] = gpmc_base + GPMC_ECC_BCH_RESULT_3 +
					   GPMC_BCH_SIZE * i;
1093 1094 1095 1096 1097 1098
		reg->gpmc_bch_result4[i] = gpmc_base + GPMC_ECC_BCH_RESULT_4 +
					   i * GPMC_BCH_SIZE;
		reg->gpmc_bch_result5[i] = gpmc_base + GPMC_ECC_BCH_RESULT_5 +
					   i * GPMC_BCH_SIZE;
		reg->gpmc_bch_result6[i] = gpmc_base + GPMC_ECC_BCH_RESULT_6 +
					   i * GPMC_BCH_SIZE;
1099
	}
1100 1101
}

1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
int gpmc_get_client_irq(unsigned irq_config)
{
	int i;

	if (hweight32(irq_config) > 1)
		return 0;

	for (i = 0; i < GPMC_NR_IRQ; i++)
		if (gpmc_client_irq[i].bitmask & irq_config)
			return gpmc_client_irq[i].irq;

	return 0;
}

static int gpmc_irq_endis(unsigned irq, bool endis)
{
	int i;
	u32 regval;

	for (i = 0; i < GPMC_NR_IRQ; i++)
		if (irq == gpmc_client_irq[i].irq) {
			regval = gpmc_read_reg(GPMC_IRQENABLE);
			if (endis)
				regval |= gpmc_client_irq[i].bitmask;
			else
				regval &= ~gpmc_client_irq[i].bitmask;
			gpmc_write_reg(GPMC_IRQENABLE, regval);
			break;
		}

	return 0;
}

static void gpmc_irq_disable(struct irq_data *p)
{
	gpmc_irq_endis(p->irq, false);
}

static void gpmc_irq_enable(struct irq_data *p)
{
	gpmc_irq_endis(p->irq, true);
}

static void gpmc_irq_noop(struct irq_data *data) { }

static unsigned int gpmc_irq_noop_ret(struct irq_data *data) { return 0; }

1149
static int gpmc_setup_irq(void)
1150 1151 1152 1153 1154 1155 1156 1157
{
	int i;
	u32 regval;

	if (!gpmc_irq)
		return -EINVAL;

	gpmc_irq_start = irq_alloc_descs(-1, 0, GPMC_NR_IRQ, 0);
1158
	if (gpmc_irq_start < 0) {
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
		pr_err("irq_alloc_descs failed\n");
		return gpmc_irq_start;
	}

	gpmc_irq_chip.name = "gpmc";
	gpmc_irq_chip.irq_startup = gpmc_irq_noop_ret;
	gpmc_irq_chip.irq_enable = gpmc_irq_enable;
	gpmc_irq_chip.irq_disable = gpmc_irq_disable;
	gpmc_irq_chip.irq_shutdown = gpmc_irq_noop;
	gpmc_irq_chip.irq_ack = gpmc_irq_noop;
	gpmc_irq_chip.irq_mask = gpmc_irq_noop;
	gpmc_irq_chip.irq_unmask = gpmc_irq_noop;

	gpmc_client_irq[0].bitmask = GPMC_IRQ_FIFOEVENTENABLE;
	gpmc_client_irq[1].bitmask = GPMC_IRQ_COUNT_EVENT;

	for (i = 0; i < GPMC_NR_IRQ; i++) {
		gpmc_client_irq[i].irq = gpmc_irq_start + i;
		irq_set_chip_and_handler(gpmc_client_irq[i].irq,
					&gpmc_irq_chip, handle_simple_irq);
		set_irq_flags(gpmc_client_irq[i].irq,
				IRQF_VALID | IRQF_NOAUTOEN);
	}

	/* Disable interrupts */
	gpmc_write_reg(GPMC_IRQENABLE, 0);

	/* clear interrupts */
	regval = gpmc_read_reg(GPMC_IRQSTATUS);
	gpmc_write_reg(GPMC_IRQSTATUS, regval);

	return request_irq(gpmc_irq, gpmc_handle_irq, 0, "gpmc", NULL);
}

1193
static int gpmc_free_irq(void)
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
{
	int i;

	if (gpmc_irq)
		free_irq(gpmc_irq, NULL);

	for (i = 0; i < GPMC_NR_IRQ; i++) {
		irq_set_handler(gpmc_client_irq[i].irq, NULL);
		irq_set_chip(gpmc_client_irq[i].irq, &no_irq_chip);
		irq_modify_status(gpmc_client_irq[i].irq, 0, 0);
	}

	irq_free_descs(gpmc_irq_start, GPMC_NR_IRQ);

	return 0;
}

1211
static void gpmc_mem_exit(void)
1212 1213 1214
{
	int cs;

1215
	for (cs = 0; cs < gpmc_cs_num; cs++) {
1216 1217 1218 1219 1220 1221 1222
		if (!gpmc_cs_mem_enabled(cs))
			continue;
		gpmc_cs_delete_mem(cs);
	}

}

1223
static void gpmc_mem_init(void)
1224
{
1225
	int cs;
1226

1227 1228 1229 1230
	/*
	 * The first 1MB of GPMC address space is typically mapped to
	 * the internal ROM. Never allocate the first page, to
	 * facilitate bug detection; even if we didn't boot from ROM.
1231
	 */
1232
	gpmc_mem_root.start = SZ_1M;
1233 1234 1235
	gpmc_mem_root.end = GPMC_MEM_END;

	/* Reserve all regions that has been set up by bootloader */
1236
	for (cs = 0; cs < gpmc_cs_num; cs++) {
1237 1238 1239 1240 1241
		u32 base, size;

		if (!gpmc_cs_mem_enabled(cs))
			continue;
		gpmc_cs_get_memconf(cs, &base, &size);
1242 1243 1244 1245
		if (gpmc_cs_insert_mem(cs, base, size)) {
			pr_warn("%s: disabling cs %d mapped at 0x%x-0x%x\n",
				__func__, cs, base, base + size);
			gpmc_cs_disable_mem(cs);
1246
		}
1247
	}
1248 1249
}

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
static u32 gpmc_round_ps_to_sync_clk(u32 time_ps, u32 sync_clk)
{
	u32 temp;
	int div;

	div = gpmc_calc_divider(sync_clk);
	temp = gpmc_ps_to_ticks(time_ps);
	temp = (temp + div - 1) / div;
	return gpmc_ticks_to_ps(temp * div);
}

