emulate.c 67.8 KB
Newer Older
1
/*
2 3 4 5 6 7 8 9 10
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * KVM/MIPS: Instruction/Exception emulation
 *
 * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
 * Authors: Sanjay Lal <sanjayl@kymasys.com>
 */
11 12 13

#include <linux/errno.h>
#include <linux/err.h>
14
#include <linux/ktime.h>
15 16 17 18 19 20 21 22
#include <linux/kvm_host.h>
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/bootmem.h>
#include <linux/random.h>
#include <asm/page.h>
#include <asm/cacheflush.h>
23
#include <asm/cacheops.h>
24 25 26 27 28 29 30 31 32
#include <asm/cpu-info.h>
#include <asm/mmu_context.h>
#include <asm/tlbflush.h>
#include <asm/inst.h>

#undef CONFIG_MIPS_MT
#include <asm/r4kcache.h>
#define CONFIG_MIPS_MT

33 34
#include "interrupt.h"
#include "commpage.h"
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

#include "trace.h"

/*
 * Compute the return address and do emulate branch simulation, if required.
 * This function should be called only in branch delay slot active.
 */
unsigned long kvm_compute_return_epc(struct kvm_vcpu *vcpu,
	unsigned long instpc)
{
	unsigned int dspcontrol;
	union mips_instruction insn;
	struct kvm_vcpu_arch *arch = &vcpu->arch;
	long epc = instpc;
	long nextpc = KVM_INVALID_INST;

	if (epc & 3)
		goto unaligned;

54
	/* Read the instruction */
55
	insn.word = kvm_get_inst((u32 *) epc, vcpu);
56 57 58 59 60

	if (insn.word == KVM_INVALID_INST)
		return KVM_INVALID_INST;

	switch (insn.i_format.opcode) {
61
		/* jr and jalr are in r_format format. */
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
	case spec_op:
		switch (insn.r_format.func) {
		case jalr_op:
			arch->gprs[insn.r_format.rd] = epc + 8;
			/* Fall through */
		case jr_op:
			nextpc = arch->gprs[insn.r_format.rs];
			break;
		}
		break;

		/*
		 * This group contains:
		 * bltz_op, bgez_op, bltzl_op, bgezl_op,
		 * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
		 */
	case bcond_op:
		switch (insn.i_format.rt) {
		case bltz_op:
		case bltzl_op:
			if ((long)arch->gprs[insn.i_format.rs] < 0)
				epc = epc + 4 + (insn.i_format.simmediate << 2);
			else
				epc += 8;
			nextpc = epc;
			break;

		case bgez_op:
		case bgezl_op:
			if ((long)arch->gprs[insn.i_format.rs] >= 0)
				epc = epc + 4 + (insn.i_format.simmediate << 2);
			else
				epc += 8;
			nextpc = epc;
			break;

		case bltzal_op:
		case bltzall_op:
			arch->gprs[31] = epc + 8;
			if ((long)arch->gprs[insn.i_format.rs] < 0)
				epc = epc + 4 + (insn.i_format.simmediate << 2);
			else
				epc += 8;
			nextpc = epc;
			break;

		case bgezal_op:
		case bgezall_op:
			arch->gprs[31] = epc + 8;
			if ((long)arch->gprs[insn.i_format.rs] >= 0)
				epc = epc + 4 + (insn.i_format.simmediate << 2);
			else
				epc += 8;
			nextpc = epc;
			break;
		case bposge32_op:
			if (!cpu_has_dsp)
				goto sigill;

			dspcontrol = rddsp(0x01);

123
			if (dspcontrol >= 32)
124
				epc = epc + 4 + (insn.i_format.simmediate << 2);
125
			else
126 127 128 129 130 131
				epc += 8;
			nextpc = epc;
			break;
		}
		break;

132
		/* These are unconditional and in j_format. */
133 134 135 136 137 138 139 140 141 142
	case jal_op:
		arch->gprs[31] = instpc + 8;
	case j_op:
		epc += 4;
		epc >>= 28;
		epc <<= 28;
		epc |= (insn.j_format.target << 2);
		nextpc = epc;
		break;

143
		/* These are conditional and in i_format. */
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
	case beq_op:
	case beql_op:
		if (arch->gprs[insn.i_format.rs] ==
		    arch->gprs[insn.i_format.rt])
			epc = epc + 4 + (insn.i_format.simmediate << 2);
		else
			epc += 8;
		nextpc = epc;
		break;

	case bne_op:
	case bnel_op:
		if (arch->gprs[insn.i_format.rs] !=
		    arch->gprs[insn.i_format.rt])
			epc = epc + 4 + (insn.i_format.simmediate << 2);
		else
			epc += 8;
		nextpc = epc;
		break;

	case blez_op:		/* not really i_format */
	case blezl_op:
		/* rt field assumed to be zero */
		if ((long)arch->gprs[insn.i_format.rs] <= 0)
			epc = epc + 4 + (insn.i_format.simmediate << 2);
		else
			epc += 8;
		nextpc = epc;
		break;

	case bgtz_op:
	case bgtzl_op:
		/* rt field assumed to be zero */
		if ((long)arch->gprs[insn.i_format.rs] > 0)
			epc = epc + 4 + (insn.i_format.simmediate << 2);
		else
			epc += 8;
		nextpc = epc;
		break;

184
		/* And now the FPA/cp1 branch instructions. */
185
	case cop1_op:
186
		kvm_err("%s: unsupported cop1_op\n", __func__);
187 188 189 190 191 192
		break;
	}

	return nextpc;

unaligned:
193
	kvm_err("%s: unaligned epc\n", __func__);
194 195 196
	return nextpc;

sigill:
197
	kvm_err("%s: DSP branch but not DSP ASE\n", __func__);
198 199 200
	return nextpc;
}

201
enum emulation_result update_pc(struct kvm_vcpu *vcpu, u32 cause)
202 203 204 205 206 207 208 209 210 211
{
	unsigned long branch_pc;
	enum emulation_result er = EMULATE_DONE;

	if (cause & CAUSEF_BD) {
		branch_pc = kvm_compute_return_epc(vcpu, vcpu->arch.pc);
		if (branch_pc == KVM_INVALID_INST) {
			er = EMULATE_FAIL;
		} else {
			vcpu->arch.pc = branch_pc;
212 213
			kvm_debug("BD update_pc(): New PC: %#lx\n",
				  vcpu->arch.pc);
214 215 216 217 218 219 220 221 222
		}
	} else
		vcpu->arch.pc += 4;

	kvm_debug("update_pc(): New PC: %#lx\n", vcpu->arch.pc);

	return er;
}

223 224 225
/**
 * kvm_mips_count_disabled() - Find whether the CP0_Count timer is disabled.
 * @vcpu:	Virtual CPU.
226
 *
227 228
 * Returns:	1 if the CP0_Count timer is disabled by either the guest
 *		CP0_Cause.DC bit or the count_ctl.DC bit.
229
 *		0 otherwise (in which case CP0_Count timer is running).
230
 */
231
static inline int kvm_mips_count_disabled(struct kvm_vcpu *vcpu)
232 233
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
234

235 236
	return	(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) ||
		(kvm_read_c0_guest_cause(cop0) & CAUSEF_DC);
237
}
238

239 240 241 242 243 244 245
/**
 * kvm_mips_ktime_to_count() - Scale ktime_t to a 32-bit count.
 *
 * Caches the dynamic nanosecond bias in vcpu->arch.count_dyn_bias.
 *
 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
 */
246
static u32 kvm_mips_ktime_to_count(struct kvm_vcpu *vcpu, ktime_t now)
247 248 249 250 251 252 253 254 255 256 257 258 259
{
	s64 now_ns, periods;
	u64 delta;

	now_ns = ktime_to_ns(now);
	delta = now_ns + vcpu->arch.count_dyn_bias;

	if (delta >= vcpu->arch.count_period) {
		/* If delta is out of safe range the bias needs adjusting */
		periods = div64_s64(now_ns, vcpu->arch.count_period);
		vcpu->arch.count_dyn_bias = -periods * vcpu->arch.count_period;
		/* Recalculate delta with new bias */
		delta = now_ns + vcpu->arch.count_dyn_bias;
260 261
	}

262 263 264 265 266 267 268 269 270 271 272 273 274
	/*
	 * We've ensured that:
	 *   delta < count_period
	 *
	 * Therefore the intermediate delta*count_hz will never overflow since
	 * at the boundary condition:
	 *   delta = count_period
	 *   delta = NSEC_PER_SEC * 2^32 / count_hz
	 *   delta * count_hz = NSEC_PER_SEC * 2^32
	 */
	return div_u64(delta * vcpu->arch.count_hz, NSEC_PER_SEC);
}

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
/**
 * kvm_mips_count_time() - Get effective current time.
 * @vcpu:	Virtual CPU.
 *
 * Get effective monotonic ktime. This is usually a straightforward ktime_get(),
 * except when the master disable bit is set in count_ctl, in which case it is
 * count_resume, i.e. the time that the count was disabled.
 *
 * Returns:	Effective monotonic ktime for CP0_Count.
 */
static inline ktime_t kvm_mips_count_time(struct kvm_vcpu *vcpu)
{
	if (unlikely(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
		return vcpu->arch.count_resume;

	return ktime_get();
}

293 294 295 296 297 298 299 300 301 302
/**
 * kvm_mips_read_count_running() - Read the current count value as if running.
 * @vcpu:	Virtual CPU.
 * @now:	Kernel time to read CP0_Count at.
 *
 * Returns the current guest CP0_Count register at time @now and handles if the
 * timer interrupt is pending and hasn't been handled yet.
 *
 * Returns:	The current value of the guest CP0_Count register.
 */
303
static u32 kvm_mips_read_count_running(struct kvm_vcpu *vcpu, ktime_t now)
304
{
305 306
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	ktime_t expires, threshold;
307
	u32 count, compare;
308 309
	int running;

310 311 312 313 314 315 316 317
	/* Calculate the biased and scaled guest CP0_Count */
	count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
	compare = kvm_read_c0_guest_compare(cop0);

	/*
	 * Find whether CP0_Count has reached the closest timer interrupt. If
	 * not, we shouldn't inject it.
	 */
318
	if ((s32)(count - compare) < 0)
319 320 321 322 323 324 325 326
		return count;

	/*
	 * The CP0_Count we're going to return has already reached the closest
	 * timer interrupt. Quickly check if it really is a new interrupt by
	 * looking at whether the interval until the hrtimer expiry time is
	 * less than 1/4 of the timer period.
	 */
327
	expires = hrtimer_get_expires(&vcpu->arch.comparecount_timer);
328 329
	threshold = ktime_add_ns(now, vcpu->arch.count_period / 4);
	if (ktime_before(expires, threshold)) {
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
		/*
		 * Cancel it while we handle it so there's no chance of
		 * interference with the timeout handler.
		 */
		running = hrtimer_cancel(&vcpu->arch.comparecount_timer);

		/* Nothing should be waiting on the timeout */
		kvm_mips_callbacks->queue_timer_int(vcpu);

		/*
		 * Restart the timer if it was running based on the expiry time
		 * we read, so that we don't push it back 2 periods.
		 */
		if (running) {
			expires = ktime_add_ns(expires,
					       vcpu->arch.count_period);
			hrtimer_start(&vcpu->arch.comparecount_timer, expires,
				      HRTIMER_MODE_ABS);
		}
	}

