kvm_host.h 58.2 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0-only */
2
/*
3 4 5 6 7
 * Kernel-based Virtual Machine driver for Linux
 *
 * This header defines architecture specific interfaces, x86 version
 */

H
H. Peter Anvin 已提交
8 9
#ifndef _ASM_X86_KVM_HOST_H
#define _ASM_X86_KVM_HOST_H
10

11 12
#include <linux/types.h>
#include <linux/mm.h>
13
#include <linux/mmu_notifier.h>
14
#include <linux/tracepoint.h>
15
#include <linux/cpumask.h>
16
#include <linux/irq_work.h>
17
#include <linux/irq.h>
18 19 20

#include <linux/kvm.h>
#include <linux/kvm_para.h>
21
#include <linux/kvm_types.h>
22
#include <linux/perf_event.h>
23 24
#include <linux/pvclock_gtod.h>
#include <linux/clocksource.h>
F
Feng Wu 已提交
25
#include <linux/irqbypass.h>
26
#include <linux/hyperv.h>
27

28
#include <asm/apic.h>
29
#include <asm/pvclock-abi.h>
30
#include <asm/desc.h>
S
Sheng Yang 已提交
31
#include <asm/mtrr.h>
32
#include <asm/msr-index.h>
33
#include <asm/asm.h>
34
#include <asm/kvm_page_track.h>
35
#include <asm/kvm_vcpu_regs.h>
36
#include <asm/hyperv-tlfs.h>
37

38 39
#define __KVM_HAVE_ARCH_VCPU_DEBUGFS

40
#define KVM_MAX_VCPUS 1024
41
#define KVM_SOFT_MAX_VCPUS 710
42 43 44 45 46 47 48 49 50 51 52 53 54

/*
 * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs
 * might be larger than the actual number of VCPUs because the
 * APIC ID encodes CPU topology information.
 *
 * In the worst case, we'll need less than one extra bit for the
 * Core ID, and less than one extra bit for the Package (Die) ID,
 * so ratio of 4 should be enough.
 */
#define KVM_VCPU_ID_RATIO 4
#define KVM_MAX_VCPU_ID (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO)

55 56
/* memory slots that are not exposed to userspace */
#define KVM_PRIVATE_MEM_SLOTS 3
57

58
#define KVM_HALT_POLL_NS_DEFAULT 200000
59

60 61
#define KVM_IRQCHIP_NUM_PINS  KVM_IOAPIC_NUM_PINS

62 63 64
#define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
					KVM_DIRTY_LOG_INITIALLY_SET)

C
Chenyi Qiang 已提交
65 66 67
#define KVM_BUS_LOCK_DETECTION_VALID_MODE	(KVM_BUS_LOCK_DETECTION_OFF | \
						 KVM_BUS_LOCK_DETECTION_EXIT)

68
/* x86-specific vcpu->requests bit members */
69 70 71 72 73
#define KVM_REQ_MIGRATE_TIMER		KVM_ARCH_REQ(0)
#define KVM_REQ_REPORT_TPR_ACCESS	KVM_ARCH_REQ(1)
#define KVM_REQ_TRIPLE_FAULT		KVM_ARCH_REQ(2)
#define KVM_REQ_MMU_SYNC		KVM_ARCH_REQ(3)
#define KVM_REQ_CLOCK_UPDATE		KVM_ARCH_REQ(4)
74
#define KVM_REQ_LOAD_MMU_PGD		KVM_ARCH_REQ(5)
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
#define KVM_REQ_EVENT			KVM_ARCH_REQ(6)
#define KVM_REQ_APF_HALT		KVM_ARCH_REQ(7)
#define KVM_REQ_STEAL_UPDATE		KVM_ARCH_REQ(8)
#define KVM_REQ_NMI			KVM_ARCH_REQ(9)
#define KVM_REQ_PMU			KVM_ARCH_REQ(10)
#define KVM_REQ_PMI			KVM_ARCH_REQ(11)
#define KVM_REQ_SMI			KVM_ARCH_REQ(12)
#define KVM_REQ_MASTERCLOCK_UPDATE	KVM_ARCH_REQ(13)
#define KVM_REQ_MCLOCK_INPROGRESS \
	KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
#define KVM_REQ_SCAN_IOAPIC \
	KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
#define KVM_REQ_GLOBAL_CLOCK_UPDATE	KVM_ARCH_REQ(16)
#define KVM_REQ_APIC_PAGE_RELOAD \
	KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
#define KVM_REQ_HV_CRASH		KVM_ARCH_REQ(18)
#define KVM_REQ_IOAPIC_EOI_EXIT		KVM_ARCH_REQ(19)
#define KVM_REQ_HV_RESET		KVM_ARCH_REQ(20)
#define KVM_REQ_HV_EXIT			KVM_ARCH_REQ(21)
#define KVM_REQ_HV_STIMER		KVM_ARCH_REQ(22)
95
#define KVM_REQ_LOAD_EOI_EXITMAP	KVM_ARCH_REQ(23)
96
#define KVM_REQ_GET_NESTED_STATE_PAGES	KVM_ARCH_REQ(24)
97 98
#define KVM_REQ_APICV_UPDATE \
	KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
99
#define KVM_REQ_TLB_FLUSH_CURRENT	KVM_ARCH_REQ(26)
100
#define KVM_REQ_TLB_FLUSH_GUEST \
101
	KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_NO_WAKEUP)
102
#define KVM_REQ_APF_READY		KVM_ARCH_REQ(28)
103
#define KVM_REQ_MSR_FILTER_CHANGED	KVM_ARCH_REQ(29)
104 105
#define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \
	KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
106

107 108 109 110 111 112 113 114
#define CR0_RESERVED_BITS                                               \
	(~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
			  | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
			  | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))

#define CR4_RESERVED_BITS                                               \
	(~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
			  | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
115
			  | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \
116
			  | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \
117
			  | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \
P
Paolo Bonzini 已提交
118
			  | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP))
119 120 121 122

#define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)


123 124

#define INVALID_PAGE (~(hpa_t)0)
125 126
#define VALID_PAGE(x) ((x) != INVALID_PAGE)

127
#define UNMAPPED_GVA (~(gpa_t)0)
128
#define INVALID_GPA (~(gpa_t)0)
129

130
/* KVM Hugepage definitions for x86 */
131 132
#define KVM_MAX_HUGEPAGE_LEVEL	PG_LEVEL_1G
#define KVM_NR_PAGE_SIZES	(KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1)
133 134
#define KVM_HPAGE_GFN_SHIFT(x)	(((x) - 1) * 9)
#define KVM_HPAGE_SHIFT(x)	(PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x))
135 136 137
#define KVM_HPAGE_SIZE(x)	(1UL << KVM_HPAGE_SHIFT(x))
#define KVM_HPAGE_MASK(x)	(~(KVM_HPAGE_SIZE(x) - 1))
#define KVM_PAGES_PER_HPAGE(x)	(KVM_HPAGE_SIZE(x) / PAGE_SIZE)
M
Marcelo Tosatti 已提交
138

139
#define KVM_PERMILLE_MMU_PAGES 20
140
#define KVM_MIN_ALLOC_MMU_PAGES 64UL
141
#define KVM_MMU_HASH_SHIFT 12
142
#define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT)
143 144
#define KVM_MIN_FREE_MMU_PAGES 5
#define KVM_REFILL_PAGES 25
145
#define KVM_MAX_CPUID_ENTRIES 256
S
Sheng Yang 已提交
146
#define KVM_NR_FIXED_MTRR_REGION 88
147
#define KVM_NR_VAR_MTRR 8
148

149 150
#define ASYNC_PF_PER_VCPU 64

151
enum kvm_reg {
152 153 154 155 156 157 158 159
	VCPU_REGS_RAX = __VCPU_REGS_RAX,
	VCPU_REGS_RCX = __VCPU_REGS_RCX,
	VCPU_REGS_RDX = __VCPU_REGS_RDX,
	VCPU_REGS_RBX = __VCPU_REGS_RBX,
	VCPU_REGS_RSP = __VCPU_REGS_RSP,
	VCPU_REGS_RBP = __VCPU_REGS_RBP,
	VCPU_REGS_RSI = __VCPU_REGS_RSI,
	VCPU_REGS_RDI = __VCPU_REGS_RDI,
160
#ifdef CONFIG_X86_64
161 162 163 164 165 166 167 168
	VCPU_REGS_R8  = __VCPU_REGS_R8,
	VCPU_REGS_R9  = __VCPU_REGS_R9,
	VCPU_REGS_R10 = __VCPU_REGS_R10,
	VCPU_REGS_R11 = __VCPU_REGS_R11,
	VCPU_REGS_R12 = __VCPU_REGS_R12,
	VCPU_REGS_R13 = __VCPU_REGS_R13,
	VCPU_REGS_R14 = __VCPU_REGS_R14,
	VCPU_REGS_R15 = __VCPU_REGS_R15,
169
#endif
170
	VCPU_REGS_RIP,
171
	NR_VCPU_REGS,
172

A
Avi Kivity 已提交
173
	VCPU_EXREG_PDPTR = NR_VCPU_REGS,
174
	VCPU_EXREG_CR0,
175
	VCPU_EXREG_CR3,
176
	VCPU_EXREG_CR4,
A
Avi Kivity 已提交
177
	VCPU_EXREG_RFLAGS,
A
Avi Kivity 已提交
178
	VCPU_EXREG_SEGMENTS,
179
	VCPU_EXREG_EXIT_INFO_1,
180
	VCPU_EXREG_EXIT_INFO_2,
A
Avi Kivity 已提交
181 182
};

