amd64_edac.c 75.1 KB
Newer Older
1
#include "amd64_edac.h"
2
#include <asm/amd_nb.h>
3

4
static struct edac_pci_ctl_info *pci_ctl;
5 6 7 8 9 10 11 12 13 14 15

static int report_gart_errors;
module_param(report_gart_errors, int, 0644);

/*
 * Set by command line parameter. If BIOS has enabled the ECC, this override is
 * cleared to prevent re-enabling the hardware by this driver.
 */
static int ecc_enable_override;
module_param(ecc_enable_override, int, 0644);

16
static struct msr __percpu *msrs;
17

18 19 20 21 22
/*
 * count successfully initialized driver instances for setup_pci_device()
 */
static atomic_t drv_instances = ATOMIC_INIT(0);

23 24
/* Per-node driver instances */
static struct mem_ctl_info **mcis;
25
static struct ecc_settings **ecc_stngs;
26

27 28 29 30 31 32 33
/*
 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
 * or higher value'.
 *
 *FIXME: Produce a better mapping/linearisation.
 */
34
static const struct scrubrate {
35 36 37
       u32 scrubval;           /* bit pattern for scrub rate */
       u32 bandwidth;          /* bandwidth consumed (bytes/sec) */
} scrubrates[] = {
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
	{ 0x01, 1600000000UL},
	{ 0x02, 800000000UL},
	{ 0x03, 400000000UL},
	{ 0x04, 200000000UL},
	{ 0x05, 100000000UL},
	{ 0x06, 50000000UL},
	{ 0x07, 25000000UL},
	{ 0x08, 12284069UL},
	{ 0x09, 6274509UL},
	{ 0x0A, 3121951UL},
	{ 0x0B, 1560975UL},
	{ 0x0C, 781440UL},
	{ 0x0D, 390720UL},
	{ 0x0E, 195300UL},
	{ 0x0F, 97650UL},
	{ 0x10, 48854UL},
	{ 0x11, 24427UL},
	{ 0x12, 12213UL},
	{ 0x13, 6101UL},
	{ 0x14, 3051UL},
	{ 0x15, 1523UL},
	{ 0x16, 761UL},
	{ 0x00, 0UL},        /* scrubbing off */
};

63 64
int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
			       u32 *val, const char *func)
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
{
	int err = 0;

	err = pci_read_config_dword(pdev, offset, val);
	if (err)
		amd64_warn("%s: error reading F%dx%03x.\n",
			   func, PCI_FUNC(pdev->devfn), offset);

	return err;
}

int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
				u32 val, const char *func)
{
	int err = 0;

	err = pci_write_config_dword(pdev, offset, val);
	if (err)
		amd64_warn("%s: error writing to F%dx%03x.\n",
			   func, PCI_FUNC(pdev->devfn), offset);

	return err;
}

/*
 *
 * Depending on the family, F2 DCT reads need special handling:
 *
 * K8: has a single DCT only
 *
 * F10h: each DCT has its own set of regs
 *	DCT0 -> F2x040..
 *	DCT1 -> F2x140..
 *
 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
 *
101
 * F16h: has only 1 DCT
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
 */
static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
			       const char *func)
{
	if (addr >= 0x100)
		return -EINVAL;

	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
}

static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
				 const char *func)
{
	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
}

118 119 120 121 122 123 124 125
/*
 * Select DCT to which PCI cfg accesses are routed
 */
static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
{
	u32 reg = 0;

	amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
126
	reg &= (pvt->model >= 0x30) ? ~3 : ~1;
127 128 129 130
	reg |= dct;
	amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
}

131 132 133 134 135
static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
				 const char *func)
{
	u8 dct  = 0;

136
	/* For F15 M30h, the second dct is DCT 3, refer to BKDG Section 2.10 */
137
	if (addr >= 0x140 && addr <= 0x1a0) {
138
		dct   = (pvt->model >= 0x30) ? 3 : 1;
139 140 141
		addr -= 0x100;
	}

142
	f15h_select_dct(pvt, dct);
143 144 145 146

	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
}

147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
/*
 * Memory scrubber control interface. For K8, memory scrubbing is handled by
 * hardware and can involve L2 cache, dcache as well as the main memory. With
 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
 * functionality.
 *
 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
 * bytes/sec for the setting.
 *
 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
 * other archs, we might not have access to the caches directly.
 */

/*
 * scan the scrub rate mapping table for a close or matching bandwidth value to
 * issue. If requested is too big, then use last maximum value found.
 */
165
static int __set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
166 167 168 169 170 171 172 173 174
{
	u32 scrubval;
	int i;

	/*
	 * map the configured rate (new_bw) to a value specific to the AMD64
	 * memory controller and apply to register. Search for the first
	 * bandwidth entry that is greater or equal than the setting requested
	 * and program that. If at last entry, turn off DRAM scrubbing.
175 176 177
	 *
	 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
	 * by falling back to the last element in scrubrates[].
178
	 */
179
	for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
180 181 182 183
		/*
		 * skip scrub rates which aren't recommended
		 * (see F10 BKDG, F3x58)
		 */
184
		if (scrubrates[i].scrubval < min_rate)
185 186 187 188 189 190 191 192
			continue;

		if (scrubrates[i].bandwidth <= new_bw)
			break;
	}

	scrubval = scrubrates[i].scrubval;

193
	pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
194

195 196 197
	if (scrubval)
		return scrubrates[i].bandwidth;

198 199 200
	return 0;
}

201
static int set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
202 203
{
	struct amd64_pvt *pvt = mci->pvt_info;
204
	u32 min_scrubrate = 0x5;
205

206
	if (pvt->fam == 0xf)
207 208
		min_scrubrate = 0x0;

209 210
	/* Erratum #505 */
	if (pvt->fam == 0x15 && pvt->model < 0x10)
211 212
		f15h_select_dct(pvt, 0);

213
	return __set_scrub_rate(pvt->F3, bw, min_scrubrate);
214 215
}

216
static int get_scrub_rate(struct mem_ctl_info *mci)
217 218 219
{
	struct amd64_pvt *pvt = mci->pvt_info;
	u32 scrubval = 0;
220
	int i, retval = -EINVAL;
221

222 223
	/* Erratum #505 */
	if (pvt->fam == 0x15 && pvt->model < 0x10)
224 225
		f15h_select_dct(pvt, 0);

226
	amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
227 228 229

	scrubval = scrubval & 0x001F;

230
	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
231
		if (scrubrates[i].scrubval == scrubval) {
232
			retval = scrubrates[i].bandwidth;
233 234 235
			break;
		}
	}
236
	return retval;
237 238
}

239
/*
240 241
 * returns true if the SysAddr given by sys_addr matches the
 * DRAM base/limit associated with node_id
242
 */
243
static bool base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, u8 nid)
244
{
245
	u64 addr;
246 247 248 249 250 251 252 253 254

	/* The K8 treats this as a 40-bit value.  However, bits 63-40 will be
	 * all ones if the most significant implemented address bit is 1.
	 * Here we discard bits 63-40.  See section 3.4.2 of AMD publication
	 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
	 * Application Programming.
	 */
	addr = sys_addr & 0x000000ffffffffffull;

255 256
	return ((addr >= get_dram_base(pvt, nid)) &&
		(addr <= get_dram_limit(pvt, nid)));
257 258 259 260 261 262 263 264 265 266 267 268
}

/*
 * Attempt to map a SysAddr to a node. On success, return a pointer to the
 * mem_ctl_info structure for the node that the SysAddr maps to.
 *
 * On failure, return NULL.
 */
static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
						u64 sys_addr)
{
	struct amd64_pvt *pvt;
269
	u8 node_id;
270 271 272 273 274 275 276 277 278 279 280 281 282
	u32 intlv_en, bits;

	/*
	 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
	 * 3.4.4.2) registers to map the SysAddr to a node ID.
	 */
	pvt = mci->pvt_info;

	/*
	 * The value of this field should be the same for all DRAM Base
	 * registers.  Therefore we arbitrarily choose to read it from the
	 * register for node 0.
	 */
283
	intlv_en = dram_intlv_en(pvt, 0);
284 285

	if (intlv_en == 0) {
286
		for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
287
			if (base_limit_match(pvt, sys_addr, node_id))
288
				goto found;
289
		}
290
		goto err_no_match;
291 292
	}

293 294 295
	if (unlikely((intlv_en != 0x01) &&
		     (intlv_en != 0x03) &&
		     (intlv_en != 0x07))) {
296
		amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
297 298 299 300 301 302
		return NULL;
	}

	bits = (((u32) sys_addr) >> 12) & intlv_en;

	for (node_id = 0; ; ) {
303
		if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
304 305
			break;	/* intlv_sel field matches */

306
		if (++node_id >= DRAM_RANGES)
307 308 309 310
			goto err_no_match;
	}

	/* sanity test for sys_addr */
311
	if (unlikely(!base_limit_match(pvt, sys_addr, node_id))) {
312 313 314
		amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
			   "range for node %d with node interleaving enabled.\n",
			   __func__, sys_addr, node_id);
315 316 317 318
		return NULL;
	}

found:
319
	return edac_mc_find((int)node_id);
320 321

err_no_match:
322 323
	edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
		 (unsigned long)sys_addr);
324 325 326

	return NULL;
}
327 328

/*
329 330
 * compute the CS base address of the @csrow on the DRAM controller @dct.
 * For details see F2x[5C:40] in the processor's BKDG
331
 */
332 333
static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
				 u64 *base, u64 *mask)
334
{
335 336
	u64 csbase, csmask, base_bits, mask_bits;
	u8 addr_shift;
337

338
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
339 340
		csbase		= pvt->csels[dct].csbases[csrow];
		csmask		= pvt->csels[dct].csmasks[csrow];
341 342
		base_bits	= GENMASK_ULL(31, 21) | GENMASK_ULL(15, 9);
		mask_bits	= GENMASK_ULL(29, 21) | GENMASK_ULL(15, 9);
343
		addr_shift	= 4;
344 345

	/*
346 347 348 349 350
	 * F16h and F15h, models 30h and later need two addr_shift values:
	 * 8 for high and 6 for low (cf. F16h BKDG).
	 */
	} else if (pvt->fam == 0x16 ||
		  (pvt->fam == 0x15 && pvt->model >= 0x30)) {
351 352 353
		csbase          = pvt->csels[dct].csbases[csrow];
		csmask          = pvt->csels[dct].csmasks[csrow >> 1];

354 355
		*base  = (csbase & GENMASK_ULL(15,  5)) << 6;
		*base |= (csbase & GENMASK_ULL(30, 19)) << 8;
356 357 358

		*mask = ~0ULL;
		/* poke holes for the csmask */
359 360
		*mask &= ~((GENMASK_ULL(15, 5)  << 6) |
			   (GENMASK_ULL(30, 19) << 8));
361

362 363
		*mask |= (csmask & GENMASK_ULL(15, 5))  << 6;
		*mask |= (csmask & GENMASK_ULL(30, 19)) << 8;
364 365

		return;
366 367 368 369
	} else {
		csbase		= pvt->csels[dct].csbases[csrow];
		csmask		= pvt->csels[dct].csmasks[csrow >> 1];
		addr_shift	= 8;
370

371
		if (pvt->fam == 0x15)
372 373
			base_bits = mask_bits =
				GENMASK_ULL(30,19) | GENMASK_ULL(13,5);
374
		else
375 376
			base_bits = mask_bits =
				GENMASK_ULL(28,19) | GENMASK_ULL(13,5);
377
	}
378

379
	*base  = (csbase & base_bits) << addr_shift;
380

381 382 383 384 385
	*mask  = ~0ULL;
	/* poke holes for the csmask */
	*mask &= ~(mask_bits << addr_shift);
	/* OR them in */
	*mask |= (csmask & mask_bits) << addr_shift;
386 387
}

