dm-zoned-target.c 21.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * Copyright (C) 2017 Western Digital Corporation or its affiliates.
 *
 * This file is released under the GPL.
 */

#include "dm-zoned.h"

#include <linux/module.h>

#define	DM_MSG_PREFIX		"zoned"

#define DMZ_MIN_BIOS		8192

/*
 * Zone BIO context.
 */
struct dmz_bioctx {
	struct dmz_target	*target;
	struct dm_zone		*zone;
	struct bio		*bio;
22
	refcount_t		ref;
23 24 25 26 27 28 29
};

/*
 * Chunk work descriptor.
 */
struct dm_chunk_work {
	struct work_struct	work;
30
	refcount_t		refcount;
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
	struct dmz_target	*target;
	unsigned int		chunk;
	struct bio_list		bio_list;
};

/*
 * Target descriptor.
 */
struct dmz_target {
	struct dm_dev		*ddev;

	unsigned long		flags;

	/* Zoned block device information */
	struct dmz_dev		*dev;

	/* For metadata handling */
	struct dmz_metadata     *metadata;

	/* For reclaim */
	struct dmz_reclaim	*reclaim;

	/* For chunk work */
	struct radix_tree_root	chunk_rxtree;
	struct workqueue_struct *chunk_wq;
56
	struct mutex		chunk_lock;
57 58

	/* For cloned BIOs to zones */
59
	struct bio_set		bio_set;
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

	/* For flush */
	spinlock_t		flush_lock;
	struct bio_list		flush_list;
	struct delayed_work	flush_work;
	struct workqueue_struct *flush_wq;
};

/*
 * Flush intervals (seconds).
 */
#define DMZ_FLUSH_PERIOD	(10 * HZ)

/*
 * Target BIO completion.
 */
static inline void dmz_bio_endio(struct bio *bio, blk_status_t status)
{
	struct dmz_bioctx *bioctx = dm_per_bio_data(bio, sizeof(struct dmz_bioctx));

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
	if (status != BLK_STS_OK && bio->bi_status == BLK_STS_OK)
		bio->bi_status = status;

	if (refcount_dec_and_test(&bioctx->ref)) {
		struct dm_zone *zone = bioctx->zone;

		if (zone) {
			if (bio->bi_status != BLK_STS_OK &&
			    bio_op(bio) == REQ_OP_WRITE &&
			    dmz_is_seq(zone))
				set_bit(DMZ_SEQ_WRITE_ERR, &zone->flags);
			dmz_deactivate_zone(zone);
		}
		bio_endio(bio);
	}
95 96 97
}

/*
98
 * Completion callback for an internally cloned target BIO. This terminates the
99 100
 * target BIO when there are no more references to its context.
 */
101
static void dmz_clone_endio(struct bio *clone)
102
{
103 104
	struct dmz_bioctx *bioctx = clone->bi_private;
	blk_status_t status = clone->bi_status;
105

106
	bio_put(clone);
107 108 109 110
	dmz_bio_endio(bioctx->bio, status);
}

/*
111
 * Issue a clone of a target BIO. The clone may only partially process the
112 113
 * original target BIO.
 */
114 115 116
static int dmz_submit_bio(struct dmz_target *dmz, struct dm_zone *zone,
			  struct bio *bio, sector_t chunk_block,
			  unsigned int nr_blocks)
117 118 119 120
{
	struct dmz_bioctx *bioctx = dm_per_bio_data(bio, sizeof(struct dmz_bioctx));
	struct bio *clone;

121
	clone = bio_clone_fast(bio, GFP_NOIO, &dmz->bio_set);
122 123 124
	if (!clone)
		return -ENOMEM;

125 126 127
	bio_set_dev(clone, dmz->dev->bdev);
	clone->bi_iter.bi_sector =
		dmz_start_sect(dmz->metadata, zone) + dmz_blk2sect(chunk_block);
128
	clone->bi_iter.bi_size = dmz_blk2sect(nr_blocks) << SECTOR_SHIFT;
129
	clone->bi_end_io = dmz_clone_endio;
130 131 132 133
	clone->bi_private = bioctx;

	bio_advance(bio, clone->bi_iter.bi_size);