183
enum {
184
	VCPU_SREG_ES,
185
	VCPU_SREG_CS,
186
	VCPU_SREG_SS,
187 188 189 190 191 192 193
	VCPU_SREG_DS,
	VCPU_SREG_FS,
	VCPU_SREG_GS,
	VCPU_SREG_TR,
	VCPU_SREG_LDTR,
};

194 195
enum exit_fastpath_completion {
	EXIT_FASTPATH_NONE,
196 197
	EXIT_FASTPATH_REENTER_GUEST,
	EXIT_FASTPATH_EXIT_HANDLED,
198
};
199
typedef enum exit_fastpath_completion fastpath_t;
200

201 202 203 204
struct x86_emulate_ctxt;
struct x86_exception;
enum x86_intercept;
enum x86_intercept_stage;
205

206 207
#define KVM_NR_DB_REGS	4

208
#define DR6_BUS_LOCK   (1 << 11)
209 210
#define DR6_BD		(1 << 13)
#define DR6_BS		(1 << 14)
211
#define DR6_BT		(1 << 15)
212
#define DR6_RTM		(1 << 16)
213 214 215 216 217 218 219 220 221
/*
 * DR6_ACTIVE_LOW combines fixed-1 and active-low bits.
 * We can regard all the bits in DR6_FIXED_1 as active_low bits;
 * they will never be 0 for now, but when they are defined
 * in the future it will require no code change.
 *
 * DR6_ACTIVE_LOW is also used as the init/reset value for DR6.
 */
#define DR6_ACTIVE_LOW	0xffff0ff0
222
#define DR6_VOLATILE	0x0001e80f
223
#define DR6_FIXED_1	(DR6_ACTIVE_LOW & ~DR6_VOLATILE)
224 225 226 227 228

#define DR7_BP_EN_MASK	0x000000ff
#define DR7_GE		(1 << 9)
#define DR7_GD		(1 << 13)
#define DR7_FIXED_1	0x00000400
229
#define DR7_VOLATILE	0xffff2bff
230

231 232 233 234 235 236
#define KVM_GUESTDBG_VALID_MASK \
	(KVM_GUESTDBG_ENABLE | \
	KVM_GUESTDBG_SINGLESTEP | \
	KVM_GUESTDBG_USE_HW_BP | \
	KVM_GUESTDBG_USE_SW_BP | \
	KVM_GUESTDBG_INJECT_BP | \
237 238
	KVM_GUESTDBG_INJECT_DB | \
	KVM_GUESTDBG_BLOCKIRQ)
239 240


241 242 243 244 245
#define PFERR_PRESENT_BIT 0
#define PFERR_WRITE_BIT 1
#define PFERR_USER_BIT 2
#define PFERR_RSVD_BIT 3
#define PFERR_FETCH_BIT 4
246
#define PFERR_PK_BIT 5
247
#define PFERR_SGX_BIT 15
248 249
#define PFERR_GUEST_FINAL_BIT 32
#define PFERR_GUEST_PAGE_BIT 33
250 251 252 253 254 255

#define PFERR_PRESENT_MASK (1U << PFERR_PRESENT_BIT)
#define PFERR_WRITE_MASK (1U << PFERR_WRITE_BIT)
#define PFERR_USER_MASK (1U << PFERR_USER_BIT)
#define PFERR_RSVD_MASK (1U << PFERR_RSVD_BIT)
#define PFERR_FETCH_MASK (1U << PFERR_FETCH_BIT)
256
#define PFERR_PK_MASK (1U << PFERR_PK_BIT)
257
#define PFERR_SGX_MASK (1U << PFERR_SGX_BIT)
258 259 260 261 262 263
#define PFERR_GUEST_FINAL_MASK (1ULL << PFERR_GUEST_FINAL_BIT)
#define PFERR_GUEST_PAGE_MASK (1ULL << PFERR_GUEST_PAGE_BIT)

#define PFERR_NESTED_GUEST_PAGE (PFERR_GUEST_PAGE_MASK |	\
				 PFERR_WRITE_MASK |		\
				 PFERR_PRESENT_MASK)
264

265 266
/* apic attention bits */
#define KVM_APIC_CHECK_VAPIC	0
267 268 269 270 271 272 273
/*
 * The following bit is set with PV-EOI, unset on EOI.
 * We detect PV-EOI changes by guest by comparing
 * this bit with PV-EOI in guest memory.
 * See the implementation in apic_update_pv_eoi.
 */
#define KVM_APIC_PV_EOI_PENDING	1
274

F
Feng Wu 已提交
275 276
struct kvm_kernel_irq_routing_entry;

277
/*
278 279 280 281 282
 * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page
 * also includes TDP pages) to determine whether or not a page can be used in
 * the given MMU context.  This is a subset of the overall kvm_mmu_role to
 * minimize the size of kvm_memory_slot.arch.gfn_track, i.e. allows allocating
 * 2 bytes per gfn instead of 4 bytes per gfn.
283
 *
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
 * Indirect upper-level shadow pages are tracked for write-protection via
 * gfn_track.  As above, gfn_track is a 16 bit counter, so KVM must not create
 * more than 2^16-1 upper-level shadow pages at a single gfn, otherwise
 * gfn_track will overflow and explosions will ensure.
 *
 * A unique shadow page (SP) for a gfn is created if and only if an existing SP
 * cannot be reused.  The ability to reuse a SP is tracked by its role, which
 * incorporates various mode bits and properties of the SP.  Roughly speaking,
 * the number of unique SPs that can theoretically be created is 2^n, where n
 * is the number of bits that are used to compute the role.
 *
 * But, even though there are 18 bits in the mask below, not all combinations
 * of modes and flags are possible.  The maximum number of possible upper-level
 * shadow pages for a single gfn is in the neighborhood of 2^13.
 *
 *   - invalid shadow pages are not accounted.
 *   - level is effectively limited to four combinations, not 16 as the number
 *     bits would imply, as 4k SPs are not tracked (allowed to go unsync).
 *   - level is effectively unused for non-PAE paging because there is exactly
 *     one upper level (see 4k SP exception above).
 *   - quadrant is used only for non-PAE paging and is exclusive with
 *     gpte_is_8_bytes.
 *   - execonly and ad_disabled are used only for nested EPT, which makes it
 *     exclusive with quadrant.
308
 */
309
union kvm_mmu_page_role {
310
	u32 word;
311
	struct {
312
		unsigned level:4;
313
		unsigned gpte_is_8_bytes:1;
314
		unsigned quadrant:2;
315
		unsigned direct:1;
316
		unsigned access:3;
317
		unsigned invalid:1;
318
		unsigned efer_nx:1;
319
		unsigned cr0_wp:1;
320
		unsigned smep_andnot_wp:1;
321
		unsigned smap_andnot_wp:1;
322
		unsigned ad_disabled:1;
323 324
		unsigned guest_mode:1;
		unsigned :6;
325 326 327 328 329 330 331 332

		/*
		 * This is left at the top of the word so that
		 * kvm_memslots_for_spte_role can extract it with a
		 * simple shift.  While there is room, give it a whole
		 * byte so it is also faster to load it from memory.
		 */
		unsigned smm:8;
333 334 335
	};
};

336
/*
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
 * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties
 * relevant to the current MMU configuration.   When loading CR0, CR4, or EFER,
 * including on nested transitions, if nothing in the full role changes then
 * MMU re-configuration can be skipped. @valid bit is set on first usage so we
 * don't treat all-zero structure as valid data.
 *
 * The properties that are tracked in the extended role but not the page role
 * are for things that either (a) do not affect the validity of the shadow page
 * or (b) are indirectly reflected in the shadow page's role.  For example,
 * CR4.PKE only affects permission checks for software walks of the guest page
 * tables (because KVM doesn't support Protection Keys with shadow paging), and
 * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level.
 *
 * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role.
 * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and
 * SMAP, but the MMU's permission checks for software walks need to be SMEP and
 * SMAP aware regardless of CR0.WP.
354
 */
355
union kvm_mmu_extended_role {
356
	u32 word;
357 358 359
	struct {
		unsigned int valid:1;
		unsigned int execonly:1;
360
		unsigned int cr0_pg:1;
361
		unsigned int cr4_pae:1;
362 363 364 365
		unsigned int cr4_pse:1;
		unsigned int cr4_pke:1;
		unsigned int cr4_smap:1;
		unsigned int cr4_smep:1;
366
		unsigned int cr4_la57:1;
367
	};
368 369 370 371 372 373 374 375 376 377
};

union kvm_mmu_role {
	u64 as_u64;
	struct {
		union kvm_mmu_page_role base;
		union kvm_mmu_extended_role ext;
	};
};

378 379 380 381
struct kvm_rmap_head {
	unsigned long val;
};

382
struct kvm_pio_request {
383
	unsigned long linear_rip;
384 385 386 387 388 389
	unsigned long count;
	int in;
	int port;
	int size;
};

390
#define PT64_ROOT_MAX_LEVEL 5
391

392
struct rsvd_bits_validate {
393
	u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL];
394 395 396
	u64 bad_mt_xwr;
};

397
struct kvm_mmu_root_info {
398
	gpa_t pgd;
399 400 401 402
	hpa_t hpa;
};

#define KVM_MMU_ROOT_INFO_INVALID \
403
	((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE })
404

405 406
#define KVM_MMU_NUM_PREV_ROOTS 3

407 408
#define KVM_HAVE_MMU_RWLOCK

409 410
struct kvm_mmu_page;