351
	return count;
352 353 354 355 356 357 358 359 360 361 362
}

/**
 * kvm_mips_read_count() - Read the current count value.
 * @vcpu:	Virtual CPU.
 *
 * Read the current guest CP0_Count value, taking into account whether the timer
 * is stopped.
 *
 * Returns:	The current guest CP0_Count value.
 */
363
u32 kvm_mips_read_count(struct kvm_vcpu *vcpu)
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;

	/* If count disabled just read static copy of count */
	if (kvm_mips_count_disabled(vcpu))
		return kvm_read_c0_guest_count(cop0);

	return kvm_mips_read_count_running(vcpu, ktime_get());
}

/**
 * kvm_mips_freeze_hrtimer() - Safely stop the hrtimer.
 * @vcpu:	Virtual CPU.
 * @count:	Output pointer for CP0_Count value at point of freeze.
 *
 * Freeze the hrtimer safely and return both the ktime and the CP0_Count value
 * at the point it was frozen. It is guaranteed that any pending interrupts at
 * the point it was frozen are handled, and none after that point.
 *
 * This is useful where the time/CP0_Count is needed in the calculation of the
 * new parameters.
 *
 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
 *
 * Returns:	The ktime at the point of freeze.
 */
390
static ktime_t kvm_mips_freeze_hrtimer(struct kvm_vcpu *vcpu, u32 *count)
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
{
	ktime_t now;

	/* stop hrtimer before finding time */
	hrtimer_cancel(&vcpu->arch.comparecount_timer);
	now = ktime_get();

	/* find count at this point and handle pending hrtimer */
	*count = kvm_mips_read_count_running(vcpu, now);

	return now;
}

/**
 * kvm_mips_resume_hrtimer() - Resume hrtimer, updating expiry.
 * @vcpu:	Virtual CPU.
 * @now:	ktime at point of resume.
 * @count:	CP0_Count at point of resume.
 *
 * Resumes the timer and updates the timer expiry based on @now and @count.
 * This can be used in conjunction with kvm_mips_freeze_timer() when timer
 * parameters need to be changed.
 *
 * It is guaranteed that a timer interrupt immediately after resume will be
 * handled, but not if CP_Compare is exactly at @count. That case is already
 * handled by kvm_mips_freeze_timer().
 *
 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
 */
static void kvm_mips_resume_hrtimer(struct kvm_vcpu *vcpu,
421
				    ktime_t now, u32 count)
422 423
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
424
	u32 compare;
425 426 427 428 429
	u64 delta;
	ktime_t expire;

	/* Calculate timeout (wrap 0 to 2^32) */
	compare = kvm_read_c0_guest_compare(cop0);
430
	delta = (u64)(u32)(compare - count - 1) + 1;
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
	delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
	expire = ktime_add_ns(now, delta);

	/* Update hrtimer to use new timeout */
	hrtimer_cancel(&vcpu->arch.comparecount_timer);
	hrtimer_start(&vcpu->arch.comparecount_timer, expire, HRTIMER_MODE_ABS);
}

/**
 * kvm_mips_write_count() - Modify the count and update timer.
 * @vcpu:	Virtual CPU.
 * @count:	Guest CP0_Count value to set.
 *
 * Sets the CP0_Count value and updates the timer accordingly.
 */
446
void kvm_mips_write_count(struct kvm_vcpu *vcpu, u32 count)
447 448 449 450 451
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	ktime_t now;

	/* Calculate bias */
452
	now = kvm_mips_count_time(vcpu);
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
	vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);

	if (kvm_mips_count_disabled(vcpu))
		/* The timer's disabled, adjust the static count */
		kvm_write_c0_guest_count(cop0, count);
	else
		/* Update timeout */
		kvm_mips_resume_hrtimer(vcpu, now, count);
}

/**
 * kvm_mips_init_count() - Initialise timer.
 * @vcpu:	Virtual CPU.
 *
 * Initialise the timer to a sensible frequency, namely 100MHz, zero it, and set
 * it going if it's enabled.
 */
void kvm_mips_init_count(struct kvm_vcpu *vcpu)
{
	/* 100 MHz */
	vcpu->arch.count_hz = 100*1000*1000;
	vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32,
					  vcpu->arch.count_hz);
	vcpu->arch.count_dyn_bias = 0;

	/* Starting at 0 */
	kvm_mips_write_count(vcpu, 0);
}

482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
/**
 * kvm_mips_set_count_hz() - Update the frequency of the timer.
 * @vcpu:	Virtual CPU.
 * @count_hz:	Frequency of CP0_Count timer in Hz.
 *
 * Change the frequency of the CP0_Count timer. This is done atomically so that
 * CP0_Count is continuous and no timer interrupt is lost.
 *
 * Returns:	-EINVAL if @count_hz is out of range.
 *		0 on success.
 */
int kvm_mips_set_count_hz(struct kvm_vcpu *vcpu, s64 count_hz)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	int dc;
	ktime_t now;
	u32 count;

	/* ensure the frequency is in a sensible range... */
	if (count_hz <= 0 || count_hz > NSEC_PER_SEC)
		return -EINVAL;
	/* ... and has actually changed */
	if (vcpu->arch.count_hz == count_hz)
		return 0;

	/* Safely freeze timer so we can keep it continuous */
	dc = kvm_mips_count_disabled(vcpu);
	if (dc) {
		now = kvm_mips_count_time(vcpu);
		count = kvm_read_c0_guest_count(cop0);
	} else {
		now = kvm_mips_freeze_hrtimer(vcpu, &count);
	}

	/* Update the frequency */
	vcpu->arch.count_hz = count_hz;
	vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
	vcpu->arch.count_dyn_bias = 0;

	/* Calculate adjusted bias so dynamic count is unchanged */
	vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);

	/* Update and resume hrtimer */
	if (!dc)
		kvm_mips_resume_hrtimer(vcpu, now, count);
	return 0;
}

530 531 532 533
/**
 * kvm_mips_write_compare() - Modify compare and update timer.
 * @vcpu:	Virtual CPU.
 * @compare:	New CP0_Compare value.
534
 * @ack:	Whether to acknowledge timer interrupt.
535 536
 *
 * Update CP0_Compare to a new value and update the timeout.
537 538
 * If @ack, atomically acknowledge any pending timer interrupt, otherwise ensure
 * any pending timer interrupt is preserved.
539
 */
540
void kvm_mips_write_compare(struct kvm_vcpu *vcpu, u32 compare, bool ack)
541 542
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
543 544 545
	int dc;
	u32 old_compare = kvm_read_c0_guest_compare(cop0);
	ktime_t now;
546
	u32 count;
547 548

	/* if unchanged, must just be an ack */
549 550 551 552 553
	if (old_compare == compare) {
		if (!ack)
			return;
		kvm_mips_callbacks->dequeue_timer_int(vcpu);
		kvm_write_c0_guest_compare(cop0, compare);
554
		return;
555 556 557 558 559 560 561 562 563
	}

	/* freeze_hrtimer() takes care of timer interrupts <= count */
	dc = kvm_mips_count_disabled(vcpu);
	if (!dc)
		now = kvm_mips_freeze_hrtimer(vcpu, &count);

	if (ack)
		kvm_mips_callbacks->dequeue_timer_int(vcpu);
564 565 566

	kvm_write_c0_guest_compare(cop0, compare);

567 568 569
	/* resume_hrtimer() takes care of timer interrupts > count */
	if (!dc)
		kvm_mips_resume_hrtimer(vcpu, now, count);
570 571 572 573 574 575 576 577 578
}

/**
 * kvm_mips_count_disable() - Disable count.
 * @vcpu:	Virtual CPU.
 *
 * Disable the CP0_Count timer. A timer interrupt on or before the final stop
 * time will be handled but not after.
 *
579 580
 * Assumes CP0_Count was previously enabled but now Guest.CP0_Cause.DC or
 * count_ctl.DC has been set (count disabled).
581 582 583 584 585 586
 *
 * Returns:	The time that the timer was stopped.
 */
static ktime_t kvm_mips_count_disable(struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
587
	u32 count;
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
	ktime_t now;

	/* Stop hrtimer */
	hrtimer_cancel(&vcpu->arch.comparecount_timer);

	/* Set the static count from the dynamic count, handling pending TI */
	now = ktime_get();
	count = kvm_mips_read_count_running(vcpu, now);
	kvm_write_c0_guest_count(cop0, count);

	return now;
}

/**
 * kvm_mips_count_disable_cause() - Disable count using CP0_Cause.DC.
 * @vcpu:	Virtual CPU.
 *
 * Disable the CP0_Count timer and set CP0_Cause.DC. A timer interrupt on or
606 607
 * before the final stop time will be handled if the timer isn't disabled by
 * count_ctl.DC, but not after.
608 609 610 611 612 613 614 615
 *
 * Assumes CP0_Cause.DC is clear (count enabled).
 */
void kvm_mips_count_disable_cause(struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;

	kvm_set_c0_guest_cause(cop0, CAUSEF_DC);
616 617
	if (!(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
		kvm_mips_count_disable(vcpu);
618 619 620 621 622 623 624
}

/**
 * kvm_mips_count_enable_cause() - Enable count using CP0_Cause.DC.
 * @vcpu:	Virtual CPU.
 *
 * Enable the CP0_Count timer and clear CP0_Cause.DC. A timer interrupt after
625 626 627
 * the start time will be handled if the timer isn't disabled by count_ctl.DC,
 * potentially before even returning, so the caller should be careful with
 * ordering of CP0_Cause modifications so as not to lose it.
628 629 630 631 632 633
 *
 * Assumes CP0_Cause.DC is set (count disabled).
 */
void kvm_mips_count_enable_cause(struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
634
	u32 count;
635 636 637 638 639

	kvm_clear_c0_guest_cause(cop0, CAUSEF_DC);

	/*
	 * Set the dynamic count to match the static count.
640 641
	 * This starts the hrtimer if count_ctl.DC allows it.
	 * Otherwise it conveniently updates the biases.
642 643 644 645 646
	 */
	count = kvm_read_c0_guest_count(cop0);
	kvm_mips_write_count(vcpu, count);
}

647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
/**
 * kvm_mips_set_count_ctl() - Update the count control KVM register.
 * @vcpu:	Virtual CPU.
 * @count_ctl:	Count control register new value.
 *
 * Set the count control KVM register. The timer is updated accordingly.
 *
 * Returns:	-EINVAL if reserved bits are set.
 *		0 on success.
 */
int kvm_mips_set_count_ctl(struct kvm_vcpu *vcpu, s64 count_ctl)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	s64 changed = count_ctl ^ vcpu->arch.count_ctl;
	s64 delta;
	ktime_t expire, now;
663
	u32 count, compare;
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688

	/* Only allow defined bits to be changed */
	if (changed & ~(s64)(KVM_REG_MIPS_COUNT_CTL_DC))
		return -EINVAL;

	/* Apply new value */
	vcpu->arch.count_ctl = count_ctl;