134
	refcount_inc(&bioctx->ref);
135 136
	generic_make_request(clone);

137 138 139
	if (bio_op(bio) == REQ_OP_WRITE && dmz_is_seq(zone))
		zone->wp_block += nr_blocks;

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
	return 0;
}

/*
 * Zero out pages of discarded blocks accessed by a read BIO.
 */
static void dmz_handle_read_zero(struct dmz_target *dmz, struct bio *bio,
				 sector_t chunk_block, unsigned int nr_blocks)
{
	unsigned int size = nr_blocks << DMZ_BLOCK_SHIFT;

	/* Clear nr_blocks */
	swap(bio->bi_iter.bi_size, size);
	zero_fill_bio(bio);
	swap(bio->bi_iter.bi_size, size);

	bio_advance(bio, size);
}

/*
 * Process a read BIO.
 */
static int dmz_handle_read(struct dmz_target *dmz, struct dm_zone *zone,
			   struct bio *bio)
{
	sector_t chunk_block = dmz_chunk_block(dmz->dev, dmz_bio_block(bio));
	unsigned int nr_blocks = dmz_bio_blocks(bio);
	sector_t end_block = chunk_block + nr_blocks;
	struct dm_zone *rzone, *bzone;
	int ret;

	/* Read into unmapped chunks need only zeroing the BIO buffer */
	if (!zone) {
		zero_fill_bio(bio);
		return 0;
	}

	dmz_dev_debug(dmz->dev, "READ chunk %llu -> %s zone %u, block %llu, %u blocks",
		      (unsigned long long)dmz_bio_chunk(dmz->dev, bio),
		      (dmz_is_rnd(zone) ? "RND" : "SEQ"),
		      dmz_id(dmz->metadata, zone),
		      (unsigned long long)chunk_block, nr_blocks);

	/* Check block validity to determine the read location */
	bzone = zone->bzone;
	while (chunk_block < end_block) {
		nr_blocks = 0;
		if (dmz_is_rnd(zone) || chunk_block < zone->wp_block) {
			/* Test block validity in the data zone */
			ret = dmz_block_valid(dmz->metadata, zone, chunk_block);
			if (ret < 0)
				return ret;
			if (ret > 0) {
				/* Read data zone blocks */
				nr_blocks = ret;
				rzone = zone;
			}
		}

		/*
		 * No valid blocks found in the data zone.
		 * Check the buffer zone, if there is one.
		 */
		if (!nr_blocks && bzone) {
			ret = dmz_block_valid(dmz->metadata, bzone, chunk_block);
			if (ret < 0)
				return ret;
			if (ret > 0) {
				/* Read buffer zone blocks */
				nr_blocks = ret;
				rzone = bzone;
			}
		}

		if (nr_blocks) {
			/* Valid blocks found: read them */
			nr_blocks = min_t(unsigned int, nr_blocks, end_block - chunk_block);
217
			ret = dmz_submit_bio(dmz, rzone, bio, chunk_block, nr_blocks);
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
			if (ret)
				return ret;
			chunk_block += nr_blocks;
		} else {
			/* No valid block: zeroout the current BIO block */
			dmz_handle_read_zero(dmz, bio, chunk_block, 1);
			chunk_block++;
		}
	}

	return 0;
}

/*
 * Write blocks directly in a data zone, at the write pointer.
 * If a buffer zone is assigned, invalidate the blocks written
 * in place.
 */
static int dmz_handle_direct_write(struct dmz_target *dmz,
				   struct dm_zone *zone, struct bio *bio,
				   sector_t chunk_block,
				   unsigned int nr_blocks)
{
	struct dmz_metadata *zmd = dmz->metadata;
	struct dm_zone *bzone = zone->bzone;
	int ret;

	if (dmz_is_readonly(zone))
		return -EROFS;