411
/*
412 413 414
 * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit,
 * and 2-level 32-bit).  The kvm_mmu structure abstracts the details of the
 * current mmu mode.
415 416
 */
struct kvm_mmu {
417
	unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu);
418
	u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index);
419
	int (*page_fault)(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u32 err,
420
			  bool prefault);
421 422
	void (*inject_page_fault)(struct kvm_vcpu *vcpu,
				  struct x86_exception *fault);
423 424
	gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, gpa_t gva_or_gpa,
			    u32 access, struct x86_exception *exception);
425 426
	gpa_t (*translate_gpa)(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
			       struct x86_exception *exception);
427
	int (*sync_page)(struct kvm_vcpu *vcpu,
428
			 struct kvm_mmu_page *sp);
429
	void (*invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa);
430
	hpa_t root_hpa;
431
	gpa_t root_pgd;
432
	union kvm_mmu_role mmu_role;
433 434 435
	u8 root_level;
	u8 shadow_root_level;
	u8 ept_ad;
436
	bool direct_map;
437
	struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS];
438

439 440 441 442 443 444 445
	/*
	 * Bitmap; bit set = permission fault
	 * Byte index: page fault error code [4:1]
	 * Bit index: pte permissions in ACC_* format
	 */
	u8 permissions[16];

446 447 448 449 450 451 452 453
	/*
	* The pkru_mask indicates if protection key checks are needed.  It
	* consists of 16 domains indexed by page fault error code bits [4:1],
	* with PFEC.RSVD replaced by ACC_USER_MASK from the page tables.
	* Each domain has 2 bits which are ANDed with AD and WD from PKRU.
	*/
	u32 pkru_mask;

454
	u64 *pae_root;
455
	u64 *pml4_root;
456
	u64 *pml5_root;
457 458 459 460 461 462 463 464

	/*
	 * check zero bits on shadow page table entries, these
	 * bits include not only hardware reserved bits but also
	 * the bits spte never used.
	 */
	struct rsvd_bits_validate shadow_zero_check;

465
	struct rsvd_bits_validate guest_rsvd_check;
466 467

	u64 pdptrs[4]; /* pae */
468 469
};

470 471 472 473 474
struct kvm_tlb_range {
	u64 start_gfn;
	u64 pages;
};

475 476 477 478 479 480 481 482 483 484 485 486
enum pmc_type {
	KVM_PMC_GP = 0,
	KVM_PMC_FIXED,
};

struct kvm_pmc {
	enum pmc_type type;
	u8 idx;
	u64 counter;
	u64 eventsel;
	struct perf_event *perf_event;
	struct kvm_vcpu *vcpu;
487 488 489 490 491
	/*
	 * eventsel value for general purpose counters,
	 * ctrl value for fixed counters.
	 */
	u64 current_config;
492
	bool is_paused;
493 494 495 496 497 498 499 500 501 502 503 504
};

struct kvm_pmu {
	unsigned nr_arch_gp_counters;
	unsigned nr_arch_fixed_counters;
	unsigned available_event_types;
	u64 fixed_ctr_ctrl;
	u64 global_ctrl;
	u64 global_status;
	u64 global_ovf_ctrl;
	u64 counter_bitmask[2];
	u64 global_ctrl_mask;
505
	u64 global_ovf_ctrl_mask;
506
	u64 reserved_bits;
507
	u8 version;
508 509
	struct kvm_pmc gp_counters[INTEL_PMC_MAX_GENERIC];
	struct kvm_pmc fixed_counters[INTEL_PMC_MAX_FIXED];
510
	struct irq_work irq_work;
511
	DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX);
512 513 514 515 516 517 518 519 520 521 522 523 524 525
	DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX);
	DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX);

	/*
	 * The gate to release perf_events not marked in
	 * pmc_in_use only once in a vcpu time slice.
	 */
	bool need_cleanup;

	/*
	 * The total number of programmed perf_events and it helps to avoid
	 * redundant check before cleanup if guest don't use vPMU at all.
	 */
	u8 event_count;
526 527
};

528 529
struct kvm_pmu_ops;

530 531
enum {
	KVM_DEBUGREG_BP_ENABLED = 1,
532
	KVM_DEBUGREG_WONT_EXIT = 2,
533 534
};

535 536 537
struct kvm_mtrr_range {
	u64 base;
	u64 mask;
X
Xiao Guangrong 已提交
538
	struct list_head node;
539 540
};

541
struct kvm_mtrr {
542
	struct kvm_mtrr_range var_ranges[KVM_NR_VAR_MTRR];
543
	mtrr_type fixed_ranges[KVM_NR_FIXED_MTRR_REGION];
544
	u64 deftype;
X
Xiao Guangrong 已提交
545 546

	struct list_head head;
547 548
};

A
Andrey Smetanin 已提交
549 550 551 552
/* Hyper-V SynIC timer */
struct kvm_vcpu_hv_stimer {
	struct hrtimer timer;
	int index;
553
	union hv_stimer_config config;
A
Andrey Smetanin 已提交
554 555 556 557 558 559
	u64 count;
	u64 exp_time;
	struct hv_message msg;
	bool msg_pending;
};

560 561 562 563 564 565 566 567 568 569 570
/* Hyper-V synthetic interrupt controller (SynIC)*/
struct kvm_vcpu_hv_synic {
	u64 version;
	u64 control;
	u64 msg_page;
	u64 evt_page;
	atomic64_t sint[HV_SYNIC_SINT_COUNT];
	atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT];
	DECLARE_BITMAP(auto_eoi_bitmap, 256);
	DECLARE_BITMAP(vec_bitmap, 256);
	bool active;
571
	bool dont_zero_synic_pages;
572 573
};

574 575
/* Hyper-V per vcpu emulation context */
struct kvm_vcpu_hv {
576
	struct kvm_vcpu *vcpu;
577
	u32 vp_index;
578
	u64 hv_vapic;
579
	s64 runtime_offset;
580
	struct kvm_vcpu_hv_synic synic;
A
Andrey Smetanin 已提交
581
	struct kvm_hyperv_exit exit;
A
Andrey Smetanin 已提交
582 583
	struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT];
	DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
584
	bool enforce_cpuid;
585 586 587 588 589 590 591 592
	struct {
		u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */
		u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */
		u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */
		u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */
		u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */
		u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */
	} cpuid_cache;
593 594
};

595 596 597
/* Xen HVM per vcpu emulation context */
struct kvm_vcpu_xen {
	u64 hypercall_rip;
598
	u32 current_runstate;
J
Joao Martins 已提交
599
	bool vcpu_info_set;
600
	bool vcpu_time_info_set;
601
	bool runstate_set;
J
Joao Martins 已提交
602
	struct gfn_to_hva_cache vcpu_info_cache;
603
	struct gfn_to_hva_cache vcpu_time_info_cache;
604 605 606 607
	struct gfn_to_hva_cache runstate_cache;
	u64 last_steal;
	u64 runstate_entry_time;
	u64 runstate_times[4];
608 609
};

610
struct kvm_vcpu_arch {
611 612 613 614 615 616 617
	/*
	 * rip and regs accesses must go through
	 * kvm_{register,rip}_{read,write} functions.
	 */
	unsigned long regs[NR_VCPU_REGS];
	u32 regs_avail;
	u32 regs_dirty;
618 619

	unsigned long cr0;
620
	unsigned long cr0_guest_owned_bits;
621 622 623
	unsigned long cr2;
	unsigned long cr3;
	unsigned long cr4;
624
	unsigned long cr4_guest_owned_bits;
625
	unsigned long cr4_guest_rsvd_bits;
626
	unsigned long cr8;
627
	u32 host_pkru;
628
	u32 pkru;
629
	u32 hflags;
630
	u64 efer;
631 632
	u64 apic_base;
	struct kvm_lapic *apic;    /* kernel irqchip context */
633
	bool apicv_active;
634
	bool load_eoi_exitmap_pending;
635
	DECLARE_BITMAP(ioapic_handled_vectors, 256);
636
	unsigned long apic_attention;
637
	int32_t apic_arb_prio;
638 639
	int mp_state;
	u64 ia32_misc_enable_msr;
P
Paolo Bonzini 已提交
640
	u64 smbase;
641
	u64 smi_count;
642
	bool tpr_access_reporting;
643
	bool xsaves_enabled;
W
Wanpeng Li 已提交
644
	u64 ia32_xss;
645
	u64 microcode_version;
646
	u64 arch_capabilities;
647
	u64 perf_capabilities;
648

649 650 651 652 653 654 655
	/*
	 * Paging state of the vcpu
	 *
	 * If the vcpu runs in guest mode with two level paging this still saves
	 * the paging mode of the l1 guest. This context is always used to
	 * handle faults.
	 */
656 657 658 659
	struct kvm_mmu *mmu;

	/* Non-nested MMU for L1 */
	struct kvm_mmu root_mmu;
660

661 662 663
	/* L1 MMU when running nested */
	struct kvm_mmu guest_mmu;

664 665 666 667
	/*
	 * Paging state of an L2 guest (used for nested npt)
	 *
	 * This context will save all necessary information to walk page tables
M
Miaohe Lin 已提交
668
	 * of an L2 guest. This context is only initialized for page table
669 670 671 672 673
	 * walking and not for faulting since we never handle l2 page faults on
	 * the host.
	 */
	struct kvm_mmu nested_mmu;

674 675 676 677 678 679
	/*
	 * Pointer to the mmu context currently used for
	 * gva_to_gpa translations.
	 */
	struct kvm_mmu *walk_mmu;

680
	struct kvm_mmu_memory_cache mmu_pte_list_desc_cache;
681 682
	struct kvm_mmu_memory_cache mmu_shadow_page_cache;
	struct kvm_mmu_memory_cache mmu_gfn_array_cache;
683 684
	struct kvm_mmu_memory_cache mmu_page_header_cache;