388 389 390
#define for_each_chip_select(i, dct, pvt) \
	for (i = 0; i < pvt->csels[dct].b_cnt; i++)

391 392 393
#define chip_select_base(i, dct, pvt) \
	pvt->csels[dct].csbases[i]

394 395 396
#define for_each_chip_select_mask(i, dct, pvt) \
	for (i = 0; i < pvt->csels[dct].m_cnt; i++)

397 398 399 400 401 402 403 404 405 406 407 408
/*
 * @input_addr is an InputAddr associated with the node given by mci. Return the
 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
 */
static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
{
	struct amd64_pvt *pvt;
	int csrow;
	u64 base, mask;

	pvt = mci->pvt_info;

409 410
	for_each_chip_select(csrow, 0, pvt) {
		if (!csrow_enabled(csrow, 0, pvt))
411 412
			continue;

413 414 415
		get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);

		mask = ~mask;
416 417

		if ((input_addr & mask) == (base & mask)) {
418 419 420
			edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
				 (unsigned long)input_addr, csrow,
				 pvt->mc_node_id);
421 422 423 424

			return csrow;
		}
	}
425 426
	edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
		 (unsigned long)input_addr, pvt->mc_node_id);
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452

	return -1;
}

/*
 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
 * for the node represented by mci. Info is passed back in *hole_base,
 * *hole_offset, and *hole_size.  Function returns 0 if info is valid or 1 if
 * info is invalid. Info may be invalid for either of the following reasons:
 *
 * - The revision of the node is not E or greater.  In this case, the DRAM Hole
 *   Address Register does not exist.
 *
 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
 *   indicating that its contents are not valid.
 *
 * The values passed back in *hole_base, *hole_offset, and *hole_size are
 * complete 32-bit values despite the fact that the bitfields in the DHAR
 * only represent bits 31-24 of the base and offset values.
 */
int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
			     u64 *hole_offset, u64 *hole_size)
{
	struct amd64_pvt *pvt = mci->pvt_info;

	/* only revE and later have the DRAM Hole Address Register */
453
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) {
454 455
		edac_dbg(1, "  revision %d for node %d does not support DHAR\n",
			 pvt->ext_model, pvt->mc_node_id);
456 457 458
		return 1;
	}

459
	/* valid for Fam10h and above */
460
	if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
461
		edac_dbg(1, "  Dram Memory Hoisting is DISABLED on this system\n");
462 463 464
		return 1;
	}

465
	if (!dhar_valid(pvt)) {
466 467
		edac_dbg(1, "  Dram Memory Hoisting is DISABLED on this node %d\n",
			 pvt->mc_node_id);
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
		return 1;
	}

	/* This node has Memory Hoisting */

	/* +------------------+--------------------+--------------------+-----
	 * | memory           | DRAM hole          | relocated          |
	 * | [0, (x - 1)]     | [x, 0xffffffff]    | addresses from     |
	 * |                  |                    | DRAM hole          |
	 * |                  |                    | [0x100000000,      |
	 * |                  |                    |  (0x100000000+     |
	 * |                  |                    |   (0xffffffff-x))] |
	 * +------------------+--------------------+--------------------+-----
	 *
	 * Above is a diagram of physical memory showing the DRAM hole and the
	 * relocated addresses from the DRAM hole.  As shown, the DRAM hole
	 * starts at address x (the base address) and extends through address
	 * 0xffffffff.  The DRAM Hole Address Register (DHAR) relocates the
	 * addresses in the hole so that they start at 0x100000000.
	 */

489 490
	*hole_base = dhar_base(pvt);
	*hole_size = (1ULL << 32) - *hole_base;
491

492 493
	*hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt)
					: k8_dhar_offset(pvt);
494

495 496 497
	edac_dbg(1, "  DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
		 pvt->mc_node_id, (unsigned long)*hole_base,
		 (unsigned long)*hole_offset, (unsigned long)*hole_size);
498 499 500 501 502

	return 0;
}
EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);

503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
/*
 * Return the DramAddr that the SysAddr given by @sys_addr maps to.  It is
 * assumed that sys_addr maps to the node given by mci.
 *
 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
 * then it is also involved in translating a SysAddr to a DramAddr. Sections
 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
 * These parts of the documentation are unclear. I interpret them as follows:
 *
 * When node n receives a SysAddr, it processes the SysAddr as follows:
 *
 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
 *    Limit registers for node n. If the SysAddr is not within the range
 *    specified by the base and limit values, then node n ignores the Sysaddr
 *    (since it does not map to node n). Otherwise continue to step 2 below.
 *
 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
 *    disabled so skip to step 3 below. Otherwise see if the SysAddr is within
 *    the range of relocated addresses (starting at 0x100000000) from the DRAM
 *    hole. If not, skip to step 3 below. Else get the value of the
 *    DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
 *    offset defined by this value from the SysAddr.
 *
 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
 *    Base register for node n. To obtain the DramAddr, subtract the base
 *    address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
 */
static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
534
	struct amd64_pvt *pvt = mci->pvt_info;
535
	u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
536
	int ret;
537

538
	dram_base = get_dram_base(pvt, pvt->mc_node_id);
539 540 541 542

	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
				      &hole_size);
	if (!ret) {
543 544
		if ((sys_addr >= (1ULL << 32)) &&
		    (sys_addr < ((1ULL << 32) + hole_size))) {
545 546 547
			/* use DHAR to translate SysAddr to DramAddr */
			dram_addr = sys_addr - hole_offset;

548 549 550
			edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
				 (unsigned long)sys_addr,
				 (unsigned long)dram_addr);
551 552 553 554 555 556 557 558 559 560 561 562 563 564

			return dram_addr;
		}
	}

	/*
	 * Translate the SysAddr to a DramAddr as shown near the start of
	 * section 3.4.4 (p. 70).  Although sys_addr is a 64-bit value, the k8
	 * only deals with 40-bit values.  Therefore we discard bits 63-40 of
	 * sys_addr below.  If bit 39 of sys_addr is 1 then the bits we
	 * discard are all 1s.  Otherwise the bits we discard are all 0s.  See
	 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
	 * Programmer's Manual Volume 1 Application Programming.
	 */
565
	dram_addr = (sys_addr & GENMASK_ULL(39, 0)) - dram_base;
566

567 568
	edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
		 (unsigned long)sys_addr, (unsigned long)dram_addr);
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
	return dram_addr;
}

/*
 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
 * (section 3.4.4.1).  Return the number of bits from a SysAddr that are used
 * for node interleaving.
 */
static int num_node_interleave_bits(unsigned intlv_en)
{
	static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
	int n;

	BUG_ON(intlv_en > 7);
	n = intlv_shift_table[intlv_en];
	return n;
}

/* Translate the DramAddr given by @dram_addr to an InputAddr. */
static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
{
	struct amd64_pvt *pvt;
	int intlv_shift;
	u64 input_addr;

	pvt = mci->pvt_info;

	/*
	 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
	 * concerning translating a DramAddr to an InputAddr.
	 */
600
	intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
601
	input_addr = ((dram_addr >> intlv_shift) & GENMASK_ULL(35, 12)) +
602
		      (dram_addr & 0xfff);
603

604 605 606
	edac_dbg(2, "  Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
		 intlv_shift, (unsigned long)dram_addr,
		 (unsigned long)input_addr);
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621

	return input_addr;
}

/*
 * Translate the SysAddr represented by @sys_addr to an InputAddr.  It is
 * assumed that @sys_addr maps to the node given by mci.
 */
static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
	u64 input_addr;

	input_addr =
	    dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));

622 623
	edac_dbg(2, "SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
		 (unsigned long)sys_addr, (unsigned long)input_addr);
624 625 626 627 628 629

	return input_addr;
}

/* Map the Error address to a PAGE and PAGE OFFSET. */
static inline void error_address_to_page_and_offset(u64 error_address,
630
						    struct err_info *err)
631
{
632 633
	err->page = (u32) (error_address >> PAGE_SHIFT);
	err->offset = ((u32) error_address) & ~PAGE_MASK;
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
}

/*
 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
 * of a node that detected an ECC memory error.  mci represents the node that
 * the error address maps to (possibly different from the node that detected
 * the error).  Return the number of the csrow that sys_addr maps to, or -1 on
 * error.
 */
static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
{
	int csrow;

	csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));

	if (csrow == -1)
651 652
		amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
				  "address 0x%lx\n", (unsigned long)sys_addr);
653 654
	return csrow;
}
655

656
static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
657 658 659 660 661

/*
 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
 * are ECC capable.
 */
662
static unsigned long determine_edac_cap(struct amd64_pvt *pvt)
663
{
664
	u8 bit;
665
	unsigned long edac_cap = EDAC_FLAG_NONE;
666

667
	bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F)
668 669 670
		? 19
		: 17;

671
	if (pvt->dclr0 & BIT(bit))
672 673 674 675 676
		edac_cap = EDAC_FLAG_SECDED;

	return edac_cap;
}

677
static void debug_display_dimm_sizes(struct amd64_pvt *, u8);
678

679
static void debug_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan)
680
{
681
	edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
682

683 684 685
	edac_dbg(1, "  DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
		 (dclr & BIT(16)) ?  "un" : "",
		 (dclr & BIT(19)) ? "yes" : "no");
686

687 688
	edac_dbg(1, "  PAR/ERR parity: %s\n",
		 (dclr & BIT(8)) ?  "enabled" : "disabled");
689

690
	if (pvt->fam == 0x10)
691 692
		edac_dbg(1, "  DCT 128bit mode width: %s\n",
			 (dclr & BIT(11)) ?  "128b" : "64b");
693

694 695 696 697 698
	edac_dbg(1, "  x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
		 (dclr & BIT(12)) ?  "yes" : "no",
		 (dclr & BIT(13)) ?  "yes" : "no",
		 (dclr & BIT(14)) ?  "yes" : "no",
		 (dclr & BIT(15)) ?  "yes" : "no");
699 700
}

701
/* Display and decode various NB registers for debug purposes. */
702
static void dump_misc_regs(struct amd64_pvt *pvt)
703
{
704
	edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
705

706 707
	edac_dbg(1, "  NB two channel DRAM capable: %s\n",
		 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
708

709 710 711
	edac_dbg(1, "  ECC capable: %s, ChipKill ECC capable: %s\n",
		 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
		 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
712

713
	debug_dump_dramcfg_low(pvt, pvt->dclr0, 0);
714

715
	edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
716

717 718
	edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
		 pvt->dhar, dhar_base(pvt),
719 720
		 (pvt->fam == 0xf) ? k8_dhar_offset(pvt)
				   : f10_dhar_offset(pvt));
721

722
	edac_dbg(1, "  DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
723

724
	debug_display_dimm_sizes(pvt, 0);
725

726
	/* everything below this point is Fam10h and above */
727
	if (pvt->fam == 0xf)
728
		return;
729

730
	debug_display_dimm_sizes(pvt, 1);
731

732
	amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
733

734
	/* Only if NOT ganged does dclr1 have valid info */
735
	if (!dct_ganging_enabled(pvt))
736
		debug_dump_dramcfg_low(pvt, pvt->dclr1, 1);
737 738
}

739
/*
740
 * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
741
 */
742
static void prep_chip_selects(struct amd64_pvt *pvt)
743
{
744
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
745 746
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
747 748 749
	} else if (pvt->fam == 0x15 && pvt->model >= 0x30) {
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 4;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 2;
750
	} else {
751 752
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
753 754 755 756
	}
}

/*
757
 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
758
 */
759
static void read_dct_base_mask(struct amd64_pvt *pvt)
760
{
761
	int cs;
762

763
	prep_chip_selects(pvt);
764

765
	for_each_chip_select(cs, 0, pvt) {
766 767
		int reg0   = DCSB0 + (cs * 4);
		int reg1   = DCSB1 + (cs * 4);
768 769
		u32 *base0 = &pvt->csels[0].csbases[cs];
		u32 *base1 = &pvt->csels[1].csbases[cs];
770