	/* Submit write */
249 250 251
	ret = dmz_submit_bio(dmz, zone, bio, chunk_block, nr_blocks);
	if (ret)
		return ret;
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286

	/*
	 * Validate the blocks in the data zone and invalidate
	 * in the buffer zone, if there is one.
	 */
	ret = dmz_validate_blocks(zmd, zone, chunk_block, nr_blocks);
	if (ret == 0 && bzone)
		ret = dmz_invalidate_blocks(zmd, bzone, chunk_block, nr_blocks);

	return ret;
}

/*
 * Write blocks in the buffer zone of @zone.
 * If no buffer zone is assigned yet, get one.
 * Called with @zone write locked.
 */
static int dmz_handle_buffered_write(struct dmz_target *dmz,
				     struct dm_zone *zone, struct bio *bio,
				     sector_t chunk_block,
				     unsigned int nr_blocks)
{
	struct dmz_metadata *zmd = dmz->metadata;
	struct dm_zone *bzone;
	int ret;

	/* Get the buffer zone. One will be allocated if needed */
	bzone = dmz_get_chunk_buffer(zmd, zone);
	if (!bzone)
		return -ENOSPC;

	if (dmz_is_readonly(bzone))
		return -EROFS;

	/* Submit write */
287 288 289
	ret = dmz_submit_bio(dmz, bzone, bio, chunk_block, nr_blocks);
	if (ret)
		return ret;
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443

	/*
	 * Validate the blocks in the buffer zone
	 * and invalidate in the data zone.
	 */
	ret = dmz_validate_blocks(zmd, bzone, chunk_block, nr_blocks);
	if (ret == 0 && chunk_block < zone->wp_block)
		ret = dmz_invalidate_blocks(zmd, zone, chunk_block, nr_blocks);

	return ret;
}

/*
 * Process a write BIO.
 */
static int dmz_handle_write(struct dmz_target *dmz, struct dm_zone *zone,
			    struct bio *bio)
{
	sector_t chunk_block = dmz_chunk_block(dmz->dev, dmz_bio_block(bio));
	unsigned int nr_blocks = dmz_bio_blocks(bio);

	if (!zone)
		return -ENOSPC;

	dmz_dev_debug(dmz->dev, "WRITE chunk %llu -> %s zone %u, block %llu, %u blocks",
		      (unsigned long long)dmz_bio_chunk(dmz->dev, bio),
		      (dmz_is_rnd(zone) ? "RND" : "SEQ"),
		      dmz_id(dmz->metadata, zone),
		      (unsigned long long)chunk_block, nr_blocks);

	if (dmz_is_rnd(zone) || chunk_block == zone->wp_block) {
		/*
		 * zone is a random zone or it is a sequential zone
		 * and the BIO is aligned to the zone write pointer:
		 * direct write the zone.
		 */
		return dmz_handle_direct_write(dmz, zone, bio, chunk_block, nr_blocks);
	}

	/*
	 * This is an unaligned write in a sequential zone:
	 * use buffered write.
	 */
	return dmz_handle_buffered_write(dmz, zone, bio, chunk_block, nr_blocks);
}

/*
 * Process a discard BIO.
 */
static int dmz_handle_discard(struct dmz_target *dmz, struct dm_zone *zone,
			      struct bio *bio)
{
	struct dmz_metadata *zmd = dmz->metadata;
	sector_t block = dmz_bio_block(bio);
	unsigned int nr_blocks = dmz_bio_blocks(bio);
	sector_t chunk_block = dmz_chunk_block(dmz->dev, block);
	int ret = 0;

	/* For unmapped chunks, there is nothing to do */
	if (!zone)
		return 0;

	if (dmz_is_readonly(zone))
		return -EROFS;

	dmz_dev_debug(dmz->dev, "DISCARD chunk %llu -> zone %u, block %llu, %u blocks",
		      (unsigned long long)dmz_bio_chunk(dmz->dev, bio),
		      dmz_id(zmd, zone),
		      (unsigned long long)chunk_block, nr_blocks);