/* XXX: can the cycles be avoided ? */
static int gpmc_calc_sync_read_timings(struct gpmc_timings *gpmc_t,
1263 1264
				       struct gpmc_device_timings *dev_t,
				       bool mux)
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
{
	u32 temp;

	/* adv_rd_off */
	temp = dev_t->t_avdp_r;
	/* XXX: mux check required ? */
	if (mux) {
		/* XXX: t_avdp not to be required for sync, only added for tusb
		 * this indirectly necessitates requirement of t_avdp_r and
		 * t_avdp_w instead of having a single t_avdp
		 */
		temp = max_t(u32, temp,	gpmc_t->clk_activation + dev_t->t_avdh);
		temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp);
	}
	gpmc_t->adv_rd_off = gpmc_round_ps_to_ticks(temp);

	/* oe_on */
	temp = dev_t->t_oeasu; /* XXX: remove this ? */
	if (mux) {
		temp = max_t(u32, temp,	gpmc_t->clk_activation + dev_t->t_ach);
		temp = max_t(u32, temp, gpmc_t->adv_rd_off +
				gpmc_ticks_to_ps(dev_t->cyc_aavdh_oe));
	}
	gpmc_t->oe_on = gpmc_round_ps_to_ticks(temp);

	/* access */
	/* XXX: any scope for improvement ?, by combining oe_on
	 * and clk_activation, need to check whether
	 * access = clk_activation + round to sync clk ?
	 */
	temp = max_t(u32, dev_t->t_iaa,	dev_t->cyc_iaa * gpmc_t->sync_clk);
	temp += gpmc_t->clk_activation;
	if (dev_t->cyc_oe)
		temp = max_t(u32, temp, gpmc_t->oe_on +
				gpmc_ticks_to_ps(dev_t->cyc_oe));
	gpmc_t->access = gpmc_round_ps_to_ticks(temp);

	gpmc_t->oe_off = gpmc_t->access + gpmc_ticks_to_ps(1);
	gpmc_t->cs_rd_off = gpmc_t->oe_off;

	/* rd_cycle */
	temp = max_t(u32, dev_t->t_cez_r, dev_t->t_oez);
	temp = gpmc_round_ps_to_sync_clk(temp, gpmc_t->sync_clk) +
							gpmc_t->access;
	/* XXX: barter t_ce_rdyz with t_cez_r ? */
	if (dev_t->t_ce_rdyz)
		temp = max_t(u32, temp,	gpmc_t->cs_rd_off + dev_t->t_ce_rdyz);
	gpmc_t->rd_cycle = gpmc_round_ps_to_ticks(temp);

	return 0;
}

static int gpmc_calc_sync_write_timings(struct gpmc_timings *gpmc_t,
1318 1319
					struct gpmc_device_timings *dev_t,
					bool mux)
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
{
	u32 temp;

	/* adv_wr_off */
	temp = dev_t->t_avdp_w;
	if (mux) {
		temp = max_t(u32, temp,
			gpmc_t->clk_activation + dev_t->t_avdh);
		temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp);
	}
	gpmc_t->adv_wr_off = gpmc_round_ps_to_ticks(temp);

	/* wr_data_mux_bus */
	temp = max_t(u32, dev_t->t_weasu,
			gpmc_t->clk_activation + dev_t->t_rdyo);
	/* XXX: shouldn't mux be kept as a whole for wr_data_mux_bus ?,
	 * and in that case remember to handle we_on properly
	 */
	if (mux) {
		temp = max_t(u32, temp,
			gpmc_t->adv_wr_off + dev_t->t_aavdh);
		temp = max_t(u32, temp, gpmc_t->adv_wr_off +
				gpmc_ticks_to_ps(dev_t->cyc_aavdh_we));
	}
	gpmc_t->wr_data_mux_bus = gpmc_round_ps_to_ticks(temp);

	/* we_on */
	if (gpmc_capability & GPMC_HAS_WR_DATA_MUX_BUS)
		gpmc_t->we_on = gpmc_round_ps_to_ticks(dev_t->t_weasu);
	else
		gpmc_t->we_on = gpmc_t->wr_data_mux_bus;

	/* wr_access */
	/* XXX: gpmc_capability check reqd ? , even if not, will not harm */
	gpmc_t->wr_access = gpmc_t->access;

	/* we_off */
	temp = gpmc_t->we_on + dev_t->t_wpl;
	temp = max_t(u32, temp,
			gpmc_t->wr_access + gpmc_ticks_to_ps(1));
	temp = max_t(u32, temp,
		gpmc_t->we_on + gpmc_ticks_to_ps(dev_t->cyc_wpl));
	gpmc_t->we_off = gpmc_round_ps_to_ticks(temp);

	gpmc_t->cs_wr_off = gpmc_round_ps_to_ticks(gpmc_t->we_off +
							dev_t->t_wph);

	/* wr_cycle */
	temp = gpmc_round_ps_to_sync_clk(dev_t->t_cez_w, gpmc_t->sync_clk);
	temp += gpmc_t->wr_access;
	/* XXX: barter t_ce_rdyz with t_cez_w ? */
	if (dev_t->t_ce_rdyz)
		temp = max_t(u32, temp,
				 gpmc_t->cs_wr_off + dev_t->t_ce_rdyz);
	gpmc_t->wr_cycle = gpmc_round_ps_to_ticks(temp);

	return 0;
}

static int gpmc_calc_async_read_timings(struct gpmc_timings *gpmc_t,
1380 1381
					struct gpmc_device_timings *dev_t,
					bool mux)
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
{
	u32 temp;

	/* adv_rd_off */
	temp = dev_t->t_avdp_r;
	if (mux)
		temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp);
	gpmc_t->adv_rd_off = gpmc_round_ps_to_ticks(temp);

	/* oe_on */
	temp = dev_t->t_oeasu;
	if (mux)
		temp = max_t(u32, temp,
			gpmc_t->adv_rd_off + dev_t->t_aavdh);
	gpmc_t->oe_on = gpmc_round_ps_to_ticks(temp);

	/* access */
	temp = max_t(u32, dev_t->t_iaa, /* XXX: remove t_iaa in async ? */
				gpmc_t->oe_on + dev_t->t_oe);
	temp = max_t(u32, temp,
				gpmc_t->cs_on + dev_t->t_ce);
	temp = max_t(u32, temp,
				gpmc_t->adv_on + dev_t->t_aa);
	gpmc_t->access = gpmc_round_ps_to_ticks(temp);

	gpmc_t->oe_off = gpmc_t->access + gpmc_ticks_to_ps(1);
	gpmc_t->cs_rd_off = gpmc_t->oe_off;