	/* Master CP0_Count disable */
	if (changed & KVM_REG_MIPS_COUNT_CTL_DC) {
		/* Is CP0_Cause.DC already disabling CP0_Count? */
		if (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC) {
			if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)
				/* Just record the current time */
				vcpu->arch.count_resume = ktime_get();
		} else if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) {
			/* disable timer and record current time */
			vcpu->arch.count_resume = kvm_mips_count_disable(vcpu);
		} else {
			/*
			 * Calculate timeout relative to static count at resume
			 * time (wrap 0 to 2^32).
			 */
			count = kvm_read_c0_guest_count(cop0);
			compare = kvm_read_c0_guest_compare(cop0);
689
			delta = (u64)(u32)(compare - count - 1) + 1;
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
			delta = div_u64(delta * NSEC_PER_SEC,
					vcpu->arch.count_hz);
			expire = ktime_add_ns(vcpu->arch.count_resume, delta);

			/* Handle pending interrupt */
			now = ktime_get();
			if (ktime_compare(now, expire) >= 0)
				/* Nothing should be waiting on the timeout */
				kvm_mips_callbacks->queue_timer_int(vcpu);

			/* Resume hrtimer without changing bias */
			count = kvm_mips_read_count_running(vcpu, now);
			kvm_mips_resume_hrtimer(vcpu, now, count);
		}
	}

	return 0;
}

/**
 * kvm_mips_set_count_resume() - Update the count resume KVM register.
 * @vcpu:		Virtual CPU.
 * @count_resume:	Count resume register new value.
 *
 * Set the count resume KVM register.
 *
 * Returns:	-EINVAL if out of valid range (0..now).
 *		0 on success.
 */
int kvm_mips_set_count_resume(struct kvm_vcpu *vcpu, s64 count_resume)
{
	/*
	 * It doesn't make sense for the resume time to be in the future, as it
	 * would be possible for the next interrupt to be more than a full
	 * period in the future.
	 */
	if (count_resume < 0 || count_resume > ktime_to_ns(ktime_get()))
		return -EINVAL;

	vcpu->arch.count_resume = ns_to_ktime(count_resume);
	return 0;
}

733 734 735 736 737 738 739 740 741 742 743 744 745 746
/**
 * kvm_mips_count_timeout() - Push timer forward on timeout.
 * @vcpu:	Virtual CPU.
 *
 * Handle an hrtimer event by push the hrtimer forward a period.
 *
 * Returns:	The hrtimer_restart value to return to the hrtimer subsystem.
 */
enum hrtimer_restart kvm_mips_count_timeout(struct kvm_vcpu *vcpu)
{
	/* Add the Count period to the current expiry time */
	hrtimer_add_expires_ns(&vcpu->arch.comparecount_timer,
			       vcpu->arch.count_period);
	return HRTIMER_RESTART;
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
}

enum emulation_result kvm_mips_emul_eret(struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	enum emulation_result er = EMULATE_DONE;

	if (kvm_read_c0_guest_status(cop0) & ST0_EXL) {
		kvm_debug("[%#lx] ERET to %#lx\n", vcpu->arch.pc,
			  kvm_read_c0_guest_epc(cop0));
		kvm_clear_c0_guest_status(cop0, ST0_EXL);
		vcpu->arch.pc = kvm_read_c0_guest_epc(cop0);

	} else if (kvm_read_c0_guest_status(cop0) & ST0_ERL) {
		kvm_clear_c0_guest_status(cop0, ST0_ERL);
		vcpu->arch.pc = kvm_read_c0_guest_errorepc(cop0);
	} else {
764 765
		kvm_err("[%#lx] ERET when MIPS_SR_EXL|MIPS_SR_ERL == 0\n",
			vcpu->arch.pc);
766 767 768 769 770 771 772 773 774 775 776 777
		er = EMULATE_FAIL;
	}

	return er;
}

enum emulation_result kvm_mips_emul_wait(struct kvm_vcpu *vcpu)
{
	kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu->arch.pc,
		  vcpu->arch.pending_exceptions);

	++vcpu->stat.wait_exits;
778
	trace_kvm_exit(vcpu, KVM_TRACE_EXIT_WAIT);
779 780 781 782
	if (!vcpu->arch.pending_exceptions) {
		vcpu->arch.wait = 1;
		kvm_vcpu_block(vcpu);

783 784 785
		/*
		 * We we are runnable, then definitely go off to user space to
		 * check if any I/O interrupts are pending.
786 787 788 789 790 791 792
		 */
		if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
			clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
		}
	}

793
	return EMULATE_DONE;
794 795
}

796 797 798
/*
 * XXXKYMA: Linux doesn't seem to use TLBR, return EMULATE_FAIL for now so that
 * we can catch this, if things ever change
799 800 801 802
 */
enum emulation_result kvm_mips_emul_tlbr(struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
803
	unsigned long pc = vcpu->arch.pc;
804

805
	kvm_err("[%#lx] COP0_TLBR [%ld]\n", pc, kvm_read_c0_guest_index(cop0));
806
	return EMULATE_FAIL;
807 808 809 810 811 812 813 814
}

/* Write Guest TLB Entry @ Index */
enum emulation_result kvm_mips_emul_tlbwi(struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	int index = kvm_read_c0_guest_index(cop0);
	struct kvm_mips_tlb *tlb = NULL;
815
	unsigned long pc = vcpu->arch.pc;
816 817

	if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) {
818
		kvm_debug("%s: illegal index: %d\n", __func__, index);
819
		kvm_debug("[%#lx] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
820 821 822 823
			  pc, index, kvm_read_c0_guest_entryhi(cop0),
			  kvm_read_c0_guest_entrylo0(cop0),
			  kvm_read_c0_guest_entrylo1(cop0),
			  kvm_read_c0_guest_pagemask(cop0));
824 825 826 827
		index = (index & ~0x80000000) % KVM_MIPS_GUEST_TLB_SIZE;
	}

	tlb = &vcpu->arch.guest_tlb[index];
828 829 830 831
	/*
	 * Probe the shadow host TLB for the entry being overwritten, if one
	 * matches, invalidate it
	 */
832 833 834 835
	kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi);

	tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
	tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
836 837
	tlb->tlb_lo[0] = kvm_read_c0_guest_entrylo0(cop0);
	tlb->tlb_lo[1] = kvm_read_c0_guest_entrylo1(cop0);
838

839
	kvm_debug("[%#lx] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
840 841 842 843
		  pc, index, kvm_read_c0_guest_entryhi(cop0),
		  kvm_read_c0_guest_entrylo0(cop0),
		  kvm_read_c0_guest_entrylo1(cop0),
		  kvm_read_c0_guest_pagemask(cop0));
844

845
	return EMULATE_DONE;
846 847 848 849 850 851 852
}

/* Write Guest TLB Entry @ Random Index */
enum emulation_result kvm_mips_emul_tlbwr(struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	struct kvm_mips_tlb *tlb = NULL;
853
	unsigned long pc = vcpu->arch.pc;
854 855 856 857 858 859 860
	int index;

	get_random_bytes(&index, sizeof(index));
	index &= (KVM_MIPS_GUEST_TLB_SIZE - 1);

	tlb = &vcpu->arch.guest_tlb[index];

861 862 863 864
	/*
	 * Probe the shadow host TLB for the entry being overwritten, if one
	 * matches, invalidate it
	 */
865 866 867 868
	kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi);

	tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
	tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
869 870
	tlb->tlb_lo[0] = kvm_read_c0_guest_entrylo0(cop0);
	tlb->tlb_lo[1] = kvm_read_c0_guest_entrylo1(cop0);
871

872
	kvm_debug("[%#lx] COP0_TLBWR[%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx)\n",
873 874 875
		  pc, index, kvm_read_c0_guest_entryhi(cop0),
		  kvm_read_c0_guest_entrylo0(cop0),
		  kvm_read_c0_guest_entrylo1(cop0));
876

877
	return EMULATE_DONE;
878 879 880 881 882 883
}

enum emulation_result kvm_mips_emul_tlbp(struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	long entryhi = kvm_read_c0_guest_entryhi(cop0);
884
	unsigned long pc = vcpu->arch.pc;
885 886 887 888 889 890
	int index = -1;

	index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);

	kvm_write_c0_guest_index(cop0, index);

891
	kvm_debug("[%#lx] COP0_TLBP (entryhi: %#lx), index: %d\n", pc, entryhi,
892 893
		  index);

894
	return EMULATE_DONE;
895 896
}

897 898 899 900 901 902 903 904 905
/**
 * kvm_mips_config1_wrmask() - Find mask of writable bits in guest Config1
 * @vcpu:	Virtual CPU.
 *
 * Finds the mask of bits which are writable in the guest's Config1 CP0
 * register, by userland (currently read-only to the guest).
 */
unsigned int kvm_mips_config1_wrmask(struct kvm_vcpu *vcpu)
{
906 907 908 909 910 911 912
	unsigned int mask = 0;

	/* Permit FPU to be present if FPU is supported */
	if (kvm_mips_guest_can_have_fpu(&vcpu->arch))
		mask |= MIPS_CONF1_FP;

	return mask;
913 914 915 916 917 918 919 920 921 922 923 924
}

/**
 * kvm_mips_config3_wrmask() - Find mask of writable bits in guest Config3
 * @vcpu:	Virtual CPU.
 *
 * Finds the mask of bits which are writable in the guest's Config3 CP0
 * register, by userland (currently read-only to the guest).
 */
unsigned int kvm_mips_config3_wrmask(struct kvm_vcpu *vcpu)
{
	/* Config4 is optional */
925 926 927 928 929 930 931
	unsigned int mask = MIPS_CONF_M;

	/* Permit MSA to be present if MSA is supported */
	if (kvm_mips_guest_can_have_msa(&vcpu->arch))
		mask |= MIPS_CONF3_MSA;

	return mask;
932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
}

/**
 * kvm_mips_config4_wrmask() - Find mask of writable bits in guest Config4
 * @vcpu:	Virtual CPU.
 *
 * Finds the mask of bits which are writable in the guest's Config4 CP0
 * register, by userland (currently read-only to the guest).
 */
unsigned int kvm_mips_config4_wrmask(struct kvm_vcpu *vcpu)
{
	/* Config5 is optional */
	return MIPS_CONF_M;
}

/**
 * kvm_mips_config5_wrmask() - Find mask of writable bits in guest Config5
 * @vcpu:	Virtual CPU.
 *
 * Finds the mask of bits which are writable in the guest's Config5 CP0
 * register, by the guest itself.
 */
unsigned int kvm_mips_config5_wrmask(struct kvm_vcpu *vcpu)
{
956 957
	unsigned int mask = 0;

958 959 960 961
	/* Permit MSAEn changes if MSA supported and enabled */
	if (kvm_mips_guest_has_msa(&vcpu->arch))
		mask |= MIPS_CONF5_MSAEN;

962 963 964 965 966 967 968 969 970 971 972
	/*
	 * Permit guest FPU mode changes if FPU is enabled and the relevant
	 * feature exists according to FIR register.
	 */
	if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
		if (cpu_has_fre)
			mask |= MIPS_CONF5_FRE;
		/* We don't support UFR or UFE */
	}

	return mask;
973 974
}

975 976
enum emulation_result kvm_mips_emulate_CP0(u32 inst, u32 *opc, u32 cause,
					   struct kvm_run *run,
977
					   struct kvm_vcpu *vcpu)
978 979 980
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	enum emulation_result er = EMULATE_DONE;
981
	u32 rt, rd, copz, sel, co_bit, op;
982 983 984 985 986 987 988 989
	unsigned long curr_pc;