	/*
	 * Invalidate blocks in the data zone and its
	 * buffer zone if one is mapped.
	 */
	if (dmz_is_rnd(zone) || chunk_block < zone->wp_block)
		ret = dmz_invalidate_blocks(zmd, zone, chunk_block, nr_blocks);
	if (ret == 0 && zone->bzone)
		ret = dmz_invalidate_blocks(zmd, zone->bzone,
					    chunk_block, nr_blocks);
	return ret;
}

/*
 * Process a BIO.
 */
static void dmz_handle_bio(struct dmz_target *dmz, struct dm_chunk_work *cw,
			   struct bio *bio)
{
	struct dmz_bioctx *bioctx = dm_per_bio_data(bio, sizeof(struct dmz_bioctx));
	struct dmz_metadata *zmd = dmz->metadata;
	struct dm_zone *zone;
	int ret;

	/*
	 * Write may trigger a zone allocation. So make sure the
	 * allocation can succeed.
	 */
	if (bio_op(bio) == REQ_OP_WRITE)
		dmz_schedule_reclaim(dmz->reclaim);

	dmz_lock_metadata(zmd);

	/*
	 * Get the data zone mapping the chunk. There may be no
	 * mapping for read and discard. If a mapping is obtained,
	 + the zone returned will be set to active state.
	 */
	zone = dmz_get_chunk_mapping(zmd, dmz_bio_chunk(dmz->dev, bio),
				     bio_op(bio));
	if (IS_ERR(zone)) {
		ret = PTR_ERR(zone);
		goto out;
	}

	/* Process the BIO */
	if (zone) {
		dmz_activate_zone(zone);
		bioctx->zone = zone;
	}

	switch (bio_op(bio)) {
	case REQ_OP_READ:
		ret = dmz_handle_read(dmz, zone, bio);
		break;
	case REQ_OP_WRITE:
		ret = dmz_handle_write(dmz, zone, bio);
		break;
	case REQ_OP_DISCARD:
	case REQ_OP_WRITE_ZEROES:
		ret = dmz_handle_discard(dmz, zone, bio);
		break;
	default:
		dmz_dev_err(dmz->dev, "Unsupported BIO operation 0x%x",
			    bio_op(bio));
		ret = -EIO;
	}

	/*
	 * Release the chunk mapping. This will check that the mapping
	 * is still valid, that is, that the zone used still has valid blocks.
	 */
	if (zone)
		dmz_put_chunk_mapping(zmd, zone);
out:
	dmz_bio_endio(bio, errno_to_blk_status(ret));

	dmz_unlock_metadata(zmd);
}

/*
 * Increment a chunk reference counter.
 */
static inline void dmz_get_chunk_work(struct dm_chunk_work *cw)
{
444
	refcount_inc(&cw->refcount);
445 446 447 448 449 450 451 452
}

/*
 * Decrement a chunk work reference count and
 * free it if it becomes 0.
 */
static void dmz_put_chunk_work(struct dm_chunk_work *cw)
{
453
	if (refcount_dec_and_test(&cw->refcount)) {
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
		WARN_ON(!bio_list_empty(&cw->bio_list));
		radix_tree_delete(&cw->target->chunk_rxtree, cw->chunk);
		kfree(cw);
	}
}

/*
 * Chunk BIO work function.
 */
static void dmz_chunk_work(struct work_struct *work)
{
	struct dm_chunk_work *cw = container_of(work, struct dm_chunk_work, work);
	struct dmz_target *dmz = cw->target;
	struct bio *bio;

	mutex_lock(&dmz->chunk_lock);

