atmel-aes.c 67.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * Cryptographic API.
 *
 * Support for ATMEL AES HW acceleration.
 *
 * Copyright (c) 2012 Eukréa Electromatique - ATMEL
 * Author: Nicolas Royer <nicolas@eukrea.com>
 *
 * Some ideas are from omap-aes.c driver.
 */


#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/hw_random.h>
#include <linux/platform_device.h>

#include <linux/device.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/scatterlist.h>
#include <linux/dma-mapping.h>
30
#include <linux/of_device.h>
31 32 33 34 35
#include <linux/delay.h>
#include <linux/crypto.h>
#include <crypto/scatterwalk.h>
#include <crypto/algapi.h>
#include <crypto/aes.h>
36
#include <crypto/gcm.h>
37
#include <crypto/xts.h>
38
#include <crypto/internal/aead.h>
39
#include <crypto/internal/skcipher.h>
40
#include <linux/platform_data/crypto-atmel.h>
41
#include "atmel-aes-regs.h"
42
#include "atmel-authenc.h"
43

44 45
#define ATMEL_AES_PRIORITY	300

46 47 48
#define ATMEL_AES_BUFFER_ORDER	2
#define ATMEL_AES_BUFFER_SIZE	(PAGE_SIZE << ATMEL_AES_BUFFER_ORDER)

49 50 51 52 53
#define CFB8_BLOCK_SIZE		1
#define CFB16_BLOCK_SIZE	2
#define CFB32_BLOCK_SIZE	4
#define CFB64_BLOCK_SIZE	8

54 55
#define SIZE_IN_WORDS(x)	((x) >> 2)

56
/* AES flags */
57
/* Reserve bits [18:16] [14:12] [1:0] for mode (same as for AES_MR) */
58
#define AES_FLAGS_ENCRYPT	AES_MR_CYPHER_ENC
59
#define AES_FLAGS_GTAGEN	AES_MR_GTAGEN
60 61 62 63 64 65 66 67 68 69
#define AES_FLAGS_OPMODE_MASK	(AES_MR_OPMOD_MASK | AES_MR_CFBS_MASK)
#define AES_FLAGS_ECB		AES_MR_OPMOD_ECB
#define AES_FLAGS_CBC		AES_MR_OPMOD_CBC
#define AES_FLAGS_OFB		AES_MR_OPMOD_OFB
#define AES_FLAGS_CFB128	(AES_MR_OPMOD_CFB | AES_MR_CFBS_128b)
#define AES_FLAGS_CFB64		(AES_MR_OPMOD_CFB | AES_MR_CFBS_64b)
#define AES_FLAGS_CFB32		(AES_MR_OPMOD_CFB | AES_MR_CFBS_32b)
#define AES_FLAGS_CFB16		(AES_MR_OPMOD_CFB | AES_MR_CFBS_16b)
#define AES_FLAGS_CFB8		(AES_MR_OPMOD_CFB | AES_MR_CFBS_8b)
#define AES_FLAGS_CTR		AES_MR_OPMOD_CTR
70
#define AES_FLAGS_GCM		AES_MR_OPMOD_GCM
71
#define AES_FLAGS_XTS		AES_MR_OPMOD_XTS
72 73

#define AES_FLAGS_MODE_MASK	(AES_FLAGS_OPMODE_MASK |	\
74 75
				 AES_FLAGS_ENCRYPT |		\
				 AES_FLAGS_GTAGEN)
76 77

#define AES_FLAGS_BUSY		BIT(3)
78
#define AES_FLAGS_DUMP_REG	BIT(4)
79
#define AES_FLAGS_OWN_SHA	BIT(5)
80

81
#define AES_FLAGS_PERSISTENT	AES_FLAGS_BUSY
82

83
#define ATMEL_AES_QUEUE_LENGTH	50
84

85
#define ATMEL_AES_DMA_THRESHOLD		256
86 87


88
struct atmel_aes_caps {
89 90
	bool			has_dualbuff;
	bool			has_cfb64;
91
	bool			has_ctr32;
92
	bool			has_gcm;
93
	bool			has_xts;
94
	bool			has_authenc;
95
	u32			max_burst_size;
96 97
};

98 99
struct atmel_aes_dev;

100 101 102 103 104

typedef int (*atmel_aes_fn_t)(struct atmel_aes_dev *);


struct atmel_aes_base_ctx {
105 106 107 108 109
	struct atmel_aes_dev	*dd;
	atmel_aes_fn_t		start;
	int			keylen;
	u32			key[AES_KEYSIZE_256 / sizeof(u32)];
	u16			block_size;
110
	bool			is_aead;
111 112
};

113 114 115 116
struct atmel_aes_ctx {
	struct atmel_aes_base_ctx	base;
};

117 118 119
struct atmel_aes_ctr_ctx {
	struct atmel_aes_base_ctx	base;

120
	__be32			iv[AES_BLOCK_SIZE / sizeof(u32)];
121 122 123 124 125
	size_t			offset;
	struct scatterlist	src[2];
	struct scatterlist	dst[2];
};

126 127 128 129 130 131
struct atmel_aes_gcm_ctx {
	struct atmel_aes_base_ctx	base;

	struct scatterlist	src[2];
	struct scatterlist	dst[2];

132
	__be32			j0[AES_BLOCK_SIZE / sizeof(u32)];
133
	u32			tag[AES_BLOCK_SIZE / sizeof(u32)];
134
	__be32			ghash[AES_BLOCK_SIZE / sizeof(u32)];
135 136
	size_t			textlen;

137 138
	const __be32		*ghash_in;
	__be32			*ghash_out;
139 140 141
	atmel_aes_fn_t		ghash_resume;
};

142 143 144 145 146 147
struct atmel_aes_xts_ctx {
	struct atmel_aes_base_ctx	base;

	u32			key2[AES_KEYSIZE_256 / sizeof(u32)];
};

148
#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
149 150 151 152 153 154
struct atmel_aes_authenc_ctx {
	struct atmel_aes_base_ctx	base;
	struct atmel_sha_authenc_ctx	*auth;
};
#endif

155
struct atmel_aes_reqctx {
156
	unsigned long		mode;
157
	u8			lastc[AES_BLOCK_SIZE];
158 159
};

160
#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
161 162 163 164 165 166 167 168 169 170 171 172 173
struct atmel_aes_authenc_reqctx {
	struct atmel_aes_reqctx	base;

	struct scatterlist	src[2];
	struct scatterlist	dst[2];
	size_t			textlen;
	u32			digest[SHA512_DIGEST_SIZE / sizeof(u32)];

	/* auth_req MUST be place last. */
	struct ahash_request	auth_req;
};
#endif

174
struct atmel_aes_dma {
175 176 177 178 179
	struct dma_chan		*chan;
	struct scatterlist	*sg;
	int			nents;
	unsigned int		remainder;
	unsigned int		sg_len;
180 181 182 183 184 185 186
};

struct atmel_aes_dev {
	struct list_head	list;
	unsigned long		phys_base;
	void __iomem		*io_base;

187 188 189
	struct crypto_async_request	*areq;
	struct atmel_aes_base_ctx	*ctx;

190 191
	bool			is_async;
	atmel_aes_fn_t		resume;
192
	atmel_aes_fn_t		cpu_transfer_complete;
193

194 195
	struct device		*dev;
	struct clk		*iclk;
196
	int			irq;
197 198 199 200 201 202 203 204 205

	unsigned long		flags;

	spinlock_t		lock;
	struct crypto_queue	queue;

	struct tasklet_struct	done_task;
	struct tasklet_struct	queue_task;

206 207 208
	size_t			total;
	size_t			datalen;
	u32			*data;
209

210 211
	struct atmel_aes_dma	src;
	struct atmel_aes_dma	dst;
212

213 214 215 216
	size_t			buflen;
	void			*buf;
	struct scatterlist	aligned_sg;
	struct scatterlist	*real_dst;
217

218 219
	struct atmel_aes_caps	caps;

220
	u32			hw_version;
221 222 223 224 225 226 227 228 229 230 231 232
};

struct atmel_aes_drv {
	struct list_head	dev_list;
	spinlock_t		lock;
};

static struct atmel_aes_drv atmel_aes = {
	.dev_list = LIST_HEAD_INIT(atmel_aes.dev_list),
	.lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock),
};

233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
#ifdef VERBOSE_DEBUG
static const char *atmel_aes_reg_name(u32 offset, char *tmp, size_t sz)
{
	switch (offset) {
	case AES_CR:
		return "CR";

	case AES_MR:
		return "MR";

	case AES_ISR:
		return "ISR";

	case AES_IMR:
		return "IMR";

	case AES_IER:
		return "IER";

	case AES_IDR:
		return "IDR";

	case AES_KEYWR(0):
	case AES_KEYWR(1):
	case AES_KEYWR(2):
	case AES_KEYWR(3):
	case AES_KEYWR(4):
	case AES_KEYWR(5):
	case AES_KEYWR(6):
	case AES_KEYWR(7):
		snprintf(tmp, sz, "KEYWR[%u]", (offset - AES_KEYWR(0)) >> 2);
		break;

	case AES_IDATAR(0):
	case AES_IDATAR(1):
	case AES_IDATAR(2):
	case AES_IDATAR(3):
		snprintf(tmp, sz, "IDATAR[%u]", (offset - AES_IDATAR(0)) >> 2);
		break;

	case AES_ODATAR(0):
	case AES_ODATAR(1):
	case AES_ODATAR(2):
	case AES_ODATAR(3):
		snprintf(tmp, sz, "ODATAR[%u]", (offset - AES_ODATAR(0)) >> 2);
		break;

	case AES_IVR(0):
	case AES_IVR(1):
	case AES_IVR(2):
	case AES_IVR(3):
		snprintf(tmp, sz, "IVR[%u]", (offset - AES_IVR(0)) >> 2);
		break;

	case AES_AADLENR:
		return "AADLENR";

	case AES_CLENR:
		return "CLENR";

	case AES_GHASHR(0):
	case AES_GHASHR(1):
	case AES_GHASHR(2):
	case AES_GHASHR(3):
		snprintf(tmp, sz, "GHASHR[%u]", (offset - AES_GHASHR(0)) >> 2);
		break;

	case AES_TAGR(0):
	case AES_TAGR(1):
	case AES_TAGR(2):
	case AES_TAGR(3):
		snprintf(tmp, sz, "TAGR[%u]", (offset - AES_TAGR(0)) >> 2);
		break;

	case AES_CTRR:
		return "CTRR";

	case AES_GCMHR(0):
	case AES_GCMHR(1):
	case AES_GCMHR(2):
	case AES_GCMHR(3):
		snprintf(tmp, sz, "GCMHR[%u]", (offset - AES_GCMHR(0)) >> 2);
315
		break;
316

317 318 319
	case AES_EMR:
		return "EMR";

320 321 322 323 324 325 326 327 328 329 330 331 332 333
	case AES_TWR(0):
	case AES_TWR(1):
	case AES_TWR(2):
	case AES_TWR(3):
		snprintf(tmp, sz, "TWR[%u]", (offset - AES_TWR(0)) >> 2);
		break;

	case AES_ALPHAR(0):
	case AES_ALPHAR(1):
	case AES_ALPHAR(2):
	case AES_ALPHAR(3):
		snprintf(tmp, sz, "ALPHAR[%u]", (offset - AES_ALPHAR(0)) >> 2);
		break;

334 335 336 337 338 339 340 341 342
	default:
		snprintf(tmp, sz, "0x%02x", offset);
		break;
	}

	return tmp;
}
#endif /* VERBOSE_DEBUG */

343
/* Shared functions */
344

345 346
static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset)
{
347 348 349 350 351 352 353 354 355 356 357 358
	u32 value = readl_relaxed(dd->io_base + offset);

