core.h 49.7 KB
Newer Older
1
// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
/*
 * core.h - DesignWare HS OTG Controller common declarations
 *
 * Copyright (C) 2004-2013 Synopsys, Inc.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions, and the following disclaimer,
 *    without modification.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. The names of the above-listed copyright holders may not be used
 *    to endorse or promote products derived from this software without
 *    specific prior written permission.
 *
 * ALTERNATIVELY, this software may be distributed under the terms of the
 * GNU General Public License ("GPL") as published by the Free Software
 * Foundation; either version 2 of the License, or (at your option) any
 * later version.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#ifndef __DWC2_CORE_H__
#define __DWC2_CORE_H__

41 42 43 44
#include <linux/phy/phy.h>
#include <linux/regulator/consumer.h>
#include <linux/usb/gadget.h>
#include <linux/usb/otg.h>
45 46 47
#include <linux/usb/phy.h>
#include "hw.h"

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
/*
 * Suggested defines for tracers:
 * - no_printk:    Disable tracing
 * - pr_info:      Print this info to the console
 * - trace_printk: Print this info to trace buffer (good for verbose logging)
 */

#define DWC2_TRACE_SCHEDULER		no_printk
#define DWC2_TRACE_SCHEDULER_VB		no_printk

/* Detailed scheduler tracing, but won't overwhelm console */
#define dwc2_sch_dbg(hsotg, fmt, ...)					\
	DWC2_TRACE_SCHEDULER(pr_fmt("%s: SCH: " fmt),			\
			     dev_name(hsotg->dev), ##__VA_ARGS__)

/* Verbose scheduler tracing */
#define dwc2_sch_vdbg(hsotg, fmt, ...)					\
	DWC2_TRACE_SCHEDULER_VB(pr_fmt("%s: SCH: " fmt),		\
				dev_name(hsotg->dev), ##__VA_ARGS__)

68 69 70 71 72 73 74 75 76 77 78
#ifdef CONFIG_MIPS
/*
 * There are some MIPS machines that can run in either big-endian
 * or little-endian mode and that use the dwc2 register without
 * a byteswap in both ways.
 * Unlike other architectures, MIPS apparently does not require a
 * barrier before the __raw_writel() to synchronize with DMA but does
 * require the barrier after the __raw_writel() to serialize a set of
 * writes. This set of operations was added specifically for MIPS and
 * should only be used there.
 */
79
static inline u32 dwc2_readl(const void __iomem *addr)
80
{
81 82 83 84 85 86 87 88
	u32 value = __raw_readl(addr);

	/* In order to preserve endianness __raw_* operation is used. Therefore
	 * a barrier is needed to ensure IO access is not re-ordered across
	 * reads or writes
	 */
	mb();
	return value;
89 90
}

91 92 93 94 95 96 97 98 99 100 101 102
static inline void dwc2_writel(u32 value, void __iomem *addr)
{
	__raw_writel(value, addr);

	/*
	 * In order to preserve endianness __raw_* operation is used. Therefore
	 * a barrier is needed to ensure IO access is not re-ordered across
	 * reads or writes
	 */
	mb();
#ifdef DWC2_LOG_WRITES
	pr_info("INFO:: wrote %08x to %p\n", value, addr);
103
#endif
104
}
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
#else
/* Normal architectures just use readl/write */
static inline u32 dwc2_readl(const void __iomem *addr)
{
	return readl(addr);
}

static inline void dwc2_writel(u32 value, void __iomem *addr)
{
	writel(value, addr);

#ifdef DWC2_LOG_WRITES
	pr_info("info:: wrote %08x to %p\n", value, addr);
#endif
}
#endif
121 122 123 124

/* Maximum number of Endpoints/HostChannels */
#define MAX_EPS_CHANNELS	16

125 126
/* dwc2-hsotg declarations */
static const char * const dwc2_hsotg_supply_names[] = {
127 128 129 130
	"vusb_d",               /* digital USB supply, 1.2V */
	"vusb_a",               /* analog USB supply, 1.1V */
};

131 132
#define DWC2_NUM_SUPPLIES ARRAY_SIZE(dwc2_hsotg_supply_names)

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
/*
 * EP0_MPS_LIMIT
 *
 * Unfortunately there seems to be a limit of the amount of data that can
 * be transferred by IN transactions on EP0. This is either 127 bytes or 3
 * packets (which practically means 1 packet and 63 bytes of data) when the
 * MPS is set to 64.
 *
 * This means if we are wanting to move >127 bytes of data, we need to
 * split the transactions up, but just doing one packet at a time does
 * not work (this may be an implicit DATA0 PID on first packet of the
 * transaction) and doing 2 packets is outside the controller's limits.
 *
 * If we try to lower the MPS size for EP0, then no transfers work properly
 * for EP0, and the system will fail basic enumeration. As no cause for this
 * has currently been found, we cannot support any large IN transfers for
 * EP0.
 */
#define EP0_MPS_LIMIT   64

153
struct dwc2_hsotg;
154
struct dwc2_hsotg_req;
155 156

/**
157
 * struct dwc2_hsotg_ep - driver endpoint definition.
158 159 160 161 162 163 164 165 166 167 168 169 170 171
 * @ep: The gadget layer representation of the endpoint.
 * @name: The driver generated name for the endpoint.
 * @queue: Queue of requests for this endpoint.
 * @parent: Reference back to the parent device structure.
 * @req: The current request that the endpoint is processing. This is
 *       used to indicate an request has been loaded onto the endpoint
 *       and has yet to be completed (maybe due to data move, or simply
 *       awaiting an ack from the core all the data has been completed).
 * @debugfs: File entry for debugfs file for this endpoint.
 * @lock: State lock to protect contents of endpoint.
 * @dir_in: Set to true if this endpoint is of the IN direction, which
 *          means that it is sending data to the Host.
 * @index: The index for the endpoint registers.
 * @mc: Multi Count - number of transactions per microframe
172
 * @interval - Interval for periodic endpoints, in frames or microframes.
173 174 175 176
 * @name: The name array passed to the USB core.
 * @halted: Set if the endpoint has been halted.
 * @periodic: Set if this is a periodic ep, such as Interrupt
 * @isochronous: Set if this is a isochronous ep
177
 * @send_zlp: Set if we need to send a zero-length packet.
178 179 180
 * @desc_list_dma: The DMA address of descriptor chain currently in use.
 * @desc_list: Pointer to descriptor DMA chain head currently in use.
 * @desc_count: Count of entries within the DMA descriptor chain of EP.
181 182
 * @isoc_chain_num: Number of ISOC chain currently in use - either 0 or 1.
 * @next_desc: index of next free descriptor in the ISOC chain under SW control.
183 184 185 186 187
 * @total_data: The total number of data bytes done.
 * @fifo_size: The size of the FIFO (for periodic IN endpoints)
 * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
 * @last_load: The offset of data for the last start of request.
 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
188 189
 * @target_frame: Targeted frame num to setup next ISOC transfer
 * @frame_overrun: Indicates SOF number overrun in DSTS
190 191 192 193 194 195 196 197 198 199 200 201 202
 *
 * This is the driver's state for each registered enpoint, allowing it
 * to keep track of transactions that need doing. Each endpoint has a
 * lock to protect the state, to try and avoid using an overall lock
 * for the host controller as much as possible.
 *
 * For periodic IN endpoints, we have fifo_size and fifo_load to try
 * and keep track of the amount of data in the periodic FIFO for each
 * of these as we don't have a status register that tells us how much
 * is in each of them. (note, this may actually be useless information
 * as in shared-fifo mode periodic in acts like a single-frame packet
 * buffer than a fifo)
 */
203
struct dwc2_hsotg_ep {
204 205
	struct usb_ep           ep;
	struct list_head        queue;
206
	struct dwc2_hsotg       *parent;
207
	struct dwc2_hsotg_req    *req;
208 209 210 211 212 213 214
	struct dentry           *debugfs;