	/* Process the chunk BIOs */
	while ((bio = bio_list_pop(&cw->bio_list))) {
		mutex_unlock(&dmz->chunk_lock);
		dmz_handle_bio(dmz, cw, bio);
		mutex_lock(&dmz->chunk_lock);
		dmz_put_chunk_work(cw);
	}

	/* Queueing the work incremented the work refcount */
	dmz_put_chunk_work(cw);

	mutex_unlock(&dmz->chunk_lock);
}

/*
 * Flush work.
 */
static void dmz_flush_work(struct work_struct *work)
{
	struct dmz_target *dmz = container_of(work, struct dmz_target, flush_work.work);
	struct bio *bio;
	int ret;

	/* Flush dirty metadata blocks */
	ret = dmz_flush_metadata(dmz->metadata);

	/* Process queued flush requests */
	while (1) {
		spin_lock(&dmz->flush_lock);
		bio = bio_list_pop(&dmz->flush_list);
		spin_unlock(&dmz->flush_lock);

		if (!bio)
			break;

		dmz_bio_endio(bio, errno_to_blk_status(ret));
	}

	queue_delayed_work(dmz->flush_wq, &dmz->flush_work, DMZ_FLUSH_PERIOD);
}

/*
 * Get a chunk work and start it to process a new BIO.
 * If the BIO chunk has no work yet, create one.
 */
static void dmz_queue_chunk_work(struct dmz_target *dmz, struct bio *bio)
{
	unsigned int chunk = dmz_bio_chunk(dmz->dev, bio);
	struct dm_chunk_work *cw;

	mutex_lock(&dmz->chunk_lock);

	/* Get the BIO chunk work. If one is not active yet, create one */
	cw = radix_tree_lookup(&dmz->chunk_rxtree, chunk);
	if (!cw) {
		int ret;

		/* Create a new chunk work */
529
		cw = kmalloc(sizeof(struct dm_chunk_work), GFP_NOIO);
530 531 532 533
		if (!cw)
			goto out;

		INIT_WORK(&cw->work, dmz_chunk_work);
534
		refcount_set(&cw->refcount, 0);
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
		cw->target = dmz;
		cw->chunk = chunk;
		bio_list_init(&cw->bio_list);

		ret = radix_tree_insert(&dmz->chunk_rxtree, chunk, cw);
		if (unlikely(ret)) {
			kfree(cw);
			cw = NULL;
			goto out;
		}
	}

	bio_list_add(&cw->bio_list, bio);
	dmz_get_chunk_work(cw);

	if (queue_work(dmz->chunk_wq, &cw->work))
		dmz_get_chunk_work(cw);
out:
	mutex_unlock(&dmz->chunk_lock);
}

/*
 * Process a new BIO.
 */
static int dmz_map(struct dm_target *ti, struct bio *bio)
{
	struct dmz_target *dmz = ti->private;
	struct dmz_dev *dev = dmz->dev;
	struct dmz_bioctx *bioctx = dm_per_bio_data(bio, sizeof(struct dmz_bioctx));
	sector_t sector = bio->bi_iter.bi_sector;
	unsigned int nr_sectors = bio_sectors(bio);
	sector_t chunk_sector;

	dmz_dev_debug(dev, "BIO op %d sector %llu + %u => chunk %llu, block %llu, %u blocks",
		      bio_op(bio), (unsigned long long)sector, nr_sectors,
		      (unsigned long long)dmz_bio_chunk(dmz->dev, bio),
		      (unsigned long long)dmz_chunk_block(dmz->dev, dmz_bio_block(bio)),
		      (unsigned int)dmz_bio_blocks(bio));

574
	bio_set_dev(bio, dev->bdev);
575

576
	if (!nr_sectors && bio_op(bio) != REQ_OP_WRITE)
577 578 579 580 581 582 583 584 585 586
		return DM_MAPIO_REMAPPED;

	/* The BIO should be block aligned */
	if ((nr_sectors & DMZ_BLOCK_SECTORS_MASK) || (sector & DMZ_BLOCK_SECTORS_MASK))
		return DM_MAPIO_KILL;