	/*
	 * Update PC and hold onto current PC in case there is
	 * an error and we want to rollback the PC
	 */
	curr_pc = vcpu->arch.pc;
	er = update_pc(vcpu, cause);
990
	if (er == EMULATE_FAIL)
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
		return er;

	copz = (inst >> 21) & 0x1f;
	rt = (inst >> 16) & 0x1f;
	rd = (inst >> 11) & 0x1f;
	sel = inst & 0x7;
	co_bit = (inst >> 25) & 1;

	if (co_bit) {
		op = (inst) & 0xff;

		switch (op) {
		case tlbr_op:	/*  Read indexed TLB entry  */
			er = kvm_mips_emul_tlbr(vcpu);
			break;
		case tlbwi_op:	/*  Write indexed  */
			er = kvm_mips_emul_tlbwi(vcpu);
			break;
		case tlbwr_op:	/*  Write random  */
			er = kvm_mips_emul_tlbwr(vcpu);
			break;
		case tlbp_op:	/* TLB Probe */
			er = kvm_mips_emul_tlbp(vcpu);
			break;
		case rfe_op:
1016
			kvm_err("!!!COP0_RFE!!!\n");
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
			break;
		case eret_op:
			er = kvm_mips_emul_eret(vcpu);
			goto dont_update_pc;
			break;
		case wait_op:
			er = kvm_mips_emul_wait(vcpu);
			break;
		}
	} else {
		switch (copz) {
		case mfc_op:
#ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
			cop0->stat[rd][sel]++;
#endif
			/* Get reg */
			if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1034
				vcpu->arch.gprs[rt] = kvm_mips_read_count(vcpu);
1035 1036 1037 1038 1039
			} else if ((rd == MIPS_CP0_ERRCTL) && (sel == 0)) {
				vcpu->arch.gprs[rt] = 0x0;
#ifdef CONFIG_KVM_MIPS_DYN_TRANS
				kvm_mips_trans_mfc0(inst, opc, vcpu);
#endif
1040
			} else {
1041 1042 1043 1044 1045 1046 1047
				vcpu->arch.gprs[rt] = cop0->reg[rd][sel];

#ifdef CONFIG_KVM_MIPS_DYN_TRANS
				kvm_mips_trans_mfc0(inst, opc, vcpu);
#endif
			}

1048 1049 1050
			trace_kvm_hwr(vcpu, KVM_TRACE_MFC0,
				      KVM_TRACE_COP0(rd, sel),
				      vcpu->arch.gprs[rt]);
1051 1052 1053 1054
			break;

		case dmfc_op:
			vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
1055 1056 1057 1058

			trace_kvm_hwr(vcpu, KVM_TRACE_DMFC0,
				      KVM_TRACE_COP0(rd, sel),
				      vcpu->arch.gprs[rt]);
1059 1060 1061 1062 1063 1064
			break;

		case mtc_op:
#ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
			cop0->stat[rd][sel]++;
#endif
1065 1066 1067 1068
			trace_kvm_hwr(vcpu, KVM_TRACE_MTC0,
				      KVM_TRACE_COP0(rd, sel),
				      vcpu->arch.gprs[rt]);

1069 1070 1071
			if ((rd == MIPS_CP0_TLB_INDEX)
			    && (vcpu->arch.gprs[rt] >=
				KVM_MIPS_GUEST_TLB_SIZE)) {
1072 1073
				kvm_err("Invalid TLB Index: %ld",
					vcpu->arch.gprs[rt]);
1074 1075 1076 1077 1078 1079 1080 1081 1082
				er = EMULATE_FAIL;
				break;
			}
#define C0_EBASE_CORE_MASK 0xff
			if ((rd == MIPS_CP0_PRID) && (sel == 1)) {
				/* Preserve CORE number */
				kvm_change_c0_guest_ebase(cop0,
							  ~(C0_EBASE_CORE_MASK),
							  vcpu->arch.gprs[rt]);
1083 1084
				kvm_err("MTCz, cop0->reg[EBASE]: %#lx\n",
					kvm_read_c0_guest_ebase(cop0));
1085
			} else if (rd == MIPS_CP0_TLB_HI && sel == 0) {
1086
				u32 nasid =
1087
					vcpu->arch.gprs[rt] & KVM_ENTRYHI_ASID;
1088
				if ((KSEGX(vcpu->arch.gprs[rt]) != CKSEG0) &&
1089
				    ((kvm_read_c0_guest_entryhi(cop0) &
1090
				      KVM_ENTRYHI_ASID) != nasid)) {
1091
					trace_kvm_asid_change(vcpu,
1092
						kvm_read_c0_guest_entryhi(cop0)
1093 1094
							& KVM_ENTRYHI_ASID,
						nasid);
1095 1096 1097 1098 1099 1100 1101 1102 1103

					/* Blow away the shadow host TLBs */
					kvm_mips_flush_host_tlb(1);
				}
				kvm_write_c0_guest_entryhi(cop0,
							   vcpu->arch.gprs[rt]);
			}
			/* Are we writing to COUNT */
			else if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1104
				kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]);
1105 1106 1107 1108
				goto done;
			} else if ((rd == MIPS_CP0_COMPARE) && (sel == 0)) {
				/* If we are writing to COMPARE */
				/* Clear pending timer interrupt, if any */
1109
				kvm_mips_write_compare(vcpu,
1110 1111
						       vcpu->arch.gprs[rt],
						       true);
1112
			} else if ((rd == MIPS_CP0_STATUS) && (sel == 0)) {
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
				unsigned int old_val, val, change;

				old_val = kvm_read_c0_guest_status(cop0);
				val = vcpu->arch.gprs[rt];
				change = val ^ old_val;

				/* Make sure that the NMI bit is never set */
				val &= ~ST0_NMI;

				/*
				 * Don't allow CU1 or FR to be set unless FPU
				 * capability enabled and exists in guest
				 * configuration.
				 */
				if (!kvm_mips_guest_has_fpu(&vcpu->arch))
					val &= ~(ST0_CU1 | ST0_FR);

				/*
				 * Also don't allow FR to be set if host doesn't
				 * support it.
				 */
				if (!(current_cpu_data.fpu_id & MIPS_FPIR_F64))
					val &= ~ST0_FR;


				/* Handle changes in FPU mode */
				preempt_disable();

				/*
				 * FPU and Vector register state is made
				 * UNPREDICTABLE by a change of FR, so don't
				 * even bother saving it.
				 */
				if (change & ST0_FR)
					kvm_drop_fpu(vcpu);

1149 1150 1151 1152 1153 1154 1155 1156 1157
				/*
				 * If MSA state is already live, it is undefined
				 * how it interacts with FR=0 FPU state, and we
				 * don't want to hit reserved instruction
				 * exceptions trying to save the MSA state later
				 * when CU=1 && FR=1, so play it safe and save
				 * it first.
				 */
				if (change & ST0_CU1 && !(val & ST0_FR) &&
1158
				    vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1159 1160
					kvm_lose_fpu(vcpu);

1161
				/*
1162 1163 1164 1165 1166
				 * Propagate CU1 (FPU enable) changes
				 * immediately if the FPU context is already
				 * loaded. When disabling we leave the context
				 * loaded so it can be quickly enabled again in
				 * the near future.
1167
				 */
1168
				if (change & ST0_CU1 &&
1169
				    vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)
1170 1171 1172 1173 1174
					change_c0_status(ST0_CU1, val);

				preempt_enable();

				kvm_write_c0_guest_status(cop0, val);
1175 1176

#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1177 1178 1179 1180 1181 1182
				/*
				 * If FPU present, we need CU1/FR bits to take
				 * effect fairly soon.
				 */
				if (!kvm_mips_guest_has_fpu(&vcpu->arch))
					kvm_mips_trans_mtc0(inst, opc, vcpu);
1183
#endif
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
			} else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) {
				unsigned int old_val, val, change, wrmask;

				old_val = kvm_read_c0_guest_config5(cop0);
				val = vcpu->arch.gprs[rt];

				/* Only a few bits are writable in Config5 */
				wrmask = kvm_mips_config5_wrmask(vcpu);
				change = (val ^ old_val) & wrmask;
				val = old_val ^ change;


1196
				/* Handle changes in FPU/MSA modes */
1197 1198 1199 1200 1201 1202 1203
				preempt_disable();

				/*
				 * Propagate FRE changes immediately if the FPU
				 * context is already loaded.
				 */
				if (change & MIPS_CONF5_FRE &&
1204
				    vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)
1205 1206
					change_c0_config5(MIPS_CONF5_FRE, val);

1207 1208 1209 1210 1211 1212 1213
				/*
				 * Propagate MSAEn changes immediately if the
				 * MSA context is already loaded. When disabling
				 * we leave the context loaded so it can be
				 * quickly enabled again in the near future.
				 */
				if (change & MIPS_CONF5_MSAEN &&
1214
				    vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1215 1216 1217
					change_c0_config5(MIPS_CONF5_MSAEN,
							  val);

1218 1219 1220
				preempt_enable();

				kvm_write_c0_guest_config5(cop0, val);
1221
			} else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) {
1222
				u32 old_cause, new_cause;
1223

1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
				old_cause = kvm_read_c0_guest_cause(cop0);
				new_cause = vcpu->arch.gprs[rt];
				/* Update R/W bits */
				kvm_change_c0_guest_cause(cop0, 0x08800300,
							  new_cause);
				/* DC bit enabling/disabling timer? */
				if ((old_cause ^ new_cause) & CAUSEF_DC) {
					if (new_cause & CAUSEF_DC)
						kvm_mips_count_disable_cause(vcpu);
					else
						kvm_mips_count_enable_cause(vcpu);
				}
1236 1237 1238 1239 1240 1241 1242 1243 1244
			} else {
				cop0->reg[rd][sel] = vcpu->arch.gprs[rt];
#ifdef CONFIG_KVM_MIPS_DYN_TRANS
				kvm_mips_trans_mtc0(inst, opc, vcpu);
#endif
			}
			break;

		case dmtc_op:
1245 1246
			kvm_err("!!!!!!![%#lx]dmtc_op: rt: %d, rd: %d, sel: %d!!!!!!\n",
				vcpu->arch.pc, rt, rd, sel);
1247 1248 1249
			trace_kvm_hwr(vcpu, KVM_TRACE_DMTC0,
				      KVM_TRACE_COP0(rd, sel),
				      vcpu->arch.gprs[rt]);
1250 1251 1252
			er = EMULATE_FAIL;
			break;