#ifdef VERBOSE_DEBUG
	if (dd->flags & AES_FLAGS_DUMP_REG) {
		char tmp[16];

		dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
			 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
	}
#endif /* VERBOSE_DEBUG */

	return value;
359 360 361 362 363
}

static inline void atmel_aes_write(struct atmel_aes_dev *dd,
					u32 offset, u32 value)
{
364 365 366 367 368
#ifdef VERBOSE_DEBUG
	if (dd->flags & AES_FLAGS_DUMP_REG) {
		char tmp[16];

		dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
369
			 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
370 371 372
	}
#endif /* VERBOSE_DEBUG */

373 374 375 376 377 378 379 380 381 382 383
	writel_relaxed(value, dd->io_base + offset);
}

static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset,
					u32 *value, int count)
{
	for (; count--; value++, offset += 4)
		*value = atmel_aes_read(dd, offset);
}

static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset,
384
			      const u32 *value, int count)
385 386 387 388 389
{
	for (; count--; value++, offset += 4)
		atmel_aes_write(dd, offset, *value);
}

390
static inline void atmel_aes_read_block(struct atmel_aes_dev *dd, u32 offset,
391
					void *value)
392 393 394 395 396
{
	atmel_aes_read_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
}

static inline void atmel_aes_write_block(struct atmel_aes_dev *dd, u32 offset,
397
					 const void *value)
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
{
	atmel_aes_write_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
}

static inline int atmel_aes_wait_for_data_ready(struct atmel_aes_dev *dd,
						atmel_aes_fn_t resume)
{
	u32 isr = atmel_aes_read(dd, AES_ISR);

	if (unlikely(isr & AES_INT_DATARDY))
		return resume(dd);

	dd->resume = resume;
	atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
	return -EINPROGRESS;
}

static inline size_t atmel_aes_padlen(size_t len, size_t block_size)
{
	len &= block_size - 1;
	return len ? block_size - len : 0;
}

421
static struct atmel_aes_dev *atmel_aes_find_dev(struct atmel_aes_base_ctx *ctx)
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
{
	struct atmel_aes_dev *aes_dd = NULL;
	struct atmel_aes_dev *tmp;

	spin_lock_bh(&atmel_aes.lock);
	if (!ctx->dd) {
		list_for_each_entry(tmp, &atmel_aes.dev_list, list) {
			aes_dd = tmp;
			break;
		}
		ctx->dd = aes_dd;
	} else {
		aes_dd = ctx->dd;
	}

	spin_unlock_bh(&atmel_aes.lock);

	return aes_dd;
}

static int atmel_aes_hw_init(struct atmel_aes_dev *dd)
{
444 445
	int err;

446
	err = clk_enable(dd->iclk);
447 448
	if (err)
		return err;
449

450 451
	atmel_aes_write(dd, AES_CR, AES_CR_SWRST);
	atmel_aes_write(dd, AES_MR, 0xE << AES_MR_CKEY_OFFSET);
452 453 454 455

	return 0;
}

456 457 458 459 460
static inline unsigned int atmel_aes_get_version(struct atmel_aes_dev *dd)
{
	return atmel_aes_read(dd, AES_HW_VERSION) & 0x00000fff;
}

461
static int atmel_aes_hw_version_init(struct atmel_aes_dev *dd)
462
{
463 464 465 466 467
	int err;

	err = atmel_aes_hw_init(dd);
	if (err)
		return err;
468

469 470
	dd->hw_version = atmel_aes_get_version(dd);

471
	dev_info(dd->dev, "version: 0x%x\n", dd->hw_version);
472

473
	clk_disable(dd->iclk);
474
	return 0;
475 476
}

477 478 479 480 481 482 483
static inline void atmel_aes_set_mode(struct atmel_aes_dev *dd,
				      const struct atmel_aes_reqctx *rctx)
{
	/* Clear all but persistent flags and set request flags. */
	dd->flags = (dd->flags & AES_FLAGS_PERSISTENT) | rctx->mode;
}

484 485 486 487 488
static inline bool atmel_aes_is_encrypt(const struct atmel_aes_dev *dd)
{
	return (dd->flags & AES_FLAGS_ENCRYPT);
}

489
#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
490 491 492
static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err);
#endif

493 494
static void atmel_aes_set_iv_as_last_ciphertext_block(struct atmel_aes_dev *dd)
{
495 496 497 498
	struct skcipher_request *req = skcipher_request_cast(dd->areq);
	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
	unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
499

500
	if (req->cryptlen < ivsize)
501 502 503
		return;

	if (rctx->mode & AES_FLAGS_ENCRYPT) {
504 505
		scatterwalk_map_and_copy(req->iv, req->dst,
					 req->cryptlen - ivsize, ivsize, 0);
506 507
	} else {
		if (req->src == req->dst)
508
			memcpy(req->iv, rctx->lastc, ivsize);
509
		else
510 511
			scatterwalk_map_and_copy(req->iv, req->src,
						 req->cryptlen - ivsize,
512 513 514 515
						 ivsize, 0);
	}
}

516
static inline int atmel_aes_complete(struct atmel_aes_dev *dd, int err)
517
{
518
#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
519 520
	if (dd->ctx->is_aead)
		atmel_aes_authenc_complete(dd, err);
521 522
#endif

523
	clk_disable(dd->iclk);
524 525
	dd->flags &= ~AES_FLAGS_BUSY;

526 527
	if (!dd->ctx->is_aead)
		atmel_aes_set_iv_as_last_ciphertext_block(dd);
528

529 530 531 532 533 534
	if (dd->is_async)
		dd->areq->complete(dd->areq, err);

	tasklet_schedule(&dd->queue_task);

	return err;
535 536
}

537
static void atmel_aes_write_ctrl_key(struct atmel_aes_dev *dd, bool use_dma,
538
				     const __be32 *iv, const u32 *key, int keylen)
539 540 541 542
{
	u32 valmr = 0;

	/* MR register must be set before IV registers */
543
	if (keylen == AES_KEYSIZE_128)
544
		valmr |= AES_MR_KEYSIZE_128;
545
	else if (keylen == AES_KEYSIZE_192)
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
		valmr |= AES_MR_KEYSIZE_192;
	else
		valmr |= AES_MR_KEYSIZE_256;

	valmr |= dd->flags & AES_FLAGS_MODE_MASK;

	if (use_dma) {
		valmr |= AES_MR_SMOD_IDATAR0;
		if (dd->caps.has_dualbuff)
			valmr |= AES_MR_DUALBUFF;
	} else {
		valmr |= AES_MR_SMOD_AUTO;
	}

	atmel_aes_write(dd, AES_MR, valmr);

562
	atmel_aes_write_n(dd, AES_KEYWR(0), key, SIZE_IN_WORDS(keylen));
563 564 565 566 567

	if (iv && (valmr & AES_MR_OPMOD_MASK) != AES_MR_OPMOD_ECB)
		atmel_aes_write_block(dd, AES_IVR(0), iv);
}

568
static inline void atmel_aes_write_ctrl(struct atmel_aes_dev *dd, bool use_dma,
569
					const __be32 *iv)
570 571 572 573 574

{
	atmel_aes_write_ctrl_key(dd, use_dma, iv,
				 dd->ctx->key, dd->ctx->keylen);
}
575 576 577 578

/* CPU transfer */

static int atmel_aes_cpu_transfer(struct atmel_aes_dev *dd)
579
{
580 581
	int err = 0;
	u32 isr;
582

583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
	for (;;) {
		atmel_aes_read_block(dd, AES_ODATAR(0), dd->data);
		dd->data += 4;
		dd->datalen -= AES_BLOCK_SIZE;

		if (dd->datalen < AES_BLOCK_SIZE)
			break;

		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);

		isr = atmel_aes_read(dd, AES_ISR);
		if (!(isr & AES_INT_DATARDY)) {
			dd->resume = atmel_aes_cpu_transfer;
			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
			return -EINPROGRESS;
		}
	}

	if (!sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
				 dd->buf, dd->total))
		err = -EINVAL;

	if (err)
		return atmel_aes_complete(dd, err);

	return dd->cpu_transfer_complete(dd);
609 610
}

611 612 613 614 615
static int atmel_aes_cpu_start(struct atmel_aes_dev *dd,
			       struct scatterlist *src,
			       struct scatterlist *dst,
			       size_t len,
			       atmel_aes_fn_t resume)
616
{
617
	size_t padlen = atmel_aes_padlen(len, AES_BLOCK_SIZE);
618

619 620
	if (unlikely(len == 0))
		return -EINVAL;
621

622
	sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
623

624 625 626 627 628 629 630 631
	dd->total = len;
	dd->real_dst = dst;
	dd->cpu_transfer_complete = resume;
	dd->datalen = len + padlen;
	dd->data = (u32 *)dd->buf;
	atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
	return atmel_aes_wait_for_data_ready(dd, atmel_aes_cpu_transfer);
}
632 633


634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
/* DMA transfer */

static void atmel_aes_dma_callback(void *data);

static bool atmel_aes_check_aligned(struct atmel_aes_dev *dd,
				    struct scatterlist *sg,
				    size_t len,
				    struct atmel_aes_dma *dma)
{
	int nents;

	if (!IS_ALIGNED(len, dd->ctx->block_size))
		return false;

	for (nents = 0; sg; sg = sg_next(sg), ++nents) {
		if (!IS_ALIGNED(sg->offset, sizeof(u32)))
			return false;

		if (len <= sg->length) {
			if (!IS_ALIGNED(len, dd->ctx->block_size))
				return false;

			dma->nents = nents+1;
			dma->remainder = sg->length - len;
			sg->length = len;
			return true;
		}

		if (!IS_ALIGNED(sg->length, dd->ctx->block_size))
			return false;

		len -= sg->length;
666
	}
667

668 669
	return false;
}
670

671 672 673 674
static inline void atmel_aes_restore_sg(const struct atmel_aes_dma *dma)
{
	struct scatterlist *sg = dma->sg;
	int nents = dma->nents;
675

676 677
	if (!dma->remainder)
		return;
678

679 680
	while (--nents > 0 && sg)
		sg = sg_next(sg);
681

682 683
	if (!sg)
		return;
684

685 686
	sg->length += dma->remainder;
}
687

688 689 690 691 692 693 694
static int atmel_aes_map(struct atmel_aes_dev *dd,
			 struct scatterlist *src,
			 struct scatterlist *dst,
			 size_t len)
{
	bool src_aligned, dst_aligned;
	size_t padlen;
695

696 697 698 699
	dd->total = len;
	dd->src.sg = src;
	dd->dst.sg = dst;
	dd->real_dst = dst;
700

701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
	src_aligned = atmel_aes_check_aligned(dd, src, len, &dd->src);
	if (src == dst)
		dst_aligned = src_aligned;
	else
		dst_aligned = atmel_aes_check_aligned(dd, dst, len, &dd->dst);
	if (!src_aligned || !dst_aligned) {
		padlen = atmel_aes_padlen(len, dd->ctx->block_size);

		if (dd->buflen < len + padlen)
			return -ENOMEM;

		if (!src_aligned) {
			sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
			dd->src.sg = &dd->aligned_sg;
			dd->src.nents = 1;
			dd->src.remainder = 0;
		}
718

719 720 721 722 723
		if (!dst_aligned) {
			dd->dst.sg = &dd->aligned_sg;
			dd->dst.nents = 1;
			dd->dst.remainder = 0;
		}
724

725 726 727
		sg_init_table(&dd->aligned_sg, 1);
		sg_set_buf(&dd->aligned_sg, dd->buf, len + padlen);
	}
728