	/* Initialize the BIO context */
	bioctx->target = dmz;
	bioctx->zone = NULL;
	bioctx->bio = bio;
587
	refcount_set(&bioctx->ref, 1);
588 589

	/* Set the BIO pending in the flush list */
590
	if (!nr_sectors && bio_op(bio) == REQ_OP_WRITE) {
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
		spin_lock(&dmz->flush_lock);
		bio_list_add(&dmz->flush_list, bio);
		spin_unlock(&dmz->flush_lock);
		mod_delayed_work(dmz->flush_wq, &dmz->flush_work, 0);
		return DM_MAPIO_SUBMITTED;
	}

	/* Split zone BIOs to fit entirely into a zone */
	chunk_sector = sector & (dev->zone_nr_sectors - 1);
	if (chunk_sector + nr_sectors > dev->zone_nr_sectors)
		dm_accept_partial_bio(bio, dev->zone_nr_sectors - chunk_sector);

	/* Now ready to handle this BIO */
	dmz_reclaim_bio_acc(dmz->reclaim);
	dmz_queue_chunk_work(dmz, bio);

	return DM_MAPIO_SUBMITTED;
}

/*
 * Get zoned device information.
 */
static int dmz_get_zoned_device(struct dm_target *ti, char *path)
{
	struct dmz_target *dmz = ti->private;
	struct request_queue *q;
	struct dmz_dev *dev;
618
	sector_t aligned_capacity;
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
	int ret;

	/* Get the target device */
	ret = dm_get_device(ti, path, dm_table_get_mode(ti->table), &dmz->ddev);
	if (ret) {
		ti->error = "Get target device failed";
		dmz->ddev = NULL;
		return ret;
	}

	dev = kzalloc(sizeof(struct dmz_dev), GFP_KERNEL);
	if (!dev) {
		ret = -ENOMEM;
		goto err;
	}

	dev->bdev = dmz->ddev->bdev;
	(void)bdevname(dev->bdev, dev->name);

	if (bdev_zoned_model(dev->bdev) == BLK_ZONED_NONE) {
		ti->error = "Not a zoned block device";
		ret = -EINVAL;
		goto err;
	}

644
	q = bdev_get_queue(dev->bdev);
645
	dev->capacity = i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
646 647 648
	aligned_capacity = dev->capacity & ~(blk_queue_zone_sectors(q) - 1);
	if (ti->begin ||
	    ((ti->len != dev->capacity) && (ti->len != aligned_capacity))) {
649 650 651 652 653
		ti->error = "Partial mapping not supported";
		ret = -EINVAL;
		goto err;
	}

654
	dev->zone_nr_sectors = blk_queue_zone_sectors(q);
655 656 657 658 659
	dev->zone_nr_sectors_shift = ilog2(dev->zone_nr_sectors);

	dev->zone_nr_blocks = dmz_sect2blk(dev->zone_nr_sectors);
	dev->zone_nr_blocks_shift = ilog2(dev->zone_nr_blocks);

660
	dev->nr_zones = blkdev_nr_zones(dev->bdev);
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734

	dmz->dev = dev;

	return 0;
err:
	dm_put_device(ti, dmz->ddev);
	kfree(dev);

	return ret;
}

/*
 * Cleanup zoned device information.
 */
static void dmz_put_zoned_device(struct dm_target *ti)
{
	struct dmz_target *dmz = ti->private;

	dm_put_device(ti, dmz->ddev);
	kfree(dmz->dev);
	dmz->dev = NULL;
}

/*
 * Setup target.
 */
static int dmz_ctr(struct dm_target *ti, unsigned int argc, char **argv)
{
	struct dmz_target *dmz;
	struct dmz_dev *dev;
	int ret;

	/* Check arguments */
	if (argc != 1) {
		ti->error = "Invalid argument count";
		return -EINVAL;
	}