771
		if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
772 773
			edac_dbg(0, "  DCSB0[%d]=0x%08x reg: F2x%x\n",
				 cs, *base0, reg0);
774

775
		if (pvt->fam == 0xf || dct_ganging_enabled(pvt))
776
			continue;
777

778
		if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
779 780
			edac_dbg(0, "  DCSB1[%d]=0x%08x reg: F2x%x\n",
				 cs, *base1, reg1);
781 782
	}

783
	for_each_chip_select_mask(cs, 0, pvt) {
784 785
		int reg0   = DCSM0 + (cs * 4);
		int reg1   = DCSM1 + (cs * 4);
786 787
		u32 *mask0 = &pvt->csels[0].csmasks[cs];
		u32 *mask1 = &pvt->csels[1].csmasks[cs];
788

789
		if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
790 791
			edac_dbg(0, "    DCSM0[%d]=0x%08x reg: F2x%x\n",
				 cs, *mask0, reg0);
792

793
		if (pvt->fam == 0xf || dct_ganging_enabled(pvt))
794
			continue;
795

796
		if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
797 798
			edac_dbg(0, "    DCSM1[%d]=0x%08x reg: F2x%x\n",
				 cs, *mask1, reg1);
799 800 801
	}
}

802
static enum mem_type determine_memory_type(struct amd64_pvt *pvt, int cs)
803 804 805
{
	enum mem_type type;

806
	/* F15h supports only DDR3 */
807
	if (pvt->fam >= 0x15)
808
		type = (pvt->dclr0 & BIT(16)) ?	MEM_DDR3 : MEM_RDDR3;
809
	else if (pvt->fam == 0x10 || pvt->ext_model >= K8_REV_F) {
810 811 812 813
		if (pvt->dchr0 & DDR3_MODE)
			type = (pvt->dclr0 & BIT(16)) ?	MEM_DDR3 : MEM_RDDR3;
		else
			type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
814 815 816 817
	} else {
		type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
	}

818
	amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
819 820 821 822

	return type;
}

823
/* Get the number of DCT channels the memory controller is using. */
824 825
static int k8_early_channel_count(struct amd64_pvt *pvt)
{
826
	int flag;
827

828
	if (pvt->ext_model >= K8_REV_F)
829
		/* RevF (NPT) and later */
830
		flag = pvt->dclr0 & WIDTH_128;
831
	else
832 833 834 835 836 837 838 839 840
		/* RevE and earlier */
		flag = pvt->dclr0 & REVE_WIDTH_128;

	/* not used */
	pvt->dclr1 = 0;

	return (flag) ? 2 : 1;
}

841
/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
842
static u64 get_error_address(struct amd64_pvt *pvt, struct mce *m)
843
{
844
	u64 addr;
845 846 847
	u8 start_bit = 1;
	u8 end_bit   = 47;

848
	if (pvt->fam == 0xf) {
849 850 851 852
		start_bit = 3;
		end_bit   = 39;
	}

853
	addr = m->addr & GENMASK_ULL(end_bit, start_bit);
854 855 856 857

	/*
	 * Erratum 637 workaround
	 */
858
	if (pvt->fam == 0x15) {
859 860 861
		struct amd64_pvt *pvt;
		u64 cc6_base, tmp_addr;
		u32 tmp;
862 863
		u16 mce_nid;
		u8 intlv_en;
864

865
		if ((addr & GENMASK_ULL(47, 24)) >> 24 != 0x00fdf7)
866 867 868 869 870 871 872 873 874
			return addr;

		mce_nid	= amd_get_nb_id(m->extcpu);
		pvt	= mcis[mce_nid]->pvt_info;

		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
		intlv_en = tmp >> 21 & 0x7;

		/* add [47:27] + 3 trailing bits */
875
		cc6_base  = (tmp & GENMASK_ULL(20, 0)) << 3;
876 877 878 879 880 881 882 883

		/* reverse and add DramIntlvEn */
		cc6_base |= intlv_en ^ 0x7;

		/* pin at [47:24] */
		cc6_base <<= 24;

		if (!intlv_en)
884
			return cc6_base | (addr & GENMASK_ULL(23, 0));
885 886 887 888

		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);

							/* faster log2 */
889
		tmp_addr  = (addr & GENMASK_ULL(23, 12)) << __fls(intlv_en + 1);
890 891

		/* OR DramIntlvSel into bits [14:12] */
892
		tmp_addr |= (tmp & GENMASK_ULL(23, 21)) >> 9;
893 894

		/* add remaining [11:0] bits from original MC4_ADDR */
895
		tmp_addr |= addr & GENMASK_ULL(11, 0);
896 897 898 899 900

		return cc6_base | tmp_addr;
	}

	return addr;
901 902
}

903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
static struct pci_dev *pci_get_related_function(unsigned int vendor,
						unsigned int device,
						struct pci_dev *related)
{
	struct pci_dev *dev = NULL;

	while ((dev = pci_get_device(vendor, device, dev))) {
		if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) &&
		    (dev->bus->number == related->bus->number) &&
		    (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
			break;
	}

	return dev;
}

919
static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
920
{
921
	struct amd_northbridge *nb;
922 923
	struct pci_dev *f1 = NULL;
	unsigned int pci_func;
924
	int off = range << 3;
925
	u32 llim;
926

927 928
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off,  &pvt->ranges[range].base.lo);
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
929

930
	if (pvt->fam == 0xf)
931
		return;
932

933 934
	if (!dram_rw(pvt, range))
		return;
935

936 937
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off,  &pvt->ranges[range].base.hi);
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
938

939
	/* F15h: factor in CC6 save area by reading dst node's limit reg */
940
	if (pvt->fam != 0x15)
941
		return;
942

943 944 945
	nb = node_to_amd_nb(dram_dst_node(pvt, range));
	if (WARN_ON(!nb))
		return;
946

947 948 949 950
	pci_func = (pvt->model == 0x30) ? PCI_DEVICE_ID_AMD_15H_M30H_NB_F1
					: PCI_DEVICE_ID_AMD_15H_NB_F1;

	f1 = pci_get_related_function(nb->misc->vendor, pci_func, nb->misc);
951 952
	if (WARN_ON(!f1))
		return;
953

954
	amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
955

956
	pvt->ranges[range].lim.lo &= GENMASK_ULL(15, 0);
957

958 959
				    /* {[39:27],111b} */
	pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
960

961
	pvt->ranges[range].lim.hi &= GENMASK_ULL(7, 0);
962

963 964 965 966
				    /* [47:40] */
	pvt->ranges[range].lim.hi |= llim >> 13;

	pci_dev_put(f1);
967 968
}

969
static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
970
				    struct err_info *err)
971
{
972
	struct amd64_pvt *pvt = mci->pvt_info;
973

974
	error_address_to_page_and_offset(sys_addr, err);
975 976 977 978 979

	/*
	 * Find out which node the error address belongs to. This may be
	 * different from the node that detected the error.
	 */
980 981
	err->src_mci = find_mc_by_sys_addr(mci, sys_addr);
	if (!err->src_mci) {
982 983
		amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
			     (unsigned long)sys_addr);
984
		err->err_code = ERR_NODE;
985 986 987 988
		return;
	}

	/* Now map the sys_addr to a CSROW */
989 990 991
	err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr);
	if (err->csrow < 0) {
		err->err_code = ERR_CSROW;
992 993 994
		return;
	}

995
	/* CHIPKILL enabled */
996
	if (pvt->nbcfg & NBCFG_CHIPKILL) {
997 998
		err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
		if (err->channel < 0) {
999 1000 1001 1002 1003
			/*
			 * Syndrome didn't map, so we don't know which of the
			 * 2 DIMMs is in error. So we need to ID 'both' of them
			 * as suspect.
			 */
1004
			amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - "
1005
				      "possible error reporting race\n",
1006 1007
				      err->syndrome);
			err->err_code = ERR_CHANNEL;
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
			return;
		}
	} else {
		/*
		 * non-chipkill ecc mode
		 *
		 * The k8 documentation is unclear about how to determine the
		 * channel number when using non-chipkill memory.  This method
		 * was obtained from email communication with someone at AMD.
		 * (Wish the email was placed in this comment - norsk)
		 */
1019
		err->channel = ((sys_addr & BIT(3)) != 0);
1020 1021 1022
	}
}

1023
static int ddr2_cs_size(unsigned i, bool dct_width)
1024
{
1025
	unsigned shift = 0;
1026

1027 1028 1029 1030
	if (i <= 2)
		shift = i;
	else if (!(i & 0x1))
		shift = i >> 1;
1031
	else
1032
		shift = (i + 1) >> 1;
1033

1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
	return 128 << (shift + !!dct_width);
}

static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
				  unsigned cs_mode)
{
	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;

	if (pvt->ext_model >= K8_REV_F) {
		WARN_ON(cs_mode > 11);
		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
	}
	else if (pvt->ext_model >= K8_REV_D) {
1047
		unsigned diff;
1048 1049
		WARN_ON(cs_mode > 10);

1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
		/*
		 * the below calculation, besides trying to win an obfuscated C
		 * contest, maps cs_mode values to DIMM chip select sizes. The
		 * mappings are:
		 *
		 * cs_mode	CS size (mb)
		 * =======	============
		 * 0		32
		 * 1		64
		 * 2		128
		 * 3		128
		 * 4		256
		 * 5		512
		 * 6		256
		 * 7		512
		 * 8		1024
		 * 9		1024
		 * 10		2048
		 *
		 * Basically, it calculates a value with which to shift the
		 * smallest CS size of 32MB.
		 *
		 * ddr[23]_cs_size have a similar purpose.
		 */
		diff = cs_mode/3 + (unsigned)(cs_mode > 5);

		return 32 << (cs_mode - diff);
1077 1078 1079 1080 1081
	}
	else {
		WARN_ON(cs_mode > 6);
		return 32 << cs_mode;
	}
1082 1083
}

1084 1085 1086 1087 1088 1089 1090 1091
/*
 * Get the number of DCT channels in use.
 *
 * Return:
 *	number of Memory Channels in operation
 * Pass back:
 *	contents of the DCL0_LOW register
 */
1092
static int f1x_early_channel_count(struct amd64_pvt *pvt)
1093
{
1094
	int i, j, channels = 0;
1095

1096
	/* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1097
	if (pvt->fam == 0x10 && (pvt->dclr0 & WIDTH_128))
1098
		return 2;
1099 1100

	/*
1101 1102 1103
	 * Need to check if in unganged mode: In such, there are 2 channels,
	 * but they are not in 128 bit mode and thus the above 'dclr0' status
	 * bit will be OFF.
1104 1105 1106 1107
	 *
	 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
	 * their CSEnable bit on. If so, then SINGLE DIMM case.
	 */
1108
	edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
1109

1110 1111 1112 1113 1114
	/*
	 * Check DRAM Bank Address Mapping values for each DIMM to see if there
	 * is more than just one DIMM present in unganged mode. Need to check
	 * both controllers since DIMMs can be placed in either one.
	 */
1115 1116
	for (i = 0; i < 2; i++) {
		u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1117

1118 1119 1120 1121 1122 1123
		for (j = 0; j < 4; j++) {
			if (DBAM_DIMM(j, dbam) > 0) {
				channels++;
				break;
			}
		}
1124 1125
	}

1126 1127 1128
	if (channels > 2)
		channels = 2;

1129
	amd64_info("MCT channel count: %d\n", channels);
1130 1131 1132 1133

	return channels;
}

1134
static int ddr3_cs_size(unsigned i, bool dct_width)
1135
{
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
	unsigned shift = 0;
	int cs_size = 0;

	if (i == 0 || i == 3 || i == 4)
		cs_size = -1;
	else if (i <= 2)
		shift = i;
	else if (i == 12)
		shift = 7;
	else if (!(i & 0x1))
		shift = i >> 1;
	else
		shift = (i + 1) >> 1;

	if (cs_size != -1)
		cs_size = (128 * (1 << !!dct_width)) << shift;

	return cs_size;
}

static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
				   unsigned cs_mode)
{
	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;