729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
	if (dd->src.sg == dd->dst.sg) {
		dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
					    DMA_BIDIRECTIONAL);
		dd->dst.sg_len = dd->src.sg_len;
		if (!dd->src.sg_len)
			return -EFAULT;
	} else {
		dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
					    DMA_TO_DEVICE);
		if (!dd->src.sg_len)
			return -EFAULT;

		dd->dst.sg_len = dma_map_sg(dd->dev, dd->dst.sg, dd->dst.nents,
					    DMA_FROM_DEVICE);
		if (!dd->dst.sg_len) {
			dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
				     DMA_TO_DEVICE);
			return -EFAULT;
		}
	}
749 750 751 752

	return 0;
}

753
static void atmel_aes_unmap(struct atmel_aes_dev *dd)
754
{
755 756 757
	if (dd->src.sg == dd->dst.sg) {
		dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
			     DMA_BIDIRECTIONAL);
758

759 760 761 762 763
		if (dd->src.sg != &dd->aligned_sg)
			atmel_aes_restore_sg(&dd->src);
	} else {
		dma_unmap_sg(dd->dev, dd->dst.sg, dd->dst.nents,
			     DMA_FROM_DEVICE);
764

765 766
		if (dd->dst.sg != &dd->aligned_sg)
			atmel_aes_restore_sg(&dd->dst);
767

768 769 770 771 772 773 774 775 776 777 778
		dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
			     DMA_TO_DEVICE);

		if (dd->src.sg != &dd->aligned_sg)
			atmel_aes_restore_sg(&dd->src);
	}

	if (dd->dst.sg == &dd->aligned_sg)
		sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
				    dd->buf, dd->total);
}
779

780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
static int atmel_aes_dma_transfer_start(struct atmel_aes_dev *dd,
					enum dma_slave_buswidth addr_width,
					enum dma_transfer_direction dir,
					u32 maxburst)
{
	struct dma_async_tx_descriptor *desc;
	struct dma_slave_config config;
	dma_async_tx_callback callback;
	struct atmel_aes_dma *dma;
	int err;

	memset(&config, 0, sizeof(config));
	config.direction = dir;
	config.src_addr_width = addr_width;
	config.dst_addr_width = addr_width;
	config.src_maxburst = maxburst;
	config.dst_maxburst = maxburst;

	switch (dir) {
	case DMA_MEM_TO_DEV:
		dma = &dd->src;
		callback = NULL;
		config.dst_addr = dd->phys_base + AES_IDATAR(0);
		break;
804

805 806 807 808 809 810 811
	case DMA_DEV_TO_MEM:
		dma = &dd->dst;
		callback = atmel_aes_dma_callback;
		config.src_addr = dd->phys_base + AES_ODATAR(0);
		break;

	default:
812
		return -EINVAL;
813
	}
814

815 816 817
	err = dmaengine_slave_config(dma->chan, &config);
	if (err)
		return err;
818

819 820 821 822
	desc = dmaengine_prep_slave_sg(dma->chan, dma->sg, dma->sg_len, dir,
				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
	if (!desc)
		return -ENOMEM;
823

824 825 826 827
	desc->callback = callback;
	desc->callback_param = dd;
	dmaengine_submit(desc);
	dma_async_issue_pending(dma->chan);
828

829 830
	return 0;
}
831

832 833
static void atmel_aes_dma_transfer_stop(struct atmel_aes_dev *dd,
					enum dma_transfer_direction dir)
834
{
835
	struct atmel_aes_dma *dma;
836

837 838 839 840 841 842 843 844
	switch (dir) {
	case DMA_MEM_TO_DEV:
		dma = &dd->src;
		break;

	case DMA_DEV_TO_MEM:
		dma = &dd->dst;
		break;
845

846 847
	default:
		return;
848 849
	}

850 851
	dmaengine_terminate_all(dma->chan);
}
852

853 854 855 856 857 858 859 860 861
static int atmel_aes_dma_start(struct atmel_aes_dev *dd,
			       struct scatterlist *src,
			       struct scatterlist *dst,
			       size_t len,
			       atmel_aes_fn_t resume)
{
	enum dma_slave_buswidth addr_width;
	u32 maxburst;
	int err;
862

863 864 865 866 867
	switch (dd->ctx->block_size) {
	case CFB8_BLOCK_SIZE:
		addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
		maxburst = 1;
		break;
868

869 870 871 872
	case CFB16_BLOCK_SIZE:
		addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
		maxburst = 1;
		break;
873

874 875 876 877 878
	case CFB32_BLOCK_SIZE:
	case CFB64_BLOCK_SIZE:
		addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
		maxburst = 1;
		break;
879

880 881 882 883
	case AES_BLOCK_SIZE:
		addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
		maxburst = dd->caps.max_burst_size;
		break;
884

885 886 887 888
	default:
		err = -EINVAL;
		goto exit;
	}
889

890 891 892
	err = atmel_aes_map(dd, src, dst, len);
	if (err)
		goto exit;
893

894
	dd->resume = resume;
895

896 897 898 899 900
	/* Set output DMA transfer first */
	err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_DEV_TO_MEM,
					   maxburst);
	if (err)
		goto unmap;
901

902 903 904 905 906
	/* Then set input DMA transfer */
	err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_MEM_TO_DEV,
					   maxburst);
	if (err)
		goto output_transfer_stop;
907

908
	return -EINPROGRESS;
909

910 911 912 913 914 915 916
output_transfer_stop:
	atmel_aes_dma_transfer_stop(dd, DMA_DEV_TO_MEM);
unmap:
	atmel_aes_unmap(dd);
exit:
	return atmel_aes_complete(dd, err);
}
917

918 919 920 921 922 923 924 925 926 927 928 929 930 931
static void atmel_aes_dma_stop(struct atmel_aes_dev *dd)
{
	atmel_aes_dma_transfer_stop(dd, DMA_MEM_TO_DEV);
	atmel_aes_dma_transfer_stop(dd, DMA_DEV_TO_MEM);
	atmel_aes_unmap(dd);
}

static void atmel_aes_dma_callback(void *data)
{
	struct atmel_aes_dev *dd = data;

	atmel_aes_dma_stop(dd);
	dd->is_async = true;
	(void)dd->resume(dd);
932 933 934
}

static int atmel_aes_handle_queue(struct atmel_aes_dev *dd,
935
				  struct crypto_async_request *new_areq)
936
{
937 938
	struct crypto_async_request *areq, *backlog;
	struct atmel_aes_base_ctx *ctx;
939
	unsigned long flags;
940
	bool start_async;
941 942 943
	int err, ret = 0;

	spin_lock_irqsave(&dd->lock, flags);
944 945
	if (new_areq)
		ret = crypto_enqueue_request(&dd->queue, new_areq);
946 947 948 949 950
	if (dd->flags & AES_FLAGS_BUSY) {
		spin_unlock_irqrestore(&dd->lock, flags);
		return ret;
	}
	backlog = crypto_get_backlog(&dd->queue);
951 952
	areq = crypto_dequeue_request(&dd->queue);
	if (areq)
953 954 955
		dd->flags |= AES_FLAGS_BUSY;
	spin_unlock_irqrestore(&dd->lock, flags);

956
	if (!areq)
957 958 959 960 961
		return ret;

	if (backlog)
		backlog->complete(backlog, -EINPROGRESS);

962 963 964 965
	ctx = crypto_tfm_ctx(areq->tfm);

	dd->areq = areq;
	dd->ctx = ctx;
966 967
	start_async = (areq != new_areq);
	dd->is_async = start_async;
968

969
	/* WARNING: ctx->start() MAY change dd->is_async. */
970
	err = ctx->start(dd);
971
	return (start_async) ? ret : err;
972 973
}

974 975 976

/* AES async block ciphers */

977 978 979 980 981
static int atmel_aes_transfer_complete(struct atmel_aes_dev *dd)
{
	return atmel_aes_complete(dd, 0);
}

982 983
static int atmel_aes_start(struct atmel_aes_dev *dd)
{
984 985 986
	struct skcipher_request *req = skcipher_request_cast(dd->areq);
	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
	bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD ||
987
			dd->ctx->block_size != AES_BLOCK_SIZE);
988
	int err;
989

990
	atmel_aes_set_mode(dd, rctx);
991

992
	err = atmel_aes_hw_init(dd);
993
	if (err)
994
		return atmel_aes_complete(dd, err);
995

996
	atmel_aes_write_ctrl(dd, use_dma, (void *)req->iv);
997
	if (use_dma)
998 999
		return atmel_aes_dma_start(dd, req->src, req->dst,
					   req->cryptlen,
1000
					   atmel_aes_transfer_complete);
1001

1002
	return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
1003
				   atmel_aes_transfer_complete);
1004 1005
}

1006 1007 1008 1009 1010 1011 1012 1013 1014
static inline struct atmel_aes_ctr_ctx *
atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx *ctx)
{
	return container_of(ctx, struct atmel_aes_ctr_ctx, base);
}

static int atmel_aes_ctr_transfer(struct atmel_aes_dev *dd)
{
	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1015
	struct skcipher_request *req = skcipher_request_cast(dd->areq);
1016 1017 1018 1019 1020 1021 1022
	struct scatterlist *src, *dst;
	u32 ctr, blocks;
	size_t datalen;
	bool use_dma, fragmented = false;

	/* Check for transfer completion. */
	ctx->offset += dd->total;
1023
	if (ctx->offset >= req->cryptlen)
1024 1025 1026
		return atmel_aes_transfer_complete(dd);

	/* Compute data length. */
1027
	datalen = req->cryptlen - ctx->offset;
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
	blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE);
	ctr = be32_to_cpu(ctx->iv[3]);
	if (dd->caps.has_ctr32) {
		/* Check 32bit counter overflow. */
		u32 start = ctr;
		u32 end = start + blocks - 1;

		if (end < start) {
			ctr |= 0xffffffff;
			datalen = AES_BLOCK_SIZE * -start;
			fragmented = true;
		}
	} else {
		/* Check 16bit counter overflow. */
		u16 start = ctr & 0xffff;
		u16 end = start + (u16)blocks - 1;

		if (blocks >> 16 || end < start) {
			ctr |= 0xffff;
			datalen = AES_BLOCK_SIZE * (0x10000-start);
			fragmented = true;
		}
	}
	use_dma = (datalen >= ATMEL_AES_DMA_THRESHOLD);

	/* Jump to offset. */
	src = scatterwalk_ffwd(ctx->src, req->src, ctx->offset);
	dst = ((req->src == req->dst) ? src :
	       scatterwalk_ffwd(ctx->dst, req->dst, ctx->offset));

	/* Configure hardware. */
	atmel_aes_write_ctrl(dd, use_dma, ctx->iv);
	if (unlikely(fragmented)) {
		/*
		 * Increment the counter manually to cope with the hardware
		 * counter overflow.
		 */
		ctx->iv[3] = cpu_to_be32(ctr);
		crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
	}

	if (use_dma)
		return atmel_aes_dma_start(dd, src, dst, datalen,
					   atmel_aes_ctr_transfer);

	return atmel_aes_cpu_start(dd, src, dst, datalen,
				   atmel_aes_ctr_transfer);
}

static int atmel_aes_ctr_start(struct atmel_aes_dev *dd)
{
	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1080 1081
	struct skcipher_request *req = skcipher_request_cast(dd->areq);
	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1082 1083 1084 1085 1086 1087 1088 1089
	int err;

	atmel_aes_set_mode(dd, rctx);

	err = atmel_aes_hw_init(dd);
	if (err)
		return atmel_aes_complete(dd, err);

1090
	memcpy(ctx->iv, req->iv, AES_BLOCK_SIZE);
1091 1092 1093 1094 1095
	ctx->offset = 0;
	dd->total = 0;
	return atmel_aes_ctr_transfer(dd);
}