	/* rd_cycle */
	temp = max_t(u32, dev_t->t_rd_cycle,
			gpmc_t->cs_rd_off + dev_t->t_cez_r);
	temp = max_t(u32, temp, gpmc_t->oe_off + dev_t->t_oez);
	gpmc_t->rd_cycle = gpmc_round_ps_to_ticks(temp);

	return 0;
}

static int gpmc_calc_async_write_timings(struct gpmc_timings *gpmc_t,
1420 1421
					 struct gpmc_device_timings *dev_t,
					 bool mux)
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
{
	u32 temp;

	/* adv_wr_off */
	temp = dev_t->t_avdp_w;
	if (mux)
		temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp);
	gpmc_t->adv_wr_off = gpmc_round_ps_to_ticks(temp);

	/* wr_data_mux_bus */
	temp = dev_t->t_weasu;
	if (mux) {
		temp = max_t(u32, temp,	gpmc_t->adv_wr_off + dev_t->t_aavdh);
		temp = max_t(u32, temp, gpmc_t->adv_wr_off +
				gpmc_ticks_to_ps(dev_t->cyc_aavdh_we));
	}
	gpmc_t->wr_data_mux_bus = gpmc_round_ps_to_ticks(temp);

	/* we_on */
	if (gpmc_capability & GPMC_HAS_WR_DATA_MUX_BUS)
		gpmc_t->we_on = gpmc_round_ps_to_ticks(dev_t->t_weasu);
	else
		gpmc_t->we_on = gpmc_t->wr_data_mux_bus;

	/* we_off */
	temp = gpmc_t->we_on + dev_t->t_wpl;
	gpmc_t->we_off = gpmc_round_ps_to_ticks(temp);

	gpmc_t->cs_wr_off = gpmc_round_ps_to_ticks(gpmc_t->we_off +
							dev_t->t_wph);

	/* wr_cycle */
	temp = max_t(u32, dev_t->t_wr_cycle,
				gpmc_t->cs_wr_off + dev_t->t_cez_w);
	gpmc_t->wr_cycle = gpmc_round_ps_to_ticks(temp);

	return 0;
}

static int gpmc_calc_sync_common_timings(struct gpmc_timings *gpmc_t,
			struct gpmc_device_timings *dev_t)
{
	u32 temp;

	gpmc_t->sync_clk = gpmc_calc_divider(dev_t->clk) *
						gpmc_get_fclk_period();

	gpmc_t->page_burst_access = gpmc_round_ps_to_sync_clk(
					dev_t->t_bacc,
					gpmc_t->sync_clk);

	temp = max_t(u32, dev_t->t_ces, dev_t->t_avds);
	gpmc_t->clk_activation = gpmc_round_ps_to_ticks(temp);

	if (gpmc_calc_divider(gpmc_t->sync_clk) != 1)
		return 0;

	if (dev_t->ce_xdelay)
		gpmc_t->bool_timings.cs_extra_delay = true;
	if (dev_t->avd_xdelay)
		gpmc_t->bool_timings.adv_extra_delay = true;
	if (dev_t->oe_xdelay)
		gpmc_t->bool_timings.oe_extra_delay = true;
	if (dev_t->we_xdelay)
		gpmc_t->bool_timings.we_extra_delay = true;

	return 0;
}

static int gpmc_calc_common_timings(struct gpmc_timings *gpmc_t,
1492 1493
				    struct gpmc_device_timings *dev_t,
				    bool sync)
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
{
	u32 temp;

	/* cs_on */
	gpmc_t->cs_on = gpmc_round_ps_to_ticks(dev_t->t_ceasu);

	/* adv_on */
	temp = dev_t->t_avdasu;
	if (dev_t->t_ce_avd)
		temp = max_t(u32, temp,
				gpmc_t->cs_on + dev_t->t_ce_avd);
	gpmc_t->adv_on = gpmc_round_ps_to_ticks(temp);

1507
	if (sync)
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
		gpmc_calc_sync_common_timings(gpmc_t, dev_t);

	return 0;
}

/* TODO: remove this function once all peripherals are confirmed to
 * work with generic timing. Simultaneously gpmc_cs_set_timings()
 * has to be modified to handle timings in ps instead of ns
*/
static void gpmc_convert_ps_to_ns(struct gpmc_timings *t)
{
	t->cs_on /= 1000;
	t->cs_rd_off /= 1000;
	t->cs_wr_off /= 1000;
	t->adv_on /= 1000;
	t->adv_rd_off /= 1000;
	t->adv_wr_off /= 1000;
	t->we_on /= 1000;
	t->we_off /= 1000;
	t->oe_on /= 1000;
	t->oe_off /= 1000;
	t->page_burst_access /= 1000;
	t->access /= 1000;
	t->rd_cycle /= 1000;
	t->wr_cycle /= 1000;
	t->bus_turnaround /= 1000;
	t->cycle2cycle_delay /= 1000;
	t->wait_monitoring /= 1000;
	t->clk_activation /= 1000;
	t->wr_access /= 1000;
	t->wr_data_mux_bus /= 1000;
}

int gpmc_calc_timings(struct gpmc_timings *gpmc_t,
1542 1543
		      struct gpmc_settings *gpmc_s,
		      struct gpmc_device_timings *dev_t)
1544
{
1545 1546 1547 1548 1549 1550 1551
	bool mux = false, sync = false;

	if (gpmc_s) {
		mux = gpmc_s->mux_add_data ? true : false;
		sync = (gpmc_s->sync_read || gpmc_s->sync_write);
	}

1552 1553
	memset(gpmc_t, 0, sizeof(*gpmc_t));

1554
	gpmc_calc_common_timings(gpmc_t, dev_t, sync);
1555

1556 1557
	if (gpmc_s && gpmc_s->sync_read)
		gpmc_calc_sync_read_timings(gpmc_t, dev_t, mux);
1558
	else
1559
		gpmc_calc_async_read_timings(gpmc_t, dev_t, mux);
1560

1561 1562
	if (gpmc_s && gpmc_s->sync_write)
		gpmc_calc_sync_write_timings(gpmc_t, dev_t, mux);
1563
	else
1564
		gpmc_calc_async_write_timings(gpmc_t, dev_t, mux);
1565 1566 1567 1568 1569 1570 1571