685 686
	/*
	 * QEMU userspace and the guest each have their own FPU state.
687 688 689
	 * In vcpu_run, we switch between the user and guest FPU contexts.
	 * While running a VCPU, the VCPU thread will have the guest FPU
	 * context.
690 691 692 693 694 695
	 *
	 * Note that while the PKRU state lives inside the fpu registers,
	 * it is switched out separately at VMENTER and VMEXIT time. The
	 * "guest_fpu" state here contains the guest FPU context, with the
	 * host PRKU bits.
	 */
696
	struct fpu *user_fpu;
697
	struct fpu *guest_fpu;
698

699
	u64 xcr0;
700
	u64 guest_supported_xcr0;
701 702 703

	struct kvm_pio_request pio;
	void *pio_data;
704
	void *guest_ins_data;
705

706 707
	u8 event_exit_inst_len;

708 709
	struct kvm_queued_exception {
		bool pending;
710
		bool injected;
711 712 713
		bool has_error_code;
		u8 nr;
		u32 error_code;
714 715
		unsigned long payload;
		bool has_payload;
716
		u8 nested_apf;
717 718
	} exception;

A
Avi Kivity 已提交
719
	struct kvm_queued_interrupt {
720
		bool injected;
721
		bool soft;
A
Avi Kivity 已提交
722 723 724
		u8 nr;
	} interrupt;

725 726 727
	int halt_request; /* real mode on Intel only */

	int cpuid_nent;
728
	struct kvm_cpuid_entry2 *cpuid_entries;
729

730
	u64 reserved_gpa_bits;
731 732
	int maxphyaddr;

733 734
	/* emulate context */

735
	struct x86_emulate_ctxt *emulate_ctxt;
736 737
	bool emulate_regs_need_sync_to_vcpu;
	bool emulate_regs_need_sync_from_vcpu;
738
	int (*complete_userspace_io)(struct kvm_vcpu *vcpu);
739 740

	gpa_t time;
741
	struct pvclock_vcpu_time_info hv_clock;
Z
Zachary Amsden 已提交
742
	unsigned int hw_tsc_khz;
743 744
	struct gfn_to_hva_cache pv_time;
	bool pv_time_enabled;
745 746
	/* set guest stopped flag in pvclock flags field */
	bool pvclock_set_guest_stopped_request;
G
Glauber Costa 已提交
747 748

	struct {
749
		u8 preempted;
G
Glauber Costa 已提交
750 751
		u64 msr_val;
		u64 last_steal;
752
		struct gfn_to_pfn_cache cache;
G
Glauber Costa 已提交
753 754
	} st;

755
	u64 l1_tsc_offset;
756
	u64 tsc_offset; /* current tsc offset */
757
	u64 last_guest_tsc;
758
	u64 last_host_tsc;
759
	u64 tsc_offset_adjustment;
760 761
	u64 this_tsc_nsec;
	u64 this_tsc_write;
T
Tomasz Grabiec 已提交
762
	u64 this_tsc_generation;
Z
Zachary Amsden 已提交
763
	bool tsc_catchup;
764 765 766 767
	bool tsc_always_catchup;
	s8 virtual_tsc_shift;
	u32 virtual_tsc_mult;
	u32 virtual_tsc_khz;
W
Will Auld 已提交
768
	s64 ia32_tsc_adjust_msr;
769
	u64 msr_ia32_power_ctl;
770 771
	u64 l1_tsc_scaling_ratio;
	u64 tsc_scaling_ratio; /* current scaling ratio */
772

A
Avi Kivity 已提交
773 774 775
	atomic_t nmi_queued;  /* unprocessed asynchronous NMIs */
	unsigned nmi_pending; /* NMI queued after currently running handler */
	bool nmi_injected;    /* Trying to inject an NMI this entry */
776
	bool smi_pending;    /* SMI queued after currently running handler */
A
Avi Kivity 已提交
777

778
	struct kvm_mtrr mtrr_state;
779
	u64 pat;
780

781
	unsigned switch_db_regs;
782 783 784 785
	unsigned long db[KVM_NR_DB_REGS];
	unsigned long dr6;
	unsigned long dr7;
	unsigned long eff_db[KVM_NR_DB_REGS];
786
	unsigned long guest_debug_dr7;
K
Kyle Huey 已提交
787 788
	u64 msr_platform_info;
	u64 msr_misc_features_enables;
H
Huang Ying 已提交
789 790 791 792

	u64 mcg_cap;
	u64 mcg_status;
	u64 mcg_ctl;
793
	u64 mcg_ext_ctl;
H
Huang Ying 已提交
794
	u64 *mce_banks;
795

796 797
	/* Cache MMIO info */
	u64 mmio_gva;
798
	unsigned mmio_access;
799
	gfn_t mmio_gfn;
800
	u64 mmio_gen;
801

802 803
	struct kvm_pmu pmu;

804 805
	/* used for guest single stepping over the given code position */
	unsigned long singlestep_rip;
J
Jan Kiszka 已提交
806

807
	bool hyperv_enabled;
808
	struct kvm_vcpu_hv *hyperv;
809
	struct kvm_vcpu_xen xen;
810 811

	cpumask_var_t wbinvd_dirty_mask;
812

813 814 815
	unsigned long last_retry_eip;
	unsigned long last_retry_addr;

816 817
	struct {
		bool halted;
818
		gfn_t gfns[ASYNC_PF_PER_VCPU];
819
		struct gfn_to_hva_cache data;
820 821 822
		u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */
		u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */
		u16 vec;
823
		u32 id;
824
		bool send_user_only;
825
		u32 host_apf_flags;
826
		unsigned long nested_apf_token;
827
		bool delivery_as_pf_vmexit;
828
		bool pageready_pending;
829
	} apf;
830 831 832 833 834 835

	/* OSVW MSRs (AMD only) */
	struct {
		u64 length;
		u64 status;
	} osvw;
836 837 838 839 840

	struct {
		u64 msr_val;
		struct gfn_to_hva_cache data;
	} pv_eoi;
841

842 843
	u64 msr_kvm_poll_control;

844
	/*
845 846 847 848 849 850 851 852 853 854 855 856 857
	 * Indicates the guest is trying to write a gfn that contains one or
	 * more of the PTEs used to translate the write itself, i.e. the access
	 * is changing its own translation in the guest page tables.  KVM exits
	 * to userspace if emulation of the faulting instruction fails and this
	 * flag is set, as KVM cannot make forward progress.
	 *
	 * If emulation fails for a write to guest page tables, KVM unprotects
	 * (zaps) the shadow page for the target gfn and resumes the guest to
	 * retry the non-emulatable instruction (on hardware).  Unprotecting the
	 * gfn doesn't allow forward progress for a self-changing access because
	 * doing so also zaps the translation for the gfn, i.e. retrying the
	 * instruction will hit a !PRESENT fault, which results in a new shadow
	 * page and sends KVM back to square one.
858 859
	 */
	bool write_fault_to_shadow_pgtable;
860 861 862

	/* set at EPT violation at this point */
	unsigned long exit_qualification;
863 864 865 866 867

	/* pv related host specific info */
	struct {
		bool pv_unhalted;
	} pv;
868 869

	int pending_ioapic_eoi;
870
	int pending_external_vector;
871

872 873
	/* be preempted when it's in kernel-mode(cpl=0) */
	bool preempted_in_kernel;
P
Paolo Bonzini 已提交
874 875 876

	/* Flush the L1 Data cache for L1TF mitigation on VMENTER */
	bool l1tf_flush_l1d;
877

878
	/* Host CPU on which VM-entry was most recently attempted */
879
	int last_vmentry_cpu;
880

881 882
	/* AMD MSRC001_0015 Hardware Configuration */
	u64 msr_hwcr;
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897

	/* pv related cpuid info */
	struct {
		/*
		 * value of the eax register in the KVM_CPUID_FEATURES CPUID
		 * leaf.
		 */
		u32 features;

		/*
		 * indicates whether pv emulation should be disabled if features
		 * are not present in the guest's cpuid
		 */
		bool enforce;
	} pv_cpuid;
898 899 900

	/* Protected Guests */
	bool guest_state_protected;
901

902 903 904 905 906 907
	/*
	 * Set when PDPTS were loaded directly by the userspace without
	 * reading the guest memory
	 */
	bool pdptrs_from_userspace;

908 909 910
#if IS_ENABLED(CONFIG_HYPERV)
	hpa_t hv_root_tdp;
#endif
911 912
};

913
struct kvm_lpage_info {
914
	int disallow_lpage;
915 916 917
};

struct kvm_arch_memory_slot {
918
	struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES];
919
	struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1];
920
	unsigned short *gfn_track[KVM_PAGE_TRACK_MAX];
921 922
};

923 924 925 926 927 928 929 930 931 932 933
/*
 * We use as the mode the number of bits allocated in the LDR for the
 * logical processor ID.  It happens that these are all powers of two.
 * This makes it is very easy to detect cases where the APICs are
 * configured for multiple modes; in that case, we cannot use the map and
 * hence cannot use kvm_irq_delivery_to_apic_fast either.
 */
#define KVM_APIC_MODE_XAPIC_CLUSTER          4
#define KVM_APIC_MODE_XAPIC_FLAT             8
#define KVM_APIC_MODE_X2APIC                16

934 935
struct kvm_apic_map {
	struct rcu_head rcu;
936
	u8 mode;
R
Radim Krčmář 已提交
937
	u32 max_apic_id;
938 939 940 941
	union {
		struct kvm_lapic *xapic_flat_map[8];
		struct kvm_lapic *xapic_cluster_map[16][4];
	};
R
Radim Krčmář 已提交
942
	struct kvm_lapic *phys_map[];
943 944
};