	unsigned long           total_data;
	unsigned int            size_loaded;
	unsigned int            last_load;
	unsigned int            fifo_load;
	unsigned short          fifo_size;
215
	unsigned short		fifo_index;
216 217 218 219

	unsigned char           dir_in;
	unsigned char           index;
	unsigned char           mc;
220
	u16                     interval;
221 222 223 224

	unsigned int            halted:1;
	unsigned int            periodic:1;
	unsigned int            isochronous:1;
225
	unsigned int            send_zlp:1;
226 227 228
	unsigned int            target_frame;
#define TARGET_FRAME_INITIAL   0xFFFFFFFF
	bool			frame_overrun;
229

230 231 232 233
	dma_addr_t		desc_list_dma;
	struct dwc2_dma_desc	*desc_list;
	u8			desc_count;

234 235 236
	unsigned char		isoc_chain_num;
	unsigned int		next_desc;

237 238 239 240
	char                    name[10];
};

/**
241
 * struct dwc2_hsotg_req - data transfer request
242 243
 * @req: The USB gadget request
 * @queue: The list of requests for the endpoint this is queued for.
244
 * @saved_req_buf: variable to save req.buf when bounce buffers are used.
245
 */
246
struct dwc2_hsotg_req {
247 248
	struct usb_request      req;
	struct list_head        queue;
249
	void *saved_req_buf;
250 251
};

252 253
#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
254 255 256 257 258 259 260 261 262
#define call_gadget(_hs, _entry) \
do { \
	if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
		(_hs)->driver && (_hs)->driver->_entry) { \
		spin_unlock(&_hs->lock); \
		(_hs)->driver->_entry(&(_hs)->gadget); \
		spin_lock(&_hs->lock); \
	} \
} while (0)
263 264 265
#else
#define call_gadget(_hs, _entry)	do {} while (0)
#endif
266

267 268 269 270 271 272 273 274 275 276 277
struct dwc2_hsotg;
struct dwc2_host_chan;

/* Device States */
enum dwc2_lx_state {
	DWC2_L0,	/* On state */
	DWC2_L1,	/* LPM sleep state */
	DWC2_L2,	/* USB suspend state */
	DWC2_L3,	/* Off state */
};

278 279 280 281 282 283 284 285 286
/* Gadget ep0 states */
enum dwc2_ep0_state {
	DWC2_EP0_SETUP,
	DWC2_EP0_DATA_IN,
	DWC2_EP0_DATA_OUT,
	DWC2_EP0_STATUS_IN,
	DWC2_EP0_STATUS_OUT,
};