	WARN_ON(cs_mode > 11);
1162 1163

	if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1164
		return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1165
	else
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
}

/*
 * F15h supports only 64bit DCT interfaces
 */
static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
				   unsigned cs_mode)
{
	WARN_ON(cs_mode > 12);
1176

1177
	return ddr3_cs_size(cs_mode, false);
1178 1179
}

1180
/*
1181
 * F16h and F15h model 30h have only limited cs_modes.
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
 */
static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
				unsigned cs_mode)
{
	WARN_ON(cs_mode > 12);

	if (cs_mode == 6 || cs_mode == 8 ||
	    cs_mode == 9 || cs_mode == 12)
		return -1;
	else
		return ddr3_cs_size(cs_mode, false);
}

1195
static void read_dram_ctl_register(struct amd64_pvt *pvt)
1196 1197
{

1198
	if (pvt->fam == 0xf)
1199 1200
		return;

1201
	if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1202 1203
		edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
			 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
1204

1205 1206
		edac_dbg(0, "  DCTs operate in %s mode\n",
			 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
1207 1208

		if (!dct_ganging_enabled(pvt))
1209 1210
			edac_dbg(0, "  Address range split per DCT: %s\n",
				 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1211

1212 1213 1214
		edac_dbg(0, "  data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
			 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
			 (dct_memory_cleared(pvt) ? "yes" : "no"));
1215

1216 1217 1218 1219
		edac_dbg(0, "  channel interleave: %s, "
			 "interleave bits selector: 0x%x\n",
			 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
			 dct_sel_interleave_addr(pvt));
1220 1221
	}

1222
	amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
1223 1224
}

1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
/*
 * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG,
 * 2.10.12 Memory Interleaving Modes).
 */
static u8 f15_m30h_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
				     u8 intlv_en, int num_dcts_intlv,
				     u32 dct_sel)
{
	u8 channel = 0;
	u8 select;

	if (!(intlv_en))
		return (u8)(dct_sel);

	if (num_dcts_intlv == 2) {
		select = (sys_addr >> 8) & 0x3;
		channel = select ? 0x3 : 0;
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
	} else if (num_dcts_intlv == 4) {
		u8 intlv_addr = dct_sel_interleave_addr(pvt);
		switch (intlv_addr) {
		case 0x4:
			channel = (sys_addr >> 8) & 0x3;
			break;
		case 0x5:
			channel = (sys_addr >> 9) & 0x3;
			break;
		}
	}
1253 1254 1255
	return channel;
}

1256
/*
1257
 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1258 1259
 * Interleaving Modes.
 */
1260
static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1261
				bool hi_range_sel, u8 intlv_en)
1262
{
1263
	u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
1264 1265

	if (dct_ganging_enabled(pvt))
1266
		return 0;
1267

1268 1269
	if (hi_range_sel)
		return dct_sel_high;
1270

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
	/*
	 * see F2x110[DctSelIntLvAddr] - channel interleave mode
	 */
	if (dct_interleave_enabled(pvt)) {
		u8 intlv_addr = dct_sel_interleave_addr(pvt);

		/* return DCT select function: 0=DCT0, 1=DCT1 */
		if (!intlv_addr)
			return sys_addr >> 6 & 1;

		if (intlv_addr & 0x2) {
			u8 shift = intlv_addr & 0x1 ? 9 : 6;
			u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;

			return ((sys_addr >> shift) & 1) ^ temp;
		}

		return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
	}

	if (dct_high_range_enabled(pvt))
		return ~dct_sel_high & 1;
1293 1294 1295 1296

	return 0;
}

1297
/* Convert the sys_addr to the normalized DCT address */
1298
static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range,
1299 1300
				 u64 sys_addr, bool hi_rng,
				 u32 dct_sel_base_addr)
1301 1302
{
	u64 chan_off;
1303 1304 1305
	u64 dram_base		= get_dram_base(pvt, range);
	u64 hole_off		= f10_dhar_offset(pvt);
	u64 dct_sel_base_off	= (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
1306

1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
	if (hi_rng) {
		/*
		 * if
		 * base address of high range is below 4Gb
		 * (bits [47:27] at [31:11])
		 * DRAM address space on this DCT is hoisted above 4Gb	&&
		 * sys_addr > 4Gb
		 *
		 *	remove hole offset from sys_addr
		 * else
		 *	remove high range offset from sys_addr
		 */
		if ((!(dct_sel_base_addr >> 16) ||
		     dct_sel_base_addr < dhar_base(pvt)) &&
1321
		    dhar_valid(pvt) &&
1322
		    (sys_addr >= BIT_64(32)))
1323
			chan_off = hole_off;
1324 1325 1326
		else
			chan_off = dct_sel_base_off;
	} else {
1327 1328 1329 1330 1331 1332 1333 1334 1335
		/*
		 * if
		 * we have a valid hole		&&
		 * sys_addr > 4Gb
		 *
		 *	remove hole
		 * else
		 *	remove dram base to normalize to DCT address
		 */
1336
		if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
1337
			chan_off = hole_off;
1338
		else
1339
			chan_off = dram_base;
1340 1341
	}

1342
	return (sys_addr & GENMASK_ULL(47,6)) - (chan_off & GENMASK_ULL(47,23));
1343 1344 1345 1346 1347 1348
}

/*
 * checks if the csrow passed in is marked as SPARED, if so returns the new
 * spare row
 */
1349
static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
1350
{
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
	int tmp_cs;

	if (online_spare_swap_done(pvt, dct) &&
	    csrow == online_spare_bad_dramcs(pvt, dct)) {

		for_each_chip_select(tmp_cs, dct, pvt) {
			if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
				csrow = tmp_cs;
				break;
			}
		}
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
	}
	return csrow;
}

/*
 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
 *
 * Return:
 *	-EINVAL:  NOT FOUND
 *	0..csrow = Chip-Select Row
 */
1374
static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct)
1375 1376 1377
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
1378
	u64 cs_base, cs_mask;
1379 1380 1381
	int cs_found = -EINVAL;
	int csrow;

1382
	mci = mcis[nid];
1383 1384 1385 1386 1387
	if (!mci)
		return cs_found;

	pvt = mci->pvt_info;

1388
	edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
1389

1390 1391
	for_each_chip_select(csrow, dct, pvt) {
		if (!csrow_enabled(csrow, dct, pvt))
1392 1393
			continue;

1394
		get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
1395

1396 1397
		edac_dbg(1, "    CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
			 csrow, cs_base, cs_mask);
1398

1399
		cs_mask = ~cs_mask;
1400

1401 1402
		edac_dbg(1, "    (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
			 (in_addr & cs_mask), (cs_base & cs_mask));
1403

1404
		if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1405 1406 1407 1408
			if (pvt->fam == 0x15 && pvt->model >= 0x30) {
				cs_found =  csrow;
				break;
			}
1409
			cs_found = f10_process_possible_spare(pvt, dct, csrow);
1410

1411
			edac_dbg(1, " MATCH csrow=%d\n", cs_found);
1412 1413 1414 1415 1416 1417
			break;
		}
	}
	return cs_found;
}

1418 1419 1420 1421 1422
/*
 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
 * swapped with a region located at the bottom of memory so that the GPU can use
 * the interleaved region and thus two channels.
 */
1423
static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
1424 1425 1426
{
	u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;

1427
	if (pvt->fam == 0x10) {
1428
		/* only revC3 and revE have that feature */
1429
		if (pvt->model < 4 || (pvt->model < 0xa && pvt->stepping < 3))
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
			return sys_addr;
	}

	amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);

	if (!(swap_reg & 0x1))
		return sys_addr;

	swap_base	= (swap_reg >> 3) & 0x7f;
	swap_limit	= (swap_reg >> 11) & 0x7f;
	rgn_size	= (swap_reg >> 20) & 0x7f;
	tmp_addr	= sys_addr >> 27;

	if (!(sys_addr >> 34) &&
	    (((tmp_addr >= swap_base) &&
	     (tmp_addr <= swap_limit)) ||
	     (tmp_addr < rgn_size)))
		return sys_addr ^ (u64)swap_base << 27;

	return sys_addr;
}

1452
/* For a given @dram_range, check if @sys_addr falls within it. */
1453
static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1454
				  u64 sys_addr, int *chan_sel)
1455
{
1456
	int cs_found = -EINVAL;
1457
	u64 chan_addr;
1458
	u32 dct_sel_base;
1459
	u8 channel;
1460
	bool high_range = false;
1461

1462
	u8 node_id    = dram_dst_node(pvt, range);
1463
	u8 intlv_en   = dram_intlv_en(pvt, range);
1464
	u32 intlv_sel = dram_intlv_sel(pvt, range);
1465

1466 1467
	edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
		 range, sys_addr, get_dram_limit(pvt, range));
1468

1469 1470 1471 1472 1473 1474 1475 1476
	if (dhar_valid(pvt) &&
	    dhar_base(pvt) <= sys_addr &&
	    sys_addr < BIT_64(32)) {
		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
			    sys_addr);
		return -EINVAL;
	}

1477
	if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1478 1479
		return -EINVAL;

1480
	sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
1481

1482 1483 1484 1485 1486 1487 1488 1489 1490
	dct_sel_base = dct_sel_baseaddr(pvt);

	/*
	 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
	 * select between DCT0 and DCT1.
	 */
	if (dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt) &&
	   ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1491
		high_range = true;
1492

1493
	channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
1494

1495
	chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
1496
					  high_range, dct_sel_base);
1497

1498 1499 1500 1501
	/* Remove node interleaving, see F1x120 */
	if (intlv_en)
		chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
			    (chan_addr & 0xfff);
1502

1503
	/* remove channel interleave */
1504 1505 1506
	if (dct_interleave_enabled(pvt) &&
	   !dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt)) {
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520

		if (dct_sel_interleave_addr(pvt) != 1) {
			if (dct_sel_interleave_addr(pvt) == 0x3)
				/* hash 9 */
				chan_addr = ((chan_addr >> 10) << 9) |
					     (chan_addr & 0x1ff);
			else
				/* A[6] or hash 6 */
				chan_addr = ((chan_addr >> 7) << 6) |
					     (chan_addr & 0x3f);
		} else
			/* A[12] */
			chan_addr = ((chan_addr >> 13) << 12) |
				     (chan_addr & 0xfff);
1521 1522
	}

1523
	edac_dbg(1, "   Normalized DCT addr: 0x%llx\n", chan_addr);
1524

1525
	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
1526

1527
	if (cs_found >= 0)
1528
		*chan_sel = channel;
1529

1530 1531 1532
	return cs_found;
}

1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
					u64 sys_addr, int *chan_sel)
{
	int cs_found = -EINVAL;
	int num_dcts_intlv = 0;
	u64 chan_addr, chan_offset;
	u64 dct_base, dct_limit;
	u32 dct_cont_base_reg, dct_cont_limit_reg, tmp;
	u8 channel, alias_channel, leg_mmio_hole, dct_sel, dct_offset_en;

	u64 dhar_offset		= f10_dhar_offset(pvt);
	u8 intlv_addr		= dct_sel_interleave_addr(pvt);
	u8 node_id		= dram_dst_node(pvt, range);
	u8 intlv_en		= dram_intlv_en(pvt, range);

	amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &dct_cont_base_reg);
	amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &dct_cont_limit_reg);

	dct_offset_en		= (u8) ((dct_cont_base_reg >> 3) & BIT(0));
	dct_sel			= (u8) ((dct_cont_base_reg >> 4) & 0x7);

	edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
		 range, sys_addr, get_dram_limit(pvt, range));

	if (!(get_dram_base(pvt, range)  <= sys_addr) &&
	    !(get_dram_limit(pvt, range) >= sys_addr))
		return -EINVAL;

	if (dhar_valid(pvt) &&
	    dhar_base(pvt) <= sys_addr &&
	    sys_addr < BIT_64(32)) {
		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
			    sys_addr);
		return -EINVAL;
	}