945 946 947 948 949 950 951 952 953 954 955 956
/* Hyper-V synthetic debugger (SynDbg)*/
struct kvm_hv_syndbg {
	struct {
		u64 control;
		u64 status;
		u64 send_page;
		u64 recv_page;
		u64 pending_page;
	} control;
	u64 options;
};

957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
/* Current state of Hyper-V TSC page clocksource */
enum hv_tsc_page_status {
	/* TSC page was not set up or disabled */
	HV_TSC_PAGE_UNSET = 0,
	/* TSC page MSR was written by the guest, update pending */
	HV_TSC_PAGE_GUEST_CHANGED,
	/* TSC page MSR was written by KVM userspace, update pending */
	HV_TSC_PAGE_HOST_CHANGED,
	/* TSC page was properly set up and is currently active  */
	HV_TSC_PAGE_SET,
	/* TSC page is currently being updated and therefore is inactive */
	HV_TSC_PAGE_UPDATING,
	/* TSC page was set up with an inaccessible GPA */
	HV_TSC_PAGE_BROKEN,
};

973 974
/* Hyper-V emulation context */
struct kvm_hv {
975
	struct mutex hv_lock;
976 977 978
	u64 hv_guest_os_id;
	u64 hv_hypercall;
	u64 hv_tsc_page;
979
	enum hv_tsc_page_status hv_tsc_page_status;
980 981 982 983

	/* Hyper-v based guest crash (NT kernel bugcheck) parameters */
	u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS];
	u64 hv_crash_ctl;
P
Paolo Bonzini 已提交
984

985
	struct ms_hyperv_tsc_page tsc_ref;
986 987

	struct idr conn_to_evt;
988 989 990 991

	u64 hv_reenlightenment_control;
	u64 hv_tsc_emulation_control;
	u64 hv_tsc_emulation_status;
992 993 994

	/* How many vCPUs have VP index != vCPU index */
	atomic_t num_mismatched_vp_indexes;
995

996 997 998 999 1000 1001
	/*
	 * How many SynICs use 'AutoEOI' feature
	 * (protected by arch.apicv_update_lock)
	 */
	unsigned int synic_auto_eoi_used;

1002
	struct hv_partition_assist_pg *hv_pa_pg;
1003
	struct kvm_hv_syndbg hv_syndbg;
1004 1005
};

1006 1007 1008 1009 1010 1011 1012
struct msr_bitmap_range {
	u32 flags;
	u32 nmsrs;
	u32 base;
	unsigned long *bitmap;
};

1013 1014 1015
/* Xen emulation context */
struct kvm_xen {
	bool long_mode;
1016
	u8 upcall_vector;
1017
	gfn_t shinfo_gfn;
1018 1019
};

1020 1021 1022 1023 1024 1025
enum kvm_irqchip_mode {
	KVM_IRQCHIP_NONE,
	KVM_IRQCHIP_KERNEL,       /* created with KVM_CREATE_IRQCHIP */
	KVM_IRQCHIP_SPLIT,        /* created with KVM_CAP_SPLIT_IRQCHIP */
};

1026 1027 1028 1029 1030 1031
struct kvm_x86_msr_filter {
	u8 count;
	bool default_allow:1;
	struct msr_bitmap_range ranges[16];
};

1032
#define APICV_INHIBIT_REASON_DISABLE    0
1033
#define APICV_INHIBIT_REASON_HYPERV     1
1034
#define APICV_INHIBIT_REASON_NESTED     2
1035
#define APICV_INHIBIT_REASON_IRQWIN     3
1036
#define APICV_INHIBIT_REASON_PIT_REINJ  4
1037
#define APICV_INHIBIT_REASON_X2APIC	5
1038

1039
struct kvm_arch {
1040 1041 1042
	unsigned long n_used_mmu_pages;
	unsigned long n_requested_mmu_pages;
	unsigned long n_max_mmu_pages;
1043
	unsigned int indirect_shadow_pages;
1044
	u8 mmu_valid_gen;
1045 1046
	struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES];
	struct list_head active_mmu_pages;
1047
	struct list_head zapped_obsolete_pages;
1048
	struct list_head lpage_disallowed_mmu_pages;
1049
	struct kvm_page_track_notifier_node mmu_sp_tracker;
1050
	struct kvm_page_track_notifier_head track_notifier_head;
1051 1052 1053 1054 1055 1056 1057
	/*
	 * Protects marking pages unsync during page faults, as TDP MMU page
	 * faults only take mmu_lock for read.  For simplicity, the unsync
	 * pages lock is always taken when marking pages unsync regardless of
	 * whether mmu_lock is held for read or write.
	 */
	spinlock_t mmu_unsync_pages_lock;
1058

B
Ben-Ami Yassour 已提交
1059
	struct list_head assigned_dev_head;
J
Joerg Roedel 已提交
1060
	struct iommu_domain *iommu_domain;
1061
	bool iommu_noncoherent;
1062 1063
#define __KVM_HAVE_ARCH_NONCOHERENT_DMA
	atomic_t noncoherent_dma_count;
1064 1065
#define __KVM_HAVE_ARCH_ASSIGNED_DEVICE
	atomic_t assigned_device_count;
1066 1067
	struct kvm_pic *vpic;
	struct kvm_ioapic *vioapic;
S
Sheng Yang 已提交
1068
	struct kvm_pit *vpit;
1069
	atomic_t vapics_in_nmi_mode;
1070
	struct mutex apic_map_lock;
1071
	struct kvm_apic_map __rcu *apic_map;
1072
	atomic_t apic_map_dirty;
1073

1074 1075 1076
	/* Protects apic_access_memslot_enabled and apicv_inhibit_reasons */
	struct mutex apicv_update_lock;

1077
	bool apic_access_memslot_enabled;
1078
	unsigned long apicv_inhibit_reasons;
1079 1080

	gpa_t wall_clock;
1081

1082
	bool mwait_in_guest;
1083
	bool hlt_in_guest;
1084
	bool pause_in_guest;
1085
	bool cstate_in_guest;
1086

1087
	unsigned long irq_sources_bitmap;
1088
	s64 kvmclock_offset;
1089
	raw_spinlock_t tsc_write_lock;
Z
Zachary Amsden 已提交
1090 1091
	u64 last_tsc_nsec;
	u64 last_tsc_write;
1092
	u32 last_tsc_khz;
1093 1094 1095
	u64 cur_tsc_nsec;
	u64 cur_tsc_write;
	u64 cur_tsc_offset;
T
Tomasz Grabiec 已提交
1096
	u64 cur_tsc_generation;
1097
	int nr_vcpus_matched_tsc;
E
Ed Swierk 已提交
1098

1099 1100 1101
	spinlock_t pvclock_gtod_sync_lock;
	bool use_master_clock;
	u64 master_kernel_ns;
1102
	u64 master_cycle_now;
1103
	struct delayed_work kvmclock_update_work;
1104
	struct delayed_work kvmclock_sync_work;
1105

E
Ed Swierk 已提交
1106
	struct kvm_xen_hvm_config xen_hvm_config;
1107

1108 1109 1110
	/* reads protected by irq_srcu, writes by irq_lock */
	struct hlist_head mask_notifier_list;

1111
	struct kvm_hv hyperv;
1112
	struct kvm_xen xen;
1113 1114 1115 1116

	#ifdef CONFIG_KVM_MMU_AUDIT
	int audit_point;
	#endif
1117

1118
	bool backwards_tsc_observed;
1119
	bool boot_vcpu_runs_old_kvmclock;
1120
	u32 bsp_vcpu_id;
1121 1122

	u64 disabled_quirks;
1123
	int cpu_dirty_logging_count;
1124

1125
	enum kvm_irqchip_mode irqchip_mode;
1126
	u8 nr_reserved_ioapic_pins;
1127 1128

	bool disabled_lapic_found;
1129

1130
	bool x2apic_format;
1131
	bool x2apic_broadcast_quirk_disabled;
1132 1133

	bool guest_can_read_msr_platform_info;
1134
	bool exception_payload_enabled;
E
Eric Hankland 已提交
1135

1136
	bool bus_lock_detection_enabled;
1137 1138 1139 1140 1141 1142
	/*
	 * If exit_on_emulation_error is set, and the in-kernel instruction
	 * emulator fails to emulate an instruction, allow userspace
	 * the opportunity to look at it.
	 */
	bool exit_on_emulation_error;
1143

1144 1145
	/* Deflect RDMSR and WRMSR to user space when they trigger a #GP */
	u32 user_space_msr_mask;
1146
	struct kvm_x86_msr_filter __rcu *msr_filter;
C
Chenyi Qiang 已提交
1147

1148 1149
	u32 hypercall_exit_enabled;

1150 1151 1152
	/* Guest can access the SGX PROVISIONKEY. */
	bool sgx_provisioning_allowed;

1153
	struct kvm_pmu_event_filter __rcu *pmu_event_filter;
1154
	struct task_struct *nx_lpage_recovery_thread;
1155

1156
#ifdef CONFIG_X86_64
1157 1158 1159 1160 1161 1162 1163 1164
	/*
	 * Whether the TDP MMU is enabled for this VM. This contains a
	 * snapshot of the TDP MMU module parameter from when the VM was
	 * created and remains unchanged for the life of the VM. If this is
	 * true, TDP MMU handler functions will run for various MMU
	 * operations.
	 */
	bool tdp_mmu_enabled;
1165

1166
	/*
1167
	 * List of struct kvm_mmu_pages being used as roots.
1168 1169
	 * All struct kvm_mmu_pages in the list should have
	 * tdp_mmu_page set.
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
	 *
	 * For reads, this list is protected by:
	 *	the MMU lock in read mode + RCU or
	 *	the MMU lock in write mode
	 *
	 * For writes, this list is protected by:
	 *	the MMU lock in read mode + the tdp_mmu_pages_lock or
	 *	the MMU lock in write mode
	 *
	 * Roots will remain in the list until their tdp_mmu_root_count
	 * drops to zero, at which point the thread that decremented the
	 * count to zero should removed the root from the list and clean
	 * it up, freeing the root after an RCU grace period.
1183
	 */
1184
	struct list_head tdp_mmu_roots;
1185 1186 1187 1188