1096
static int atmel_aes_crypt(struct skcipher_request *req, unsigned long mode)
1097
{
1098 1099
	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
	struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(skcipher);
1100
	struct atmel_aes_reqctx *rctx;
1101 1102
	struct atmel_aes_dev *dd;

1103 1104
	switch (mode & AES_FLAGS_OPMODE_MASK) {
	case AES_FLAGS_CFB8:
1105
		ctx->block_size = CFB8_BLOCK_SIZE;
1106 1107 1108
		break;

	case AES_FLAGS_CFB16:
1109
		ctx->block_size = CFB16_BLOCK_SIZE;
1110 1111 1112
		break;

	case AES_FLAGS_CFB32:
1113
		ctx->block_size = CFB32_BLOCK_SIZE;
1114 1115 1116
		break;

	case AES_FLAGS_CFB64:
1117
		ctx->block_size = CFB64_BLOCK_SIZE;
1118 1119 1120
		break;

	default:
1121
		ctx->block_size = AES_BLOCK_SIZE;
1122
		break;
1123
	}
1124
	ctx->is_aead = false;
1125 1126 1127 1128 1129

	dd = atmel_aes_find_dev(ctx);
	if (!dd)
		return -ENODEV;

1130
	rctx = skcipher_request_ctx(req);
1131 1132
	rctx->mode = mode;

1133
	if (!(mode & AES_FLAGS_ENCRYPT) && (req->src == req->dst)) {
1134
		unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
1135

1136
		if (req->cryptlen >= ivsize)
1137
			scatterwalk_map_and_copy(rctx->lastc, req->src,
1138
						 req->cryptlen - ivsize,
1139
						 ivsize, 0);
1140 1141
	}

1142
	return atmel_aes_handle_queue(dd, &req->base);
1143 1144
}

1145
static int atmel_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
1146 1147
			   unsigned int keylen)
{
1148
	struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(tfm);
1149

1150 1151 1152
	if (keylen != AES_KEYSIZE_128 &&
	    keylen != AES_KEYSIZE_192 &&
	    keylen != AES_KEYSIZE_256) {
1153
		crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1154 1155 1156 1157 1158 1159 1160 1161 1162
		return -EINVAL;
	}

	memcpy(ctx->key, key, keylen);
	ctx->keylen = keylen;

	return 0;
}

1163
static int atmel_aes_ecb_encrypt(struct skcipher_request *req)
1164
{
1165
	return atmel_aes_crypt(req, AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1166 1167
}

1168
static int atmel_aes_ecb_decrypt(struct skcipher_request *req)
1169
{
1170
	return atmel_aes_crypt(req, AES_FLAGS_ECB);
1171 1172
}

1173
static int atmel_aes_cbc_encrypt(struct skcipher_request *req)
1174
{
1175
	return atmel_aes_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
1176 1177
}

1178
static int atmel_aes_cbc_decrypt(struct skcipher_request *req)
1179
{
1180
	return atmel_aes_crypt(req, AES_FLAGS_CBC);
1181 1182
}

1183
static int atmel_aes_ofb_encrypt(struct skcipher_request *req)
1184
{
1185
	return atmel_aes_crypt(req, AES_FLAGS_OFB | AES_FLAGS_ENCRYPT);
1186 1187
}

1188
static int atmel_aes_ofb_decrypt(struct skcipher_request *req)
1189
{
1190
	return atmel_aes_crypt(req, AES_FLAGS_OFB);
1191 1192
}

1193
static int atmel_aes_cfb_encrypt(struct skcipher_request *req)
1194
{
1195
	return atmel_aes_crypt(req, AES_FLAGS_CFB128 | AES_FLAGS_ENCRYPT);
1196 1197
}

1198
static int atmel_aes_cfb_decrypt(struct skcipher_request *req)
1199
{
1200
	return atmel_aes_crypt(req, AES_FLAGS_CFB128);
1201 1202
}

1203
static int atmel_aes_cfb64_encrypt(struct skcipher_request *req)
1204
{
1205
	return atmel_aes_crypt(req, AES_FLAGS_CFB64 | AES_FLAGS_ENCRYPT);
1206 1207
}

1208
static int atmel_aes_cfb64_decrypt(struct skcipher_request *req)
1209
{
1210
	return atmel_aes_crypt(req, AES_FLAGS_CFB64);
1211 1212
}

1213
static int atmel_aes_cfb32_encrypt(struct skcipher_request *req)
1214
{
1215
	return atmel_aes_crypt(req, AES_FLAGS_CFB32 | AES_FLAGS_ENCRYPT);
1216 1217
}

1218
static int atmel_aes_cfb32_decrypt(struct skcipher_request *req)
1219
{
1220
	return atmel_aes_crypt(req, AES_FLAGS_CFB32);
1221 1222
}

1223
static int atmel_aes_cfb16_encrypt(struct skcipher_request *req)
1224
{
1225
	return atmel_aes_crypt(req, AES_FLAGS_CFB16 | AES_FLAGS_ENCRYPT);
1226 1227
}

1228
static int atmel_aes_cfb16_decrypt(struct skcipher_request *req)
1229
{
1230
	return atmel_aes_crypt(req, AES_FLAGS_CFB16);
1231 1232
}

1233
static int atmel_aes_cfb8_encrypt(struct skcipher_request *req)
1234
{
1235
	return atmel_aes_crypt(req, AES_FLAGS_CFB8 | AES_FLAGS_ENCRYPT);
1236 1237
}

1238
static int atmel_aes_cfb8_decrypt(struct skcipher_request *req)
1239
{
1240
	return atmel_aes_crypt(req, AES_FLAGS_CFB8);
1241 1242
}

1243
static int atmel_aes_ctr_encrypt(struct skcipher_request *req)
1244
{
1245
	return atmel_aes_crypt(req, AES_FLAGS_CTR | AES_FLAGS_ENCRYPT);
1246 1247
}

1248
static int atmel_aes_ctr_decrypt(struct skcipher_request *req)
1249
{
1250
	return atmel_aes_crypt(req, AES_FLAGS_CTR);
1251 1252
}

1253
static int atmel_aes_init_tfm(struct crypto_skcipher *tfm)
1254
{
1255
	struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
1256

1257
	crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1258
	ctx->base.start = atmel_aes_start;
1259 1260 1261 1262

	return 0;
}

1263
static int atmel_aes_ctr_init_tfm(struct crypto_skcipher *tfm)
1264
{
1265
	struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
1266

1267
	crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1268 1269 1270 1271 1272
	ctx->base.start = atmel_aes_ctr_start;

	return 0;
}

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
static struct skcipher_alg aes_algs[] = {
{
	.base.cra_name		= "ecb(aes)",
	.base.cra_driver_name	= "atmel-ecb-aes",
	.base.cra_priority	= ATMEL_AES_PRIORITY,
	.base.cra_flags		= CRYPTO_ALG_ASYNC,
	.base.cra_blocksize	= AES_BLOCK_SIZE,
	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
	.base.cra_alignmask	= 0xf,
	.base.cra_module	= THIS_MODULE,

	.init			= atmel_aes_init_tfm,
	.min_keysize		= AES_MIN_KEY_SIZE,
	.max_keysize		= AES_MAX_KEY_SIZE,
	.setkey			= atmel_aes_setkey,
	.encrypt		= atmel_aes_ecb_encrypt,
	.decrypt		= atmel_aes_ecb_decrypt,
1290 1291
},
{
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
	.base.cra_name		= "cbc(aes)",
	.base.cra_driver_name	= "atmel-cbc-aes",
	.base.cra_priority	= ATMEL_AES_PRIORITY,
	.base.cra_flags		= CRYPTO_ALG_ASYNC,
	.base.cra_blocksize	= AES_BLOCK_SIZE,
	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
	.base.cra_alignmask	= 0xf,
	.base.cra_module	= THIS_MODULE,

	.init			= atmel_aes_init_tfm,
	.min_keysize		= AES_MIN_KEY_SIZE,
	.max_keysize		= AES_MAX_KEY_SIZE,
	.setkey			= atmel_aes_setkey,
	.encrypt		= atmel_aes_cbc_encrypt,
	.decrypt		= atmel_aes_cbc_decrypt,
	.ivsize			= AES_BLOCK_SIZE,
1308 1309
},
{
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
	.base.cra_name		= "ofb(aes)",
	.base.cra_driver_name	= "atmel-ofb-aes",
	.base.cra_priority	= ATMEL_AES_PRIORITY,
	.base.cra_flags		= CRYPTO_ALG_ASYNC,
	.base.cra_blocksize	= AES_BLOCK_SIZE,
	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
	.base.cra_alignmask	= 0xf,
	.base.cra_module	= THIS_MODULE,

	.init			= atmel_aes_init_tfm,
	.min_keysize		= AES_MIN_KEY_SIZE,
	.max_keysize		= AES_MAX_KEY_SIZE,
	.setkey			= atmel_aes_setkey,
	.encrypt		= atmel_aes_ofb_encrypt,
	.decrypt		= atmel_aes_ofb_decrypt,
	.ivsize			= AES_BLOCK_SIZE,
1326 1327
},
{
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
	.base.cra_name		= "cfb(aes)",
	.base.cra_driver_name	= "atmel-cfb-aes",
	.base.cra_priority	= ATMEL_AES_PRIORITY,
	.base.cra_flags		= CRYPTO_ALG_ASYNC,
	.base.cra_blocksize	= AES_BLOCK_SIZE,
	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
	.base.cra_alignmask	= 0xf,
	.base.cra_module	= THIS_MODULE,

	.init			= atmel_aes_init_tfm,
	.min_keysize		= AES_MIN_KEY_SIZE,
	.max_keysize		= AES_MAX_KEY_SIZE,
	.setkey			= atmel_aes_setkey,
	.encrypt		= atmel_aes_cfb_encrypt,
	.decrypt		= atmel_aes_cfb_decrypt,
	.ivsize			= AES_BLOCK_SIZE,
1344 1345
},
{
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
	.base.cra_name		= "cfb32(aes)",
	.base.cra_driver_name	= "atmel-cfb32-aes",
	.base.cra_priority	= ATMEL_AES_PRIORITY,
	.base.cra_flags		= CRYPTO_ALG_ASYNC,
	.base.cra_blocksize	= CFB32_BLOCK_SIZE,
	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
	.base.cra_alignmask	= 0xf,
	.base.cra_module	= THIS_MODULE,

	.init			= atmel_aes_init_tfm,
	.min_keysize		= AES_MIN_KEY_SIZE,
	.max_keysize		= AES_MAX_KEY_SIZE,
	.setkey			= atmel_aes_setkey,
	.encrypt		= atmel_aes_cfb32_encrypt,
	.decrypt		= atmel_aes_cfb32_decrypt,
	.ivsize			= AES_BLOCK_SIZE,
1362 1363
},
{
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
	.base.cra_name		= "cfb16(aes)",
	.base.cra_driver_name	= "atmel-cfb16-aes",
	.base.cra_priority	= ATMEL_AES_PRIORITY,
	.base.cra_flags		= CRYPTO_ALG_ASYNC,
	.base.cra_blocksize	= CFB16_BLOCK_SIZE,
	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
	.base.cra_alignmask	= 0xf,
	.base.cra_module	= THIS_MODULE,

	.init			= atmel_aes_init_tfm,
	.min_keysize		= AES_MIN_KEY_SIZE,
	.max_keysize		= AES_MAX_KEY_SIZE,
	.setkey			= atmel_aes_setkey,
	.encrypt		= atmel_aes_cfb16_encrypt,
	.decrypt		= atmel_aes_cfb16_decrypt,
	.ivsize			= AES_BLOCK_SIZE,
1380 1381
},
{
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
	.base.cra_name		= "cfb8(aes)",
	.base.cra_driver_name	= "atmel-cfb8-aes",
	.base.cra_priority	= ATMEL_AES_PRIORITY,
	.base.cra_flags		= CRYPTO_ALG_ASYNC,
	.base.cra_blocksize	= CFB8_BLOCK_SIZE,
	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
	.base.cra_alignmask	= 0xf,
	.base.cra_module	= THIS_MODULE,