287 288 289
/**
 * struct dwc2_core_params - Parameters for configuring the core
 *
290 291
 * @otg_cap:            Specifies the OTG capabilities.
 *                       0 - HNP and SRP capable
292
 *                       1 - SRP Only capable
293 294
 *                       2 - No HNP/SRP capable (always available)
 *                      Defaults to best available option (0, 1, then 2)
295
 * @host_dma:           Specifies whether to use slave or DMA mode for accessing
296 297
 *                      the data FIFOs. The driver will automatically detect the
 *                      value for this parameter if none is specified.
298
 *                       0 - Slave (always available)
299 300 301 302 303 304 305
 *                       1 - DMA (default, if available)
 * @dma_desc_enable:    When DMA mode is enabled, specifies whether to use
 *                      address DMA mode or descriptor DMA mode for accessing
 *                      the data FIFOs. The driver will automatically detect the
 *                      value for this if none is specified.
 *                       0 - Address DMA
 *                       1 - Descriptor DMA (default, if available)
306 307 308 309 310 311 312
 * @dma_desc_fs_enable: When DMA mode is enabled, specifies whether to use
 *                      address DMA mode or descriptor DMA mode for accessing
 *                      the data FIFOs in Full Speed mode only. The driver
 *                      will automatically detect the value for this if none is
 *                      specified.
 *                       0 - Address DMA
 *                       1 - Descriptor DMA in FS (default, if available)
313 314 315
 * @speed:              Specifies the maximum speed of operation in host and
 *                      device mode. The actual speed depends on the speed of
 *                      the attached device and the value of phy_type.
316 317
 *                       0 - High Speed
 *                           (default when phy_type is UTMI+ or ULPI)
318
 *                       1 - Full Speed
319
 *                           (default when phy_type is Full Speed)
320
 * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters
321
 *                       1 - Allow dynamic FIFO sizing (default, if available)
322
 * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs
323 324
 *                      are enabled for non-periodic IN endpoints in device
 *                      mode.
325 326
 * @host_rx_fifo_size:  Number of 4-byte words in the Rx FIFO in host mode when
 *                      dynamic FIFO sizing is enabled
327 328 329
 *                       16 to 32768
 *                      Actual maximum value is autodetected and also
 *                      the default.
330 331
 * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
 *                      in host mode when dynamic FIFO sizing is enabled
332 333 334
 *                       16 to 32768
 *                      Actual maximum value is autodetected and also
 *                      the default.
335 336
 * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in
 *                      host mode when dynamic FIFO sizing is enabled
337 338 339
 *                       16 to 32768
 *                      Actual maximum value is autodetected and also
 *                      the default.
340
 * @max_transfer_size:  The maximum transfer size supported, in bytes
341 342 343
 *                       2047 to 65,535
 *                      Actual maximum value is autodetected and also
 *                      the default.
344
 * @max_packet_count:   The maximum number of packets in a transfer
345 346 347
 *                       15 to 511
 *                      Actual maximum value is autodetected and also
 *                      the default.
348
 * @host_channels:      The number of host channel registers to use
349 350 351
 *                       1 to 16
 *                      Actual maximum value is autodetected and also
 *                      the default.
352 353
 * @phy_type:           Specifies the type of PHY interface to use. By default,
 *                      the driver will automatically detect the phy_type.
354 355 356 357
 *                       0 - Full Speed Phy
 *                       1 - UTMI+ Phy
 *                       2 - ULPI Phy
 *                      Defaults to best available option (2, 1, then 0)
358 359 360 361 362 363 364 365
 * @phy_utmi_width:     Specifies the UTMI+ Data Width (in bits). This parameter
 *                      is applicable for a phy_type of UTMI+ or ULPI. (For a
 *                      ULPI phy_type, this parameter indicates the data width
 *                      between the MAC and the ULPI Wrapper.) Also, this
 *                      parameter is applicable only if the OTG_HSPHY_WIDTH cC
 *                      parameter was set to "8 and 16 bits", meaning that the
 *                      core has been configured to work at either data path
 *                      width.
366
 *                       8 or 16 (default 16 if available)
367 368 369 370 371 372 373 374 375
 * @phy_ulpi_ddr:       Specifies whether the ULPI operates at double or single
 *                      data rate. This parameter is only applicable if phy_type
 *                      is ULPI.
 *                       0 - single data rate ULPI interface with 8 bit wide
 *                           data bus (default)
 *                       1 - double data rate ULPI interface with 4 bit wide
 *                           data bus
 * @phy_ulpi_ext_vbus:  For a ULPI phy, specifies whether to use the internal or
 *                      external supply to drive the VBus
376 377
 *                       0 - Internal supply (default)
 *                       1 - External supply
378 379 380 381 382
 * @i2c_enable:         Specifies whether to use the I2Cinterface for a full
 *                      speed PHY. This parameter is only applicable if phy_type
 *                      is FS.
 *                       0 - No (default)
 *                       1 - Yes
383 384 385
 * @ulpi_fs_ls:         Make ULPI phy operate in FS/LS mode only
 *                       0 - No (default)
 *                       1 - Yes
386 387 388 389 390 391
 * @host_support_fs_ls_low_power: Specifies whether low power mode is supported
 *                      when attached to a Full Speed or Low Speed device in
 *                      host mode.
 *                       0 - Don't support low power mode (default)
 *                       1 - Support low power mode
 * @host_ls_low_power_phy_clk: Specifies the PHY clock rate in low power mode
392 393 394
 *                      when connected to a Low Speed device in host
 *                      mode. This parameter is applicable only if
 *                      host_support_fs_ls_low_power is enabled.
395
 *                       0 - 48 MHz
396
 *                           (default when phy_type is UTMI+ or ULPI)
397
 *                       1 - 6 MHz
398
 *                           (default when phy_type is Full Speed)
399 400 401
 * @oc_disable:		Flag to disable overcurrent condition.
 *			0 - Allow overcurrent condition to get detected
 *			1 - Disable overcurrent condtion to get detected
402 403 404 405 406 407
 * @ts_dline:           Enable Term Select Dline pulsing
 *                       0 - No (default)
 *                       1 - Yes
 * @reload_ctl:         Allow dynamic reloading of HFIR register during runtime
 *                       0 - No (default for core < 2.92a)
 *                       1 - Yes (default for core >= 2.92a)
408 409
 * @ahbcfg:             This field allows the default value of the GAHBCFG
 *                      register to be overridden
410
 *                       -1         - GAHBCFG value will be set to 0x06
411
 *                                    (INCR, default)
412 413
 *                       all others - GAHBCFG value will be overridden with
 *                                    this value
414 415 416 417
 *                      Not all bits can be controlled like this, the
 *                      bits defined by GAHBCFG_CTRL_MASK are controlled
 *                      by the driver and are ignored in this
 *                      configuration value.
418
 * @uframe_sched:       True to enable the microframe scheduler
419 420 421 422 423
 * @external_id_pin_ctl: Specifies whether ID pin is handled externally.
 *                      Disable CONIDSTSCHNG controller interrupt in such
 *                      case.
 *                      0 - No (default)
 *                      1 - Yes
424 425 426
 * @power_down:         Specifies whether the controller support power_down.
 *			If power_down is enabled, the controller will enter
 *			power_down in both peripheral and host mode when
427 428
 *			needed.
 *			0 - No (default)
429 430
 *			1 - Partial power down
 *			2 - Hibernation
431 432 433 434 435 436 437 438 439 440 441 442 443
 * @lpm:		Enable LPM support.
 *			0 - No
 *			1 - Yes
 * @lpm_clock_gating:		Enable core PHY clock gating.
 *			0 - No
 *			1 - Yes
 * @besl:		Enable LPM Errata support.
 *			0 - No
 *			1 - Yes
 * @hird_threshold_en:	HIRD or HIRD Threshold enable.
 *			0 - No
 *			1 - Yes
 * @hird_threshold:	Value of BESL or HIRD Threshold.
444 445 446 447
 * @activate_stm_fs_transceiver: Activate internal transceiver using GGPIO
 *			register.
 *			0 - Deactivate the transceiver (default)
 *			1 - Activate the transceiver
J
John Youn 已提交
448
 * @g_dma:              Enables gadget dma usage (default: autodetect).
449
 * @g_dma_desc:         Enables gadget descriptor DMA (default: autodetect).
450 451 452 453 454 455 456 457 458 459 460 461
 * @g_rx_fifo_size:	The periodic rx fifo size for the device, in
 *			DWORDS from 16-32768 (default: 2048 if
 *			possible, otherwise autodetect).
 * @g_np_tx_fifo_size:	The non-periodic tx fifo size for the device in
 *			DWORDS from 16-32768 (default: 1024 if
 *			possible, otherwise autodetect).
 * @g_tx_fifo_size:	An array of TX fifo sizes in dedicated fifo
 *			mode. Each value corresponds to one EP
 *			starting from EP1 (max 15 values). Sizes are
 *			in DWORDS with possible values from from
 *			16-32768 (default: 256, 256, 256, 256, 768,
 *			768, 768, 768, 0, 0, 0, 0, 0, 0, 0).
462 463 464 465 466
 * @change_speed_quirk: Change speed configuration to DWC2_SPEED_PARAM_FULL
 *                      while full&low speed device connect. And change speed
 *                      back to DWC2_SPEED_PARAM_HIGH while device is gone.
 *			0 - No (default)
 *			1 - Yes
467 468
 *
 * The following parameters may be specified when starting the module. These
469 470 471 472
 * parameters define how the DWC_otg controller should be configured. A
 * value of -1 (or any other out of range value) for any parameter means
 * to read the value from hardware (if possible) or use the builtin
 * default described above.
473 474
 */
struct dwc2_core_params {
J
John Youn 已提交
475
	u8 otg_cap;
476 477 478 479
#define DWC2_CAP_PARAM_HNP_SRP_CAPABLE		0
#define DWC2_CAP_PARAM_SRP_ONLY_CAPABLE		1
#define DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE	2

J
John Youn 已提交
480
	u8 phy_type;
481 482 483 484
#define DWC2_PHY_TYPE_PARAM_FS		0
#define DWC2_PHY_TYPE_PARAM_UTMI	1
#define DWC2_PHY_TYPE_PARAM_ULPI	2

485 486 487 488 489
	u8 speed;
#define DWC2_SPEED_PARAM_HIGH	0
#define DWC2_SPEED_PARAM_FULL	1
#define DWC2_SPEED_PARAM_LOW	2