	/*
	 * List of struct kvmp_mmu_pages not being used as roots.
	 * All struct kvm_mmu_pages in the list should have
1189
	 * tdp_mmu_page set and a tdp_mmu_root_count of 0.
1190
	 */
1191
	struct list_head tdp_mmu_pages;
1192 1193 1194 1195

	/*
	 * Protects accesses to the following fields when the MMU lock
	 * is held in read mode:
1196
	 *  - tdp_mmu_roots (above)
1197 1198 1199 1200 1201 1202 1203 1204 1205
	 *  - tdp_mmu_pages (above)
	 *  - the link field of struct kvm_mmu_pages used by the TDP MMU
	 *  - lpage_disallowed_mmu_pages
	 *  - the lpage_disallowed_link field of struct kvm_mmu_pages used
	 *    by the TDP MMU
	 * It is acceptable, but not necessary, to acquire this lock when
	 * the thread holds the MMU lock in write mode.
	 */
	spinlock_t tdp_mmu_pages_lock;
1206
#endif /* CONFIG_X86_64 */
1207 1208 1209 1210 1211 1212

	/*
	 * If set, rmaps have been allocated for all memslots and should be
	 * allocated for any newly created or modified memslots.
	 */
	bool memslots_have_rmaps;
1213 1214 1215 1216 1217

#if IS_ENABLED(CONFIG_HYPERV)
	hpa_t	hv_root_tdp;
	spinlock_t hv_root_tdp_lock;
#endif
1218 1219
};

1220
struct kvm_vm_stat {
1221
	struct kvm_vm_stat_generic generic;
P
Paolo Bonzini 已提交
1222 1223 1224 1225 1226 1227 1228
	u64 mmu_shadow_zapped;
	u64 mmu_pte_write;
	u64 mmu_pde_zapped;
	u64 mmu_flooded;
	u64 mmu_recycled;
	u64 mmu_cache_miss;
	u64 mmu_unsync;
1229 1230 1231 1232 1233 1234 1235 1236
	union {
		struct {
			atomic64_t pages_4k;
			atomic64_t pages_2m;
			atomic64_t pages_1g;
		};
		atomic64_t pages[KVM_NR_PAGE_SIZES];
	};
P
Paolo Bonzini 已提交
1237 1238
	u64 nx_lpage_splits;
	u64 max_mmu_page_hash_collisions;
1239
	u64 max_mmu_rmap_size;
1240 1241
};

1242
struct kvm_vcpu_stat {
1243
	struct kvm_vcpu_stat_generic generic;
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
	u64 pf_fixed;
	u64 pf_guest;
	u64 tlb_flush;
	u64 invlpg;

	u64 exits;
	u64 io_exits;
	u64 mmio_exits;
	u64 signal_exits;
	u64 irq_window_exits;
	u64 nmi_window_exits;
P
Paolo Bonzini 已提交
1255
	u64 l1d_flush;
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
	u64 halt_exits;
	u64 request_irq_exits;
	u64 irq_exits;
	u64 host_state_reload;
	u64 fpu_reload;
	u64 insn_emulation;
	u64 insn_emulation_fail;
	u64 hypercalls;
	u64 irq_injections;
	u64 nmi_injections;
1266
	u64 req_event;
1267
	u64 nested_run;
1268 1269
	u64 directed_yield_attempted;
	u64 directed_yield_successful;
1270
	u64 guest_mode;
1271
};
1272

1273 1274
struct x86_instruction_info;

1275 1276 1277 1278 1279 1280
struct msr_data {
	bool host_initiated;
	u32 index;
	u64 data;
};

P
Paolo Bonzini 已提交
1281 1282
struct kvm_lapic_irq {
	u32 vector;
1283 1284 1285 1286
	u16 delivery_mode;
	u16 dest_mode;
	bool level;
	u16 trig_mode;
P
Paolo Bonzini 已提交
1287 1288
	u32 shorthand;
	u32 dest_id;
1289
	bool msi_redir_hint;
P
Paolo Bonzini 已提交
1290 1291
};

1292 1293 1294 1295 1296
static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical)
{
	return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
}

1297
struct kvm_x86_ops {
1298 1299
	int (*hardware_enable)(void);
	void (*hardware_disable)(void);
1300
	void (*hardware_unsetup)(void);
1301
	bool (*cpu_has_accelerated_tpr)(void);
1302
	bool (*has_emulated_msr)(struct kvm *kvm, u32 index);
1303
	void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu);
1304

1305
	unsigned int vm_size;
1306 1307 1308
	int (*vm_init)(struct kvm *kvm);
	void (*vm_destroy)(struct kvm *kvm);

1309
	/* Create, but do not attach this VCPU */
1310
	int (*vcpu_create)(struct kvm_vcpu *vcpu);
1311
	void (*vcpu_free)(struct kvm_vcpu *vcpu);
1312
	void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event);
1313 1314 1315 1316 1317

	void (*prepare_guest_switch)(struct kvm_vcpu *vcpu);
	void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu);
	void (*vcpu_put)(struct kvm_vcpu *vcpu);

1318
	void (*update_exception_bitmap)(struct kvm_vcpu *vcpu);
1319
	int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1320
	int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1321 1322 1323
	u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg);
	void (*get_segment)(struct kvm_vcpu *vcpu,
			    struct kvm_segment *var, int seg);
1324
	int (*get_cpl)(struct kvm_vcpu *vcpu);
1325 1326 1327 1328
	void (*set_segment)(struct kvm_vcpu *vcpu,
			    struct kvm_segment *var, int seg);
	void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l);
	void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1329 1330
	bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr0);
	void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1331
	int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer);
1332 1333 1334 1335
	void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
	void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
	void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
	void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1336
	void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu);
1337
	void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value);
1338
	void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg);
1339 1340 1341
	unsigned long (*get_rflags)(struct kvm_vcpu *vcpu);
	void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags);

1342
	void (*tlb_flush_all)(struct kvm_vcpu *vcpu);
1343
	void (*tlb_flush_current)(struct kvm_vcpu *vcpu);
1344
	int  (*tlb_remote_flush)(struct kvm *kvm);
1345 1346
	int  (*tlb_remote_flush_with_range)(struct kvm *kvm,
			struct kvm_tlb_range *range);
1347

1348 1349 1350 1351 1352 1353 1354
	/*
	 * Flush any TLB entries associated with the given GVA.
	 * Does not need to flush GPA->HPA mappings.
	 * Can potentially get non-canonical addresses through INVLPGs, which
	 * the implementation may choose to ignore if appropriate.
	 */
	void (*tlb_flush_gva)(struct kvm_vcpu *vcpu, gva_t addr);
1355

1356 1357 1358 1359 1360 1361
	/*
	 * Flush any TLB entries created by the guest.  Like tlb_flush_gva(),
	 * does not need to flush GPA->HPA mappings.
	 */
	void (*tlb_flush_guest)(struct kvm_vcpu *vcpu);

1362
	enum exit_fastpath_completion (*run)(struct kvm_vcpu *vcpu);
1363 1364
	int (*handle_exit)(struct kvm_vcpu *vcpu,
		enum exit_fastpath_completion exit_fastpath);
1365
	int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu);
1366
	void (*update_emulated_instruction)(struct kvm_vcpu *vcpu);
1367
	void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask);
1368
	u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu);
1369 1370
	void (*patch_hypercall)(struct kvm_vcpu *vcpu,
				unsigned char *hypercall_addr);
1371
	void (*set_irq)(struct kvm_vcpu *vcpu);
1372
	void (*set_nmi)(struct kvm_vcpu *vcpu);
1373
	void (*queue_exception)(struct kvm_vcpu *vcpu);
A
Avi Kivity 已提交
1374
	void (*cancel_injection)(struct kvm_vcpu *vcpu);
1375 1376
	int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
	int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
J
Jan Kiszka 已提交
1377 1378
	bool (*get_nmi_mask)(struct kvm_vcpu *vcpu);
	void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked);
1379 1380
	void (*enable_nmi_window)(struct kvm_vcpu *vcpu);
	void (*enable_irq_window)(struct kvm_vcpu *vcpu);
1381
	void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr);
1382
	bool (*check_apicv_inhibit_reasons)(ulong bit);
1383
	void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu);
1384
	void (*hwapic_irr_update)(struct kvm_vcpu *vcpu, int max_irr);
1385
	void (*hwapic_isr_update)(struct kvm_vcpu *vcpu, int isr);
1386
	bool (*guest_apic_has_interrupt)(struct kvm_vcpu *vcpu);
1387
	void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap);
1388
	void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu);
1389
	void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu);
1390
	int (*deliver_posted_interrupt)(struct kvm_vcpu *vcpu, int vector);
1391
	int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu);
1392
	int (*set_tss_addr)(struct kvm *kvm, unsigned int addr);
1393
	int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr);
1394
	u64 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio);
1395

1396 1397
	void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa,
			     int root_level);
1398

1399 1400
	bool (*has_wbinvd_exit)(void);

1401 1402
	u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu);
	u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu);
1403
	void (*write_tsc_offset)(struct kvm_vcpu *vcpu, u64 offset);
1404
	void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu, u64 multiplier);
1405