	.init			= atmel_aes_init_tfm,
	.min_keysize		= AES_MIN_KEY_SIZE,
	.max_keysize		= AES_MAX_KEY_SIZE,
	.setkey			= atmel_aes_setkey,
	.encrypt		= atmel_aes_cfb8_encrypt,
	.decrypt		= atmel_aes_cfb8_decrypt,
	.ivsize			= AES_BLOCK_SIZE,
1398 1399
},
{
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
	.base.cra_name		= "ctr(aes)",
	.base.cra_driver_name	= "atmel-ctr-aes",
	.base.cra_priority	= ATMEL_AES_PRIORITY,
	.base.cra_flags		= CRYPTO_ALG_ASYNC,
	.base.cra_blocksize	= 1,
	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctr_ctx),
	.base.cra_alignmask	= 0xf,
	.base.cra_module	= THIS_MODULE,

	.init			= atmel_aes_ctr_init_tfm,
	.min_keysize		= AES_MIN_KEY_SIZE,
	.max_keysize		= AES_MAX_KEY_SIZE,
	.setkey			= atmel_aes_setkey,
	.encrypt		= atmel_aes_ctr_encrypt,
	.decrypt		= atmel_aes_ctr_decrypt,
	.ivsize			= AES_BLOCK_SIZE,
1416 1417 1418
},
};

1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
static struct skcipher_alg aes_cfb64_alg = {
	.base.cra_name		= "cfb64(aes)",
	.base.cra_driver_name	= "atmel-cfb64-aes",
	.base.cra_priority	= ATMEL_AES_PRIORITY,
	.base.cra_flags		= CRYPTO_ALG_ASYNC,
	.base.cra_blocksize	= CFB64_BLOCK_SIZE,
	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
	.base.cra_alignmask	= 0xf,
	.base.cra_module	= THIS_MODULE,

	.init			= atmel_aes_init_tfm,
	.min_keysize		= AES_MIN_KEY_SIZE,
	.max_keysize		= AES_MAX_KEY_SIZE,
	.setkey			= atmel_aes_setkey,
	.encrypt		= atmel_aes_cfb64_encrypt,
	.decrypt		= atmel_aes_cfb64_decrypt,
	.ivsize			= AES_BLOCK_SIZE,
1436 1437
};

1438

1439 1440 1441 1442
/* gcm aead functions */

static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
			       const u32 *data, size_t datalen,
1443
			       const __be32 *ghash_in, __be32 *ghash_out,
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
			       atmel_aes_fn_t resume);
static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd);
static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd);

static int atmel_aes_gcm_start(struct atmel_aes_dev *dd);
static int atmel_aes_gcm_process(struct atmel_aes_dev *dd);
static int atmel_aes_gcm_length(struct atmel_aes_dev *dd);
static int atmel_aes_gcm_data(struct atmel_aes_dev *dd);
static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd);
static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd);
static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd);

static inline struct atmel_aes_gcm_ctx *
atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx *ctx)
{
	return container_of(ctx, struct atmel_aes_gcm_ctx, base);
}

static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
			       const u32 *data, size_t datalen,
1464
			       const __be32 *ghash_in, __be32 *ghash_out,
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
			       atmel_aes_fn_t resume)
{
	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);

	dd->data = (u32 *)data;
	dd->datalen = datalen;
	ctx->ghash_in = ghash_in;
	ctx->ghash_out = ghash_out;
	ctx->ghash_resume = resume;

	atmel_aes_write_ctrl(dd, false, NULL);
	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_ghash_init);
}

static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd)
{
	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);

	/* Set the data length. */
	atmel_aes_write(dd, AES_AADLENR, dd->total);
	atmel_aes_write(dd, AES_CLENR, 0);

	/* If needed, overwrite the GCM Intermediate Hash Word Registers */
	if (ctx->ghash_in)
		atmel_aes_write_block(dd, AES_GHASHR(0), ctx->ghash_in);

	return atmel_aes_gcm_ghash_finalize(dd);
}

static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd)
{
	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
	u32 isr;

	/* Write data into the Input Data Registers. */
	while (dd->datalen > 0) {
		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
		dd->data += 4;
		dd->datalen -= AES_BLOCK_SIZE;

		isr = atmel_aes_read(dd, AES_ISR);
		if (!(isr & AES_INT_DATARDY)) {
			dd->resume = atmel_aes_gcm_ghash_finalize;
			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
			return -EINPROGRESS;
		}
	}

	/* Read the computed hash from GHASHRx. */
	atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash_out);

	return ctx->ghash_resume(dd);
}


static int atmel_aes_gcm_start(struct atmel_aes_dev *dd)
{
	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
	struct aead_request *req = aead_request_cast(dd->areq);
	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
	struct atmel_aes_reqctx *rctx = aead_request_ctx(req);
	size_t ivsize = crypto_aead_ivsize(tfm);
	size_t datalen, padlen;
	const void *iv = req->iv;
	u8 *data = dd->buf;
	int err;

	atmel_aes_set_mode(dd, rctx);

	err = atmel_aes_hw_init(dd);
	if (err)
		return atmel_aes_complete(dd, err);

1538
	if (likely(ivsize == GCM_AES_IV_SIZE)) {
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
		memcpy(ctx->j0, iv, ivsize);
		ctx->j0[3] = cpu_to_be32(1);
		return atmel_aes_gcm_process(dd);
	}

	padlen = atmel_aes_padlen(ivsize, AES_BLOCK_SIZE);
	datalen = ivsize + padlen + AES_BLOCK_SIZE;
	if (datalen > dd->buflen)
		return atmel_aes_complete(dd, -EINVAL);

	memcpy(data, iv, ivsize);
	memset(data + ivsize, 0, padlen + sizeof(u64));
1551
	((__be64 *)(data + datalen))[-1] = cpu_to_be64(ivsize * 8);
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583

	return atmel_aes_gcm_ghash(dd, (const u32 *)data, datalen,
				   NULL, ctx->j0, atmel_aes_gcm_process);
}

static int atmel_aes_gcm_process(struct atmel_aes_dev *dd)
{
	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
	struct aead_request *req = aead_request_cast(dd->areq);
	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
	bool enc = atmel_aes_is_encrypt(dd);
	u32 authsize;

	/* Compute text length. */
	authsize = crypto_aead_authsize(tfm);
	ctx->textlen = req->cryptlen - (enc ? 0 : authsize);

	/*
	 * According to tcrypt test suite, the GCM Automatic Tag Generation
	 * fails when both the message and its associated data are empty.
	 */
	if (likely(req->assoclen != 0 || ctx->textlen != 0))
		dd->flags |= AES_FLAGS_GTAGEN;

	atmel_aes_write_ctrl(dd, false, NULL);
	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_length);
}

static int atmel_aes_gcm_length(struct atmel_aes_dev *dd)
{
	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
	struct aead_request *req = aead_request_cast(dd->areq);
1584
	__be32 j0_lsw, *j0 = ctx->j0;
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
	size_t padlen;

	/* Write incr32(J0) into IV. */
	j0_lsw = j0[3];
	j0[3] = cpu_to_be32(be32_to_cpu(j0[3]) + 1);
	atmel_aes_write_block(dd, AES_IVR(0), j0);
	j0[3] = j0_lsw;

	/* Set aad and text lengths. */
	atmel_aes_write(dd, AES_AADLENR, req->assoclen);
	atmel_aes_write(dd, AES_CLENR, ctx->textlen);

	/* Check whether AAD are present. */
	if (unlikely(req->assoclen == 0)) {
		dd->datalen = 0;
		return atmel_aes_gcm_data(dd);
	}

	/* Copy assoc data and add padding. */
	padlen = atmel_aes_padlen(req->assoclen, AES_BLOCK_SIZE);
	if (unlikely(req->assoclen + padlen > dd->buflen))
		return atmel_aes_complete(dd, -EINVAL);
	sg_copy_to_buffer(req->src, sg_nents(req->src), dd->buf, req->assoclen);

	/* Write assoc data into the Input Data register. */
	dd->data = (u32 *)dd->buf;
	dd->datalen = req->assoclen + padlen;
	return atmel_aes_gcm_data(dd);
}

static int atmel_aes_gcm_data(struct atmel_aes_dev *dd)
{
	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
	struct aead_request *req = aead_request_cast(dd->areq);
	bool use_dma = (ctx->textlen >= ATMEL_AES_DMA_THRESHOLD);
	struct scatterlist *src, *dst;
	u32 isr, mr;

	/* Write AAD first. */
	while (dd->datalen > 0) {
		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
		dd->data += 4;
		dd->datalen -= AES_BLOCK_SIZE;

		isr = atmel_aes_read(dd, AES_ISR);
		if (!(isr & AES_INT_DATARDY)) {
			dd->resume = atmel_aes_gcm_data;
			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
			return -EINPROGRESS;
		}
	}

	/* GMAC only. */
	if (unlikely(ctx->textlen == 0))
		return atmel_aes_gcm_tag_init(dd);

	/* Prepare src and dst scatter lists to transfer cipher/plain texts */
	src = scatterwalk_ffwd(ctx->src, req->src, req->assoclen);
	dst = ((req->src == req->dst) ? src :
	       scatterwalk_ffwd(ctx->dst, req->dst, req->assoclen));

	if (use_dma) {
		/* Update the Mode Register for DMA transfers. */
		mr = atmel_aes_read(dd, AES_MR);
		mr &= ~(AES_MR_SMOD_MASK | AES_MR_DUALBUFF);
		mr |= AES_MR_SMOD_IDATAR0;
		if (dd->caps.has_dualbuff)
			mr |= AES_MR_DUALBUFF;
		atmel_aes_write(dd, AES_MR, mr);

		return atmel_aes_dma_start(dd, src, dst, ctx->textlen,
					   atmel_aes_gcm_tag_init);
	}

	return atmel_aes_cpu_start(dd, src, dst, ctx->textlen,
				   atmel_aes_gcm_tag_init);
}

static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd)
{
	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
	struct aead_request *req = aead_request_cast(dd->areq);
1667
	__be64 *data = dd->buf;
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744

	if (likely(dd->flags & AES_FLAGS_GTAGEN)) {
		if (!(atmel_aes_read(dd, AES_ISR) & AES_INT_TAGRDY)) {
			dd->resume = atmel_aes_gcm_tag_init;
			atmel_aes_write(dd, AES_IER, AES_INT_TAGRDY);
			return -EINPROGRESS;
		}

		return atmel_aes_gcm_finalize(dd);
	}

	/* Read the GCM Intermediate Hash Word Registers. */
	atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash);

	data[0] = cpu_to_be64(req->assoclen * 8);
	data[1] = cpu_to_be64(ctx->textlen * 8);

	return atmel_aes_gcm_ghash(dd, (const u32 *)data, AES_BLOCK_SIZE,
				   ctx->ghash, ctx->ghash, atmel_aes_gcm_tag);
}

static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd)
{
	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
	unsigned long flags;

	/*
	 * Change mode to CTR to complete the tag generation.
	 * Use J0 as Initialization Vector.
	 */
	flags = dd->flags;
	dd->flags &= ~(AES_FLAGS_OPMODE_MASK | AES_FLAGS_GTAGEN);
	dd->flags |= AES_FLAGS_CTR;
	atmel_aes_write_ctrl(dd, false, ctx->j0);
	dd->flags = flags;

	atmel_aes_write_block(dd, AES_IDATAR(0), ctx->ghash);
	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_finalize);
}

static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd)
{
	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
	struct aead_request *req = aead_request_cast(dd->areq);
	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
	bool enc = atmel_aes_is_encrypt(dd);
	u32 offset, authsize, itag[4], *otag = ctx->tag;
	int err;