	/* TODO: remove, see function definition */
	gpmc_convert_ps_to_ns(gpmc_t);

	return 0;
}

1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
/**
 * gpmc_cs_program_settings - programs non-timing related settings
 * @cs:		GPMC chip-select to program
 * @p:		pointer to GPMC settings structure
 *
 * Programs non-timing related settings for a GPMC chip-select, such as
 * bus-width, burst configuration, etc. Function should be called once
 * for each chip-select that is being used and must be called before
 * calling gpmc_cs_set_timings() as timing parameters in the CONFIG1
 * register will be initialised to zero by this function. Returns 0 on
 * success and appropriate negative error code on failure.
 */
int gpmc_cs_program_settings(int cs, struct gpmc_settings *p)
{
	u32 config1;

	if ((!p->device_width) || (p->device_width > GPMC_DEVWIDTH_16BIT)) {
		pr_err("%s: invalid width %d!", __func__, p->device_width);
		return -EINVAL;
	}

	/* Address-data multiplexing not supported for NAND devices */
	if (p->device_nand && p->mux_add_data) {
		pr_err("%s: invalid configuration!\n", __func__);
		return -EINVAL;
	}

	if ((p->mux_add_data > GPMC_MUX_AD) ||
	    ((p->mux_add_data == GPMC_MUX_AAD) &&
	     !(gpmc_capability & GPMC_HAS_MUX_AAD))) {
		pr_err("%s: invalid multiplex configuration!\n", __func__);
		return -EINVAL;
	}

	/* Page/burst mode supports lengths of 4, 8 and 16 bytes */
	if (p->burst_read || p->burst_write) {
		switch (p->burst_len) {
		case GPMC_BURST_4:
		case GPMC_BURST_8:
		case GPMC_BURST_16:
			break;
		default:
			pr_err("%s: invalid page/burst-length (%d)\n",
			       __func__, p->burst_len);
			return -EINVAL;
		}
	}

1620
	if (p->wait_pin > gpmc_nr_waitpins) {
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
		pr_err("%s: invalid wait-pin (%d)\n", __func__, p->wait_pin);
		return -EINVAL;
	}

	config1 = GPMC_CONFIG1_DEVICESIZE((p->device_width - 1));

	if (p->sync_read)
		config1 |= GPMC_CONFIG1_READTYPE_SYNC;
	if (p->sync_write)
		config1 |= GPMC_CONFIG1_WRITETYPE_SYNC;
	if (p->wait_on_read)
		config1 |= GPMC_CONFIG1_WAIT_READ_MON;
	if (p->wait_on_write)
		config1 |= GPMC_CONFIG1_WAIT_WRITE_MON;
	if (p->wait_on_read || p->wait_on_write)
		config1 |= GPMC_CONFIG1_WAIT_PIN_SEL(p->wait_pin);
	if (p->device_nand)
		config1	|= GPMC_CONFIG1_DEVICETYPE(GPMC_DEVICETYPE_NAND);
	if (p->mux_add_data)
		config1	|= GPMC_CONFIG1_MUXTYPE(p->mux_add_data);
	if (p->burst_read)
		config1 |= GPMC_CONFIG1_READMULTIPLE_SUPP;
	if (p->burst_write)
		config1 |= GPMC_CONFIG1_WRITEMULTIPLE_SUPP;
	if (p->burst_read || p->burst_write) {
		config1 |= GPMC_CONFIG1_PAGE_LEN(p->burst_len >> 3);
		config1 |= p->burst_wrap ? GPMC_CONFIG1_WRAPBURST_SUPP : 0;
	}

	gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1, config1);

	return 0;
}

1655
#ifdef CONFIG_OF
1656
static const struct of_device_id gpmc_dt_ids[] = {
1657 1658 1659 1660 1661 1662 1663 1664 1665
	{ .compatible = "ti,omap2420-gpmc" },
	{ .compatible = "ti,omap2430-gpmc" },
	{ .compatible = "ti,omap3430-gpmc" },	/* omap3430 & omap3630 */
	{ .compatible = "ti,omap4430-gpmc" },	/* omap4430 & omap4460 & omap543x */
	{ .compatible = "ti,am3352-gpmc" },	/* am335x devices */
	{ }
};
MODULE_DEVICE_TABLE(of, gpmc_dt_ids);

1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
/**
 * gpmc_read_settings_dt - read gpmc settings from device-tree
 * @np:		pointer to device-tree node for a gpmc child device
 * @p:		pointer to gpmc settings structure
 *
 * Reads the GPMC settings for a GPMC child device from device-tree and
 * stores them in the GPMC settings structure passed. The GPMC settings
 * structure is initialised to zero by this function and so any
 * previously stored settings will be cleared.
 */
void gpmc_read_settings_dt(struct device_node *np, struct gpmc_settings *p)
{
	memset(p, 0, sizeof(struct gpmc_settings));

	p->sync_read = of_property_read_bool(np, "gpmc,sync-read");
	p->sync_write = of_property_read_bool(np, "gpmc,sync-write");
	of_property_read_u32(np, "gpmc,device-width", &p->device_width);
	of_property_read_u32(np, "gpmc,mux-add-data", &p->mux_add_data);

	if (!of_property_read_u32(np, "gpmc,burst-length", &p->burst_len)) {
		p->burst_wrap = of_property_read_bool(np, "gpmc,burst-wrap");
		p->burst_read = of_property_read_bool(np, "gpmc,burst-read");
		p->burst_write = of_property_read_bool(np, "gpmc,burst-write");
		if (!p->burst_read && !p->burst_write)
			pr_warn("%s: page/burst-length set but not used!\n",
				__func__);
	}

	if (!of_property_read_u32(np, "gpmc,wait-pin", &p->wait_pin)) {
		p->wait_on_read = of_property_read_bool(np,
							"gpmc,wait-on-read");
		p->wait_on_write = of_property_read_bool(np,
							 "gpmc,wait-on-write");
		if (!p->wait_on_read && !p->wait_on_write)
1700 1701
			pr_debug("%s: rd/wr wait monitoring not enabled!\n",
				 __func__);
1702 1703 1704
	}
}

1705 1706 1707
static void __maybe_unused gpmc_read_timings_dt(struct device_node *np,
						struct gpmc_timings *gpmc_t)
{
1708 1709 1710 1711
	struct gpmc_bool_timings *p;

	if (!np || !gpmc_t)
		return;
1712 1713 1714 1715

	memset(gpmc_t, 0, sizeof(*gpmc_t));