	/* Verify sys_addr is within DCT Range. */
1570 1571
	dct_base = (u64) dct_sel_baseaddr(pvt);
	dct_limit = (dct_cont_limit_reg >> 11) & 0x1FFF;
1572 1573

	if (!(dct_cont_base_reg & BIT(0)) &&
1574 1575
	    !(dct_base <= (sys_addr >> 27) &&
	      dct_limit >= (sys_addr >> 27)))
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
		return -EINVAL;

	/* Verify number of dct's that participate in channel interleaving. */
	num_dcts_intlv = (int) hweight8(intlv_en);

	if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4))
		return -EINVAL;

	channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en,
					     num_dcts_intlv, dct_sel);

	/* Verify we stay within the MAX number of channels allowed */
1588
	if (channel > 3)
1589 1590 1591 1592 1593 1594 1595 1596
		return -EINVAL;

	leg_mmio_hole = (u8) (dct_cont_base_reg >> 1 & BIT(0));

	/* Get normalized DCT addr */
	if (leg_mmio_hole && (sys_addr >= BIT_64(32)))
		chan_offset = dhar_offset;
	else
1597
		chan_offset = dct_base << 27;
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626

	chan_addr = sys_addr - chan_offset;

	/* remove channel interleave */
	if (num_dcts_intlv == 2) {
		if (intlv_addr == 0x4)
			chan_addr = ((chan_addr >> 9) << 8) |
						(chan_addr & 0xff);
		else if (intlv_addr == 0x5)
			chan_addr = ((chan_addr >> 10) << 9) |
						(chan_addr & 0x1ff);
		else
			return -EINVAL;

	} else if (num_dcts_intlv == 4) {
		if (intlv_addr == 0x4)
			chan_addr = ((chan_addr >> 10) << 8) |
							(chan_addr & 0xff);
		else if (intlv_addr == 0x5)
			chan_addr = ((chan_addr >> 11) << 9) |
							(chan_addr & 0x1ff);
		else
			return -EINVAL;
	}

	if (dct_offset_en) {
		amd64_read_pci_cfg(pvt->F1,
				   DRAM_CONT_HIGH_OFF + (int) channel * 4,
				   &tmp);
1627
		chan_addr +=  (u64) ((tmp >> 11) & 0xfff) << 27;
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
	}

	f15h_select_dct(pvt, channel);

	edac_dbg(1, "   Normalized DCT addr: 0x%llx\n", chan_addr);

	/*
	 * Find Chip select:
	 * if channel = 3, then alias it to 1. This is because, in F15 M30h,
	 * there is support for 4 DCT's, but only 2 are currently functional.
	 * They are DCT0 and DCT3. But we have read all registers of DCT3 into
	 * pvt->csels[1]. So we need to use '1' here to get correct info.
	 * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications.
	 */
	alias_channel =  (channel == 3) ? 1 : channel;

	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, alias_channel);

	if (cs_found >= 0)
		*chan_sel = alias_channel;

	return cs_found;
}

static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt,
					u64 sys_addr,
					int *chan_sel)
1655
{
1656 1657
	int cs_found = -EINVAL;
	unsigned range;
1658

1659 1660
	for (range = 0; range < DRAM_RANGES; range++) {
		if (!dram_rw(pvt, range))
1661 1662
			continue;

1663 1664 1665 1666
		if (pvt->fam == 0x15 && pvt->model >= 0x30)
			cs_found = f15_m30h_match_to_this_node(pvt, range,
							       sys_addr,
							       chan_sel);
1667

1668 1669
		else if ((get_dram_base(pvt, range)  <= sys_addr) &&
			 (get_dram_limit(pvt, range) >= sys_addr)) {
1670
			cs_found = f1x_match_to_this_node(pvt, range,
1671
							  sys_addr, chan_sel);
1672 1673 1674 1675 1676 1677 1678 1679
			if (cs_found >= 0)
				break;
		}
	}
	return cs_found;
}

/*
1680 1681
 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
1682
 *
1683 1684
 * The @sys_addr is usually an error address received from the hardware
 * (MCX_ADDR).
1685
 */
1686
static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1687
				     struct err_info *err)
1688 1689 1690
{
	struct amd64_pvt *pvt = mci->pvt_info;

1691
	error_address_to_page_and_offset(sys_addr, err);
1692

1693 1694 1695
	err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel);
	if (err->csrow < 0) {
		err->err_code = ERR_CSROW;
1696 1697 1698 1699 1700 1701 1702 1703
		return;
	}

	/*
	 * We need the syndromes for channel detection only when we're
	 * ganged. Otherwise @chan should already contain the channel at
	 * this point.
	 */
1704
	if (dct_ganging_enabled(pvt))
1705
		err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
1706 1707 1708
}

/*
1709
 * debug routine to display the memory sizes of all logical DIMMs and its
1710
 * CSROWs
1711
 */
1712
static void debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
1713
{
1714
	int dimm, size0, size1;
1715 1716
	u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
	u32 dbam  = ctrl ? pvt->dbam1 : pvt->dbam0;
1717

1718
	if (pvt->fam == 0xf) {
1719
		/* K8 families < revF not supported yet */
1720
	       if (pvt->ext_model < K8_REV_F)
1721 1722 1723 1724 1725
			return;
	       else
		       WARN_ON(ctrl != 0);
	}

1726
	dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
1727 1728
	dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
						   : pvt->csels[0].csbases;
1729

1730 1731
	edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
		 ctrl, dbam);
1732

1733 1734
	edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);

1735 1736 1737 1738
	/* Dump memory sizes for DIMM and its CSROWs */
	for (dimm = 0; dimm < 4; dimm++) {

		size0 = 0;
1739
		if (dcsb[dimm*2] & DCSB_CS_ENABLE)
1740 1741
			size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
						     DBAM_DIMM(dimm, dbam));
1742 1743

		size1 = 0;
1744
		if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
1745 1746
			size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
						     DBAM_DIMM(dimm, dbam));
1747

1748
		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1749 1750
				dimm * 2,     size0,
				dimm * 2 + 1, size1);
1751 1752 1753
	}
}

1754
static struct amd64_family_type family_types[] = {
1755
	[K8_CPUS] = {
1756
		.ctl_name = "K8",
1757 1758
		.f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
		.f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1759
		.ops = {
1760 1761 1762
			.early_channel_count	= k8_early_channel_count,
			.map_sysaddr_to_csrow	= k8_map_sysaddr_to_csrow,
			.dbam_to_cs		= k8_dbam_to_chip_select,
1763
			.read_dct_pci_cfg	= k8_read_dct_pci_cfg,
1764 1765 1766
		}
	},
	[F10_CPUS] = {
1767
		.ctl_name = "F10h",
1768 1769
		.f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
		.f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1770
		.ops = {
1771
			.early_channel_count	= f1x_early_channel_count,
1772
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
1773
			.dbam_to_cs		= f10_dbam_to_chip_select,
1774 1775 1776 1777 1778
			.read_dct_pci_cfg	= f10_read_dct_pci_cfg,
		}
	},
	[F15_CPUS] = {
		.ctl_name = "F15h",
1779 1780
		.f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
		.f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
1781
		.ops = {
1782
			.early_channel_count	= f1x_early_channel_count,
1783
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
1784
			.dbam_to_cs		= f15_dbam_to_chip_select,
1785
			.read_dct_pci_cfg	= f15_read_dct_pci_cfg,
1786 1787
		}
	},
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
	[F15_M30H_CPUS] = {
		.ctl_name = "F15h_M30h",
		.f1_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1,
		.f3_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F3,
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f16_dbam_to_chip_select,
			.read_dct_pci_cfg	= f15_read_dct_pci_cfg,
		}
	},
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
	[F16_CPUS] = {
		.ctl_name = "F16h",
		.f1_id = PCI_DEVICE_ID_AMD_16H_NB_F1,
		.f3_id = PCI_DEVICE_ID_AMD_16H_NB_F3,
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f16_dbam_to_chip_select,
			.read_dct_pci_cfg	= f10_read_dct_pci_cfg,
		}
	},
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
	[F16_M30H_CPUS] = {
		.ctl_name = "F16h_M30h",
		.f1_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F1,
		.f3_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F3,
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f16_dbam_to_chip_select,
			.read_dct_pci_cfg	= f10_read_dct_pci_cfg,
		}
	},
1821 1822
};

1823
/*
1824 1825 1826
 * These are tables of eigenvectors (one per line) which can be used for the
 * construction of the syndrome tables. The modified syndrome search algorithm
 * uses those to find the symbol in error and thus the DIMM.
1827
 *
1828
 * Algorithm courtesy of Ross LaFetra from AMD.
1829
 */
1830
static const u16 x4_vectors[] = {
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
	0x2f57, 0x1afe, 0x66cc, 0xdd88,
	0x11eb, 0x3396, 0x7f4c, 0xeac8,
	0x0001, 0x0002, 0x0004, 0x0008,
	0x1013, 0x3032, 0x4044, 0x8088,
	0x106b, 0x30d6, 0x70fc, 0xe0a8,
	0x4857, 0xc4fe, 0x13cc, 0x3288,
	0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
	0x1f39, 0x251e, 0xbd6c, 0x6bd8,
	0x15c1, 0x2a42, 0x89ac, 0x4758,
	0x2b03, 0x1602, 0x4f0c, 0xca08,
	0x1f07, 0x3a0e, 0x6b04, 0xbd08,
	0x8ba7, 0x465e, 0x244c, 0x1cc8,
	0x2b87, 0x164e, 0x642c, 0xdc18,
	0x40b9, 0x80de, 0x1094, 0x20e8,
	0x27db, 0x1eb6, 0x9dac, 0x7b58,
	0x11c1, 0x2242, 0x84ac, 0x4c58,
	0x1be5, 0x2d7a, 0x5e34, 0xa718,
	0x4b39, 0x8d1e, 0x14b4, 0x28d8,
	0x4c97, 0xc87e, 0x11fc, 0x33a8,
	0x8e97, 0x497e, 0x2ffc, 0x1aa8,
	0x16b3, 0x3d62, 0x4f34, 0x8518,
	0x1e2f, 0x391a, 0x5cac, 0xf858,
	0x1d9f, 0x3b7a, 0x572c, 0xfe18,
	0x15f5, 0x2a5a, 0x5264, 0xa3b8,
	0x1dbb, 0x3b66, 0x715c, 0xe3f8,
	0x4397, 0xc27e, 0x17fc, 0x3ea8,
	0x1617, 0x3d3e, 0x6464, 0xb8b8,
	0x23ff, 0x12aa, 0xab6c, 0x56d8,
	0x2dfb, 0x1ba6, 0x913c, 0x7328,
	0x185d, 0x2ca6, 0x7914, 0x9e28,
	0x171b, 0x3e36, 0x7d7c, 0xebe8,
	0x4199, 0x82ee, 0x19f4, 0x2e58,
	0x4807, 0xc40e, 0x130c, 0x3208,
	0x1905, 0x2e0a, 0x5804, 0xac08,
	0x213f, 0x132a, 0xadfc, 0x5ba8,
	0x19a9, 0x2efe, 0xb5cc, 0x6f88,
1867 1868
};

1869
static const u16 x8_vectors[] = {
1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
	0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
	0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
	0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
	0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
	0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
	0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
	0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
	0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
	0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
	0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
	0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
	0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
	0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
	0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
	0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
	0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
	0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
	0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
	0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
};