1406 1407 1408 1409 1410 1411
	/*
	 * Retrieve somewhat arbitrary exit information.  Intended to be used
	 * only from within tracepoints to avoid VMREADs when tracing is off.
	 */
	void (*get_exit_info)(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2,
			      u32 *exit_int_info, u32 *exit_int_info_err_code);
1412 1413 1414

	int (*check_intercept)(struct kvm_vcpu *vcpu,
			       struct x86_instruction_info *info,
1415 1416
			       enum x86_intercept_stage stage,
			       struct x86_exception *exception);
1417
	void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu);
1418

1419
	void (*request_immediate_exit)(struct kvm_vcpu *vcpu);
1420 1421

	void (*sched_in)(struct kvm_vcpu *kvm, int cpu);
1422 1423

	/*
1424 1425
	 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer.  A zero
	 * value indicates CPU dirty logging is unsupported or disabled.
1426
	 */
1427
	int cpu_dirty_log_size;
1428
	void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu);
1429

1430 1431
	/* pmu operations of sub-arch */
	const struct kvm_pmu_ops *pmu_ops;
1432
	const struct kvm_x86_nested_ops *nested_ops;
1433

1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
	/*
	 * Architecture specific hooks for vCPU blocking due to
	 * HLT instruction.
	 * Returns for .pre_block():
	 *    - 0 means continue to block the vCPU.
	 *    - 1 means we cannot block the vCPU since some event
	 *        happens during this period, such as, 'ON' bit in
	 *        posted-interrupts descriptor is set.
	 */
	int (*pre_block)(struct kvm_vcpu *vcpu);
	void (*post_block)(struct kvm_vcpu *vcpu);
1445 1446 1447 1448

	void (*vcpu_blocking)(struct kvm_vcpu *vcpu);
	void (*vcpu_unblocking)(struct kvm_vcpu *vcpu);

1449 1450
	int (*update_pi_irte)(struct kvm *kvm, unsigned int host_irq,
			      uint32_t guest_irq, bool set);
1451
	void (*start_assignment)(struct kvm *kvm);
1452
	void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu);
1453
	bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu);
1454

1455 1456
	int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
			    bool *expired);
1457
	void (*cancel_hv_timer)(struct kvm_vcpu *vcpu);
1458 1459

	void (*setup_mce)(struct kvm_vcpu *vcpu);
1460

1461
	int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1462 1463
	int (*enter_smm)(struct kvm_vcpu *vcpu, char *smstate);
	int (*leave_smm)(struct kvm_vcpu *vcpu, const char *smstate);
1464
	void (*enable_smi_window)(struct kvm_vcpu *vcpu);
1465 1466

	int (*mem_enc_op)(struct kvm *kvm, void __user *argp);
1467 1468
	int (*mem_enc_reg_region)(struct kvm *kvm, struct kvm_enc_region *argp);
	int (*mem_enc_unreg_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1469
	int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1470 1471

	int (*get_msr_feature)(struct kvm_msr_entry *entry);
1472

1473
	bool (*can_emulate_instruction)(struct kvm_vcpu *vcpu, void *insn, int insn_len);
1474 1475

	bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu);
1476
	int (*enable_direct_tlbflush)(struct kvm_vcpu *vcpu);
1477 1478

	void (*migrate_timers)(struct kvm_vcpu *vcpu);
1479
	void (*msr_filter_changed)(struct kvm_vcpu *vcpu);
1480
	int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err);
1481 1482

	void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector);
1483 1484
};

1485 1486
struct kvm_x86_nested_ops {
	int (*check_events)(struct kvm_vcpu *vcpu);
1487
	bool (*hv_timer_pending)(struct kvm_vcpu *vcpu);
1488
	void (*triple_fault)(struct kvm_vcpu *vcpu);
1489 1490 1491 1492 1493 1494
	int (*get_state)(struct kvm_vcpu *vcpu,
			 struct kvm_nested_state __user *user_kvm_nested_state,
			 unsigned user_data_size);
	int (*set_state)(struct kvm_vcpu *vcpu,
			 struct kvm_nested_state __user *user_kvm_nested_state,
			 struct kvm_nested_state *kvm_state);
1495
	bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu);
1496
	int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa);
1497 1498 1499 1500

	int (*enable_evmcs)(struct kvm_vcpu *vcpu,
			    uint16_t *vmcs_version);
	uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu);
1501 1502
};

1503 1504 1505 1506 1507 1508 1509 1510 1511
struct kvm_x86_init_ops {
	int (*cpu_has_kvm_support)(void);
	int (*disabled_by_bios)(void);
	int (*check_processor_compatibility)(void);
	int (*hardware_setup)(void);

	struct kvm_x86_ops *runtime_ops;
};

1512
struct kvm_arch_async_pf {
1513
	u32 token;
1514
	gfn_t gfn;
X
Xiao Guangrong 已提交
1515
	unsigned long cr3;
1516
	bool direct_map;
1517 1518
};

1519
extern u32 __read_mostly kvm_nr_uret_msrs;
1520
extern u64 __read_mostly host_efer;
1521
extern bool __read_mostly allow_smaller_maxphyaddr;
1522
extern bool __read_mostly enable_apicv;
1523
extern struct kvm_x86_ops kvm_x86_ops;
1524

1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
#define KVM_X86_OP(func) \
	DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func));
#define KVM_X86_OP_NULL KVM_X86_OP
#include <asm/kvm-x86-ops.h>

static inline void kvm_ops_static_call_update(void)
{
#define KVM_X86_OP(func) \
	static_call_update(kvm_x86_##func, kvm_x86_ops.func);
#define KVM_X86_OP_NULL KVM_X86_OP
#include <asm/kvm-x86-ops.h>
}

1538 1539 1540
#define __KVM_HAVE_ARCH_VM_ALLOC
static inline struct kvm *kvm_arch_alloc_vm(void)
{
1541
	return __vmalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1542
}
1543
void kvm_arch_free_vm(struct kvm *kvm);
1544

1545 1546 1547
#define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
{
1548
	if (kvm_x86_ops.tlb_remote_flush &&
1549
	    !static_call(kvm_x86_tlb_remote_flush)(kvm))
1550 1551 1552 1553 1554
		return 0;
	else
		return -ENOTSUPP;
}

1555 1556 1557 1558 1559
int kvm_mmu_module_init(void);
void kvm_mmu_module_exit(void);

void kvm_mmu_destroy(struct kvm_vcpu *vcpu);
int kvm_mmu_create(struct kvm_vcpu *vcpu);
1560 1561
void kvm_mmu_init_vm(struct kvm *kvm);
void kvm_mmu_uninit_vm(struct kvm *kvm);
1562

1563
void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu);
1564
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu);
1565
void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
1566
				      const struct kvm_memory_slot *memslot,
1567
				      int start_level);
1568
void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
1569
				   const struct kvm_memory_slot *memslot);
1570
void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
1571
				   const struct kvm_memory_slot *memslot);
1572
void kvm_mmu_zap_all(struct kvm *kvm);
1573
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen);
1574 1575
unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm);
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages);
1576

1577
int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3);
1578

1579
int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1580
			  const void *val, int bytes);
1581

1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
struct kvm_irq_mask_notifier {
	void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked);
	int irq;
	struct hlist_node link;
};

void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq,
				    struct kvm_irq_mask_notifier *kimn);
void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq,
				      struct kvm_irq_mask_notifier *kimn);
void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin,
			     bool mask);

1595
extern bool tdp_enabled;
1596

1597 1598
u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu);

1599 1600 1601 1602
/* control of guest tsc rate supported? */
extern bool kvm_has_tsc_control;
/* maximum supported tsc_khz for guests */
extern u32  kvm_max_guest_tsc_khz;
1603 1604 1605 1606
/* number of bits of the fractional part of the TSC scaling ratio */
extern u8   kvm_tsc_scaling_ratio_frac_bits;
/* maximum allowed value of TSC scaling ratio */
extern u64  kvm_max_tsc_scaling_ratio;
1607 1608
/* 1ull << kvm_tsc_scaling_ratio_frac_bits */
extern u64  kvm_default_tsc_scaling_ratio;
C
Chenyi Qiang 已提交
1609 1610
/* bus lock detection supported? */
extern bool kvm_has_bus_lock_exit;
1611

1612
extern u64 kvm_mce_cap_supported;
1613

1614 1615 1616
/*
 * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing
 *			userspace I/O) to indicate that the emulation context
I
Ingo Molnar 已提交
1617
 *			should be reused as is, i.e. skip initialization of
1618 1619 1620 1621 1622 1623 1624 1625 1626
 *			emulation context, instruction fetch and decode.
 *
 * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware.
 *		      Indicates that only select instructions (tagged with
 *		      EmulateOnUD) should be emulated (to minimize the emulator
 *		      attack surface).  See also EMULTYPE_TRAP_UD_FORCED.
 *
 * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to
 *		   decode the instruction length.  For use *only* by
1627
 *		   kvm_x86_ops.skip_emulated_instruction() implementations.
1628
 *
1629 1630 1631
 * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to
 *			     retry native execution under certain conditions,
 *			     Can only be set in conjunction with EMULTYPE_PF.
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
 *
 * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was
 *			     triggered by KVM's magic "force emulation" prefix,
 *			     which is opt in via module param (off by default).
 *			     Bypasses EmulateOnUD restriction despite emulating
 *			     due to an intercepted #UD (see EMULTYPE_TRAP_UD).
 *			     Used to test the full emulator from userspace.
 *
 * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware
 *			backdoor emulation, which is opt in via module param.
I
Ingo Molnar 已提交
1642
 *			VMware backdoor emulation handles select instructions
1643
 *			and reinjects the #GP for all other cases.
1644 1645 1646
 *
 * EMULTYPE_PF - Set when emulating MMIO by way of an intercepted #PF, in which
 *		 case the CR2/GPA value pass on the stack is valid.
1647
 */
1648 1649
#define EMULTYPE_NO_DECODE	    (1 << 0)
#define EMULTYPE_TRAP_UD	    (1 << 1)
1650
#define EMULTYPE_SKIP		    (1 << 2)
1651
#define EMULTYPE_ALLOW_RETRY_PF	    (1 << 3)
1652
#define EMULTYPE_TRAP_UD_FORCED	    (1 << 4)
1653
#define EMULTYPE_VMWARE_GP	    (1 << 5)
1654 1655
#define EMULTYPE_PF		    (1 << 6)