	/* minimum clock period for syncronous mode */
1716
	of_property_read_u32(np, "gpmc,sync-clk-ps", &gpmc_t->sync_clk);
1717 1718

	/* chip select timtings */
1719 1720 1721
	of_property_read_u32(np, "gpmc,cs-on-ns", &gpmc_t->cs_on);
	of_property_read_u32(np, "gpmc,cs-rd-off-ns", &gpmc_t->cs_rd_off);
	of_property_read_u32(np, "gpmc,cs-wr-off-ns", &gpmc_t->cs_wr_off);
1722 1723

	/* ADV signal timings */
1724 1725 1726
	of_property_read_u32(np, "gpmc,adv-on-ns", &gpmc_t->adv_on);
	of_property_read_u32(np, "gpmc,adv-rd-off-ns", &gpmc_t->adv_rd_off);
	of_property_read_u32(np, "gpmc,adv-wr-off-ns", &gpmc_t->adv_wr_off);
1727 1728

	/* WE signal timings */
1729 1730
	of_property_read_u32(np, "gpmc,we-on-ns", &gpmc_t->we_on);
	of_property_read_u32(np, "gpmc,we-off-ns", &gpmc_t->we_off);
1731 1732

	/* OE signal timings */
1733 1734
	of_property_read_u32(np, "gpmc,oe-on-ns", &gpmc_t->oe_on);
	of_property_read_u32(np, "gpmc,oe-off-ns", &gpmc_t->oe_off);
1735 1736

	/* access and cycle timings */
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
	of_property_read_u32(np, "gpmc,page-burst-access-ns",
			     &gpmc_t->page_burst_access);
	of_property_read_u32(np, "gpmc,access-ns", &gpmc_t->access);
	of_property_read_u32(np, "gpmc,rd-cycle-ns", &gpmc_t->rd_cycle);
	of_property_read_u32(np, "gpmc,wr-cycle-ns", &gpmc_t->wr_cycle);
	of_property_read_u32(np, "gpmc,bus-turnaround-ns",
			     &gpmc_t->bus_turnaround);
	of_property_read_u32(np, "gpmc,cycle2cycle-delay-ns",
			     &gpmc_t->cycle2cycle_delay);
	of_property_read_u32(np, "gpmc,wait-monitoring-ns",
			     &gpmc_t->wait_monitoring);
	of_property_read_u32(np, "gpmc,clk-activation-ns",
			     &gpmc_t->clk_activation);

	/* only applicable to OMAP3+ */
	of_property_read_u32(np, "gpmc,wr-access-ns", &gpmc_t->wr_access);
	of_property_read_u32(np, "gpmc,wr-data-mux-bus-ns",
			     &gpmc_t->wr_data_mux_bus);

	/* bool timing parameters */
	p = &gpmc_t->bool_timings;

	p->cycle2cyclediffcsen =
		of_property_read_bool(np, "gpmc,cycle2cycle-diffcsen");
	p->cycle2cyclesamecsen =
		of_property_read_bool(np, "gpmc,cycle2cycle-samecsen");
	p->we_extra_delay = of_property_read_bool(np, "gpmc,we-extra-delay");
	p->oe_extra_delay = of_property_read_bool(np, "gpmc,oe-extra-delay");
	p->adv_extra_delay = of_property_read_bool(np, "gpmc,adv-extra-delay");
	p->cs_extra_delay = of_property_read_bool(np, "gpmc,cs-extra-delay");
	p->time_para_granularity =
		of_property_read_bool(np, "gpmc,time-para-granularity");
1769 1770
}

1771
#if IS_ENABLED(CONFIG_MTD_NAND)
1772

1773 1774 1775 1776 1777 1778 1779
static const char * const nand_xfer_types[] = {
	[NAND_OMAP_PREFETCH_POLLED]		= "prefetch-polled",
	[NAND_OMAP_POLLED]			= "polled",
	[NAND_OMAP_PREFETCH_DMA]		= "prefetch-dma",
	[NAND_OMAP_PREFETCH_IRQ]		= "prefetch-irq",
};

1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
static int gpmc_probe_nand_child(struct platform_device *pdev,
				 struct device_node *child)
{
	u32 val;
	const char *s;
	struct gpmc_timings gpmc_t;
	struct omap_nand_platform_data *gpmc_nand_data;

	if (of_property_read_u32(child, "reg", &val) < 0) {
		dev_err(&pdev->dev, "%s has no 'reg' property\n",
			child->full_name);
		return -ENODEV;
	}

	gpmc_nand_data = devm_kzalloc(&pdev->dev, sizeof(*gpmc_nand_data),
				      GFP_KERNEL);
	if (!gpmc_nand_data)
		return -ENOMEM;

	gpmc_nand_data->cs = val;
	gpmc_nand_data->of_node = child;

1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
	/* Detect availability of ELM module */
	gpmc_nand_data->elm_of_node = of_parse_phandle(child, "ti,elm-id", 0);
	if (gpmc_nand_data->elm_of_node == NULL)
		gpmc_nand_data->elm_of_node =
					of_parse_phandle(child, "elm_id", 0);

	/* select ecc-scheme for NAND */
	if (of_property_read_string(child, "ti,nand-ecc-opt", &s)) {
		pr_err("%s: ti,nand-ecc-opt not found\n", __func__);
		return -ENODEV;
	}
1813 1814 1815 1816 1817

	if (!strcmp(s, "sw"))
		gpmc_nand_data->ecc_opt = OMAP_ECC_HAM1_CODE_SW;
	else if (!strcmp(s, "ham1") ||
		 !strcmp(s, "hw") || !strcmp(s, "hw-romcode"))
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
		gpmc_nand_data->ecc_opt =
				OMAP_ECC_HAM1_CODE_HW;
	else if (!strcmp(s, "bch4"))
		if (gpmc_nand_data->elm_of_node)
			gpmc_nand_data->ecc_opt =
				OMAP_ECC_BCH4_CODE_HW;
		else
			gpmc_nand_data->ecc_opt =
				OMAP_ECC_BCH4_CODE_HW_DETECTION_SW;
	else if (!strcmp(s, "bch8"))
		if (gpmc_nand_data->elm_of_node)
			gpmc_nand_data->ecc_opt =
				OMAP_ECC_BCH8_CODE_HW;
		else
			gpmc_nand_data->ecc_opt =
				OMAP_ECC_BCH8_CODE_HW_DETECTION_SW;
1834 1835 1836 1837 1838 1839
	else if (!strcmp(s, "bch16"))
		if (gpmc_nand_data->elm_of_node)
			gpmc_nand_data->ecc_opt =
				OMAP_ECC_BCH16_CODE_HW;
		else
			pr_err("%s: BCH16 requires ELM support\n", __func__);
1840 1841
	else
		pr_err("%s: ti,nand-ecc-opt invalid value\n", __func__);
1842