J
John Youn 已提交
490 491 492
	u8 phy_utmi_width;
	bool phy_ulpi_ddr;
	bool phy_ulpi_ext_vbus;
493 494
	bool enable_dynamic_fifo;
	bool en_multiple_tx_fifo;
J
John Youn 已提交
495
	bool i2c_enable;
496
	bool acg_enable;
J
John Youn 已提交
497 498 499 500 501
	bool ulpi_fs_ls;
	bool ts_dline;
	bool reload_ctl;
	bool uframe_sched;
	bool external_id_pin_ctl;
502 503 504 505 506 507

	int power_down;
#define DWC2_POWER_DOWN_PARAM_NONE		0
#define DWC2_POWER_DOWN_PARAM_PARTIAL		1
#define DWC2_POWER_DOWN_PARAM_HIBERNATION	2

508 509 510 511 512
	bool lpm;
	bool lpm_clock_gating;
	bool besl;
	bool hird_threshold_en;
	u8 hird_threshold;
513
	bool activate_stm_fs_transceiver;
514 515 516
	u16 max_packet_count;
	u32 max_transfer_size;
	u32 ahbcfg;
517 518 519

	/* Host parameters */
	bool host_dma;
520 521 522 523
	bool dma_desc_enable;
	bool dma_desc_fs_enable;
	bool host_support_fs_ls_low_power;
	bool host_ls_low_power_phy_clk;
524
	bool oc_disable;
525 526 527 528 529

	u8 host_channels;
	u16 host_rx_fifo_size;
	u16 host_nperio_tx_fifo_size;
	u16 host_perio_tx_fifo_size;
530 531

	/* Gadget parameters */
532
	bool g_dma;
533
	bool g_dma_desc;
534 535
	u32 g_rx_fifo_size;
	u32 g_np_tx_fifo_size;
536
	u32 g_tx_fifo_size[MAX_EPS_CHANNELS];
537 538

	bool change_speed_quirk;
539 540
};

541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
/**
 * struct dwc2_hw_params - Autodetected parameters.
 *
 * These parameters are the various parameters read from hardware
 * registers during initialization. They typically contain the best
 * supported or maximum value that can be configured in the
 * corresponding dwc2_core_params value.
 *
 * The values that are not in dwc2_core_params are documented below.
 *
 * @op_mode             Mode of Operation
 *                       0 - HNP- and SRP-Capable OTG (Host & Device)
 *                       1 - SRP-Capable OTG (Host & Device)
 *                       2 - Non-HNP and Non-SRP Capable OTG (Host & Device)
 *                       3 - SRP-Capable Device
 *                       4 - Non-OTG Device
 *                       5 - SRP-Capable Host
 *                       6 - Non-OTG Host
 * @arch                Architecture
 *                       0 - Slave only
 *                       1 - External DMA
 *                       2 - Internal DMA
 * @power_optimized     Are power optimizations enabled?
 * @num_dev_ep          Number of device endpoints available
565
 * @num_dev_in_eps      Number of device IN endpoints available
566
 * @num_dev_perio_in_ep Number of device periodic IN endpoints
567
 *                      available
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
 * @dev_token_q_depth   Device Mode IN Token Sequence Learning Queue
 *                      Depth
 *                       0 to 30
 * @host_perio_tx_q_depth
 *                      Host Mode Periodic Request Queue Depth
 *                       2, 4 or 8
 * @nperio_tx_q_depth
 *                      Non-Periodic Request Queue Depth
 *                       2, 4 or 8
 * @hs_phy_type         High-speed PHY interface type
 *                       0 - High-speed interface not supported
 *                       1 - UTMI+
 *                       2 - ULPI
 *                       3 - UTMI+ and ULPI
 * @fs_phy_type         Full-speed PHY interface type
 *                       0 - Full speed interface not supported
 *                       1 - Dedicated full speed interface
 *                       2 - FS pins shared with UTMI+ pins
 *                       3 - FS pins shared with ULPI pins
 * @total_fifo_size:    Total internal RAM for FIFOs (bytes)
588
 * @hibernation		Is hibernation enabled?
589 590 591 592
 * @utmi_phy_data_width UTMI+ PHY data width
 *                       0 - 8 bits
 *                       1 - 16 bits
 *                       2 - 8 or 16 bits
593
 * @snpsid:             Value from SNPSID register
594
 * @dev_ep_dirs:        Direction of device endpoints (GHWCFG1)
595
 * @g_tx_fifo_size[]	Power-on values of TxFIFO sizes
596 597 598 599 600 601 602
 */
struct dwc2_hw_params {
	unsigned op_mode:3;
	unsigned arch:2;
	unsigned dma_desc_enable:1;
	unsigned enable_dynamic_fifo:1;
	unsigned en_multiple_tx_fifo:1;
603
	unsigned rx_fifo_size:16;
604
	unsigned host_nperio_tx_fifo_size:16;
605
	unsigned dev_nperio_tx_fifo_size:16;
606 607 608 609 610 611
	unsigned host_perio_tx_fifo_size:16;
	unsigned nperio_tx_q_depth:3;
	unsigned host_perio_tx_q_depth:3;
	unsigned dev_token_q_depth:5;
	unsigned max_transfer_size:26;
	unsigned max_packet_count:11;
612
	unsigned host_channels:5;
613 614 615
	unsigned hs_phy_type:2;
	unsigned fs_phy_type:2;
	unsigned i2c_enable:1;
616
	unsigned acg_enable:1;
617
	unsigned num_dev_ep:4;
618
	unsigned num_dev_in_eps : 4;
619 620 621
	unsigned num_dev_perio_in_ep:4;
	unsigned total_fifo_size:16;
	unsigned power_optimized:1;
622
	unsigned hibernation:1;
623
	unsigned utmi_phy_data_width:2;
624
	unsigned lpm_mode:1;
625
	u32 snpsid;
626
	u32 dev_ep_dirs;
627
	u32 g_tx_fifo_size[MAX_EPS_CHANNELS];
628 629
};

630 631 632
/* Size of control and EP0 buffers */
#define DWC2_CTRL_BUFF_SIZE 8

633
/**
634 635
 * struct dwc2_gregs_backup - Holds global registers state before
 * entering partial power down
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
 * @gotgctl:		Backup of GOTGCTL register
 * @gintmsk:		Backup of GINTMSK register
 * @gahbcfg:		Backup of GAHBCFG register
 * @gusbcfg:		Backup of GUSBCFG register
 * @grxfsiz:		Backup of GRXFSIZ register
 * @gnptxfsiz:		Backup of GNPTXFSIZ register
 * @gi2cctl:		Backup of GI2CCTL register
 * @hptxfsiz:		Backup of HPTXFSIZ register
 * @gdfifocfg:		Backup of GDFIFOCFG register
 * @dtxfsiz:		Backup of DTXFSIZ registers for each endpoint
 * @gpwrdn:		Backup of GPWRDN register
 */
struct dwc2_gregs_backup {
	u32 gotgctl;
	u32 gintmsk;
	u32 gahbcfg;
	u32 gusbcfg;
	u32 grxfsiz;
	u32 gnptxfsiz;
	u32 gi2cctl;
	u32 hptxfsiz;
	u32 pcgcctl;
658
	u32 pcgcctl1;
659 660 661
	u32 gdfifocfg;
	u32 dtxfsiz[MAX_EPS_CHANNELS];
	u32 gpwrdn;
662
	bool valid;
663 664 665
};