1253
		case mfmc0_op:
1254 1255 1256
#ifdef KVM_MIPS_DEBUG_COP0_COUNTERS
			cop0->stat[MIPS_CP0_STATUS][0]++;
#endif
1257
			if (rt != 0)
1258 1259 1260 1261
				vcpu->arch.gprs[rt] =
				    kvm_read_c0_guest_status(cop0);
			/* EI */
			if (inst & 0x20) {
1262
				kvm_debug("[%#lx] mfmc0_op: EI\n",
1263 1264 1265
					  vcpu->arch.pc);
				kvm_set_c0_guest_status(cop0, ST0_IE);
			} else {
1266
				kvm_debug("[%#lx] mfmc0_op: DI\n",
1267 1268 1269 1270 1271 1272 1273 1274
					  vcpu->arch.pc);
				kvm_clear_c0_guest_status(cop0, ST0_IE);
			}

			break;

		case wrpgpr_op:
			{
1275 1276
				u32 css = cop0->reg[MIPS_CP0_STATUS][2] & 0xf;
				u32 pss =
1277
				    (cop0->reg[MIPS_CP0_STATUS][2] >> 6) & 0xf;
1278 1279 1280 1281
				/*
				 * We don't support any shadow register sets, so
				 * SRSCtl[PSS] == SRSCtl[CSS] = 0
				 */
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
				if (css || pss) {
					er = EMULATE_FAIL;
					break;
				}
				kvm_debug("WRPGPR[%d][%d] = %#lx\n", pss, rd,
					  vcpu->arch.gprs[rt]);
				vcpu->arch.gprs[rd] = vcpu->arch.gprs[rt];
			}
			break;
		default:
1292 1293
			kvm_err("[%#lx]MachEmulateCP0: unsupported COP0, copz: 0x%x\n",
				vcpu->arch.pc, copz);
1294 1295 1296 1297 1298 1299
			er = EMULATE_FAIL;
			break;
		}
	}

done:
1300 1301
	/* Rollback PC only if emulation was unsuccessful */
	if (er == EMULATE_FAIL)
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
		vcpu->arch.pc = curr_pc;

dont_update_pc:
	/*
	 * This is for special instructions whose emulation
	 * updates the PC, so do not overwrite the PC under
	 * any circumstances
	 */

	return er;
}

1314
enum emulation_result kvm_mips_emulate_store(u32 inst, u32 cause,
1315 1316
					     struct kvm_run *run,
					     struct kvm_vcpu *vcpu)
1317 1318
{
	enum emulation_result er = EMULATE_DO_MMIO;
1319 1320 1321
	u32 op, base, rt;
	s16 offset;
	u32 bytes;
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
	void *data = run->mmio.data;
	unsigned long curr_pc;

	/*
	 * Update PC and hold onto current PC in case there is
	 * an error and we want to rollback the PC
	 */
	curr_pc = vcpu->arch.pc;
	er = update_pc(vcpu, cause);
	if (er == EMULATE_FAIL)
		return er;

	rt = (inst >> 16) & 0x1f;
	base = (inst >> 21) & 0x1f;
1336
	offset = (s16)inst;
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
	op = (inst >> 26) & 0x3f;

	switch (op) {
	case sb_op:
		bytes = 1;
		if (bytes > sizeof(run->mmio.data)) {
			kvm_err("%s: bad MMIO length: %d\n", __func__,
			       run->mmio.len);
		}
		run->mmio.phys_addr =
		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
						   host_cp0_badvaddr);
		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
			er = EMULATE_FAIL;
			break;
		}
		run->mmio.len = bytes;
		run->mmio.is_write = 1;
		vcpu->mmio_needed = 1;
		vcpu->mmio_is_write = 1;
		*(u8 *) data = vcpu->arch.gprs[rt];
		kvm_debug("OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n",
			  vcpu->arch.host_cp0_badvaddr, vcpu->arch.gprs[rt],
1360
			  *(u8 *) data);
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381

		break;

	case sw_op:
		bytes = 4;
		if (bytes > sizeof(run->mmio.data)) {
			kvm_err("%s: bad MMIO length: %d\n", __func__,
			       run->mmio.len);
		}
		run->mmio.phys_addr =
		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
						   host_cp0_badvaddr);
		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
			er = EMULATE_FAIL;
			break;
		}

		run->mmio.len = bytes;
		run->mmio.is_write = 1;
		vcpu->mmio_needed = 1;
		vcpu->mmio_is_write = 1;
1382
		*(u32 *) data = vcpu->arch.gprs[rt];
1383 1384 1385

		kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n",
			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1386
			  vcpu->arch.gprs[rt], *(u32 *) data);
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
		break;

	case sh_op:
		bytes = 2;
		if (bytes > sizeof(run->mmio.data)) {
			kvm_err("%s: bad MMIO length: %d\n", __func__,
			       run->mmio.len);
		}
		run->mmio.phys_addr =
		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
						   host_cp0_badvaddr);
		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
			er = EMULATE_FAIL;
			break;
		}

		run->mmio.len = bytes;
		run->mmio.is_write = 1;
		vcpu->mmio_needed = 1;
		vcpu->mmio_is_write = 1;
1407
		*(u16 *) data = vcpu->arch.gprs[rt];
1408 1409 1410

		kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n",
			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1411
			  vcpu->arch.gprs[rt], *(u32 *) data);
1412 1413 1414
		break;

	default:
1415
		kvm_err("Store not yet supported");
1416 1417 1418 1419
		er = EMULATE_FAIL;
		break;
	}

1420 1421
	/* Rollback PC if emulation was unsuccessful */
	if (er == EMULATE_FAIL)
1422 1423 1424 1425 1426
		vcpu->arch.pc = curr_pc;

	return er;
}

1427
enum emulation_result kvm_mips_emulate_load(u32 inst, u32 cause,
1428 1429
					    struct kvm_run *run,
					    struct kvm_vcpu *vcpu)
1430 1431
{
	enum emulation_result er = EMULATE_DO_MMIO;
1432 1433 1434
	u32 op, base, rt;
	s16 offset;
	u32 bytes;
1435 1436 1437

	rt = (inst >> 16) & 0x1f;
	base = (inst >> 21) & 0x1f;
1438
	offset = (s16)inst;
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
	op = (inst >> 26) & 0x3f;

	vcpu->arch.pending_load_cause = cause;
	vcpu->arch.io_gpr = rt;

	switch (op) {
	case lw_op:
		bytes = 4;
		if (bytes > sizeof(run->mmio.data)) {
			kvm_err("%s: bad MMIO length: %d\n", __func__,
			       run->mmio.len);
			er = EMULATE_FAIL;
			break;
		}
		run->mmio.phys_addr =
		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
						   host_cp0_badvaddr);
		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
			er = EMULATE_FAIL;
			break;
		}

		run->mmio.len = bytes;
		run->mmio.is_write = 0;
		vcpu->mmio_needed = 1;
		vcpu->mmio_is_write = 0;
		break;

	case lh_op:
	case lhu_op:
		bytes = 2;
		if (bytes > sizeof(run->mmio.data)) {
			kvm_err("%s: bad MMIO length: %d\n", __func__,
			       run->mmio.len);
			er = EMULATE_FAIL;
			break;
		}
		run->mmio.phys_addr =
		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
						   host_cp0_badvaddr);
		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
			er = EMULATE_FAIL;
			break;
		}

		run->mmio.len = bytes;
		run->mmio.is_write = 0;
		vcpu->mmio_needed = 1;
		vcpu->mmio_is_write = 0;

		if (op == lh_op)
			vcpu->mmio_needed = 2;
		else
			vcpu->mmio_needed = 1;

		break;

	case lbu_op:
	case lb_op:
		bytes = 1;
		if (bytes > sizeof(run->mmio.data)) {
			kvm_err("%s: bad MMIO length: %d\n", __func__,
			       run->mmio.len);
			er = EMULATE_FAIL;
			break;
		}
		run->mmio.phys_addr =
		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
						   host_cp0_badvaddr);
		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
			er = EMULATE_FAIL;
			break;
		}

		run->mmio.len = bytes;
		run->mmio.is_write = 0;
		vcpu->mmio_is_write = 0;

		if (op == lb_op)
			vcpu->mmio_needed = 2;
		else
			vcpu->mmio_needed = 1;

		break;

	default:
1525
		kvm_err("Load not yet supported");
1526 1527 1528 1529 1530 1531 1532
		er = EMULATE_FAIL;
		break;
	}

	return er;
}

1533 1534
enum emulation_result kvm_mips_emulate_cache(u32 inst, u32 *opc,
					     u32 cause,
1535 1536
					     struct kvm_run *run,
					     struct kvm_vcpu *vcpu)
1537 1538 1539
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	enum emulation_result er = EMULATE_DONE;
1540 1541
	u32 cache, op_inst, op, base;
	s16 offset;
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
	struct kvm_vcpu_arch *arch = &vcpu->arch;
	unsigned long va;
	unsigned long curr_pc;

	/*
	 * Update PC and hold onto current PC in case there is
	 * an error and we want to rollback the PC
	 */
	curr_pc = vcpu->arch.pc;
	er = update_pc(vcpu, cause);
	if (er == EMULATE_FAIL)
		return er;

	base = (inst >> 21) & 0x1f;
	op_inst = (inst >> 16) & 0x1f;
1557
	offset = (s16)inst;
1558 1559
	cache = op_inst & CacheOp_Cache;
	op = op_inst & CacheOp_Op;
1560 1561 1562 1563 1564 1565

	va = arch->gprs[base] + offset;

	kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
		  cache, op, base, arch->gprs[base], offset);

1566 1567 1568 1569
	/*
	 * Treat INDEX_INV as a nop, basically issued by Linux on startup to
	 * invalidate the caches entirely by stepping through all the
	 * ways/indexes
1570
	 */
1571
	if (op == Index_Writeback_Inv) {
1572 1573 1574
		kvm_debug("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
			  vcpu->arch.pc, vcpu->arch.gprs[31], cache, op, base,
			  arch->gprs[base], offset);
1575

1576
		if (cache == Cache_D)
1577
			r4k_blast_dcache();
1578
		else if (cache == Cache_I)
1579 1580
			r4k_blast_icache();
		else {
1581 1582
			kvm_err("%s: unsupported CACHE INDEX operation\n",
				__func__);
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
			return EMULATE_FAIL;
		}

#ifdef CONFIG_KVM_MIPS_DYN_TRANS
		kvm_mips_trans_cache_index(inst, opc, vcpu);
#endif
		goto done;
	}

	preempt_disable();
	if (KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG0) {
1594
		if (kvm_mips_host_tlb_lookup(vcpu, va) < 0)
1595 1596 1597 1598 1599 1600
			kvm_mips_handle_kseg0_tlb_fault(va, vcpu);
	} else if ((KVM_GUEST_KSEGX(va) < KVM_GUEST_KSEG0) ||
		   KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG23) {
		int index;

		/* If an entry already exists then skip */
1601
		if (kvm_mips_host_tlb_lookup(vcpu, va) >= 0)
1602 1603
			goto skip_fault;

1604 1605 1606
		/*
		 * If address not in the guest TLB, then give the guest a fault,
		 * the resulting handler will do the right thing
1607 1608
		 */
		index = kvm_mips_guest_tlb_lookup(vcpu, (va & VPN2_MASK) |
1609
						  (kvm_read_c0_guest_entryhi
1610
						   (cop0) & KVM_ENTRYHI_ASID));
1611 1612 1613

		if (index < 0) {
			vcpu->arch.host_cp0_badvaddr = va;
1614
			vcpu->arch.pc = curr_pc;
1615 1616 1617 1618 1619 1620
			er = kvm_mips_emulate_tlbmiss_ld(cause, NULL, run,
							 vcpu);
			preempt_enable();
			goto dont_update_pc;
		} else {
			struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
1621 1622 1623 1624
			/*
			 * Check if the entry is valid, if not then setup a TLB
			 * invalid exception to the guest
			 */
1625
			if (!TLB_IS_VALID(*tlb, va)) {
1626 1627
				vcpu->arch.host_cp0_badvaddr = va;
				vcpu->arch.pc = curr_pc;
1628 1629 1630 1631 1632
				er = kvm_mips_emulate_tlbinv_ld(cause, NULL,
								run, vcpu);
				preempt_enable();
				goto dont_update_pc;
			} else {
1633 1634 1635 1636
				/*
				 * We fault an entry from the guest tlb to the
				 * shadow host TLB
				 */
1637
				kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb);
1638 1639 1640
			}
		}
	} else {
1641 1642
		kvm_err("INVALID CACHE INDEX/ADDRESS (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
			cache, op, base, arch->gprs[base], offset);
1643 1644
		er = EMULATE_FAIL;
		preempt_enable();
1645
		goto done;
1646 1647 1648 1649 1650