	/* Allocate and initialize the target descriptor */
	dmz = kzalloc(sizeof(struct dmz_target), GFP_KERNEL);
	if (!dmz) {
		ti->error = "Unable to allocate the zoned target descriptor";
		return -ENOMEM;
	}
	ti->private = dmz;

	/* Get the target zoned block device */
	ret = dmz_get_zoned_device(ti, argv[0]);
	if (ret) {
		dmz->ddev = NULL;
		goto err;
	}

	/* Initialize metadata */
	dev = dmz->dev;
	ret = dmz_ctr_metadata(dev, &dmz->metadata);
	if (ret) {
		ti->error = "Metadata initialization failed";
		goto err_dev;
	}

	/* Set target (no write same support) */
	ti->max_io_len = dev->zone_nr_sectors << 9;
	ti->num_flush_bios = 1;
	ti->num_discard_bios = 1;
	ti->num_write_zeroes_bios = 1;
	ti->per_io_data_size = sizeof(struct dmz_bioctx);
	ti->flush_supported = true;
	ti->discards_supported = true;

	/* The exposed capacity is the number of chunks that can be mapped */
	ti->len = (sector_t)dmz_nr_chunks(dmz->metadata) << dev->zone_nr_sectors_shift;

	/* Zone BIO */
735 736
	ret = bioset_init(&dmz->bio_set, DMZ_MIN_BIOS, 0, 0);
	if (ret) {
737 738 739 740 741 742
		ti->error = "Create BIO set failed";
		goto err_meta;
	}

	/* Chunk BIO work */
	mutex_init(&dmz->chunk_lock);
743
	INIT_RADIX_TREE(&dmz->chunk_rxtree, GFP_NOIO);
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
	dmz->chunk_wq = alloc_workqueue("dmz_cwq_%s", WQ_MEM_RECLAIM | WQ_UNBOUND,
					0, dev->name);
	if (!dmz->chunk_wq) {
		ti->error = "Create chunk workqueue failed";
		ret = -ENOMEM;
		goto err_bio;
	}

	/* Flush work */
	spin_lock_init(&dmz->flush_lock);
	bio_list_init(&dmz->flush_list);
	INIT_DELAYED_WORK(&dmz->flush_work, dmz_flush_work);
	dmz->flush_wq = alloc_ordered_workqueue("dmz_fwq_%s", WQ_MEM_RECLAIM,
						dev->name);
	if (!dmz->flush_wq) {
		ti->error = "Create flush workqueue failed";
		ret = -ENOMEM;
		goto err_cwq;
	}
	mod_delayed_work(dmz->flush_wq, &dmz->flush_work, DMZ_FLUSH_PERIOD);

	/* Initialize reclaim */
	ret = dmz_ctr_reclaim(dev, dmz->metadata, &dmz->reclaim);
	if (ret) {
		ti->error = "Zone reclaim initialization failed";
		goto err_fwq;
	}

	dmz_dev_info(dev, "Target device: %llu 512-byte logical sectors (%llu blocks)",
		     (unsigned long long)ti->len,
		     (unsigned long long)dmz_sect2blk(ti->len));

	return 0;
err_fwq:
	destroy_workqueue(dmz->flush_wq);
err_cwq:
	destroy_workqueue(dmz->chunk_wq);
err_bio:
782
	mutex_destroy(&dmz->chunk_lock);
783
	bioset_exit(&dmz->bio_set);
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
err_meta:
	dmz_dtr_metadata(dmz->metadata);
err_dev:
	dmz_put_zoned_device(ti);
err:
	kfree(dmz);

	return ret;
}

/*
 * Cleanup target.
 */
static void dmz_dtr(struct dm_target *ti)
{
	struct dmz_target *dmz = ti->private;

	flush_workqueue(dmz->chunk_wq);
	destroy_workqueue(dmz->chunk_wq);

	dmz_dtr_reclaim(dmz->reclaim);

	cancel_delayed_work_sync(&dmz->flush_work);
	destroy_workqueue(dmz->flush_wq);