/**
666 667
 * struct dwc2_dregs_backup - Holds device registers state before
 * entering partial power down
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
 * @dcfg:		Backup of DCFG register
 * @dctl:		Backup of DCTL register
 * @daintmsk:		Backup of DAINTMSK register
 * @diepmsk:		Backup of DIEPMSK register
 * @doepmsk:		Backup of DOEPMSK register
 * @diepctl:		Backup of DIEPCTL register
 * @dieptsiz:		Backup of DIEPTSIZ register
 * @diepdma:		Backup of DIEPDMA register
 * @doepctl:		Backup of DOEPCTL register
 * @doeptsiz:		Backup of DOEPTSIZ register
 * @doepdma:		Backup of DOEPDMA register
 */
struct dwc2_dregs_backup {
	u32 dcfg;
	u32 dctl;
	u32 daintmsk;
	u32 diepmsk;
	u32 doepmsk;
	u32 diepctl[MAX_EPS_CHANNELS];
	u32 dieptsiz[MAX_EPS_CHANNELS];
	u32 diepdma[MAX_EPS_CHANNELS];
	u32 doepctl[MAX_EPS_CHANNELS];
	u32 doeptsiz[MAX_EPS_CHANNELS];
	u32 doepdma[MAX_EPS_CHANNELS];
692
	bool valid;
693 694 695
};

/**
696 697
 * struct dwc2_hregs_backup - Holds host registers state before
 * entering partial power down
698 699 700 701 702 703 704 705 706 707 708 709
 * @hcfg:		Backup of HCFG register
 * @haintmsk:		Backup of HAINTMSK register
 * @hcintmsk:		Backup of HCINTMSK register
 * @hptr0:		Backup of HPTR0 register
 * @hfir:		Backup of HFIR register
 */
struct dwc2_hregs_backup {
	u32 hcfg;
	u32 haintmsk;
	u32 hcintmsk[MAX_EPS_CHANNELS];
	u32 hprt0;
	u32 hfir;
710
	bool valid;
711 712
};

713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
/*
 * Constants related to high speed periodic scheduling
 *
 * We have a periodic schedule that is DWC2_HS_SCHEDULE_UFRAMES long.  From a
 * reservation point of view it's assumed that the schedule goes right back to
 * the beginning after the end of the schedule.
 *
 * What does that mean for scheduling things with a long interval?  It means
 * we'll reserve time for them in every possible microframe that they could
 * ever be scheduled in.  ...but we'll still only actually schedule them as
 * often as they were requested.
 *
 * We keep our schedule in a "bitmap" structure.  This simplifies having
 * to keep track of and merge intervals: we just let the bitmap code do most
 * of the heavy lifting.  In a way scheduling is much like memory allocation.
 *
 * We schedule 100us per uframe or 80% of 125us (the maximum amount you're
 * supposed to schedule for periodic transfers).  That's according to spec.
 *
 * Note that though we only schedule 80% of each microframe, the bitmap that we
 * keep the schedule in is tightly packed (AKA it doesn't have 100us worth of
 * space for each uFrame).
 *
 * Requirements:
 * - DWC2_HS_SCHEDULE_UFRAMES must even divide 0x4000 (HFNUM_MAX_FRNUM + 1)
 * - DWC2_HS_SCHEDULE_UFRAMES must be 8 times DWC2_LS_SCHEDULE_FRAMES (probably
 *   could be any multiple of 8 times DWC2_LS_SCHEDULE_FRAMES, but there might
 *   be bugs).  The 8 comes from the USB spec: number of microframes per frame.
 */
#define DWC2_US_PER_UFRAME		125
#define DWC2_HS_PERIODIC_US_PER_UFRAME	100

#define DWC2_HS_SCHEDULE_UFRAMES	8
#define DWC2_HS_SCHEDULE_US		(DWC2_HS_SCHEDULE_UFRAMES * \
					 DWC2_HS_PERIODIC_US_PER_UFRAME)

/*
 * Constants related to low speed scheduling
 *
 * For high speed we schedule every 1us.  For low speed that's a bit overkill,
 * so we make up a unit called a "slice" that's worth 25us.  There are 40
 * slices in a full frame and we can schedule 36 of those (90%) for periodic
 * transfers.
 *
 * Our low speed schedule can be as short as 1 frame or could be longer.  When
 * we only schedule 1 frame it means that we'll need to reserve a time every
 * frame even for things that only transfer very rarely, so something that runs
 * every 2048 frames will get time reserved in every frame.  Our low speed
 * schedule can be longer and we'll be able to handle more overlap, but that
 * will come at increased memory cost and increased time to schedule.
 *
 * Note: one other advantage of a short low speed schedule is that if we mess
 * up and miss scheduling we can jump in and use any of the slots that we
 * happened to reserve.
 *
 * With 25 us per slice and 1 frame in the schedule, we only need 4 bytes for
 * the schedule.  There will be one schedule per TT.
 *
 * Requirements:
 * - DWC2_US_PER_SLICE must evenly divide DWC2_LS_PERIODIC_US_PER_FRAME.
 */
#define DWC2_US_PER_SLICE	25
#define DWC2_SLICES_PER_UFRAME	(DWC2_US_PER_UFRAME / DWC2_US_PER_SLICE)

#define DWC2_ROUND_US_TO_SLICE(us) \
				(DIV_ROUND_UP((us), DWC2_US_PER_SLICE) * \
				 DWC2_US_PER_SLICE)

#define DWC2_LS_PERIODIC_US_PER_FRAME \
				900
#define DWC2_LS_PERIODIC_SLICES_PER_FRAME \
				(DWC2_LS_PERIODIC_US_PER_FRAME / \
				 DWC2_US_PER_SLICE)

#define DWC2_LS_SCHEDULE_FRAMES	1
#define DWC2_LS_SCHEDULE_SLICES	(DWC2_LS_SCHEDULE_FRAMES * \
				 DWC2_LS_PERIODIC_SLICES_PER_FRAME)