1656 1657 1658
int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type);
int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
					void *insn, int insn_len);
1659

1660
void kvm_enable_efer_bits(u64);
1661
bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer);
1662
int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated);
1663 1664
int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data);
int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data);
1665 1666
int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu);
int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu);
1667 1668 1669 1670 1671
int kvm_emulate_as_nop(struct kvm_vcpu *vcpu);
int kvm_emulate_invd(struct kvm_vcpu *vcpu);
int kvm_emulate_mwait(struct kvm_vcpu *vcpu);
int kvm_handle_invalid_op(struct kvm_vcpu *vcpu);
int kvm_emulate_monitor(struct kvm_vcpu *vcpu);
1672

1673
int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in);
1674
int kvm_emulate_cpuid(struct kvm_vcpu *vcpu);
1675
int kvm_emulate_halt(struct kvm_vcpu *vcpu);
1676
int kvm_vcpu_halt(struct kvm_vcpu *vcpu);
1677
int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu);
1678
int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu);
1679

1680
void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
1681
int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg);
1682
void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector);
1683

1684 1685
int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
		    int reason, bool has_error_code, u32 error_code);
1686

1687 1688
void kvm_free_guest_fpu(struct kvm_vcpu *vcpu);

1689
void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0);
1690
void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4);
1691
int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
1692
int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
1693
int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
A
Andre Przywara 已提交
1694
int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8);
1695
int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val);
P
Paolo Bonzini 已提交
1696
void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val);
1697 1698
unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu);
void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw);
1699
void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l);
1700
int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu);
1701

1702
int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
1703
int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
1704

1705 1706
unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu);
void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
1707
int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu);
1708

1709 1710
void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr);
void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
1711
void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload);
1712 1713
void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr);
void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
1714
void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault);
1715 1716
bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
				    struct x86_exception *fault);
1717 1718 1719
int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			    gfn_t gfn, void *data, int offset, int len,
			    u32 access);
1720
bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl);
1721
bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr);
1722

1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
static inline int __kvm_irq_line_state(unsigned long *irq_state,
				       int irq_source_id, int level)
{
	/* Logical OR for level trig interrupt */
	if (level)
		__set_bit(irq_source_id, irq_state);
	else
		__clear_bit(irq_source_id, irq_state);

	return !!(*irq_state);
}

1735 1736 1737
#define KVM_MMU_ROOT_CURRENT		BIT(0)
#define KVM_MMU_ROOT_PREVIOUS(i)	BIT(1+i)
#define KVM_MMU_ROOTS_ALL		(~0UL)
1738

1739 1740
int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level);
void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id);
1741

1742 1743
void kvm_inject_nmi(struct kvm_vcpu *vcpu);

1744 1745
void kvm_update_dr7(struct kvm_vcpu *vcpu);

1746
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn);
1747
void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu);
1748 1749
void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			ulong roots_to_free);
1750
void kvm_mmu_free_guest_mode_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu);
1751 1752
gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
			   struct x86_exception *exception);
1753 1754 1755 1756 1757 1758 1759 1760
gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
			      struct x86_exception *exception);
gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
			       struct x86_exception *exception);
gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
			       struct x86_exception *exception);
gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
				struct x86_exception *exception);
1761

1762
bool kvm_apicv_activated(struct kvm *kvm);
1763 1764 1765
void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu);
void kvm_request_apicv_update(struct kvm *kvm, bool activate,
			      unsigned long bit);
1766

1767 1768 1769
void __kvm_request_apicv_update(struct kvm *kvm, bool activate,
				unsigned long bit);

1770 1771
int kvm_emulate_hypercall(struct kvm_vcpu *vcpu);

1772
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
1773
		       void *insn, int insn_len);
M
Marcelo Tosatti 已提交
1774
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva);
1775 1776
void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			    gva_t gva, hpa_t root_hpa);
1777
void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid);
1778
void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd);
1779

1780 1781
void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
		       int tdp_max_root_level, int tdp_huge_page_level);
1782

1783
static inline u16 kvm_read_ldt(void)
1784 1785 1786 1787 1788 1789
{
	u16 ldt;
	asm("sldt %0" : "=g"(ldt));
	return ldt;
}

1790
static inline void kvm_load_ldt(u16 sel)
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
{
	asm("lldt %0" : : "rm"(sel));
}

#ifdef CONFIG_X86_64
static inline unsigned long read_msr(unsigned long msr)
{
	u64 value;

	rdmsrl(msr, value);
	return value;
}
#endif

1805 1806 1807 1808 1809
static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code)
{
	kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
}

1810 1811 1812 1813
#define TSS_IOPB_BASE_OFFSET 0x66
#define TSS_BASE_SIZE 0x68
#define TSS_IOPB_SIZE (65536 / 8)
#define TSS_REDIRECTION_SIZE (256 / 8)
1814 1815
#define RMODE_TSS_SIZE							\
	(TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1)
1816

1817 1818 1819 1820 1821 1822 1823
enum {
	TASK_SWITCH_CALL = 0,
	TASK_SWITCH_IRET = 1,
	TASK_SWITCH_JMP = 2,
	TASK_SWITCH_GATE = 3,
};

1824
#define HF_GIF_MASK		(1 << 0)
1825
#define HF_NMI_MASK		(1 << 3)
1826
#define HF_IRET_MASK		(1 << 4)
1827
#define HF_GUEST_MASK		(1 << 5) /* VCPU is in guest-mode */
1828 1829
#define HF_SMM_MASK		(1 << 6)
#define HF_SMM_INSIDE_NMI_MASK	(1 << 7)
1830

1831 1832 1833 1834 1835
#define __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
#define KVM_ADDRESS_SPACE_NUM 2

#define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0)
#define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm)
1836

1837
#define KVM_ARCH_WANT_MMU_NOTIFIER
1838

1839
int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v);
1840
int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu);
1841
int kvm_cpu_has_extint(struct kvm_vcpu *v);
1842
int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu);
1843
int kvm_cpu_get_interrupt(struct kvm_vcpu *v);
1844
void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event);
1845
void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu);
1846

1847
int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
1848
		    unsigned long ipi_bitmap_high, u32 min,
1849 1850
		    unsigned long icr, int op_64_bit);

1851
int kvm_add_user_return_msr(u32 msr);
1852
int kvm_find_user_return_msr(u32 msr);
1853
int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask);
A
Avi Kivity 已提交
1854

1855 1856 1857 1858 1859
static inline bool kvm_is_supported_user_return_msr(u32 msr)
{
	return kvm_find_user_return_msr(msr) >= 0;
}

1860
u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc, u64 ratio);
1861
u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc);
1862 1863
u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier);
u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier);
1864

1865
unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu);
J
Jan Kiszka 已提交
1866 1867
bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip);

1868 1869
void kvm_make_mclock_inprogress_request(struct kvm *kvm);
void kvm_make_scan_ioapic_request(struct kvm *kvm);
1870 1871
void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
				       unsigned long *vcpu_bitmap);
1872

1873
bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
1874 1875 1876
				     struct kvm_async_pf *work);
void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
				 struct kvm_async_pf *work);
G
Gleb Natapov 已提交
1877 1878
void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
			       struct kvm_async_pf *work);
1879
void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu);
1880
bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu);
1881 1882
extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);

1883 1884
int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu);
int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err);
1885
void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu);
1886

1887 1888
int kvm_is_in_guest(void);

1889 1890
void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
				     u32 size);
1891 1892
bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu);
bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu);
1893

1894 1895 1896
bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq,
			     struct kvm_vcpu **dest_vcpu);

1897
void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
F
Feng Wu 已提交
1898
		     struct kvm_lapic_irq *irq);
P
Paolo Bonzini 已提交
1899

1900 1901 1902
static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq)
{
	/* We can only post Fixed and LowPrio IRQs */
1903 1904
	return (irq->delivery_mode == APIC_DM_FIXED ||
		irq->delivery_mode == APIC_DM_LOWEST);
1905 1906
}

1907 1908
static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
1909
	static_call_cond(kvm_x86_vcpu_blocking)(vcpu);
1910 1911 1912 1913
}

static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
1914
	static_call_cond(kvm_x86_vcpu_unblocking)(vcpu);
1915 1916
}

1917
static inline void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu) {}
1918

1919 1920 1921
static inline int kvm_cpu_get_apicid(int mps_cpu)
{
#ifdef CONFIG_X86_LOCAL_APIC
1922
	return default_cpu_present_to_apicid(mps_cpu);
1923 1924 1925 1926 1927 1928
#else
	WARN_ON_ONCE(1);
	return BAD_APICID;
#endif
}

1929 1930 1931
#define put_smstate(type, buf, offset, val)                      \
	*(type *)((buf) + (offset) - 0x7e00) = val

1932 1933 1934
#define GET_SMSTATE(type, buf, offset)		\
	(*(type *)((buf) + (offset) - 0x7e00))

1935 1936
int kvm_cpu_dirty_log_size(void);

1937 1938
int alloc_all_memslots_rmaps(struct kvm *kvm);

H
H. Peter Anvin 已提交
1939
#endif /* _ASM_X86_KVM_HOST_H */