	}

skip_fault:
	/* XXXKYMA: Only a subset of cache ops are supported, used by Linux */
1651
	if (op_inst == Hit_Writeback_Inv_D || op_inst == Hit_Invalidate_D) {
1652 1653 1654
		flush_dcache_line(va);

#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1655 1656 1657 1658
		/*
		 * Replace the CACHE instruction, with a SYNCI, not the same,
		 * but avoids a trap
		 */
1659 1660
		kvm_mips_trans_cache_va(inst, opc, vcpu);
#endif
1661
	} else if (op_inst == Hit_Invalidate_I) {
1662 1663 1664 1665 1666 1667 1668 1669
		flush_dcache_line(va);
		flush_icache_line(va);

#ifdef CONFIG_KVM_MIPS_DYN_TRANS
		/* Replace the CACHE instruction, with a SYNCI */
		kvm_mips_trans_cache_va(inst, opc, vcpu);
#endif
	} else {
1670 1671
		kvm_err("NO-OP CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
			cache, op, base, arch->gprs[base], offset);
1672 1673 1674 1675
		er = EMULATE_FAIL;
	}

	preempt_enable();
1676 1677 1678 1679
done:
	/* Rollback PC only if emulation was unsuccessful */
	if (er == EMULATE_FAIL)
		vcpu->arch.pc = curr_pc;
1680

1681
dont_update_pc:
1682 1683 1684 1685 1686
	/*
	 * This is for exceptions whose emulation updates the PC, so do not
	 * overwrite the PC under any circumstances
	 */

1687 1688 1689
	return er;
}

1690
enum emulation_result kvm_mips_emulate_inst(u32 cause, u32 *opc,
1691 1692
					    struct kvm_run *run,
					    struct kvm_vcpu *vcpu)
1693 1694
{
	enum emulation_result er = EMULATE_DONE;
1695
	u32 inst;
1696

1697 1698
	/* Fetch the instruction. */
	if (cause & CAUSEF_BD)
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
		opc += 1;

	inst = kvm_get_inst(opc, vcpu);

	switch (((union mips_instruction)inst).r_format.opcode) {
	case cop0_op:
		er = kvm_mips_emulate_CP0(inst, opc, cause, run, vcpu);
		break;
	case sb_op:
	case sh_op:
	case sw_op:
		er = kvm_mips_emulate_store(inst, cause, run, vcpu);
		break;
	case lb_op:
	case lbu_op:
	case lhu_op:
	case lh_op:
	case lw_op:
		er = kvm_mips_emulate_load(inst, cause, run, vcpu);
		break;

	case cache_op:
		++vcpu->stat.cache_exits;
1722
		trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
1723 1724 1725 1726
		er = kvm_mips_emulate_cache(inst, opc, cause, run, vcpu);
		break;

	default:
1727 1728
		kvm_err("Instruction emulation not supported (%p/%#x)\n", opc,
			inst);
1729 1730 1731 1732 1733 1734 1735 1736
		kvm_arch_vcpu_dump_regs(vcpu);
		er = EMULATE_FAIL;
		break;
	}

	return er;
}

1737
enum emulation_result kvm_mips_emulate_syscall(u32 cause,
1738
					       u32 *opc,
1739 1740
					       struct kvm_run *run,
					       struct kvm_vcpu *vcpu)
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	struct kvm_vcpu_arch *arch = &vcpu->arch;
	enum emulation_result er = EMULATE_DONE;

	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
		/* save old pc */
		kvm_write_c0_guest_epc(cop0, arch->pc);
		kvm_set_c0_guest_status(cop0, ST0_EXL);

		if (cause & CAUSEF_BD)
			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
		else
			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);

		kvm_debug("Delivering SYSCALL @ pc %#lx\n", arch->pc);

		kvm_change_c0_guest_cause(cop0, (0xff),
1759
					  (EXCCODE_SYS << CAUSEB_EXCCODE));
1760 1761 1762 1763 1764

		/* Set PC to the exception entry point */
		arch->pc = KVM_GUEST_KSEG0 + 0x180;

	} else {
1765
		kvm_err("Trying to deliver SYSCALL when EXL is already set\n");
1766 1767 1768 1769 1770 1771
		er = EMULATE_FAIL;
	}

	return er;
}

1772
enum emulation_result kvm_mips_emulate_tlbmiss_ld(u32 cause,
1773
						  u32 *opc,
1774 1775
						  struct kvm_run *run,
						  struct kvm_vcpu *vcpu)
1776 1777 1778 1779
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	struct kvm_vcpu_arch *arch = &vcpu->arch;
	unsigned long entryhi = (vcpu->arch.  host_cp0_badvaddr & VPN2_MASK) |
1780
			(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805

	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
		/* save old pc */
		kvm_write_c0_guest_epc(cop0, arch->pc);
		kvm_set_c0_guest_status(cop0, ST0_EXL);

		if (cause & CAUSEF_BD)
			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
		else
			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);

		kvm_debug("[EXL == 0] delivering TLB MISS @ pc %#lx\n",
			  arch->pc);

		/* set pc to the exception entry point */
		arch->pc = KVM_GUEST_KSEG0 + 0x0;

	} else {
		kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
			  arch->pc);

		arch->pc = KVM_GUEST_KSEG0 + 0x180;
	}

	kvm_change_c0_guest_cause(cop0, (0xff),
1806
				  (EXCCODE_TLBL << CAUSEB_EXCCODE));
1807 1808 1809 1810 1811 1812 1813 1814

	/* setup badvaddr, context and entryhi registers for the guest */
	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
	/* XXXKYMA: is the context register used by linux??? */
	kvm_write_c0_guest_entryhi(cop0, entryhi);
	/* Blow away the shadow host TLBs */
	kvm_mips_flush_host_tlb(1);

1815
	return EMULATE_DONE;
1816 1817
}

1818
enum emulation_result kvm_mips_emulate_tlbinv_ld(u32 cause,
1819
						 u32 *opc,
1820 1821
						 struct kvm_run *run,
						 struct kvm_vcpu *vcpu)
1822 1823 1824 1825 1826
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	struct kvm_vcpu_arch *arch = &vcpu->arch;
	unsigned long entryhi =
		(vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1827
		(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851

	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
		/* save old pc */
		kvm_write_c0_guest_epc(cop0, arch->pc);
		kvm_set_c0_guest_status(cop0, ST0_EXL);

		if (cause & CAUSEF_BD)
			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
		else
			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);

		kvm_debug("[EXL == 0] delivering TLB INV @ pc %#lx\n",
			  arch->pc);

		/* set pc to the exception entry point */
		arch->pc = KVM_GUEST_KSEG0 + 0x180;

	} else {
		kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
			  arch->pc);
		arch->pc = KVM_GUEST_KSEG0 + 0x180;
	}

	kvm_change_c0_guest_cause(cop0, (0xff),
1852
				  (EXCCODE_TLBL << CAUSEB_EXCCODE));
1853 1854 1855 1856 1857 1858 1859 1860

	/* setup badvaddr, context and entryhi registers for the guest */
	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
	/* XXXKYMA: is the context register used by linux??? */
	kvm_write_c0_guest_entryhi(cop0, entryhi);
	/* Blow away the shadow host TLBs */
	kvm_mips_flush_host_tlb(1);

1861
	return EMULATE_DONE;
1862 1863
}

1864
enum emulation_result kvm_mips_emulate_tlbmiss_st(u32 cause,
1865
						  u32 *opc,
1866 1867
						  struct kvm_run *run,
						  struct kvm_vcpu *vcpu)
1868 1869 1870 1871
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	struct kvm_vcpu_arch *arch = &vcpu->arch;
	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1872
			(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895

	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
		/* save old pc */
		kvm_write_c0_guest_epc(cop0, arch->pc);
		kvm_set_c0_guest_status(cop0, ST0_EXL);

		if (cause & CAUSEF_BD)
			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
		else
			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);

		kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
			  arch->pc);

		/* Set PC to the exception entry point */
		arch->pc = KVM_GUEST_KSEG0 + 0x0;
	} else {
		kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
			  arch->pc);
		arch->pc = KVM_GUEST_KSEG0 + 0x180;
	}

	kvm_change_c0_guest_cause(cop0, (0xff),
1896
				  (EXCCODE_TLBS << CAUSEB_EXCCODE));
1897 1898 1899 1900 1901 1902 1903 1904

	/* setup badvaddr, context and entryhi registers for the guest */
	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
	/* XXXKYMA: is the context register used by linux??? */
	kvm_write_c0_guest_entryhi(cop0, entryhi);
	/* Blow away the shadow host TLBs */
	kvm_mips_flush_host_tlb(1);

1905
	return EMULATE_DONE;
1906 1907
}

1908
enum emulation_result kvm_mips_emulate_tlbinv_st(u32 cause,
1909
						 u32 *opc,
1910 1911
						 struct kvm_run *run,
						 struct kvm_vcpu *vcpu)
1912 1913 1914 1915
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	struct kvm_vcpu_arch *arch = &vcpu->arch;
	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1916
		(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939

	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
		/* save old pc */
		kvm_write_c0_guest_epc(cop0, arch->pc);
		kvm_set_c0_guest_status(cop0, ST0_EXL);

		if (cause & CAUSEF_BD)
			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
		else
			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);

		kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
			  arch->pc);

		/* Set PC to the exception entry point */
		arch->pc = KVM_GUEST_KSEG0 + 0x180;
	} else {
		kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
			  arch->pc);
		arch->pc = KVM_GUEST_KSEG0 + 0x180;
	}

	kvm_change_c0_guest_cause(cop0, (0xff),
1940
				  (EXCCODE_TLBS << CAUSEB_EXCCODE));
1941 1942 1943 1944 1945 1946 1947 1948

	/* setup badvaddr, context and entryhi registers for the guest */
	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
	/* XXXKYMA: is the context register used by linux??? */
	kvm_write_c0_guest_entryhi(cop0, entryhi);
	/* Blow away the shadow host TLBs */
	kvm_mips_flush_host_tlb(1);

1949
	return EMULATE_DONE;
1950 1951 1952
}

/* TLBMOD: store into address matching TLB with Dirty bit off */
1953
enum emulation_result kvm_mips_handle_tlbmod(u32 cause, u32 *opc,
1954 1955
					     struct kvm_run *run,
					     struct kvm_vcpu *vcpu)
1956 1957 1958
{
	enum emulation_result er = EMULATE_DONE;
#ifdef DEBUG
1959 1960
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1961
			(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
1962 1963
	int index;