1843
	/* select data transfer mode for NAND controller */
1844 1845 1846 1847 1848 1849 1850
	if (!of_property_read_string(child, "ti,nand-xfer-type", &s))
		for (val = 0; val < ARRAY_SIZE(nand_xfer_types); val++)
			if (!strcasecmp(s, nand_xfer_types[val])) {
				gpmc_nand_data->xfer_type = val;
				break;
			}

1851 1852
	gpmc_nand_data->flash_bbt = of_get_nand_on_flash_bbt(child);

1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
	val = of_get_nand_bus_width(child);
	if (val == 16)
		gpmc_nand_data->devsize = NAND_BUSWIDTH_16;

	gpmc_read_timings_dt(child, &gpmc_t);
	gpmc_nand_init(gpmc_nand_data, &gpmc_t);

	return 0;
}
#else
static int gpmc_probe_nand_child(struct platform_device *pdev,
				 struct device_node *child)
{
	return 0;
}
#endif

1870
#if IS_ENABLED(CONFIG_MTD_ONENAND)
1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
static int gpmc_probe_onenand_child(struct platform_device *pdev,
				 struct device_node *child)
{
	u32 val;
	struct omap_onenand_platform_data *gpmc_onenand_data;

	if (of_property_read_u32(child, "reg", &val) < 0) {
		dev_err(&pdev->dev, "%s has no 'reg' property\n",
			child->full_name);
		return -ENODEV;
	}

	gpmc_onenand_data = devm_kzalloc(&pdev->dev, sizeof(*gpmc_onenand_data),
					 GFP_KERNEL);
	if (!gpmc_onenand_data)
		return -ENOMEM;

	gpmc_onenand_data->cs = val;
	gpmc_onenand_data->of_node = child;
	gpmc_onenand_data->dma_channel = -1;

	if (!of_property_read_u32(child, "dma-channel", &val))
		gpmc_onenand_data->dma_channel = val;

	gpmc_onenand_init(gpmc_onenand_data);

	return 0;
}
#else
static int gpmc_probe_onenand_child(struct platform_device *pdev,
				    struct device_node *child)
{
	return 0;
}
#endif

1907
/**
1908
 * gpmc_probe_generic_child - configures the gpmc for a child device
1909
 * @pdev:	pointer to gpmc platform device
1910
 * @child:	pointer to device-tree node for child device
1911
 *
1912
 * Allocates and configures a GPMC chip-select for a child device.
1913 1914
 * Returns 0 on success and appropriate negative error code on failure.
 */
1915
static int gpmc_probe_generic_child(struct platform_device *pdev,
1916 1917 1918 1919 1920 1921
				struct device_node *child)
{
	struct gpmc_settings gpmc_s;
	struct gpmc_timings gpmc_t;
	struct resource res;
	unsigned long base;
1922
	const char *name;
1923
	int ret, cs;
1924
	u32 val;
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937

	if (of_property_read_u32(child, "reg", &cs) < 0) {
		dev_err(&pdev->dev, "%s has no 'reg' property\n",
			child->full_name);
		return -ENODEV;
	}

	if (of_address_to_resource(child, 0, &res) < 0) {
		dev_err(&pdev->dev, "%s has malformed 'reg' property\n",
			child->full_name);
		return -ENODEV;
	}

1938 1939 1940 1941 1942 1943 1944 1945 1946
	/*
	 * Check if we have multiple instances of the same device
	 * on a single chip select. If so, use the already initialized
	 * timings.
	 */
	name = gpmc_cs_get_name(cs);
	if (name && child->name && of_node_cmp(child->name, name) == 0)
			goto no_timings;

1947 1948 1949 1950 1951
	ret = gpmc_cs_request(cs, resource_size(&res), &base);
	if (ret < 0) {
		dev_err(&pdev->dev, "cannot request GPMC CS %d\n", cs);
		return ret;
	}
1952
	gpmc_cs_set_name(cs, child->name);
1953

1954 1955
	gpmc_read_settings_dt(child, &gpmc_s);
	gpmc_read_timings_dt(child, &gpmc_t);
1956

1957 1958
	/*
	 * For some GPMC devices we still need to rely on the bootloader
1959 1960
	 * timings because the devices can be connected via FPGA.
	 * REVISIT: Add timing support from slls644g.pdf.
1961
	 */
1962 1963 1964 1965 1966
	if (!gpmc_t.cs_rd_off) {
		WARN(1, "enable GPMC debug to configure .dts timings for CS%i\n",
			cs);
		gpmc_cs_show_timings(cs,
				     "please add GPMC bootloader timings to .dts");
1967 1968 1969
		goto no_timings;
	}

1970 1971 1972
	/* CS must be disabled while making changes to gpmc configuration */
	gpmc_cs_disable_mem(cs);

1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
	/*
	 * FIXME: gpmc_cs_request() will map the CS to an arbitary
	 * location in the gpmc address space. When booting with
	 * device-tree we want the NOR flash to be mapped to the
	 * location specified in the device-tree blob. So remap the
	 * CS to this location. Once DT migration is complete should
	 * just make gpmc_cs_request() map a specific address.
	 */
	ret = gpmc_cs_remap(cs, res.start);
	if (ret < 0) {
1983 1984
		dev_err(&pdev->dev, "cannot remap GPMC CS %d to %pa\n",
			cs, &res.start);
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
		goto err;
	}

	ret = of_property_read_u32(child, "bank-width", &gpmc_s.device_width);
	if (ret < 0)
		goto err;

	ret = gpmc_cs_program_settings(cs, &gpmc_s);
	if (ret < 0)
		goto err;

1996
	ret = gpmc_cs_set_timings(cs, &gpmc_t, &gpmc_s);
1997 1998 1999 2000 2001
	if (ret) {
		dev_err(&pdev->dev, "failed to set gpmc timings for: %s\n",
			child->name);
		goto err;
	}
2002