	/* Read the computed tag. */
	if (likely(dd->flags & AES_FLAGS_GTAGEN))
		atmel_aes_read_block(dd, AES_TAGR(0), ctx->tag);
	else
		atmel_aes_read_block(dd, AES_ODATAR(0), ctx->tag);

	offset = req->assoclen + ctx->textlen;
	authsize = crypto_aead_authsize(tfm);
	if (enc) {
		scatterwalk_map_and_copy(otag, req->dst, offset, authsize, 1);
		err = 0;
	} else {
		scatterwalk_map_and_copy(itag, req->src, offset, authsize, 0);
		err = crypto_memneq(itag, otag, authsize) ? -EBADMSG : 0;
	}

	return atmel_aes_complete(dd, err);
}

static int atmel_aes_gcm_crypt(struct aead_request *req,
			       unsigned long mode)
{
	struct atmel_aes_base_ctx *ctx;
	struct atmel_aes_reqctx *rctx;
	struct atmel_aes_dev *dd;

	ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
	ctx->block_size = AES_BLOCK_SIZE;
1745
	ctx->is_aead = true;
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820

	dd = atmel_aes_find_dev(ctx);
	if (!dd)
		return -ENODEV;

	rctx = aead_request_ctx(req);
	rctx->mode = AES_FLAGS_GCM | mode;

	return atmel_aes_handle_queue(dd, &req->base);
}

static int atmel_aes_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
				unsigned int keylen)
{
	struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);

	if (keylen != AES_KEYSIZE_256 &&
	    keylen != AES_KEYSIZE_192 &&
	    keylen != AES_KEYSIZE_128) {
		crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
		return -EINVAL;
	}

	memcpy(ctx->key, key, keylen);
	ctx->keylen = keylen;

	return 0;
}

static int atmel_aes_gcm_setauthsize(struct crypto_aead *tfm,
				     unsigned int authsize)
{
	/* Same as crypto_gcm_authsize() from crypto/gcm.c */
	switch (authsize) {
	case 4:
	case 8:
	case 12:
	case 13:
	case 14:
	case 15:
	case 16:
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

static int atmel_aes_gcm_encrypt(struct aead_request *req)
{
	return atmel_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT);
}

static int atmel_aes_gcm_decrypt(struct aead_request *req)
{
	return atmel_aes_gcm_crypt(req, 0);
}

static int atmel_aes_gcm_init(struct crypto_aead *tfm)
{
	struct atmel_aes_gcm_ctx *ctx = crypto_aead_ctx(tfm);

	crypto_aead_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
	ctx->base.start = atmel_aes_gcm_start;

	return 0;
}

static struct aead_alg aes_gcm_alg = {
	.setkey		= atmel_aes_gcm_setkey,
	.setauthsize	= atmel_aes_gcm_setauthsize,
	.encrypt	= atmel_aes_gcm_encrypt,
	.decrypt	= atmel_aes_gcm_decrypt,
	.init		= atmel_aes_gcm_init,
1821
	.ivsize		= GCM_AES_IV_SIZE,
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
	.maxauthsize	= AES_BLOCK_SIZE,

	.base = {
		.cra_name		= "gcm(aes)",
		.cra_driver_name	= "atmel-gcm-aes",
		.cra_priority		= ATMEL_AES_PRIORITY,
		.cra_flags		= CRYPTO_ALG_ASYNC,
		.cra_blocksize		= 1,
		.cra_ctxsize		= sizeof(struct atmel_aes_gcm_ctx),
		.cra_alignmask		= 0xf,
		.cra_module		= THIS_MODULE,
	},
};


1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
/* xts functions */

static inline struct atmel_aes_xts_ctx *
atmel_aes_xts_ctx_cast(struct atmel_aes_base_ctx *ctx)
{
	return container_of(ctx, struct atmel_aes_xts_ctx, base);
}

static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd);

static int atmel_aes_xts_start(struct atmel_aes_dev *dd)
{
	struct atmel_aes_xts_ctx *ctx = atmel_aes_xts_ctx_cast(dd->ctx);
1850 1851
	struct skcipher_request *req = skcipher_request_cast(dd->areq);
	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1852 1853 1854 1855 1856 1857 1858 1859 1860
	unsigned long flags;
	int err;

	atmel_aes_set_mode(dd, rctx);

	err = atmel_aes_hw_init(dd);
	if (err)
		return atmel_aes_complete(dd, err);

1861
	/* Compute the tweak value from req->iv with ecb(aes). */
1862 1863 1864 1865 1866 1867 1868
	flags = dd->flags;
	dd->flags &= ~AES_FLAGS_MODE_MASK;
	dd->flags |= (AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
	atmel_aes_write_ctrl_key(dd, false, NULL,
				 ctx->key2, ctx->base.keylen);
	dd->flags = flags;

1869
	atmel_aes_write_block(dd, AES_IDATAR(0), req->iv);
1870 1871 1872 1873 1874
	return atmel_aes_wait_for_data_ready(dd, atmel_aes_xts_process_data);
}

static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd)
{
1875 1876
	struct skcipher_request *req = skcipher_request_cast(dd->areq);
	bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD);
1877
	u32 tweak[AES_BLOCK_SIZE / sizeof(u32)];
1878
	static const __le32 one[AES_BLOCK_SIZE / sizeof(u32)] = {cpu_to_le32(1), };
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
	u8 *tweak_bytes = (u8 *)tweak;
	int i;

	/* Read the computed ciphered tweak value. */
	atmel_aes_read_block(dd, AES_ODATAR(0), tweak);
	/*
	 * Hardware quirk:
	 * the order of the ciphered tweak bytes need to be reversed before
	 * writing them into the ODATARx registers.
	 */
	for (i = 0; i < AES_BLOCK_SIZE/2; ++i) {
		u8 tmp = tweak_bytes[AES_BLOCK_SIZE - 1 - i];

		tweak_bytes[AES_BLOCK_SIZE - 1 - i] = tweak_bytes[i];
		tweak_bytes[i] = tmp;
	}

	/* Process the data. */
	atmel_aes_write_ctrl(dd, use_dma, NULL);
	atmel_aes_write_block(dd, AES_TWR(0), tweak);
	atmel_aes_write_block(dd, AES_ALPHAR(0), one);
	if (use_dma)
1901 1902
		return atmel_aes_dma_start(dd, req->src, req->dst,
					   req->cryptlen,
1903 1904
					   atmel_aes_transfer_complete);

1905
	return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
1906 1907 1908
				   atmel_aes_transfer_complete);
}

1909
static int atmel_aes_xts_setkey(struct crypto_skcipher *tfm, const u8 *key,
1910 1911
				unsigned int keylen)
{
1912
	struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1913 1914
	int err;

1915
	err = xts_check_key(crypto_skcipher_tfm(tfm), key, keylen);
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
	if (err)
		return err;

	memcpy(ctx->base.key, key, keylen/2);
	memcpy(ctx->key2, key + keylen/2, keylen/2);
	ctx->base.keylen = keylen/2;

	return 0;
}

1926
static int atmel_aes_xts_encrypt(struct skcipher_request *req)
1927 1928 1929 1930
{
	return atmel_aes_crypt(req, AES_FLAGS_XTS | AES_FLAGS_ENCRYPT);
}

1931
static int atmel_aes_xts_decrypt(struct skcipher_request *req)
1932 1933 1934 1935
{
	return atmel_aes_crypt(req, AES_FLAGS_XTS);
}

1936
static int atmel_aes_xts_init_tfm(struct crypto_skcipher *tfm)
1937
{
1938
	struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1939

1940
	crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1941 1942 1943 1944 1945
	ctx->base.start = atmel_aes_xts_start;

	return 0;
}

1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
static struct skcipher_alg aes_xts_alg = {
	.base.cra_name		= "xts(aes)",
	.base.cra_driver_name	= "atmel-xts-aes",
	.base.cra_priority	= ATMEL_AES_PRIORITY,
	.base.cra_flags		= CRYPTO_ALG_ASYNC,
	.base.cra_blocksize	= AES_BLOCK_SIZE,
	.base.cra_ctxsize	= sizeof(struct atmel_aes_xts_ctx),
	.base.cra_alignmask	= 0xf,
	.base.cra_module	= THIS_MODULE,

	.min_keysize		= 2 * AES_MIN_KEY_SIZE,
	.max_keysize		= 2 * AES_MAX_KEY_SIZE,
	.ivsize			= AES_BLOCK_SIZE,
	.setkey			= atmel_aes_xts_setkey,
	.encrypt		= atmel_aes_xts_encrypt,
	.decrypt		= atmel_aes_xts_decrypt,
	.init			= atmel_aes_xts_init_tfm,
1963 1964
};

1965
#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
/* authenc aead functions */

static int atmel_aes_authenc_start(struct atmel_aes_dev *dd);
static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
				  bool is_async);
static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
				      bool is_async);
static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd);
static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
				   bool is_async);

static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err)
{
	struct aead_request *req = aead_request_cast(dd->areq);
	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);

	if (err && (dd->flags & AES_FLAGS_OWN_SHA))
		atmel_sha_authenc_abort(&rctx->auth_req);
	dd->flags &= ~AES_FLAGS_OWN_SHA;
}

static int atmel_aes_authenc_start(struct atmel_aes_dev *dd)
{
	struct aead_request *req = aead_request_cast(dd->areq);
	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
	int err;

	atmel_aes_set_mode(dd, &rctx->base);

	err = atmel_aes_hw_init(dd);
	if (err)
		return atmel_aes_complete(dd, err);

	return atmel_sha_authenc_schedule(&rctx->auth_req, ctx->auth,
					  atmel_aes_authenc_init, dd);
}

static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
				  bool is_async)
{
	struct aead_request *req = aead_request_cast(dd->areq);
	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);

	if (is_async)
		dd->is_async = true;
	if (err)
		return atmel_aes_complete(dd, err);

	/* If here, we've got the ownership of the SHA device. */
	dd->flags |= AES_FLAGS_OWN_SHA;

	/* Configure the SHA device. */
	return atmel_sha_authenc_init(&rctx->auth_req,
				      req->src, req->assoclen,
				      rctx->textlen,
				      atmel_aes_authenc_transfer, dd);
}

static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
				      bool is_async)
{
	struct aead_request *req = aead_request_cast(dd->areq);
	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
	bool enc = atmel_aes_is_encrypt(dd);
	struct scatterlist *src, *dst;
2033
	__be32 iv[AES_BLOCK_SIZE / sizeof(u32)];
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
	u32 emr;

	if (is_async)
		dd->is_async = true;
	if (err)
		return atmel_aes_complete(dd, err);

	/* Prepare src and dst scatter-lists to transfer cipher/plain texts. */
	src = scatterwalk_ffwd(rctx->src, req->src, req->assoclen);
	dst = src;

	if (req->src != req->dst)
		dst = scatterwalk_ffwd(rctx->dst, req->dst, req->assoclen);

	/* Configure the AES device. */
	memcpy(iv, req->iv, sizeof(iv));

	/*
	 * Here we always set the 2nd parameter of atmel_aes_write_ctrl() to
	 * 'true' even if the data transfer is actually performed by the CPU (so
	 * not by the DMA) because we must force the AES_MR_SMOD bitfield to the
	 * value AES_MR_SMOD_IDATAR0. Indeed, both AES_MR_SMOD and SHA_MR_SMOD
	 * must be set to *_MR_SMOD_IDATAR0.
	 */
	atmel_aes_write_ctrl(dd, true, iv);
	emr = AES_EMR_PLIPEN;
	if (!enc)
		emr |= AES_EMR_PLIPD;
	atmel_aes_write(dd, AES_EMR, emr);