1964
	/* If address not in the guest TLB, then we are in trouble */
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
	index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
	if (index < 0) {
		/* XXXKYMA Invalidate and retry */
		kvm_mips_host_tlb_inv(vcpu, vcpu->arch.host_cp0_badvaddr);
		kvm_err("%s: host got TLBMOD for %#lx but entry not present in Guest TLB\n",
		     __func__, entryhi);
		kvm_mips_dump_guest_tlbs(vcpu);
		kvm_mips_dump_host_tlbs();
		return EMULATE_FAIL;
	}
#endif

	er = kvm_mips_emulate_tlbmod(cause, opc, run, vcpu);
	return er;
}

1981
enum emulation_result kvm_mips_emulate_tlbmod(u32 cause,
1982
					      u32 *opc,
1983 1984
					      struct kvm_run *run,
					      struct kvm_vcpu *vcpu)
1985 1986 1987
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1988
			(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
	struct kvm_vcpu_arch *arch = &vcpu->arch;

	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
		/* save old pc */
		kvm_write_c0_guest_epc(cop0, arch->pc);
		kvm_set_c0_guest_status(cop0, ST0_EXL);

		if (cause & CAUSEF_BD)
			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
		else
			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);

		kvm_debug("[EXL == 0] Delivering TLB MOD @ pc %#lx\n",
			  arch->pc);

		arch->pc = KVM_GUEST_KSEG0 + 0x180;
	} else {
		kvm_debug("[EXL == 1] Delivering TLB MOD @ pc %#lx\n",
			  arch->pc);
		arch->pc = KVM_GUEST_KSEG0 + 0x180;
	}

2011 2012
	kvm_change_c0_guest_cause(cop0, (0xff),
				  (EXCCODE_MOD << CAUSEB_EXCCODE));
2013 2014 2015 2016 2017 2018 2019 2020

	/* setup badvaddr, context and entryhi registers for the guest */
	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
	/* XXXKYMA: is the context register used by linux??? */
	kvm_write_c0_guest_entryhi(cop0, entryhi);
	/* Blow away the shadow host TLBs */
	kvm_mips_flush_host_tlb(1);

2021
	return EMULATE_DONE;
2022 2023
}

2024
enum emulation_result kvm_mips_emulate_fpu_exc(u32 cause,
2025
					       u32 *opc,
2026 2027
					       struct kvm_run *run,
					       struct kvm_vcpu *vcpu)
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	struct kvm_vcpu_arch *arch = &vcpu->arch;

	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
		/* save old pc */
		kvm_write_c0_guest_epc(cop0, arch->pc);
		kvm_set_c0_guest_status(cop0, ST0_EXL);

		if (cause & CAUSEF_BD)
			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
		else
			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);

	}

	arch->pc = KVM_GUEST_KSEG0 + 0x180;

	kvm_change_c0_guest_cause(cop0, (0xff),
2047
				  (EXCCODE_CPU << CAUSEB_EXCCODE));
2048 2049
	kvm_change_c0_guest_cause(cop0, (CAUSEF_CE), (0x1 << CAUSEB_CE));

2050
	return EMULATE_DONE;
2051 2052
}

2053
enum emulation_result kvm_mips_emulate_ri_exc(u32 cause,
2054
					      u32 *opc,
2055 2056
					      struct kvm_run *run,
					      struct kvm_vcpu *vcpu)
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	struct kvm_vcpu_arch *arch = &vcpu->arch;
	enum emulation_result er = EMULATE_DONE;

	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
		/* save old pc */
		kvm_write_c0_guest_epc(cop0, arch->pc);
		kvm_set_c0_guest_status(cop0, ST0_EXL);

		if (cause & CAUSEF_BD)
			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
		else
			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);

		kvm_debug("Delivering RI @ pc %#lx\n", arch->pc);

		kvm_change_c0_guest_cause(cop0, (0xff),
2075
					  (EXCCODE_RI << CAUSEB_EXCCODE));
2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087

		/* Set PC to the exception entry point */
		arch->pc = KVM_GUEST_KSEG0 + 0x180;

	} else {
		kvm_err("Trying to deliver RI when EXL is already set\n");
		er = EMULATE_FAIL;
	}

	return er;
}

2088
enum emulation_result kvm_mips_emulate_bp_exc(u32 cause,
2089
					      u32 *opc,
2090 2091
					      struct kvm_run *run,
					      struct kvm_vcpu *vcpu)
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	struct kvm_vcpu_arch *arch = &vcpu->arch;
	enum emulation_result er = EMULATE_DONE;

	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
		/* save old pc */
		kvm_write_c0_guest_epc(cop0, arch->pc);
		kvm_set_c0_guest_status(cop0, ST0_EXL);

		if (cause & CAUSEF_BD)
			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
		else
			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);

		kvm_debug("Delivering BP @ pc %#lx\n", arch->pc);

		kvm_change_c0_guest_cause(cop0, (0xff),
2110
					  (EXCCODE_BP << CAUSEB_EXCCODE));
2111 2112 2113 2114 2115

		/* Set PC to the exception entry point */
		arch->pc = KVM_GUEST_KSEG0 + 0x180;

	} else {
2116
		kvm_err("Trying to deliver BP when EXL is already set\n");
2117 2118 2119 2120 2121 2122
		er = EMULATE_FAIL;
	}

	return er;
}

2123
enum emulation_result kvm_mips_emulate_trap_exc(u32 cause,
2124
						u32 *opc,
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
						struct kvm_run *run,
						struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	struct kvm_vcpu_arch *arch = &vcpu->arch;
	enum emulation_result er = EMULATE_DONE;

	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
		/* save old pc */
		kvm_write_c0_guest_epc(cop0, arch->pc);
		kvm_set_c0_guest_status(cop0, ST0_EXL);

		if (cause & CAUSEF_BD)
			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
		else
			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);

		kvm_debug("Delivering TRAP @ pc %#lx\n", arch->pc);

		kvm_change_c0_guest_cause(cop0, (0xff),
2145
					  (EXCCODE_TR << CAUSEB_EXCCODE));
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157

		/* Set PC to the exception entry point */
		arch->pc = KVM_GUEST_KSEG0 + 0x180;

	} else {
		kvm_err("Trying to deliver TRAP when EXL is already set\n");
		er = EMULATE_FAIL;
	}

	return er;
}

2158
enum emulation_result kvm_mips_emulate_msafpe_exc(u32 cause,
2159
						  u32 *opc,
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
						  struct kvm_run *run,
						  struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	struct kvm_vcpu_arch *arch = &vcpu->arch;
	enum emulation_result er = EMULATE_DONE;

	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
		/* save old pc */
		kvm_write_c0_guest_epc(cop0, arch->pc);
		kvm_set_c0_guest_status(cop0, ST0_EXL);

		if (cause & CAUSEF_BD)
			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
		else
			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);

		kvm_debug("Delivering MSAFPE @ pc %#lx\n", arch->pc);

		kvm_change_c0_guest_cause(cop0, (0xff),
2180
					  (EXCCODE_MSAFPE << CAUSEB_EXCCODE));
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192

		/* Set PC to the exception entry point */
		arch->pc = KVM_GUEST_KSEG0 + 0x180;

	} else {
		kvm_err("Trying to deliver MSAFPE when EXL is already set\n");
		er = EMULATE_FAIL;
	}

	return er;
}

2193
enum emulation_result kvm_mips_emulate_fpe_exc(u32 cause,
2194
					       u32 *opc,
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
					       struct kvm_run *run,
					       struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	struct kvm_vcpu_arch *arch = &vcpu->arch;
	enum emulation_result er = EMULATE_DONE;

	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
		/* save old pc */
		kvm_write_c0_guest_epc(cop0, arch->pc);
		kvm_set_c0_guest_status(cop0, ST0_EXL);

		if (cause & CAUSEF_BD)
			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
		else
			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);

		kvm_debug("Delivering FPE @ pc %#lx\n", arch->pc);

		kvm_change_c0_guest_cause(cop0, (0xff),
2215
					  (EXCCODE_FPE << CAUSEB_EXCCODE));
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227

		/* Set PC to the exception entry point */
		arch->pc = KVM_GUEST_KSEG0 + 0x180;

	} else {
		kvm_err("Trying to deliver FPE when EXL is already set\n");
		er = EMULATE_FAIL;
	}

	return er;
}

2228
enum emulation_result kvm_mips_emulate_msadis_exc(u32 cause,
2229
						  u32 *opc,
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
						  struct kvm_run *run,
						  struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	struct kvm_vcpu_arch *arch = &vcpu->arch;
	enum emulation_result er = EMULATE_DONE;

	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
		/* save old pc */
		kvm_write_c0_guest_epc(cop0, arch->pc);
		kvm_set_c0_guest_status(cop0, ST0_EXL);

		if (cause & CAUSEF_BD)
			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
		else
			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);

		kvm_debug("Delivering MSADIS @ pc %#lx\n", arch->pc);

		kvm_change_c0_guest_cause(cop0, (0xff),
2250
					  (EXCCODE_MSADIS << CAUSEB_EXCCODE));
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262

		/* Set PC to the exception entry point */
		arch->pc = KVM_GUEST_KSEG0 + 0x180;

	} else {
		kvm_err("Trying to deliver MSADIS when EXL is already set\n");
		er = EMULATE_FAIL;
	}

	return er;
}

2263
/* ll/sc, rdhwr, sync emulation */
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277

#define OPCODE 0xfc000000
#define BASE   0x03e00000
#define RT     0x001f0000
#define OFFSET 0x0000ffff
#define LL     0xc0000000
#define SC     0xe0000000
#define SPEC0  0x00000000
#define SPEC3  0x7c000000
#define RD     0x0000f800
#define FUNC   0x0000003f
#define SYNC   0x0000000f
#define RDHWR  0x0000003b

2278
enum emulation_result kvm_mips_handle_ri(u32 cause, u32 *opc,
2279 2280
					 struct kvm_run *run,
					 struct kvm_vcpu *vcpu)
2281 2282 2283 2284 2285
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	struct kvm_vcpu_arch *arch = &vcpu->arch;
	enum emulation_result er = EMULATE_DONE;
	unsigned long curr_pc;
2286
	u32 inst;
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296

	/*
	 * Update PC and hold onto current PC in case there is
	 * an error and we want to rollback the PC
	 */
	curr_pc = vcpu->arch.pc;
	er = update_pc(vcpu, cause);
	if (er == EMULATE_FAIL)
		return er;

2297
	/* Fetch the instruction. */
2298 2299 2300 2301 2302 2303
	if (cause & CAUSEF_BD)
		opc += 1;

	inst = kvm_get_inst(opc, vcpu);

	if (inst == KVM_INVALID_INST) {
2304
		kvm_err("%s: Cannot get inst @ %p\n", __func__, opc);
2305 2306 2307 2308
		return EMULATE_FAIL;
	}

	if ((inst & OPCODE) == SPEC3 && (inst & FUNC) == RDHWR) {
2309
		int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2310 2311
		int rd = (inst & RD) >> 11;
		int rt = (inst & RT) >> 16;
2312 2313
		int sel = (inst >> 6) & 0x7;