	(void) dmz_flush_metadata(dmz->metadata);

	dmz_dtr_metadata(dmz->metadata);

813
	bioset_exit(&dmz->bio_set);
814 815 816

	dmz_put_zoned_device(ti);

817 818
	mutex_destroy(&dmz->chunk_lock);

819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
	kfree(dmz);
}

/*
 * Setup target request queue limits.
 */
static void dmz_io_hints(struct dm_target *ti, struct queue_limits *limits)
{
	struct dmz_target *dmz = ti->private;
	unsigned int chunk_sectors = dmz->dev->zone_nr_sectors;

	limits->logical_block_size = DMZ_BLOCK_SIZE;
	limits->physical_block_size = DMZ_BLOCK_SIZE;

	blk_limits_io_min(limits, DMZ_BLOCK_SIZE);
	blk_limits_io_opt(limits, DMZ_BLOCK_SIZE);

	limits->discard_alignment = DMZ_BLOCK_SIZE;
	limits->discard_granularity = DMZ_BLOCK_SIZE;
	limits->max_discard_sectors = chunk_sectors;
	limits->max_hw_discard_sectors = chunk_sectors;
	limits->max_write_zeroes_sectors = chunk_sectors;

	/* FS hint to try to align to the device zone size */
	limits->chunk_sectors = chunk_sectors;
	limits->max_sectors = chunk_sectors;

	/* We are exposing a drive-managed zoned block device */
	limits->zoned = BLK_ZONED_NONE;
}

/*
 * Pass on ioctl to the backend device.
 */
853
static int dmz_prepare_ioctl(struct dm_target *ti, struct block_device **bdev)
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
{
	struct dmz_target *dmz = ti->private;

	*bdev = dmz->dev->bdev;

	return 0;
}

/*
 * Stop works on suspend.
 */
static void dmz_suspend(struct dm_target *ti)
{
	struct dmz_target *dmz = ti->private;

	flush_workqueue(dmz->chunk_wq);
	dmz_suspend_reclaim(dmz->reclaim);
	cancel_delayed_work_sync(&dmz->flush_work);
}

/*
 * Restart works on resume or if suspend failed.
 */
static void dmz_resume(struct dm_target *ti)
{
	struct dmz_target *dmz = ti->private;

	queue_delayed_work(dmz->flush_wq, &dmz->flush_work, DMZ_FLUSH_PERIOD);
	dmz_resume_reclaim(dmz->reclaim);
}

static int dmz_iterate_devices(struct dm_target *ti,
			       iterate_devices_callout_fn fn, void *data)
{
	struct dmz_target *dmz = ti->private;
889 890
	struct dmz_dev *dev = dmz->dev;
	sector_t capacity = dev->capacity & ~(dev->zone_nr_sectors - 1);
891

892
	return fn(ti, dmz->ddev, 0, capacity, data);
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
}

static struct target_type dmz_type = {
	.name		 = "zoned",
	.version	 = {1, 0, 0},
	.features	 = DM_TARGET_SINGLETON | DM_TARGET_ZONED_HM,
	.module		 = THIS_MODULE,
	.ctr		 = dmz_ctr,
	.dtr		 = dmz_dtr,
	.map		 = dmz_map,
	.io_hints	 = dmz_io_hints,
	.prepare_ioctl	 = dmz_prepare_ioctl,
	.postsuspend	 = dmz_suspend,
	.resume		 = dmz_resume,
	.iterate_devices = dmz_iterate_devices,
};

static int __init dmz_init(void)
{
	return dm_register_target(&dmz_type);
}

static void __exit dmz_exit(void)
{
	dm_unregister_target(&dmz_type);
}

module_init(dmz_init);
module_exit(dmz_exit);

MODULE_DESCRIPTION(DM_NAME " target for zoned block devices");
MODULE_AUTHOR("Damien Le Moal <damien.lemoal@wdc.com>");
MODULE_LICENSE("GPL");