2003 2004 2005 2006 2007
	/* Clear limited address i.e. enable A26-A11 */
	val = gpmc_read_reg(GPMC_CONFIG);
	val &= ~GPMC_CONFIG_LIMITEDADDRESS;
	gpmc_write_reg(GPMC_CONFIG, val);

2008 2009
	/* Enable CS region */
	gpmc_cs_enable_mem(cs);
2010

2011
no_timings:
R
Robert ABEL 已提交
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026

	/* create platform device, NULL on error or when disabled */
	if (!of_platform_device_create(child, NULL, &pdev->dev))
		goto err_child_fail;

	/* is child a common bus? */
	if (of_match_node(of_default_bus_match_table, child))
		/* create children and other common bus children */
		if (of_platform_populate(child, of_default_bus_match_table,
					 NULL, &pdev->dev))
			goto err_child_fail;

	return 0;

err_child_fail:
2027 2028

	dev_err(&pdev->dev, "failed to create gpmc child %s\n", child->name);
2029
	ret = -ENODEV;
2030 2031 2032 2033 2034 2035 2036

err:
	gpmc_cs_free(cs);

	return ret;
}

2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
static int gpmc_probe_dt(struct platform_device *pdev)
{
	int ret;
	struct device_node *child;
	const struct of_device_id *of_id =
		of_match_device(gpmc_dt_ids, &pdev->dev);

	if (!of_id)
		return 0;

2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
	ret = of_property_read_u32(pdev->dev.of_node, "gpmc,num-cs",
				   &gpmc_cs_num);
	if (ret < 0) {
		pr_err("%s: number of chip-selects not defined\n", __func__);
		return ret;
	} else if (gpmc_cs_num < 1) {
		pr_err("%s: all chip-selects are disabled\n", __func__);
		return -EINVAL;
	} else if (gpmc_cs_num > GPMC_CS_NUM) {
		pr_err("%s: number of supported chip-selects cannot be > %d\n",
					 __func__, GPMC_CS_NUM);
		return -EINVAL;
	}

2061 2062 2063 2064 2065 2066 2067
	ret = of_property_read_u32(pdev->dev.of_node, "gpmc,num-waitpins",
				   &gpmc_nr_waitpins);
	if (ret < 0) {
		pr_err("%s: number of wait pins not found!\n", __func__);
		return ret;
	}

2068
	for_each_available_child_of_node(pdev->dev.of_node, child) {
2069

2070 2071
		if (!child->name)
			continue;
2072

2073 2074 2075 2076 2077
		if (of_node_cmp(child->name, "nand") == 0)
			ret = gpmc_probe_nand_child(pdev, child);
		else if (of_node_cmp(child->name, "onenand") == 0)
			ret = gpmc_probe_onenand_child(pdev, child);
		else if (of_node_cmp(child->name, "ethernet") == 0 ||
2078 2079
			 of_node_cmp(child->name, "nor") == 0 ||
			 of_node_cmp(child->name, "uart") == 0)
2080
			ret = gpmc_probe_generic_child(pdev, child);
2081

2082 2083
		if (WARN(ret < 0, "%s: probing gpmc child %s failed\n",
			 __func__, child->full_name))
2084 2085 2086
			of_node_put(child);
	}

2087 2088 2089 2090 2091 2092 2093 2094 2095
	return 0;
}
#else
static int gpmc_probe_dt(struct platform_device *pdev)
{
	return 0;
}
#endif

2096
static int gpmc_probe(struct platform_device *pdev)
2097
{
2098
	int rc;
2099
	u32 l;
2100
	struct resource *res;
2101

2102 2103 2104
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (res == NULL)
		return -ENOENT;
2105

2106 2107
	phys_base = res->start;
	mem_size = resource_size(res);
2108

2109 2110 2111
	gpmc_base = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(gpmc_base))
		return PTR_ERR(gpmc_base);
2112 2113 2114 2115 2116 2117 2118

	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
	if (res == NULL)
		dev_warn(&pdev->dev, "Failed to get resource: irq\n");
	else
		gpmc_irq = res->start;

2119
	gpmc_l3_clk = devm_clk_get(&pdev->dev, "fck");
2120
	if (IS_ERR(gpmc_l3_clk)) {
2121
		dev_err(&pdev->dev, "Failed to get GPMC fck\n");
2122 2123
		gpmc_irq = 0;
		return PTR_ERR(gpmc_l3_clk);
2124 2125
	}

2126 2127 2128 2129 2130
	if (!clk_get_rate(gpmc_l3_clk)) {
		dev_err(&pdev->dev, "Invalid GPMC fck clock rate\n");
		return -EINVAL;
	}

2131 2132
	pm_runtime_enable(&pdev->dev);
	pm_runtime_get_sync(&pdev->dev);
2133

2134 2135
	gpmc_dev = &pdev->dev;

2136
	l = gpmc_read_reg(GPMC_REVISION);
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149

	/*
	 * FIXME: Once device-tree migration is complete the below flags
	 * should be populated based upon the device-tree compatible
	 * string. For now just use the IP revision. OMAP3+ devices have
	 * the wr_access and wr_data_mux_bus register fields. OMAP4+
	 * devices support the addr-addr-data multiplex protocol.
	 *
	 * GPMC IP revisions:
	 * - OMAP24xx			= 2.0
	 * - OMAP3xxx			= 5.0
	 * - OMAP44xx/54xx/AM335x	= 6.0
	 */
2150 2151
	if (GPMC_REVISION_MAJOR(l) > 0x4)
		gpmc_capability = GPMC_HAS_WR_ACCESS | GPMC_HAS_WR_DATA_MUX_BUS;
2152 2153
	if (GPMC_REVISION_MAJOR(l) > 0x5)
		gpmc_capability |= GPMC_HAS_MUX_AAD;
2154 2155 2156
	dev_info(gpmc_dev, "GPMC revision %d.%d\n", GPMC_REVISION_MAJOR(l),
		 GPMC_REVISION_MINOR(l));

2157
	gpmc_mem_init();
2158

2159
	if (gpmc_setup_irq() < 0)
2160 2161
		dev_warn(gpmc_dev, "gpmc_setup_irq failed\n");

2162 2163
	if (!pdev->dev.of_node) {
		gpmc_cs_num	 = GPMC_CS_NUM;
2164
		gpmc_nr_waitpins = GPMC_NR_WAITPINS;
2165
	}
2166