791 792 793 794
/**
 * struct dwc2_hsotg - Holds the state of the driver, including the non-periodic
 * and periodic schedules
 *
795 796
 * These are common for both host and peripheral modes:
 *
797 798
 * @dev:                The struct device pointer
 * @regs:		Pointer to controller regs
799 800
 * @hw_params:          Parameters that were autodetected from the
 *                      hardware registers
801
 * @core_params:	Parameters that define how the core should be configured
802 803 804 805
 * @op_state:           The operational State, during transitions (a_host=>
 *                      a_peripheral and b_device=>b_host) this may not match
 *                      the core, but allows the software to determine
 *                      transitions
806 807 808 809
 * @dr_mode:            Requested mode of operation, one of following:
 *                      - USB_DR_MODE_PERIPHERAL
 *                      - USB_DR_MODE_HOST
 *                      - USB_DR_MODE_OTG
810 811 812 813
 * @hcd_enabled		Host mode sub-driver initialization indicator.
 * @gadget_enabled	Peripheral mode sub-driver initialization indicator.
 * @ll_hw_enabled	Status of low-level hardware resources.
 * @phy:                The otg phy transceiver structure for phy control.
814 815 816 817
 * @uphy:               The otg phy transceiver structure for old USB phy
 *                      control.
 * @plat:               The platform specific configuration data. This can be
 *                      removed once all SoCs support usb transceiver.
818 819
 * @supplies:           Definition of USB power supplies
 * @phyif:              PHY interface width
820 821
 * @lock:		Spinlock that protects all the driver data structures
 * @priv:		Stores a pointer to the struct usb_hcd
822 823 824 825 826 827 828 829 830
 * @queuing_high_bandwidth: True if multiple packets of a high-bandwidth
 *                      transfer are in process of being queued
 * @srp_success:        Stores status of SRP request in the case of a FS PHY
 *                      with an I2C interface
 * @wq_otg:             Workqueue object used for handling of some interrupts
 * @wf_otg:             Work object for handling Connector ID Status Change
 *                      interrupt
 * @wkp_timer:          Timer object for handling Wakeup Detected interrupt
 * @lx_state:           Lx state of connected device
831 832 833
 * @gregs_backup: Backup of global registers during suspend
 * @dregs_backup: Backup of device registers during suspend
 * @hregs_backup: Backup of host registers during suspend
834 835 836
 *
 * These are for host mode:
 *
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
 * @flags:              Flags for handling root port state changes
 * @non_periodic_sched_inactive: Inactive QHs in the non-periodic schedule.
 *                      Transfers associated with these QHs are not currently
 *                      assigned to a host channel.
 * @non_periodic_sched_active: Active QHs in the non-periodic schedule.
 *                      Transfers associated with these QHs are currently
 *                      assigned to a host channel.
 * @non_periodic_qh_ptr: Pointer to next QH to process in the active
 *                      non-periodic schedule
 * @periodic_sched_inactive: Inactive QHs in the periodic schedule. This is a
 *                      list of QHs for periodic transfers that are _not_
 *                      scheduled for the next frame. Each QH in the list has an
 *                      interval counter that determines when it needs to be
 *                      scheduled for execution. This scheduling mechanism
 *                      allows only a simple calculation for periodic bandwidth
 *                      used (i.e. must assume that all periodic transfers may
 *                      need to execute in the same frame). However, it greatly
 *                      simplifies scheduling and should be sufficient for the
 *                      vast majority of OTG hosts, which need to connect to a
 *                      small number of peripherals at one time. Items move from
 *                      this list to periodic_sched_ready when the QH interval
 *                      counter is 0 at SOF.
 * @periodic_sched_ready:  List of periodic QHs that are ready for execution in
 *                      the next frame, but have not yet been assigned to host
 *                      channels. Items move from this list to
 *                      periodic_sched_assigned as host channels become
 *                      available during the current frame.
 * @periodic_sched_assigned: List of periodic QHs to be executed in the next
 *                      frame that are assigned to host channels. Items move
 *                      from this list to periodic_sched_queued as the
 *                      transactions for the QH are queued to the DWC_otg
 *                      controller.
 * @periodic_sched_queued: List of periodic QHs that have been queued for
 *                      execution. Items move from this list to either
 *                      periodic_sched_inactive or periodic_sched_ready when the
 *                      channel associated with the transfer is released. If the
 *                      interval for the QH is 1, the item moves to
 *                      periodic_sched_ready because it must be rescheduled for
 *                      the next frame. Otherwise, the item moves to
 *                      periodic_sched_inactive.
877
 * @split_order:        List keeping track of channels doing splits, in order.
878 879 880 881
 * @periodic_usecs:     Total bandwidth claimed so far for periodic transfers.
 *                      This value is in microseconds per (micro)frame. The
 *                      assumption is that all periodic transfers may occur in
 *                      the same (micro)frame.
882 883 884
 * @hs_periodic_bitmap: Bitmap used by the microframe scheduler any time the
 *                      host is in high speed mode; low speed schedules are
 *                      stored elsewhere since we need one per TT.
885 886 887 888 889 890 891 892 893 894 895 896
 * @frame_number:       Frame number read from the core at SOF. The value ranges
 *                      from 0 to HFNUM_MAX_FRNUM.
 * @periodic_qh_count:  Count of periodic QHs, if using several eps. Used for
 *                      SOF enable/disable.
 * @free_hc_list:       Free host channels in the controller. This is a list of
 *                      struct dwc2_host_chan items.
 * @periodic_channels:  Number of host channels assigned to periodic transfers.
 *                      Currently assuming that there is a dedicated host
 *                      channel for each periodic transaction and at least one
 *                      host channel is available for non-periodic transactions.
 * @non_periodic_channels: Number of host channels assigned to non-periodic
 *                      transfers
897 898
 * @available_host_channels Number of host channels available for the microframe
 *                      scheduler to use
899 900 901 902 903 904 905 906 907 908 909 910
 * @hc_ptr_array:       Array of pointers to the host channel descriptors.
 *                      Allows accessing a host channel descriptor given the
 *                      host channel number. This is useful in interrupt
 *                      handlers.
 * @status_buf:         Buffer used for data received during the status phase of
 *                      a control transfer.
 * @status_buf_dma:     DMA address for status_buf
 * @start_work:         Delayed work for handling host A-cable connection
 * @reset_work:         Delayed work for handling a port reset
 * @otg_port:           OTG port number
 * @frame_list:         Frame list
 * @frame_list_dma:     Frame list DMA address
911
 * @frame_list_sz:      Frame list size
912 913
 * @desc_gen_cache:     Kmem cache for generic descriptors
 * @desc_hsisoc_cache:  Kmem cache for hs isochronous descriptors
914 915 916 917 918 919 920 921
 *
 * These are for peripheral mode:
 *
 * @driver:             USB gadget driver
 * @dedicated_fifos:    Set if the hardware has dedicated IN-EP fifos.
 * @num_of_eps:         Number of available EPs (excluding EP0)
 * @debug_root:         Root directrory for debugfs.
 * @debug_file:         Main status file for debugfs.
922
 * @debug_testmode:     Testmode status file for debugfs.
923 924 925 926 927
 * @debug_fifo:         FIFO status file for debugfs.
 * @ep0_reply:          Request used for ep0 reply.
 * @ep0_buff:           Buffer for EP0 reply data, if needed.
 * @ctrl_buff:          Buffer for EP0 control requests.
 * @ctrl_req:           Request for EP0 control packets.
928
 * @ep0_state:          EP0 control transfers state
929
 * @test_mode:          USB test mode requested by the host
930 931 932 933 934 935
 * @setup_desc_dma:	EP0 setup stage desc chain DMA address
 * @setup_desc:		EP0 setup stage desc chain pointer
 * @ctrl_in_desc_dma:	EP0 IN data phase desc chain DMA address
 * @ctrl_in_desc:	EP0 IN data phase desc chain pointer
 * @ctrl_out_desc_dma:	EP0 OUT data phase desc chain DMA address
 * @ctrl_out_desc:	EP0 OUT data phase desc chain pointer
936
 * @eps:                The endpoints being supplied to the gadget framework
937 938 939 940
 */
struct dwc2_hsotg {
	struct device *dev;
	void __iomem *regs;
941 942 943
	/** Params detected from hardware */
	struct dwc2_hw_params hw_params;
	/** Params to actually use */
944
	struct dwc2_core_params params;
945
	enum usb_otg_state op_state;
946
	enum usb_dr_mode dr_mode;
947 948
	unsigned int hcd_enabled:1;
	unsigned int gadget_enabled:1;
949
	unsigned int ll_hw_enabled:1;
950