	/* Transfer data. */
	return atmel_aes_dma_start(dd, src, dst, rctx->textlen,
				   atmel_aes_authenc_digest);
}

static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd)
{
	struct aead_request *req = aead_request_cast(dd->areq);
	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);

	/* atmel_sha_authenc_final() releases the SHA device. */
	dd->flags &= ~AES_FLAGS_OWN_SHA;
	return atmel_sha_authenc_final(&rctx->auth_req,
				       rctx->digest, sizeof(rctx->digest),
				       atmel_aes_authenc_final, dd);
}

static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
				   bool is_async)
{
	struct aead_request *req = aead_request_cast(dd->areq);
	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
	bool enc = atmel_aes_is_encrypt(dd);
	u32 idigest[SHA512_DIGEST_SIZE / sizeof(u32)], *odigest = rctx->digest;
	u32 offs, authsize;

	if (is_async)
		dd->is_async = true;
	if (err)
		goto complete;

	offs = req->assoclen + rctx->textlen;
	authsize = crypto_aead_authsize(tfm);
	if (enc) {
		scatterwalk_map_and_copy(odigest, req->dst, offs, authsize, 1);
	} else {
		scatterwalk_map_and_copy(idigest, req->src, offs, authsize, 0);
		if (crypto_memneq(idigest, odigest, authsize))
			err = -EBADMSG;
	}

complete:
	return atmel_aes_complete(dd, err);
}

static int atmel_aes_authenc_setkey(struct crypto_aead *tfm, const u8 *key,
				    unsigned int keylen)
{
	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
	struct crypto_authenc_keys keys;
	u32 flags;
	int err;

	if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
		goto badkey;

	if (keys.enckeylen > sizeof(ctx->base.key))
		goto badkey;

	/* Save auth key. */
	flags = crypto_aead_get_flags(tfm);
	err = atmel_sha_authenc_setkey(ctx->auth,
				       keys.authkey, keys.authkeylen,
				       &flags);
	crypto_aead_set_flags(tfm, flags & CRYPTO_TFM_RES_MASK);
	if (err) {
		memzero_explicit(&keys, sizeof(keys));
		return err;
	}

	/* Save enc key. */
	ctx->base.keylen = keys.enckeylen;
	memcpy(ctx->base.key, keys.enckey, keys.enckeylen);

	memzero_explicit(&keys, sizeof(keys));
	return 0;

badkey:
	crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
2144
	memzero_explicit(&keys, sizeof(keys));
2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
	return -EINVAL;
}

static int atmel_aes_authenc_init_tfm(struct crypto_aead *tfm,
				      unsigned long auth_mode)
{
	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
	unsigned int auth_reqsize = atmel_sha_authenc_get_reqsize();

	ctx->auth = atmel_sha_authenc_spawn(auth_mode);
	if (IS_ERR(ctx->auth))
		return PTR_ERR(ctx->auth);

	crypto_aead_set_reqsize(tfm, (sizeof(struct atmel_aes_authenc_reqctx) +
				      auth_reqsize));
	ctx->base.start = atmel_aes_authenc_start;

	return 0;
}

static int atmel_aes_authenc_hmac_sha1_init_tfm(struct crypto_aead *tfm)
{
	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA1);
}

static int atmel_aes_authenc_hmac_sha224_init_tfm(struct crypto_aead *tfm)
{
	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA224);
}

static int atmel_aes_authenc_hmac_sha256_init_tfm(struct crypto_aead *tfm)
{
	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA256);
}

static int atmel_aes_authenc_hmac_sha384_init_tfm(struct crypto_aead *tfm)
{
	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA384);
}

static int atmel_aes_authenc_hmac_sha512_init_tfm(struct crypto_aead *tfm)
{
	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA512);
}

static void atmel_aes_authenc_exit_tfm(struct crypto_aead *tfm)
{
	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);

	atmel_sha_authenc_free(ctx->auth);
}

static int atmel_aes_authenc_crypt(struct aead_request *req,
				   unsigned long mode)
{
	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
	struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
	u32 authsize = crypto_aead_authsize(tfm);
	bool enc = (mode & AES_FLAGS_ENCRYPT);
	struct atmel_aes_dev *dd;

	/* Compute text length. */
	if (!enc && req->cryptlen < authsize)
		return -EINVAL;
	rctx->textlen = req->cryptlen - (enc ? 0 : authsize);

	/*
	 * Currently, empty messages are not supported yet:
	 * the SHA auto-padding can be used only on non-empty messages.
	 * Hence a special case needs to be implemented for empty message.
	 */
	if (!rctx->textlen && !req->assoclen)
		return -EINVAL;

	rctx->base.mode = mode;
	ctx->block_size = AES_BLOCK_SIZE;
2222
	ctx->is_aead = true;
2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343

	dd = atmel_aes_find_dev(ctx);
	if (!dd)
		return -ENODEV;

	return atmel_aes_handle_queue(dd, &req->base);
}

static int atmel_aes_authenc_cbc_aes_encrypt(struct aead_request *req)
{
	return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
}

static int atmel_aes_authenc_cbc_aes_decrypt(struct aead_request *req)
{
	return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC);
}

static struct aead_alg aes_authenc_algs[] = {
{
	.setkey		= atmel_aes_authenc_setkey,
	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
	.init		= atmel_aes_authenc_hmac_sha1_init_tfm,
	.exit		= atmel_aes_authenc_exit_tfm,
	.ivsize		= AES_BLOCK_SIZE,
	.maxauthsize	= SHA1_DIGEST_SIZE,

	.base = {
		.cra_name		= "authenc(hmac(sha1),cbc(aes))",
		.cra_driver_name	= "atmel-authenc-hmac-sha1-cbc-aes",
		.cra_priority		= ATMEL_AES_PRIORITY,
		.cra_flags		= CRYPTO_ALG_ASYNC,
		.cra_blocksize		= AES_BLOCK_SIZE,
		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
		.cra_alignmask		= 0xf,
		.cra_module		= THIS_MODULE,
	},
},
{
	.setkey		= atmel_aes_authenc_setkey,
	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
	.init		= atmel_aes_authenc_hmac_sha224_init_tfm,
	.exit		= atmel_aes_authenc_exit_tfm,
	.ivsize		= AES_BLOCK_SIZE,
	.maxauthsize	= SHA224_DIGEST_SIZE,

	.base = {
		.cra_name		= "authenc(hmac(sha224),cbc(aes))",
		.cra_driver_name	= "atmel-authenc-hmac-sha224-cbc-aes",
		.cra_priority		= ATMEL_AES_PRIORITY,
		.cra_flags		= CRYPTO_ALG_ASYNC,
		.cra_blocksize		= AES_BLOCK_SIZE,
		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
		.cra_alignmask		= 0xf,
		.cra_module		= THIS_MODULE,
	},
},
{
	.setkey		= atmel_aes_authenc_setkey,
	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
	.init		= atmel_aes_authenc_hmac_sha256_init_tfm,
	.exit		= atmel_aes_authenc_exit_tfm,
	.ivsize		= AES_BLOCK_SIZE,
	.maxauthsize	= SHA256_DIGEST_SIZE,

	.base = {
		.cra_name		= "authenc(hmac(sha256),cbc(aes))",
		.cra_driver_name	= "atmel-authenc-hmac-sha256-cbc-aes",
		.cra_priority		= ATMEL_AES_PRIORITY,
		.cra_flags		= CRYPTO_ALG_ASYNC,
		.cra_blocksize		= AES_BLOCK_SIZE,
		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
		.cra_alignmask		= 0xf,
		.cra_module		= THIS_MODULE,
	},
},
{
	.setkey		= atmel_aes_authenc_setkey,
	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
	.init		= atmel_aes_authenc_hmac_sha384_init_tfm,
	.exit		= atmel_aes_authenc_exit_tfm,
	.ivsize		= AES_BLOCK_SIZE,
	.maxauthsize	= SHA384_DIGEST_SIZE,

	.base = {
		.cra_name		= "authenc(hmac(sha384),cbc(aes))",
		.cra_driver_name	= "atmel-authenc-hmac-sha384-cbc-aes",
		.cra_priority		= ATMEL_AES_PRIORITY,
		.cra_flags		= CRYPTO_ALG_ASYNC,
		.cra_blocksize		= AES_BLOCK_SIZE,
		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
		.cra_alignmask		= 0xf,
		.cra_module		= THIS_MODULE,
	},
},
{
	.setkey		= atmel_aes_authenc_setkey,
	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
	.init		= atmel_aes_authenc_hmac_sha512_init_tfm,
	.exit		= atmel_aes_authenc_exit_tfm,
	.ivsize		= AES_BLOCK_SIZE,
	.maxauthsize	= SHA512_DIGEST_SIZE,

	.base = {
		.cra_name		= "authenc(hmac(sha512),cbc(aes))",
		.cra_driver_name	= "atmel-authenc-hmac-sha512-cbc-aes",
		.cra_priority		= ATMEL_AES_PRIORITY,
		.cra_flags		= CRYPTO_ALG_ASYNC,
		.cra_blocksize		= AES_BLOCK_SIZE,
		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
		.cra_alignmask		= 0xf,
		.cra_module		= THIS_MODULE,
	},
},
};
#endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2344

2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
/* Probe functions */

static int atmel_aes_buff_init(struct atmel_aes_dev *dd)
{
	dd->buf = (void *)__get_free_pages(GFP_KERNEL, ATMEL_AES_BUFFER_ORDER);
	dd->buflen = ATMEL_AES_BUFFER_SIZE;
	dd->buflen &= ~(AES_BLOCK_SIZE - 1);

	if (!dd->buf) {
		dev_err(dd->dev, "unable to alloc pages.\n");
		return -ENOMEM;
	}

	return 0;
}

static void atmel_aes_buff_cleanup(struct atmel_aes_dev *dd)
{
	free_page((unsigned long)dd->buf);
}

static int atmel_aes_dma_init(struct atmel_aes_dev *dd,
			      struct crypto_platform_data *pdata)
{
2369
	int ret;
2370 2371

	/* Try to grab 2 DMA channels */
2372 2373 2374
	dd->src.chan = dma_request_chan(dd->dev, "tx");
	if (IS_ERR(dd->src.chan)) {
		ret = PTR_ERR(dd->src.chan);
2375
		goto err_dma_in;
2376
	}
2377

2378 2379 2380
	dd->dst.chan = dma_request_chan(dd->dev, "rx");
	if (IS_ERR(dd->dst.chan)) {
		ret = PTR_ERR(dd->dst.chan);
2381
		goto err_dma_out;
2382
	}
2383 2384 2385 2386 2387 2388 2389

	return 0;

err_dma_out:
	dma_release_channel(dd->src.chan);
err_dma_in:
	dev_warn(dd->dev, "no DMA channel available\n");
2390
	return ret;
2391 2392 2393 2394 2395 2396 2397 2398
}

static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd)
{
	dma_release_channel(dd->dst.chan);
	dma_release_channel(dd->src.chan);
}

2399 2400 2401 2402 2403 2404 2405 2406 2407
static void atmel_aes_queue_task(unsigned long data)
{
	struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;

	atmel_aes_handle_queue(dd, NULL);
}

static void atmel_aes_done_task(unsigned long data)
{
2408
	struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2409