2167 2168
	rc = gpmc_probe_dt(pdev);
	if (rc < 0) {
2169
		pm_runtime_put_sync(&pdev->dev);
2170 2171 2172 2173
		dev_err(gpmc_dev, "failed to probe DT parameters\n");
		return rc;
	}

2174 2175 2176
	return 0;
}

2177
static int gpmc_remove(struct platform_device *pdev)
2178 2179 2180
{
	gpmc_free_irq();
	gpmc_mem_exit();
2181 2182
	pm_runtime_put_sync(&pdev->dev);
	pm_runtime_disable(&pdev->dev);
2183 2184 2185 2186
	gpmc_dev = NULL;
	return 0;
}

2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
#ifdef CONFIG_PM_SLEEP
static int gpmc_suspend(struct device *dev)
{
	omap3_gpmc_save_context();
	pm_runtime_put_sync(dev);
	return 0;
}

static int gpmc_resume(struct device *dev)
{
	pm_runtime_get_sync(dev);
	omap3_gpmc_restore_context();
	return 0;
}
#endif

static SIMPLE_DEV_PM_OPS(gpmc_pm_ops, gpmc_suspend, gpmc_resume);

2205 2206
static struct platform_driver gpmc_driver = {
	.probe		= gpmc_probe,
2207
	.remove		= gpmc_remove,
2208 2209
	.driver		= {
		.name	= DEVICE_NAME,
2210
		.of_match_table = of_match_ptr(gpmc_dt_ids),
2211
		.pm	= &gpmc_pm_ops,
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
	},
};

static __init int gpmc_init(void)
{
	return platform_driver_register(&gpmc_driver);
}

static __exit void gpmc_exit(void)
{
	platform_driver_unregister(&gpmc_driver);

2224
}
2225

2226
postcore_initcall(gpmc_init);
2227
module_exit(gpmc_exit);
2228 2229 2230

static irqreturn_t gpmc_handle_irq(int irq, void *dev)
{
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
	int i;
	u32 regval;

	regval = gpmc_read_reg(GPMC_IRQSTATUS);

	if (!regval)
		return IRQ_NONE;

	for (i = 0; i < GPMC_NR_IRQ; i++)
		if (regval & gpmc_client_irq[i].bitmask)
			generic_handle_irq(gpmc_client_irq[i].irq);
2242

2243
	gpmc_write_reg(GPMC_IRQSTATUS, regval);
2244 2245

	return IRQ_HANDLED;
2246
}
2247 2248 2249

static struct omap3_gpmc_regs gpmc_context;

2250
void omap3_gpmc_save_context(void)
2251 2252
{
	int i;
2253

2254 2255 2256 2257 2258 2259 2260
	gpmc_context.sysconfig = gpmc_read_reg(GPMC_SYSCONFIG);
	gpmc_context.irqenable = gpmc_read_reg(GPMC_IRQENABLE);
	gpmc_context.timeout_ctrl = gpmc_read_reg(GPMC_TIMEOUT_CONTROL);
	gpmc_context.config = gpmc_read_reg(GPMC_CONFIG);
	gpmc_context.prefetch_config1 = gpmc_read_reg(GPMC_PREFETCH_CONFIG1);
	gpmc_context.prefetch_config2 = gpmc_read_reg(GPMC_PREFETCH_CONFIG2);
	gpmc_context.prefetch_control = gpmc_read_reg(GPMC_PREFETCH_CONTROL);
2261
	for (i = 0; i < gpmc_cs_num; i++) {
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
		gpmc_context.cs_context[i].is_valid = gpmc_cs_mem_enabled(i);
		if (gpmc_context.cs_context[i].is_valid) {
			gpmc_context.cs_context[i].config1 =
				gpmc_cs_read_reg(i, GPMC_CS_CONFIG1);
			gpmc_context.cs_context[i].config2 =
				gpmc_cs_read_reg(i, GPMC_CS_CONFIG2);
			gpmc_context.cs_context[i].config3 =
				gpmc_cs_read_reg(i, GPMC_CS_CONFIG3);
			gpmc_context.cs_context[i].config4 =
				gpmc_cs_read_reg(i, GPMC_CS_CONFIG4);
			gpmc_context.cs_context[i].config5 =
				gpmc_cs_read_reg(i, GPMC_CS_CONFIG5);
			gpmc_context.cs_context[i].config6 =
				gpmc_cs_read_reg(i, GPMC_CS_CONFIG6);
			gpmc_context.cs_context[i].config7 =
				gpmc_cs_read_reg(i, GPMC_CS_CONFIG7);
		}
	}
}

2282
void omap3_gpmc_restore_context(void)
2283 2284
{
	int i;
2285

2286 2287 2288 2289 2290 2291 2292
	gpmc_write_reg(GPMC_SYSCONFIG, gpmc_context.sysconfig);
	gpmc_write_reg(GPMC_IRQENABLE, gpmc_context.irqenable);
	gpmc_write_reg(GPMC_TIMEOUT_CONTROL, gpmc_context.timeout_ctrl);
	gpmc_write_reg(GPMC_CONFIG, gpmc_context.config);
	gpmc_write_reg(GPMC_PREFETCH_CONFIG1, gpmc_context.prefetch_config1);
	gpmc_write_reg(GPMC_PREFETCH_CONFIG2, gpmc_context.prefetch_config2);
	gpmc_write_reg(GPMC_PREFETCH_CONTROL, gpmc_context.prefetch_control);
2293
	for (i = 0; i < gpmc_cs_num; i++) {
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
		if (gpmc_context.cs_context[i].is_valid) {
			gpmc_cs_write_reg(i, GPMC_CS_CONFIG1,
				gpmc_context.cs_context[i].config1);
			gpmc_cs_write_reg(i, GPMC_CS_CONFIG2,
				gpmc_context.cs_context[i].config2);
			gpmc_cs_write_reg(i, GPMC_CS_CONFIG3,
				gpmc_context.cs_context[i].config3);
			gpmc_cs_write_reg(i, GPMC_CS_CONFIG4,
				gpmc_context.cs_context[i].config4);
			gpmc_cs_write_reg(i, GPMC_CS_CONFIG5,
				gpmc_context.cs_context[i].config5);
			gpmc_cs_write_reg(i, GPMC_CS_CONFIG6,
				gpmc_context.cs_context[i].config6);
			gpmc_cs_write_reg(i, GPMC_CS_CONFIG7,
				gpmc_context.cs_context[i].config7);
		}
	}
}