1891
static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs,
1892
			   unsigned v_dim)
1893
{
1894 1895 1896 1897
	unsigned int i, err_sym;

	for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
		u16 s = syndrome;
1898 1899
		unsigned v_idx =  err_sym * v_dim;
		unsigned v_end = (err_sym + 1) * v_dim;
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911

		/* walk over all 16 bits of the syndrome */
		for (i = 1; i < (1U << 16); i <<= 1) {

			/* if bit is set in that eigenvector... */
			if (v_idx < v_end && vectors[v_idx] & i) {
				u16 ev_comp = vectors[v_idx++];

				/* ... and bit set in the modified syndrome, */
				if (s & i) {
					/* remove it. */
					s ^= ev_comp;
1912

1913 1914 1915
					if (!s)
						return err_sym;
				}
1916

1917 1918 1919 1920
			} else if (s & i)
				/* can't get to zero, move to next symbol */
				break;
		}
1921 1922
	}

1923
	edac_dbg(0, "syndrome(%x) not found\n", syndrome);
1924 1925
	return -1;
}
1926

1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
static int map_err_sym_to_channel(int err_sym, int sym_size)
{
	if (sym_size == 4)
		switch (err_sym) {
		case 0x20:
		case 0x21:
			return 0;
			break;
		case 0x22:
		case 0x23:
			return 1;
			break;
		default:
			return err_sym >> 4;
			break;
		}
	/* x8 symbols */
	else
		switch (err_sym) {
		/* imaginary bits not in a DIMM */
		case 0x10:
			WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
					  err_sym);
			return -1;
			break;

		case 0x11:
			return 0;
			break;
		case 0x12:
			return 1;
			break;
		default:
			return err_sym >> 3;
			break;
		}
	return -1;
}

static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
{
	struct amd64_pvt *pvt = mci->pvt_info;
1969 1970
	int err_sym = -1;

1971
	if (pvt->ecc_sym_sz == 8)
1972 1973
		err_sym = decode_syndrome(syndrome, x8_vectors,
					  ARRAY_SIZE(x8_vectors),
1974 1975
					  pvt->ecc_sym_sz);
	else if (pvt->ecc_sym_sz == 4)
1976 1977
		err_sym = decode_syndrome(syndrome, x4_vectors,
					  ARRAY_SIZE(x4_vectors),
1978
					  pvt->ecc_sym_sz);
1979
	else {
1980
		amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
1981
		return err_sym;
1982
	}
1983

1984
	return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
1985 1986
}

1987 1988
static void __log_bus_error(struct mem_ctl_info *mci, struct err_info *err,
			    u8 ecc_type)
1989
{
1990 1991
	enum hw_event_mc_err_type err_type;
	const char *string;
1992

1993 1994 1995 1996 1997 1998
	if (ecc_type == 2)
		err_type = HW_EVENT_ERR_CORRECTED;
	else if (ecc_type == 1)
		err_type = HW_EVENT_ERR_UNCORRECTED;
	else {
		WARN(1, "Something is rotten in the state of Denmark.\n");
1999 2000 2001
		return;
	}

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
	switch (err->err_code) {
	case DECODE_OK:
		string = "";
		break;
	case ERR_NODE:
		string = "Failed to map error addr to a node";
		break;
	case ERR_CSROW:
		string = "Failed to map error addr to a csrow";
		break;
	case ERR_CHANNEL:
		string = "unknown syndrome - possible error reporting race";
		break;
	default:
		string = "WTF error";
		break;
2018
	}
2019 2020 2021 2022 2023

	edac_mc_handle_error(err_type, mci, 1,
			     err->page, err->offset, err->syndrome,
			     err->csrow, err->channel, -1,
			     string, "");
2024 2025
}

2026
static inline void decode_bus_error(int node_id, struct mce *m)
2027
{
2028
	struct mem_ctl_info *mci = mcis[node_id];
2029
	struct amd64_pvt *pvt = mci->pvt_info;
2030
	u8 ecc_type = (m->status >> 45) & 0x3;
2031 2032
	u8 xec = XEC(m->status, 0x1f);
	u16 ec = EC(m->status);
2033 2034
	u64 sys_addr;
	struct err_info err;
2035

2036
	/* Bail out early if this was an 'observed' error */
2037
	if (PP(ec) == NBSL_PP_OBS)
2038
		return;
2039

2040 2041
	/* Do only ECC errors */
	if (xec && xec != F10_NBSL_EXT_ERR_ECC)
2042 2043
		return;

2044 2045
	memset(&err, 0, sizeof(err));

2046
	sys_addr = get_error_address(pvt, m);
2047

2048
	if (ecc_type == 2)
2049 2050 2051 2052 2053
		err.syndrome = extract_syndrome(m->status);

	pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err);

	__log_bus_error(mci, &err, ecc_type);
2054 2055
}

2056
/*
2057
 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
2058
 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
2059
 */
2060
static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
2061 2062
{
	/* Reserve the ADDRESS MAP Device */
2063 2064
	pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
	if (!pvt->F1) {
2065 2066 2067
		amd64_err("error address map device not found: "
			  "vendor %x device 0x%x (broken BIOS?)\n",
			  PCI_VENDOR_ID_AMD, f1_id);
2068
		return -ENODEV;
2069 2070 2071
	}

	/* Reserve the MISC Device */
2072 2073 2074 2075
	pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
	if (!pvt->F3) {
		pci_dev_put(pvt->F1);
		pvt->F1 = NULL;
2076

2077 2078 2079
		amd64_err("error F3 device not found: "
			  "vendor %x device 0x%x (broken BIOS?)\n",
			  PCI_VENDOR_ID_AMD, f3_id);
2080

2081
		return -ENODEV;
2082
	}
2083 2084 2085
	edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
	edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
	edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
2086 2087 2088 2089

	return 0;
}

2090
static void free_mc_sibling_devs(struct amd64_pvt *pvt)
2091
{
2092 2093
	pci_dev_put(pvt->F1);
	pci_dev_put(pvt->F3);
2094 2095 2096 2097 2098 2099
}

/*
 * Retrieve the hardware registers of the memory controller (this includes the
 * 'Address Map' and 'Misc' device regs)
 */
2100
static void read_mc_regs(struct amd64_pvt *pvt)
2101
{
2102
	unsigned range;
2103
	u64 msr_val;
2104
	u32 tmp;
2105 2106 2107 2108 2109

	/*
	 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
	 * those are Read-As-Zero
	 */
2110
	rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2111
	edac_dbg(0, "  TOP_MEM:  0x%016llx\n", pvt->top_mem);
2112 2113 2114 2115

	/* check first whether TOP_MEM2 is enabled */
	rdmsrl(MSR_K8_SYSCFG, msr_val);
	if (msr_val & (1U << 21)) {
2116
		rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2117
		edac_dbg(0, "  TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
2118
	} else
2119
		edac_dbg(0, "  TOP_MEM2 disabled\n");
2120

2121
	amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
2122

2123
	read_dram_ctl_register(pvt);
2124

2125 2126
	for (range = 0; range < DRAM_RANGES; range++) {
		u8 rw;
2127

2128 2129 2130 2131 2132 2133 2134
		/* read settings for this DRAM range */
		read_dram_base_limit_regs(pvt, range);

		rw = dram_rw(pvt, range);
		if (!rw)
			continue;

2135 2136 2137 2138
		edac_dbg(1, "  DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
			 range,
			 get_dram_base(pvt, range),
			 get_dram_limit(pvt, range));
2139

2140 2141 2142 2143 2144 2145
		edac_dbg(1, "   IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
			 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
			 (rw & 0x1) ? "R" : "-",
			 (rw & 0x2) ? "W" : "-",
			 dram_intlv_sel(pvt, range),
			 dram_dst_node(pvt, range));
2146 2147
	}

2148
	read_dct_base_mask(pvt);
2149

2150
	amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
2151
	amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
2152

2153
	amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
2154

2155 2156
	amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
	amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
2157

2158
	if (!dct_ganging_enabled(pvt)) {
2159 2160
		amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
		amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
2161
	}
2162

2163 2164
	pvt->ecc_sym_sz = 4;

2165
	if (pvt->fam >= 0x10) {
2166
		amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
2167
		if (pvt->fam != 0x16)
2168 2169
			/* F16h has only DCT0 */
			amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
2170

2171
		/* F10h, revD and later can do x8 ECC too */
2172
		if ((pvt->fam > 0x10 || pvt->model > 7) && tmp & BIT(25))
2173 2174
			pvt->ecc_sym_sz = 8;
	}
2175
	dump_misc_regs(pvt);
2176 2177 2178 2179 2180 2181
}

/*
 * NOTE: CPU Revision Dependent code
 *
 * Input:
2182
 *	@csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
 *	k8 private pointer to -->
 *			DRAM Bank Address mapping register
 *			node_id
 *			DCL register where dual_channel_active is
 *
 * The DBAM register consists of 4 sets of 4 bits each definitions:
 *
 * Bits:	CSROWs
 * 0-3		CSROWs 0 and 1
 * 4-7		CSROWs 2 and 3
 * 8-11		CSROWs 4 and 5
 * 12-15	CSROWs 6 and 7
 *
 * Values range from: 0 to 15
 * The meaning of the values depends on CPU revision and dual-channel state,
 * see relevant BKDG more info.
 *
 * The memory controller provides for total of only 8 CSROWs in its current
 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
 * single channel or two (2) DIMMs in dual channel mode.
 *
 * The following code logic collapses the various tables for CSROW based on CPU
 * revision.
 *
 * Returns:
 *	The number of PAGE_SIZE pages on the specified CSROW number it
 *	encompasses
 *
 */
2212
static u32 get_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
2213
{
2214
	u32 cs_mode, nr_pages;
2215
	u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
2216

2217

2218 2219 2220 2221 2222 2223 2224
	/*
	 * The math on this doesn't look right on the surface because x/2*4 can
	 * be simplified to x*2 but this expression makes use of the fact that
	 * it is integral math where 1/2=0. This intermediate value becomes the
	 * number of bits to shift the DBAM register to extract the proper CSROW
	 * field.
	 */
B
Borislav Petkov 已提交
2225
	cs_mode = DBAM_DIMM(csrow_nr / 2, dbam);
2226

2227
	nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
2228

2229 2230 2231
	edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
		    csrow_nr, dct,  cs_mode);
	edac_dbg(0, "nr_pages/channel: %u\n", nr_pages);
2232 2233 2234 2235 2236 2237 2238 2239

	return nr_pages;
}

/*
 * Initialize the array of csrow attribute instances, based on the values
 * from pci config hardware registers.
 */
2240
static int init_csrows(struct mem_ctl_info *mci)
2241
{
2242
	struct amd64_pvt *pvt = mci->pvt_info;
2243
	struct csrow_info *csrow;
2244
	struct dimm_info *dimm;
2245
	enum edac_type edac_mode;
2246 2247
	enum mem_type mtype;
	int i, j, empty = 1;
2248
	int nr_pages = 0;
2249
	u32 val;
2250

2251
	amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
2252

2253
	pvt->nbcfg = val;
2254

2255 2256 2257
	edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
		 pvt->mc_node_id, val,
		 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
2258

2259 2260 2261
	/*
	 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
	 */
2262
	for_each_chip_select(i, 0, pvt) {
2263 2264
		bool row_dct0 = !!csrow_enabled(i, 0, pvt);
		bool row_dct1 = false;
2265

2266
		if (pvt->fam != 0xf)
2267 2268 2269
			row_dct1 = !!csrow_enabled(i, 1, pvt);

		if (!row_dct0 && !row_dct1)
2270 2271
			continue;

2272
		csrow = mci->csrows[i];
2273
		empty = 0;
2274 2275 2276 2277

		edac_dbg(1, "MC node: %d, csrow: %d\n",
			    pvt->mc_node_id, i);