951 952
	struct phy *phy;
	struct usb_phy *uphy;
953
	struct dwc2_hsotg_plat *plat;
954
	struct regulator_bulk_data supplies[DWC2_NUM_SUPPLIES];
955
	u32 phyif;
956 957 958 959 960

	spinlock_t lock;
	void *priv;
	int     irq;
	struct clk *clk;
961
	struct reset_control *reset;
962
	struct reset_control *reset_ecc;
963

964 965 966 967 968 969 970
	unsigned int queuing_high_bandwidth:1;
	unsigned int srp_success:1;

	struct workqueue_struct *wq_otg;
	struct work_struct wf_otg;
	struct timer_list wkp_timer;
	enum dwc2_lx_state lx_state;
971 972 973
	struct dwc2_gregs_backup gr_backup;
	struct dwc2_dregs_backup dr_backup;
	struct dwc2_hregs_backup hr_backup;
974

975
	struct dentry *debug_root;
976
	struct debugfs_regset32 *regset;
977 978 979

	/* DWC OTG HW Release versions */
#define DWC2_CORE_REV_2_71a	0x4f54271a
980
#define DWC2_CORE_REV_2_80a	0x4f54280a
981
#define DWC2_CORE_REV_2_90a	0x4f54290a
982
#define DWC2_CORE_REV_2_91a	0x4f54291a
983 984 985
#define DWC2_CORE_REV_2_92a	0x4f54292a
#define DWC2_CORE_REV_2_94a	0x4f54294a
#define DWC2_CORE_REV_3_00a	0x4f54300a
986
#define DWC2_CORE_REV_3_10a	0x4f54310a
987 988
#define DWC2_FS_IOT_REV_1_00a	0x5531100a
#define DWC2_HS_IOT_REV_1_00a	0x5532100a
989

990 991 992 993 994
	/* DWC OTG HW Core ID */
#define DWC2_OTG_ID		0x4f540000
#define DWC2_FS_IOT_ID		0x55310000
#define DWC2_HS_IOT_ID		0x55320000

995
#if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
996 997 998 999 1000 1001 1002 1003 1004 1005
	union dwc2_hcd_internal_flags {
		u32 d32;
		struct {
			unsigned port_connect_status_change:1;
			unsigned port_connect_status:1;
			unsigned port_reset_change:1;
			unsigned port_enable_change:1;
			unsigned port_suspend_change:1;
			unsigned port_over_current_change:1;
			unsigned port_l1_change:1;
1006
			unsigned reserved:25;
1007 1008 1009 1010
		} b;
	} flags;

	struct list_head non_periodic_sched_inactive;
1011
	struct list_head non_periodic_sched_waiting;
1012 1013 1014 1015 1016 1017
	struct list_head non_periodic_sched_active;
	struct list_head *non_periodic_qh_ptr;
	struct list_head periodic_sched_inactive;
	struct list_head periodic_sched_ready;
	struct list_head periodic_sched_assigned;
	struct list_head periodic_sched_queued;
1018
	struct list_head split_order;
1019
	u16 periodic_usecs;
1020 1021
	unsigned long hs_periodic_bitmap[
		DIV_ROUND_UP(DWC2_HS_SCHEDULE_US, BITS_PER_LONG)];
1022 1023
	u16 frame_number;
	u16 periodic_qh_count;
1024
	bool bus_suspended;
1025
	bool new_connection;
1026

1027 1028
	u16 last_frame_num;

1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
#define FRAME_NUM_ARRAY_SIZE 1000
	u16 *frame_num_array;
	u16 *last_frame_num_array;
	int frame_num_idx;
	int dumped_frame_num_array;
#endif

	struct list_head free_hc_list;
	int periodic_channels;
	int non_periodic_channels;
1040
	int available_host_channels;
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
	struct dwc2_host_chan *hc_ptr_array[MAX_EPS_CHANNELS];
	u8 *status_buf;
	dma_addr_t status_buf_dma;
#define DWC2_HCD_STATUS_BUF_SIZE 64

	struct delayed_work start_work;
	struct delayed_work reset_work;
	u8 otg_port;
	u32 *frame_list;
	dma_addr_t frame_list_dma;
1051
	u32 frame_list_sz;
1052 1053
	struct kmem_cache *desc_gen_cache;
	struct kmem_cache *desc_hsisoc_cache;
1054

1055 1056
#endif /* CONFIG_USB_DWC2_HOST || CONFIG_USB_DWC2_DUAL_ROLE */

1057 1058
#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1059 1060 1061 1062 1063 1064 1065 1066 1067
	/* Gadget structures */
	struct usb_gadget_driver *driver;
	int fifo_mem;
	unsigned int dedicated_fifos:1;
	unsigned char num_of_eps;
	u32 fifo_map;

	struct usb_request *ep0_reply;
	struct usb_request *ctrl_req;
1068 1069
	void *ep0_buff;
	void *ctrl_buff;
1070
	enum dwc2_ep0_state ep0_state;
1071
	u8 test_mode;
1072

1073 1074 1075 1076 1077 1078 1079
	dma_addr_t setup_desc_dma[2];
	struct dwc2_dma_desc *setup_desc[2];
	dma_addr_t ctrl_in_desc_dma;
	struct dwc2_dma_desc *ctrl_in_desc;
	dma_addr_t ctrl_out_desc_dma;
	struct dwc2_dma_desc *ctrl_out_desc;

1080
	struct usb_gadget gadget;
1081
	unsigned int enabled:1;
1082
	unsigned int connected:1;
1083 1084
	struct dwc2_hsotg_ep *eps_in[MAX_EPS_CHANNELS];
	struct dwc2_hsotg_ep *eps_out[MAX_EPS_CHANNELS];
1085
#endif /* CONFIG_USB_DWC2_PERIPHERAL || CONFIG_USB_DWC2_DUAL_ROLE */
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
};