2410 2411 2412
	dd->is_async = true;
	(void)dd->resume(dd);
}
2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435

static irqreturn_t atmel_aes_irq(int irq, void *dev_id)
{
	struct atmel_aes_dev *aes_dd = dev_id;
	u32 reg;

	reg = atmel_aes_read(aes_dd, AES_ISR);
	if (reg & atmel_aes_read(aes_dd, AES_IMR)) {
		atmel_aes_write(aes_dd, AES_IDR, reg);
		if (AES_FLAGS_BUSY & aes_dd->flags)
			tasklet_schedule(&aes_dd->done_task);
		else
			dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n");
		return IRQ_HANDLED;
	}

	return IRQ_NONE;
}

static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd)
{
	int i;

2436
#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2437 2438 2439 2440 2441
	if (dd->caps.has_authenc)
		for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++)
			crypto_unregister_aead(&aes_authenc_algs[i]);
#endif

2442
	if (dd->caps.has_xts)
2443
		crypto_unregister_skcipher(&aes_xts_alg);
2444

2445 2446 2447
	if (dd->caps.has_gcm)
		crypto_unregister_aead(&aes_gcm_alg);

2448
	if (dd->caps.has_cfb64)
2449
		crypto_unregister_skcipher(&aes_cfb64_alg);
2450 2451

	for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
2452
		crypto_unregister_skcipher(&aes_algs[i]);
2453 2454 2455 2456 2457 2458 2459
}

static int atmel_aes_register_algs(struct atmel_aes_dev *dd)
{
	int err, i, j;

	for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
2460
		err = crypto_register_skcipher(&aes_algs[i]);
2461 2462 2463 2464
		if (err)
			goto err_aes_algs;
	}

2465
	if (dd->caps.has_cfb64) {
2466
		err = crypto_register_skcipher(&aes_cfb64_alg);
2467 2468 2469 2470
		if (err)
			goto err_aes_cfb64_alg;
	}

2471 2472 2473 2474 2475 2476
	if (dd->caps.has_gcm) {
		err = crypto_register_aead(&aes_gcm_alg);
		if (err)
			goto err_aes_gcm_alg;
	}

2477
	if (dd->caps.has_xts) {
2478
		err = crypto_register_skcipher(&aes_xts_alg);
2479 2480 2481 2482
		if (err)
			goto err_aes_xts_alg;
	}

2483
#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2484 2485 2486 2487 2488 2489 2490 2491 2492
	if (dd->caps.has_authenc) {
		for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++) {
			err = crypto_register_aead(&aes_authenc_algs[i]);
			if (err)
				goto err_aes_authenc_alg;
		}
	}
#endif

2493 2494
	return 0;

2495
#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2496 2497 2498 2499
	/* i = ARRAY_SIZE(aes_authenc_algs); */
err_aes_authenc_alg:
	for (j = 0; j < i; j++)
		crypto_unregister_aead(&aes_authenc_algs[j]);
2500
	crypto_unregister_skcipher(&aes_xts_alg);
2501
#endif
2502 2503
err_aes_xts_alg:
	crypto_unregister_aead(&aes_gcm_alg);
2504
err_aes_gcm_alg:
2505
	crypto_unregister_skcipher(&aes_cfb64_alg);
2506 2507 2508 2509
err_aes_cfb64_alg:
	i = ARRAY_SIZE(aes_algs);
err_aes_algs:
	for (j = 0; j < i; j++)
2510
		crypto_unregister_skcipher(&aes_algs[j]);
2511 2512 2513 2514

	return err;
}

2515 2516 2517 2518
static void atmel_aes_get_cap(struct atmel_aes_dev *dd)
{
	dd->caps.has_dualbuff = 0;
	dd->caps.has_cfb64 = 0;
2519
	dd->caps.has_ctr32 = 0;
2520
	dd->caps.has_gcm = 0;
2521
	dd->caps.has_xts = 0;
2522
	dd->caps.has_authenc = 0;
2523 2524 2525 2526
	dd->caps.max_burst_size = 1;

	/* keep only major version number */
	switch (dd->hw_version & 0xff0) {
L
Leilei Zhao 已提交
2527 2528 2529
	case 0x500:
		dd->caps.has_dualbuff = 1;
		dd->caps.has_cfb64 = 1;
2530
		dd->caps.has_ctr32 = 1;
2531
		dd->caps.has_gcm = 1;
2532
		dd->caps.has_xts = 1;
2533
		dd->caps.has_authenc = 1;
L
Leilei Zhao 已提交
2534 2535
		dd->caps.max_burst_size = 4;
		break;
2536 2537 2538
	case 0x200:
		dd->caps.has_dualbuff = 1;
		dd->caps.has_cfb64 = 1;
2539
		dd->caps.has_ctr32 = 1;
2540
		dd->caps.has_gcm = 1;
2541 2542
		dd->caps.max_burst_size = 4;
		break;
2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
	case 0x130:
		dd->caps.has_dualbuff = 1;
		dd->caps.has_cfb64 = 1;
		dd->caps.max_burst_size = 4;
		break;
	case 0x120:
		break;
	default:
		dev_warn(dd->dev,
				"Unmanaged aes version, set minimum capabilities\n");
		break;
	}
}

2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574
#if defined(CONFIG_OF)
static const struct of_device_id atmel_aes_dt_ids[] = {
	{ .compatible = "atmel,at91sam9g46-aes" },
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, atmel_aes_dt_ids);

static struct crypto_platform_data *atmel_aes_of_init(struct platform_device *pdev)
{
	struct device_node *np = pdev->dev.of_node;
	struct crypto_platform_data *pdata;

	if (!np) {
		dev_err(&pdev->dev, "device node not found\n");
		return ERR_PTR(-EINVAL);
	}

	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
2575
	if (!pdata)
2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586
		return ERR_PTR(-ENOMEM);

	return pdata;
}
#else
static inline struct crypto_platform_data *atmel_aes_of_init(struct platform_device *pdev)
{
	return ERR_PTR(-EINVAL);
}
#endif

2587
static int atmel_aes_probe(struct platform_device *pdev)
2588 2589
{
	struct atmel_aes_dev *aes_dd;
2590
	struct crypto_platform_data *pdata;
2591 2592 2593 2594 2595 2596
	struct device *dev = &pdev->dev;
	struct resource *aes_res;
	int err;

	pdata = pdev->dev.platform_data;
	if (!pdata) {
2597 2598 2599 2600 2601 2602 2603
		pdata = atmel_aes_of_init(pdev);
		if (IS_ERR(pdata)) {
			err = PTR_ERR(pdata);
			goto aes_dd_err;
		}
	}

2604
	aes_dd = devm_kzalloc(&pdev->dev, sizeof(*aes_dd), GFP_KERNEL);
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
	if (aes_dd == NULL) {
		err = -ENOMEM;
		goto aes_dd_err;
	}

	aes_dd->dev = dev;

	platform_set_drvdata(pdev, aes_dd);

	INIT_LIST_HEAD(&aes_dd->list);
2615
	spin_lock_init(&aes_dd->lock);
2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636

	tasklet_init(&aes_dd->done_task, atmel_aes_done_task,
					(unsigned long)aes_dd);
	tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task,
					(unsigned long)aes_dd);

	crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH);

	/* Get the base address */
	aes_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!aes_res) {
		dev_err(dev, "no MEM resource info\n");
		err = -ENODEV;
		goto res_err;
	}
	aes_dd->phys_base = aes_res->start;

	/* Get the IRQ */
	aes_dd->irq = platform_get_irq(pdev,  0);
	if (aes_dd->irq < 0) {
		err = aes_dd->irq;
2637
		goto res_err;
2638 2639
	}

2640 2641
	err = devm_request_irq(&pdev->dev, aes_dd->irq, atmel_aes_irq,
			       IRQF_SHARED, "atmel-aes", aes_dd);
2642 2643
	if (err) {
		dev_err(dev, "unable to request aes irq.\n");
2644
		goto res_err;
2645 2646 2647
	}

	/* Initializing the clock */
2648
	aes_dd->iclk = devm_clk_get(&pdev->dev, "aes_clk");
2649
	if (IS_ERR(aes_dd->iclk)) {
2650
		dev_err(dev, "clock initialization failed.\n");
2651
		err = PTR_ERR(aes_dd->iclk);
2652
		goto res_err;
2653 2654
	}

2655
	aes_dd->io_base = devm_ioremap_resource(&pdev->dev, aes_res);
2656
	if (IS_ERR(aes_dd->io_base)) {
2657
		dev_err(dev, "can't ioremap\n");
2658
		err = PTR_ERR(aes_dd->io_base);
2659
		goto res_err;
2660 2661
	}

2662
	err = clk_prepare(aes_dd->iclk);
2663 2664
	if (err)
		goto res_err;
2665

2666 2667 2668 2669
	err = atmel_aes_hw_version_init(aes_dd);
	if (err)
		goto iclk_unprepare;

2670 2671
	atmel_aes_get_cap(aes_dd);

2672
#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2673 2674 2675 2676 2677 2678
	if (aes_dd->caps.has_authenc && !atmel_sha_authenc_is_ready()) {
		err = -EPROBE_DEFER;
		goto iclk_unprepare;
	}
#endif

2679 2680 2681 2682 2683
	err = atmel_aes_buff_init(aes_dd);
	if (err)
		goto err_aes_buff;

	err = atmel_aes_dma_init(aes_dd, pdata);
2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694
	if (err)
		goto err_aes_dma;

	spin_lock(&atmel_aes.lock);
	list_add_tail(&aes_dd->list, &atmel_aes.dev_list);
	spin_unlock(&atmel_aes.lock);

	err = atmel_aes_register_algs(aes_dd);
	if (err)
		goto err_algs;

2695
	dev_info(dev, "Atmel AES - Using %s, %s for DMA transfers\n",
2696 2697
			dma_chan_name(aes_dd->src.chan),
			dma_chan_name(aes_dd->dst.chan));
2698 2699 2700 2701 2702 2703 2704 2705 2706

	return 0;

err_algs:
	spin_lock(&atmel_aes.lock);
	list_del(&aes_dd->list);
	spin_unlock(&atmel_aes.lock);
	atmel_aes_dma_cleanup(aes_dd);
err_aes_dma:
2707 2708
	atmel_aes_buff_cleanup(aes_dd);
err_aes_buff:
2709 2710
iclk_unprepare:
	clk_unprepare(aes_dd->iclk);
2711 2712 2713 2714
res_err:
	tasklet_kill(&aes_dd->done_task);
	tasklet_kill(&aes_dd->queue_task);
aes_dd_err:
2715 2716
	if (err != -EPROBE_DEFER)
		dev_err(dev, "initialization failed.\n");
2717 2718 2719 2720

	return err;
}

2721
static int atmel_aes_remove(struct platform_device *pdev)
2722
{
2723
	struct atmel_aes_dev *aes_dd;
2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737

	aes_dd = platform_get_drvdata(pdev);
	if (!aes_dd)
		return -ENODEV;
	spin_lock(&atmel_aes.lock);
	list_del(&aes_dd->list);
	spin_unlock(&atmel_aes.lock);

	atmel_aes_unregister_algs(aes_dd);

	tasklet_kill(&aes_dd->done_task);
	tasklet_kill(&aes_dd->queue_task);

	atmel_aes_dma_cleanup(aes_dd);
2738
	atmel_aes_buff_cleanup(aes_dd);
2739

2740 2741
	clk_unprepare(aes_dd->iclk);

2742 2743 2744 2745 2746
	return 0;
}

static struct platform_driver atmel_aes_driver = {
	.probe		= atmel_aes_probe,
2747
	.remove		= atmel_aes_remove,
2748 2749
	.driver		= {
		.name	= "atmel_aes",
2750
		.of_match_table = of_match_ptr(atmel_aes_dt_ids),
2751 2752 2753 2754 2755 2756 2757 2758
	},
};

module_platform_driver(atmel_aes_driver);

MODULE_DESCRIPTION("Atmel AES hw acceleration support.");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");