2278
		if (row_dct0) {
2279
			nr_pages = get_csrow_nr_pages(pvt, 0, i);
2280 2281
			csrow->channels[0]->dimm->nr_pages = nr_pages;
		}
2282

2283
		/* K8 has only one DCT */
2284
		if (pvt->fam != 0xf && row_dct1) {
2285
			int row_dct1_pages = get_csrow_nr_pages(pvt, 1, i);
2286 2287 2288 2289

			csrow->channels[1]->dimm->nr_pages = row_dct1_pages;
			nr_pages += row_dct1_pages;
		}
2290

2291
		mtype = determine_memory_type(pvt, i);
2292

2293
		edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages);
2294 2295 2296 2297

		/*
		 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
		 */
2298
		if (pvt->nbcfg & NBCFG_ECC_ENABLE)
2299 2300
			edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) ?
				    EDAC_S4ECD4ED : EDAC_SECDED;
2301
		else
2302 2303 2304
			edac_mode = EDAC_NONE;

		for (j = 0; j < pvt->channel_count; j++) {
2305 2306 2307
			dimm = csrow->channels[j]->dimm;
			dimm->mtype = mtype;
			dimm->edac_mode = edac_mode;
2308
		}
2309 2310 2311 2312
	}

	return empty;
}
2313

2314
/* get all cores on this DCT */
2315
static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid)
2316 2317 2318 2319 2320 2321 2322 2323 2324
{
	int cpu;

	for_each_online_cpu(cpu)
		if (amd_get_nb_id(cpu) == nid)
			cpumask_set_cpu(cpu, mask);
}

/* check MCG_CTL on all the cpus on this node */
2325
static bool nb_mce_bank_enabled_on_node(u16 nid)
2326 2327
{
	cpumask_var_t mask;
2328
	int cpu, nbe;
2329 2330 2331
	bool ret = false;

	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2332
		amd64_warn("%s: Error allocating mask\n", __func__);
2333 2334 2335 2336 2337 2338 2339 2340
		return false;
	}

	get_cpus_on_this_dct_cpumask(mask, nid);

	rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, mask) {
2341
		struct msr *reg = per_cpu_ptr(msrs, cpu);
2342
		nbe = reg->l & MSR_MCGCTL_NBE;
2343

2344 2345 2346
		edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
			 cpu, reg->q,
			 (nbe ? "enabled" : "disabled"));
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357

		if (!nbe)
			goto out;
	}
	ret = true;

out:
	free_cpumask_var(mask);
	return ret;
}

2358
static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on)
2359 2360
{
	cpumask_var_t cmask;
2361
	int cpu;
2362 2363

	if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2364
		amd64_warn("%s: error allocating mask\n", __func__);
2365 2366 2367
		return false;
	}

2368
	get_cpus_on_this_dct_cpumask(cmask, nid);
2369 2370 2371 2372 2373

	rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, cmask) {

2374 2375
		struct msr *reg = per_cpu_ptr(msrs, cpu);

2376
		if (on) {
2377
			if (reg->l & MSR_MCGCTL_NBE)
2378
				s->flags.nb_mce_enable = 1;
2379

2380
			reg->l |= MSR_MCGCTL_NBE;
2381 2382
		} else {
			/*
2383
			 * Turn off NB MCE reporting only when it was off before
2384
			 */
2385
			if (!s->flags.nb_mce_enable)
2386
				reg->l &= ~MSR_MCGCTL_NBE;
2387 2388 2389 2390 2391 2392 2393 2394 2395
		}
	}
	wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	free_cpumask_var(cmask);

	return 0;
}

2396
static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid,
2397
				       struct pci_dev *F3)
2398
{
2399
	bool ret = true;
B
Borislav Petkov 已提交
2400
	u32 value, mask = 0x3;		/* UECC/CECC enable */
2401

2402 2403 2404 2405 2406
	if (toggle_ecc_err_reporting(s, nid, ON)) {
		amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
		return false;
	}

B
Borislav Petkov 已提交
2407
	amd64_read_pci_cfg(F3, NBCTL, &value);
2408

2409 2410
	s->old_nbctl   = value & mask;
	s->nbctl_valid = true;
2411 2412

	value |= mask;
B
Borislav Petkov 已提交
2413
	amd64_write_pci_cfg(F3, NBCTL, value);
2414

2415
	amd64_read_pci_cfg(F3, NBCFG, &value);
2416

2417 2418
	edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
		 nid, value, !!(value & NBCFG_ECC_ENABLE));
2419

2420
	if (!(value & NBCFG_ECC_ENABLE)) {
2421
		amd64_warn("DRAM ECC disabled on this node, enabling...\n");
2422

2423
		s->flags.nb_ecc_prev = 0;
2424

2425
		/* Attempt to turn on DRAM ECC Enable */
2426 2427
		value |= NBCFG_ECC_ENABLE;
		amd64_write_pci_cfg(F3, NBCFG, value);
2428

2429
		amd64_read_pci_cfg(F3, NBCFG, &value);
2430

2431
		if (!(value & NBCFG_ECC_ENABLE)) {
2432 2433
			amd64_warn("Hardware rejected DRAM ECC enable,"
				   "check memory DIMM configuration.\n");
2434
			ret = false;
2435
		} else {
2436
			amd64_info("Hardware accepted DRAM ECC Enable\n");
2437
		}
2438
	} else {
2439
		s->flags.nb_ecc_prev = 1;
2440
	}
2441

2442 2443
	edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
		 nid, value, !!(value & NBCFG_ECC_ENABLE));
2444

2445
	return ret;
2446 2447
}

2448
static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid,
2449
					struct pci_dev *F3)
2450
{
B
Borislav Petkov 已提交
2451 2452
	u32 value, mask = 0x3;		/* UECC/CECC enable */

2453

2454
	if (!s->nbctl_valid)
2455 2456
		return;

B
Borislav Petkov 已提交
2457
	amd64_read_pci_cfg(F3, NBCTL, &value);
2458
	value &= ~mask;
2459
	value |= s->old_nbctl;
2460

B
Borislav Petkov 已提交
2461
	amd64_write_pci_cfg(F3, NBCTL, value);
2462

2463 2464
	/* restore previous BIOS DRAM ECC "off" setting we force-enabled */
	if (!s->flags.nb_ecc_prev) {
2465 2466 2467
		amd64_read_pci_cfg(F3, NBCFG, &value);
		value &= ~NBCFG_ECC_ENABLE;
		amd64_write_pci_cfg(F3, NBCFG, value);
2468 2469 2470
	}

	/* restore the NB Enable MCGCTL bit */
2471
	if (toggle_ecc_err_reporting(s, nid, OFF))
2472
		amd64_warn("Error restoring NB MCGCTL settings!\n");
2473 2474 2475
}

/*
2476 2477 2478 2479
 * EDAC requires that the BIOS have ECC enabled before
 * taking over the processing of ECC errors. A command line
 * option allows to force-enable hardware ECC later in
 * enable_ecc_error_reporting().
2480
 */
2481 2482 2483 2484 2485
static const char *ecc_msg =
	"ECC disabled in the BIOS or no ECC capability, module will not load.\n"
	" Either enable ECC checking or force module loading by setting "
	"'ecc_enable_override'.\n"
	" (Note that use of the override may cause unknown side effects.)\n";
2486

2487
static bool ecc_enabled(struct pci_dev *F3, u16 nid)
2488 2489
{
	u32 value;
2490
	u8 ecc_en = 0;
2491
	bool nb_mce_en = false;
2492

2493
	amd64_read_pci_cfg(F3, NBCFG, &value);
2494

2495
	ecc_en = !!(value & NBCFG_ECC_ENABLE);
2496
	amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
2497

2498
	nb_mce_en = nb_mce_bank_enabled_on_node(nid);
2499
	if (!nb_mce_en)
2500 2501 2502
		amd64_notice("NB MCE bank disabled, set MSR "
			     "0x%08x[4] on node %d to enable.\n",
			     MSR_IA32_MCG_CTL, nid);
2503

2504 2505 2506 2507 2508
	if (!ecc_en || !nb_mce_en) {
		amd64_notice("%s", ecc_msg);
		return false;
	}
	return true;
2509 2510
}

2511
static int set_mc_sysfs_attrs(struct mem_ctl_info *mci)
2512
{
2513
	struct amd64_pvt *pvt = mci->pvt_info;
2514
	int rc;
2515

2516 2517 2518
	rc = amd64_create_sysfs_dbg_files(mci);
	if (rc < 0)
		return rc;
2519

2520
	if (pvt->fam >= 0x10) {
2521 2522 2523 2524 2525 2526 2527
		rc = amd64_create_sysfs_inject_files(mci);
		if (rc < 0)
			return rc;
	}

	return 0;
}
2528

2529 2530
static void del_mc_sysfs_attrs(struct mem_ctl_info *mci)
{
2531 2532
	struct amd64_pvt *pvt = mci->pvt_info;

2533
	amd64_remove_sysfs_dbg_files(mci);
2534

2535
	if (pvt->fam >= 0x10)
2536
		amd64_remove_sysfs_inject_files(mci);
2537 2538
}

2539 2540
static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
				 struct amd64_family_type *fam)
2541 2542 2543 2544 2545 2546
{
	struct amd64_pvt *pvt = mci->pvt_info;

	mci->mtype_cap		= MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
	mci->edac_ctl_cap	= EDAC_FLAG_NONE;

2547
	if (pvt->nbcap & NBCAP_SECDED)
2548 2549
		mci->edac_ctl_cap |= EDAC_FLAG_SECDED;

2550
	if (pvt->nbcap & NBCAP_CHIPKILL)
2551 2552
		mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;

2553
	mci->edac_cap		= determine_edac_cap(pvt);
2554 2555
	mci->mod_name		= EDAC_MOD_STR;
	mci->mod_ver		= EDAC_AMD64_VERSION;
2556
	mci->ctl_name		= fam->ctl_name;
2557
	mci->dev_name		= pci_name(pvt->F2);
2558 2559 2560
	mci->ctl_page_to_phys	= NULL;

	/* memory scrubber interface */
2561 2562
	mci->set_sdram_scrub_rate = set_scrub_rate;
	mci->get_sdram_scrub_rate = get_scrub_rate;
2563 2564
}

2565 2566 2567
/*
 * returns a pointer to the family descriptor on success, NULL otherwise.
 */
2568
static struct amd64_family_type *per_family_init(struct amd64_pvt *pvt)
2569
{
2570 2571
	struct amd64_family_type *fam_type = NULL;

2572
	pvt->ext_model  = boot_cpu_data.x86_model >> 4;
2573
	pvt->stepping	= boot_cpu_data.x86_mask;
2574 2575 2576 2577
	pvt->model	= boot_cpu_data.x86_model;
	pvt->fam	= boot_cpu_data.x86;

	switch (pvt->fam) {
2578
	case 0xf:
2579 2580
		fam_type	= &family_types[K8_CPUS];
		pvt->ops	= &family_types[K8_CPUS].ops;
2581
		break;
2582

2583
	case 0x10:
2584 2585
		fam_type	= &family_types[F10_CPUS];
		pvt->ops	= &family_types[F10_CPUS].ops;
2586 2587 2588
		break;

	case 0x15:
2589
		if (pvt->model == 0x30) {
2590 2591
			fam_type = &family_types[F15_M30H_CPUS];
			pvt->ops = &family_types[F15_M30H_CPUS].ops;
2592 2593 2594
			break;
		}

2595 2596
		fam_type	= &family_types[F15_CPUS];
		pvt->ops	= &family_types[F15_CPUS].ops;
2597 2598
		break;

2599
	case 0x16:
2600 2601 2602 2603 2604
		if (pvt->model == 0x30) {
			fam_type = &family_types[F16_M30H_CPUS];
			pvt->ops = &family_types[F16_M30H_CPUS].ops;
			break;
		}
2605 2606
		fam_type	= &family_types[F16_CPUS];
		pvt->ops	= &family_types[F16_CPUS].ops;
2607 2608
		break;