/* Reasons for halting a host channel */
enum dwc2_halt_status {
	DWC2_HC_XFER_NO_HALT_STATUS,
	DWC2_HC_XFER_COMPLETE,
	DWC2_HC_XFER_URB_COMPLETE,
	DWC2_HC_XFER_ACK,
	DWC2_HC_XFER_NAK,
	DWC2_HC_XFER_NYET,
	DWC2_HC_XFER_STALL,
	DWC2_HC_XFER_XACT_ERR,
	DWC2_HC_XFER_FRAME_OVERRUN,
	DWC2_HC_XFER_BABBLE_ERR,
	DWC2_HC_XFER_DATA_TOGGLE_ERR,
	DWC2_HC_XFER_AHB_ERR,
	DWC2_HC_XFER_PERIODIC_INCOMPLETE,
	DWC2_HC_XFER_URB_DEQUEUE,
};

1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
/* Core version information */
static inline bool dwc2_is_iot(struct dwc2_hsotg *hsotg)
{
	return (hsotg->hw_params.snpsid & 0xfff00000) == 0x55300000;
}

static inline bool dwc2_is_fs_iot(struct dwc2_hsotg *hsotg)
{
	return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55310000;
}

static inline bool dwc2_is_hs_iot(struct dwc2_hsotg *hsotg)
{
	return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55320000;
}

1122 1123 1124 1125
/*
 * The following functions support initialization of the core driver component
 * and the DWC_otg controller
 */
1126
int dwc2_core_reset(struct dwc2_hsotg *hsotg, bool skip_wait);
1127
int dwc2_core_reset_and_force_dr_mode(struct dwc2_hsotg *hsotg);
1128 1129
int dwc2_enter_partial_power_down(struct dwc2_hsotg *hsotg);
int dwc2_exit_partial_power_down(struct dwc2_hsotg *hsotg, bool restore);
1130

J
John Youn 已提交
1131 1132
bool dwc2_force_mode_if_needed(struct dwc2_hsotg *hsotg, bool host);
void dwc2_clear_force_mode(struct dwc2_hsotg *hsotg);
1133 1134
void dwc2_force_dr_mode(struct dwc2_hsotg *hsotg);

1135
bool dwc2_is_controller_alive(struct dwc2_hsotg *hsotg);
1136 1137 1138 1139 1140 1141

/*
 * Common core Functions.
 * The following functions support managing the DWC_otg controller in either
 * device or host mode.
 */
1142 1143 1144
void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes);
void dwc2_flush_tx_fifo(struct dwc2_hsotg *hsotg, const int num);
void dwc2_flush_rx_fifo(struct dwc2_hsotg *hsotg);
1145

1146 1147
void dwc2_enable_global_interrupts(struct dwc2_hsotg *hcd);
void dwc2_disable_global_interrupts(struct dwc2_hsotg *hcd);
1148

1149 1150
void dwc2_enable_acg(struct dwc2_hsotg *hsotg);

1151
/* This function should be called on every hardware interrupt. */
1152
irqreturn_t dwc2_handle_common_intr(int irq, void *dev);
1153

J
John Youn 已提交
1154 1155 1156
/* The device ID match table */
extern const struct of_device_id dwc2_of_match_table[];

1157 1158
int dwc2_lowlevel_hw_enable(struct dwc2_hsotg *hsotg);
int dwc2_lowlevel_hw_disable(struct dwc2_hsotg *hsotg);
1159

1160 1161 1162 1163 1164
/* Common polling functions */
int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg, u32 bit,
			    u32 timeout);
int dwc2_hsotg_wait_bit_clear(struct dwc2_hsotg *hs_otg, u32 reg, u32 bit,
			      u32 timeout);
1165
/* Parameters */
1166
int dwc2_get_hwparams(struct dwc2_hsotg *hsotg);
1167 1168
int dwc2_init_params(struct dwc2_hsotg *hsotg);

1169 1170 1171 1172 1173 1174 1175 1176
/*
 * The following functions check the controller's OTG operation mode
 * capability (GHWCFG2.OTG_MODE).
 *
 * These functions can be used before the internal hsotg->hw_params
 * are read in and cached so they always read directly from the
 * GHWCFG2 register.
 */
1177
unsigned int dwc2_op_mode(struct dwc2_hsotg *hsotg);
1178 1179 1180 1181
bool dwc2_hw_is_otg(struct dwc2_hsotg *hsotg);
bool dwc2_hw_is_host(struct dwc2_hsotg *hsotg);
bool dwc2_hw_is_device(struct dwc2_hsotg *hsotg);

1182 1183 1184 1185 1186 1187 1188
/*
 * Returns the mode of operation, host or device
 */
static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg)
{
	return (dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) != 0;
}
1189

1190 1191 1192 1193 1194
static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg)
{
	return (dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) == 0;
}

1195 1196 1197
/*
 * Dump core registers and SPRAM
 */
1198 1199 1200
void dwc2_dump_dev_registers(struct dwc2_hsotg *hsotg);
void dwc2_dump_host_registers(struct dwc2_hsotg *hsotg);
void dwc2_dump_global_registers(struct dwc2_hsotg *hsotg);
1201

1202
/* Gadget defines */
1203 1204
#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1205 1206 1207
int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg);
int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2);
int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2);
1208
int dwc2_gadget_init(struct dwc2_hsotg *hsotg);
1209 1210 1211 1212 1213
void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
				       bool reset);
void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg);
void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2);
int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode);
1214
#define dwc2_is_device_connected(hsotg) (hsotg->connected)
1215 1216
int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg);
int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg);
1217 1218 1219
int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg);
int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg);
int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg);
1220
void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg);
1221
#else
1222
static inline int dwc2_hsotg_remove(struct dwc2_hsotg *dwc2)
1223
{ return 0; }
1224
static inline int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2)
1225
{ return 0; }
1226
static inline int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2)
1227
{ return 0; }
1228
static inline int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
1229
{ return 0; }
1230
static inline void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1231
						     bool reset) {}
1232 1233 1234
static inline void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) {}
static inline void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2) {}
static inline int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg,
1235
					   int testmode)
1236
{ return 0; }
1237
#define dwc2_is_device_connected(hsotg) (0)
1238 1239 1240 1241
static inline int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
{ return 0; }
static inline int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
{ return 0; }
1242 1243 1244 1245 1246 1247
static inline int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
{ return 0; }
static inline int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
{ return 0; }
static inline int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
{ return 0; }
1248
static inline void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg) {}
1249 1250 1251
#endif

#if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1252 1253 1254 1255 1256
int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg);
int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us);
void dwc2_hcd_connect(struct dwc2_hsotg *hsotg);
void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force);
void dwc2_hcd_start(struct dwc2_hsotg *hsotg);
1257 1258
int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg);
int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg);
1259 1260 1261
#else
static inline int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
{ return 0; }
1262 1263 1264
static inline int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg,
						   int us)
{ return 0; }
1265 1266
static inline void dwc2_hcd_connect(struct dwc2_hsotg *hsotg) {}
static inline void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force) {}
1267 1268
static inline void dwc2_hcd_start(struct dwc2_hsotg *hsotg) {}
static inline void dwc2_hcd_remove(struct dwc2_hsotg *hsotg) {}
1269
static inline int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
1270
{ return 0; }
1271 1272 1273 1274 1275
static inline int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
{ return 0; }
static inline int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
{ return 0; }

1276 1277
#endif

1278
#endif /* __DWC2_CORE_H__ */