2314 2315 2316 2317 2318 2319
		/* If usermode, check RDHWR rd is allowed by guest HWREna */
		if (usermode && !(kvm_read_c0_guest_hwrena(cop0) & BIT(rd))) {
			kvm_debug("RDHWR %#x disallowed by HWREna @ %p\n",
				  rd, opc);
			goto emulate_ri;
		}
2320 2321 2322 2323 2324 2325 2326 2327 2328
		switch (rd) {
		case 0:	/* CPU number */
			arch->gprs[rt] = 0;
			break;
		case 1:	/* SYNCI length */
			arch->gprs[rt] = min(current_cpu_data.dcache.linesz,
					     current_cpu_data.icache.linesz);
			break;
		case 2:	/* Read count register */
2329
			arch->gprs[rt] = kvm_mips_read_count(vcpu);
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
			break;
		case 3:	/* Count register resolution */
			switch (current_cpu_data.cputype) {
			case CPU_20KC:
			case CPU_25KF:
				arch->gprs[rt] = 1;
				break;
			default:
				arch->gprs[rt] = 2;
			}
			break;
		case 29:
			arch->gprs[rt] = kvm_read_c0_guest_userlocal(cop0);
			break;

		default:
2346
			kvm_debug("RDHWR %#x not supported @ %p\n", rd, opc);
2347
			goto emulate_ri;
2348
		}
2349 2350 2351

		trace_kvm_hwr(vcpu, KVM_TRACE_RDHWR, KVM_TRACE_HWR(rd, sel),
			      vcpu->arch.gprs[rt]);
2352
	} else {
2353
		kvm_debug("Emulate RI not supported @ %p: %#x\n", opc, inst);
2354
		goto emulate_ri;
2355 2356
	}

2357 2358 2359
	return EMULATE_DONE;

emulate_ri:
2360
	/*
2361 2362
	 * Rollback PC (if in branch delay slot then the PC already points to
	 * branch target), and pass the RI exception to the guest OS.
2363
	 */
2364 2365
	vcpu->arch.pc = curr_pc;
	return kvm_mips_emulate_ri_exc(cause, opc, run, vcpu);
2366 2367
}

2368 2369
enum emulation_result kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu,
						  struct kvm_run *run)
2370 2371 2372 2373 2374
{
	unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr];
	enum emulation_result er = EMULATE_DONE;

	if (run->mmio.len > sizeof(*gpr)) {
2375
		kvm_err("Bad MMIO length: %d", run->mmio.len);
2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
		er = EMULATE_FAIL;
		goto done;
	}

	er = update_pc(vcpu, vcpu->arch.pending_load_cause);
	if (er == EMULATE_FAIL)
		return er;

	switch (run->mmio.len) {
	case 4:
2386
		*gpr = *(s32 *) run->mmio.data;
2387 2388 2389 2390
		break;

	case 2:
		if (vcpu->mmio_needed == 2)
2391
			*gpr = *(s16 *) run->mmio.data;
2392
		else
2393
			*gpr = *(u16 *)run->mmio.data;
2394 2395 2396 2397

		break;
	case 1:
		if (vcpu->mmio_needed == 2)
2398
			*gpr = *(s8 *) run->mmio.data;
2399 2400 2401 2402 2403 2404
		else
			*gpr = *(u8 *) run->mmio.data;
		break;
	}

	if (vcpu->arch.pending_load_cause & CAUSEF_BD)
2405 2406 2407
		kvm_debug("[%#lx] Completing %d byte BD Load to gpr %d (0x%08lx) type %d\n",
			  vcpu->arch.pc, run->mmio.len, vcpu->arch.io_gpr, *gpr,
			  vcpu->mmio_needed);
2408 2409 2410 2411 2412

done:
	return er;
}

2413
static enum emulation_result kvm_mips_emulate_exc(u32 cause,
2414
						  u32 *opc,
2415 2416
						  struct kvm_run *run,
						  struct kvm_vcpu *vcpu)
2417
{
2418
	u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	struct kvm_vcpu_arch *arch = &vcpu->arch;
	enum emulation_result er = EMULATE_DONE;

	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
		/* save old pc */
		kvm_write_c0_guest_epc(cop0, arch->pc);
		kvm_set_c0_guest_status(cop0, ST0_EXL);

		if (cause & CAUSEF_BD)
			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
		else
			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);

		kvm_change_c0_guest_cause(cop0, (0xff),
					  (exccode << CAUSEB_EXCCODE));

		/* Set PC to the exception entry point */
		arch->pc = KVM_GUEST_KSEG0 + 0x180;
		kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);

		kvm_debug("Delivering EXC %d @ pc %#lx, badVaddr: %#lx\n",
			  exccode, kvm_read_c0_guest_epc(cop0),
			  kvm_read_c0_guest_badvaddr(cop0));
	} else {
2444
		kvm_err("Trying to deliver EXC when EXL is already set\n");
2445 2446 2447 2448 2449 2450
		er = EMULATE_FAIL;
	}

	return er;
}

2451
enum emulation_result kvm_mips_check_privilege(u32 cause,
2452
					       u32 *opc,
2453 2454
					       struct kvm_run *run,
					       struct kvm_vcpu *vcpu)
2455 2456
{
	enum emulation_result er = EMULATE_DONE;
2457
	u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2458 2459 2460 2461 2462 2463
	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;

	int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);

	if (usermode) {
		switch (exccode) {
2464 2465 2466 2467 2468 2469 2470 2471
		case EXCCODE_INT:
		case EXCCODE_SYS:
		case EXCCODE_BP:
		case EXCCODE_RI:
		case EXCCODE_TR:
		case EXCCODE_MSAFPE:
		case EXCCODE_FPE:
		case EXCCODE_MSADIS:
2472 2473
			break;

2474
		case EXCCODE_CPU:
2475 2476 2477 2478
			if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 0)
				er = EMULATE_PRIV_FAIL;
			break;

2479
		case EXCCODE_MOD:
2480 2481
			break;

2482
		case EXCCODE_TLBL:
2483 2484 2485 2486
			/*
			 * We we are accessing Guest kernel space, then send an
			 * address error exception to the guest
			 */
2487
			if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
2488 2489
				kvm_debug("%s: LD MISS @ %#lx\n", __func__,
					  badvaddr);
2490
				cause &= ~0xff;
2491
				cause |= (EXCCODE_ADEL << CAUSEB_EXCCODE);
2492 2493 2494 2495
				er = EMULATE_PRIV_FAIL;
			}
			break;

2496
		case EXCCODE_TLBS:
2497 2498 2499 2500
			/*
			 * We we are accessing Guest kernel space, then send an
			 * address error exception to the guest
			 */
2501
			if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
2502 2503
				kvm_debug("%s: ST MISS @ %#lx\n", __func__,
					  badvaddr);
2504
				cause &= ~0xff;
2505
				cause |= (EXCCODE_ADES << CAUSEB_EXCCODE);
2506 2507 2508 2509
				er = EMULATE_PRIV_FAIL;
			}
			break;

2510
		case EXCCODE_ADES:
2511 2512
			kvm_debug("%s: address error ST @ %#lx\n", __func__,
				  badvaddr);
2513 2514
			if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
				cause &= ~0xff;
2515
				cause |= (EXCCODE_TLBS << CAUSEB_EXCCODE);
2516 2517 2518
			}
			er = EMULATE_PRIV_FAIL;
			break;
2519
		case EXCCODE_ADEL:
2520 2521
			kvm_debug("%s: address error LD @ %#lx\n", __func__,
				  badvaddr);
2522 2523
			if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
				cause &= ~0xff;
2524
				cause |= (EXCCODE_TLBL << CAUSEB_EXCCODE);
2525 2526 2527 2528 2529 2530 2531 2532 2533
			}
			er = EMULATE_PRIV_FAIL;
			break;
		default:
			er = EMULATE_PRIV_FAIL;
			break;
		}
	}

2534
	if (er == EMULATE_PRIV_FAIL)
2535
		kvm_mips_emulate_exc(cause, opc, run, vcpu);
2536

2537 2538 2539
	return er;
}

2540 2541
/*
 * User Address (UA) fault, this could happen if
2542 2543 2544 2545 2546
 * (1) TLB entry not present/valid in both Guest and shadow host TLBs, in this
 *     case we pass on the fault to the guest kernel and let it handle it.
 * (2) TLB entry is present in the Guest TLB but not in the shadow, in this
 *     case we inject the TLB from the Guest TLB into the shadow host TLB
 */
2547
enum emulation_result kvm_mips_handle_tlbmiss(u32 cause,
2548
					      u32 *opc,
2549 2550
					      struct kvm_run *run,
					      struct kvm_vcpu *vcpu)
2551 2552
{
	enum emulation_result er = EMULATE_DONE;
2553
	u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2554 2555 2556
	unsigned long va = vcpu->arch.host_cp0_badvaddr;
	int index;

2557 2558
	kvm_debug("kvm_mips_handle_tlbmiss: badvaddr: %#lx\n",
		  vcpu->arch.host_cp0_badvaddr);
2559

2560 2561 2562 2563 2564
	/*
	 * KVM would not have got the exception if this entry was valid in the
	 * shadow host TLB. Check the Guest TLB, if the entry is not there then
	 * send the guest an exception. The guest exc handler should then inject
	 * an entry into the guest TLB.
2565 2566
	 */
	index = kvm_mips_guest_tlb_lookup(vcpu,
2567
		      (va & VPN2_MASK) |
2568 2569
		      (kvm_read_c0_guest_entryhi(vcpu->arch.cop0) &
		       KVM_ENTRYHI_ASID));
2570
	if (index < 0) {
2571
		if (exccode == EXCCODE_TLBL) {
2572
			er = kvm_mips_emulate_tlbmiss_ld(cause, opc, run, vcpu);
2573
		} else if (exccode == EXCCODE_TLBS) {
2574 2575
			er = kvm_mips_emulate_tlbmiss_st(cause, opc, run, vcpu);
		} else {
2576 2577
			kvm_err("%s: invalid exc code: %d\n", __func__,
				exccode);
2578 2579 2580 2581 2582
			er = EMULATE_FAIL;
		}
	} else {
		struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];

2583 2584 2585 2586
		/*
		 * Check if the entry is valid, if not then setup a TLB invalid
		 * exception to the guest
		 */
2587
		if (!TLB_IS_VALID(*tlb, va)) {
2588
			if (exccode == EXCCODE_TLBL) {
2589 2590
				er = kvm_mips_emulate_tlbinv_ld(cause, opc, run,
								vcpu);
2591
			} else if (exccode == EXCCODE_TLBS) {
2592 2593 2594
				er = kvm_mips_emulate_tlbinv_st(cause, opc, run,
								vcpu);
			} else {
2595 2596
				kvm_err("%s: invalid exc code: %d\n", __func__,
					exccode);
2597 2598 2599
				er = EMULATE_FAIL;
			}
		} else {
2600
			kvm_debug("Injecting hi: %#lx, lo0: %#lx, lo1: %#lx into shadow host TLB\n",
2601
				  tlb->tlb_hi, tlb->tlb_lo[0], tlb->tlb_lo[1]);
2602 2603 2604 2605
			/*
			 * OK we have a Guest TLB entry, now inject it into the
			 * shadow host TLB
			 */
2606
			kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb);
2607 2608 2609 2610 2611
		}
	}

	return er;
}