2609
	default:
2610
		amd64_err("Unsupported family!\n");
2611
		return NULL;
2612
	}
2613

2614
	amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
2615
		     (pvt->fam == 0xf ?
2616 2617 2618
				(pvt->ext_model >= K8_REV_F  ? "revF or later "
							     : "revE or earlier ")
				 : ""), pvt->mc_node_id);
2619
	return fam_type;
2620 2621
}

2622
static int init_one_instance(struct pci_dev *F2)
2623 2624
{
	struct amd64_pvt *pvt = NULL;
2625
	struct amd64_family_type *fam_type = NULL;
2626
	struct mem_ctl_info *mci = NULL;
2627
	struct edac_mc_layer layers[2];
2628
	int err = 0, ret;
2629
	u16 nid = amd_get_node_id(F2);
2630 2631 2632 2633

	ret = -ENOMEM;
	pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
	if (!pvt)
2634
		goto err_ret;
2635

2636
	pvt->mc_node_id	= nid;
2637
	pvt->F2 = F2;
2638

2639
	ret = -EINVAL;
2640
	fam_type = per_family_init(pvt);
2641
	if (!fam_type)
2642 2643
		goto err_free;

2644
	ret = -ENODEV;
2645
	err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
2646 2647 2648
	if (err)
		goto err_free;

2649
	read_mc_regs(pvt);
2650 2651 2652 2653

	/*
	 * We need to determine how many memory channels there are. Then use
	 * that information for calculating the size of the dynamic instance
2654
	 * tables in the 'mci' structure.
2655
	 */
2656
	ret = -EINVAL;
2657 2658
	pvt->channel_count = pvt->ops->early_channel_count(pvt);
	if (pvt->channel_count < 0)
2659
		goto err_siblings;
2660 2661

	ret = -ENOMEM;
2662 2663 2664 2665
	layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
	layers[0].size = pvt->csels[0].b_cnt;
	layers[0].is_virt_csrow = true;
	layers[1].type = EDAC_MC_LAYER_CHANNEL;
2666 2667 2668 2669 2670 2671 2672

	/*
	 * Always allocate two channels since we can have setups with DIMMs on
	 * only one channel. Also, this simplifies handling later for the price
	 * of a couple of KBs tops.
	 */
	layers[1].size = 2;
2673
	layers[1].is_virt_csrow = false;
2674

2675
	mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0);
2676
	if (!mci)
2677
		goto err_siblings;
2678 2679

	mci->pvt_info = pvt;
2680
	mci->pdev = &pvt->F2->dev;
2681

2682
	setup_mci_misc_attrs(mci, fam_type);
2683 2684

	if (init_csrows(mci))
2685 2686 2687 2688
		mci->edac_cap = EDAC_FLAG_NONE;

	ret = -ENODEV;
	if (edac_mc_add_mc(mci)) {
2689
		edac_dbg(1, "failed edac_mc_add_mc()\n");
2690 2691
		goto err_add_mc;
	}
2692
	if (set_mc_sysfs_attrs(mci)) {
2693
		edac_dbg(1, "failed edac_mc_add_mc()\n");
2694 2695
		goto err_add_sysfs;
	}
2696

2697 2698 2699 2700
	/* register stuff with EDAC MCE */
	if (report_gart_errors)
		amd_report_gart_errors(true);

2701
	amd_register_ecc_decoder(decode_bus_error);
2702

2703 2704 2705 2706
	mcis[nid] = mci;

	atomic_inc(&drv_instances);

2707 2708
	return 0;

2709 2710
err_add_sysfs:
	edac_mc_del_mc(mci->pdev);
2711 2712 2713
err_add_mc:
	edac_mc_free(mci);

2714 2715
err_siblings:
	free_mc_sibling_devs(pvt);
2716

2717 2718
err_free:
	kfree(pvt);
2719

2720
err_ret:
2721 2722 2723
	return ret;
}

2724 2725
static int probe_one_instance(struct pci_dev *pdev,
			      const struct pci_device_id *mc_type)
2726
{
2727
	u16 nid = amd_get_node_id(pdev);
2728
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2729
	struct ecc_settings *s;
2730
	int ret = 0;
2731 2732

	ret = pci_enable_device(pdev);
2733
	if (ret < 0) {
2734
		edac_dbg(0, "ret=%d\n", ret);
2735 2736
		return -EIO;
	}
2737

2738 2739 2740
	ret = -ENOMEM;
	s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
	if (!s)
2741
		goto err_out;
2742 2743 2744

	ecc_stngs[nid] = s;

2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
	if (!ecc_enabled(F3, nid)) {
		ret = -ENODEV;

		if (!ecc_enable_override)
			goto err_enable;

		amd64_warn("Forcing ECC on!\n");

		if (!enable_ecc_error_reporting(s, nid, F3))
			goto err_enable;
	}

2757
	ret = init_one_instance(pdev);
2758
	if (ret < 0) {
2759
		amd64_err("Error probing instance: %d\n", nid);
2760 2761
		restore_ecc_error_reporting(s, nid, F3);
	}
2762 2763

	return ret;
2764 2765 2766 2767 2768 2769 2770

err_enable:
	kfree(s);
	ecc_stngs[nid] = NULL;

err_out:
	return ret;
2771 2772
}

2773
static void remove_one_instance(struct pci_dev *pdev)
2774 2775 2776
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
2777
	u16 nid = amd_get_node_id(pdev);
2778 2779
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
	struct ecc_settings *s = ecc_stngs[nid];
2780

2781
	mci = find_mci_by_dev(&pdev->dev);
2782 2783
	WARN_ON(!mci);

2784
	del_mc_sysfs_attrs(mci);
2785 2786 2787 2788 2789 2790 2791
	/* Remove from EDAC CORE tracking list */
	mci = edac_mc_del_mc(&pdev->dev);
	if (!mci)
		return;

	pvt = mci->pvt_info;

2792
	restore_ecc_error_reporting(s, nid, F3);
2793

2794
	free_mc_sibling_devs(pvt);
2795

2796 2797
	/* unregister from EDAC MCE */
	amd_report_gart_errors(false);
2798
	amd_unregister_ecc_decoder(decode_bus_error);
2799

2800 2801
	kfree(ecc_stngs[nid]);
	ecc_stngs[nid] = NULL;
2802

2803
	/* Free the EDAC CORE resources */
2804
	mci->pvt_info = NULL;
2805
	mcis[nid] = NULL;
2806 2807

	kfree(pvt);
2808 2809 2810 2811 2812 2813 2814 2815
	edac_mc_free(mci);
}

/*
 * This table is part of the interface for loading drivers for PCI devices. The
 * PCI core identifies what devices are on a system during boot, and then
 * inquiry this table to see if this driver is for a given device found.
 */
2816
static const struct pci_device_id amd64_pci_table[] = {
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832
	{
		.vendor		= PCI_VENDOR_ID_AMD,
		.device		= PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
		.subvendor	= PCI_ANY_ID,
		.subdevice	= PCI_ANY_ID,
		.class		= 0,
		.class_mask	= 0,
	},
	{
		.vendor		= PCI_VENDOR_ID_AMD,
		.device		= PCI_DEVICE_ID_AMD_10H_NB_DRAM,
		.subvendor	= PCI_ANY_ID,
		.subdevice	= PCI_ANY_ID,
		.class		= 0,
		.class_mask	= 0,
	},
2833 2834 2835 2836 2837 2838 2839 2840
	{
		.vendor		= PCI_VENDOR_ID_AMD,
		.device		= PCI_DEVICE_ID_AMD_15H_NB_F2,
		.subvendor	= PCI_ANY_ID,
		.subdevice	= PCI_ANY_ID,
		.class		= 0,
		.class_mask	= 0,
	},
2841 2842 2843 2844 2845 2846 2847 2848
	{
		.vendor		= PCI_VENDOR_ID_AMD,
		.device		= PCI_DEVICE_ID_AMD_15H_M30H_NB_F2,
		.subvendor	= PCI_ANY_ID,
		.subdevice	= PCI_ANY_ID,
		.class		= 0,
		.class_mask	= 0,
	},
2849 2850 2851 2852 2853 2854 2855 2856
	{
		.vendor		= PCI_VENDOR_ID_AMD,
		.device		= PCI_DEVICE_ID_AMD_16H_NB_F2,
		.subvendor	= PCI_ANY_ID,
		.subdevice	= PCI_ANY_ID,
		.class		= 0,
		.class_mask	= 0,
	},
2857 2858 2859 2860 2861 2862 2863 2864
	{
		.vendor		= PCI_VENDOR_ID_AMD,
		.device		= PCI_DEVICE_ID_AMD_16H_M30H_NB_F2,
		.subvendor	= PCI_ANY_ID,
		.subdevice	= PCI_ANY_ID,
		.class		= 0,
		.class_mask	= 0,
	},
2865

2866 2867 2868 2869 2870 2871
	{0, }
};
MODULE_DEVICE_TABLE(pci, amd64_pci_table);

static struct pci_driver amd64_pci_driver = {
	.name		= EDAC_MOD_STR,
2872 2873
	.probe		= probe_one_instance,
	.remove		= remove_one_instance,
2874 2875 2876
	.id_table	= amd64_pci_table,
};

2877
static void setup_pci_device(void)
2878 2879 2880 2881
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;

2882
	if (pci_ctl)
2883 2884
		return;

2885
	mci = mcis[0];
2886 2887
	if (!mci)
		return;
2888

2889 2890 2891 2892 2893
	pvt = mci->pvt_info;
	pci_ctl = edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
	if (!pci_ctl) {
		pr_warn("%s(): Unable to create PCI control\n", __func__);
		pr_warn("%s(): PCI error report via EDAC not set\n", __func__);
2894 2895 2896 2897 2898
	}
}

static int __init amd64_edac_init(void)
{
2899
	int err = -ENODEV;
2900

2901
	printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
2902 2903 2904

	opstate_init();

2905
	if (amd_cache_northbridges() < 0)
2906
		goto err_ret;
2907

2908
	err = -ENOMEM;
2909 2910
	mcis	  = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
	ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
2911
	if (!(mcis && ecc_stngs))
2912
		goto err_free;
2913

2914
	msrs = msrs_alloc();
2915
	if (!msrs)
2916
		goto err_free;
2917

2918 2919
	err = pci_register_driver(&amd64_pci_driver);
	if (err)
2920
		goto err_pci;
2921

2922
	err = -ENODEV;
2923 2924
	if (!atomic_read(&drv_instances))
		goto err_no_instances;
2925

2926 2927
	setup_pci_device();
	return 0;
2928

2929
err_no_instances:
2930
	pci_unregister_driver(&amd64_pci_driver);
2931

2932 2933 2934
err_pci:
	msrs_free(msrs);
	msrs = NULL;
2935

2936 2937 2938 2939 2940 2941 2942
err_free:
	kfree(mcis);
	mcis = NULL;

	kfree(ecc_stngs);
	ecc_stngs = NULL;

2943
err_ret:
2944 2945 2946 2947 2948
	return err;
}

static void __exit amd64_edac_exit(void)
{
2949 2950
	if (pci_ctl)
		edac_pci_release_generic_ctl(pci_ctl);
2951 2952

	pci_unregister_driver(&amd64_pci_driver);
2953

2954 2955 2956
	kfree(ecc_stngs);
	ecc_stngs = NULL;

2957 2958 2959
	kfree(mcis);
	mcis = NULL;

2960 2961
	msrs_free(msrs);
	msrs = NULL;
2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974
}

module_init(amd64_edac_init);
module_exit(amd64_edac_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
		"Dave Peterson, Thayne Harbaugh");
MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
		EDAC_AMD64_VERSION);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");