crypto.c 14.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
/*
 * linux/fs/ext4/crypto.c
 *
 * Copyright (C) 2015, Google, Inc.
 *
 * This contains encryption functions for ext4
 *
 * Written by Michael Halcrow, 2014.
 *
 * Filename encryption additions
 *	Uday Savagaonkar, 2014
 * Encryption policy handling additions
 *	Ildar Muslukhov, 2014
 *
 * This has not yet undergone a rigorous security audit.
 *
 * The usage of AES-XTS should conform to recommendations in NIST
 * Special Publication 800-38E and IEEE P1619/D16.
 */

#include <crypto/hash.h>
#include <crypto/sha.h>
#include <keys/user-type.h>
#include <keys/encrypted-type.h>
#include <linux/crypto.h>
#include <linux/ecryptfs.h>
#include <linux/gfp.h>
#include <linux/kernel.h>
#include <linux/key.h>
#include <linux/list.h>
#include <linux/mempool.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/random.h>
#include <linux/scatterlist.h>
#include <linux/spinlock_types.h>

#include "ext4_extents.h"
#include "xattr.h"

/* Encryption added and removed here! (L: */

static unsigned int num_prealloc_crypto_pages = 32;
static unsigned int num_prealloc_crypto_ctxs = 128;

module_param(num_prealloc_crypto_pages, uint, 0444);
MODULE_PARM_DESC(num_prealloc_crypto_pages,
		 "Number of crypto pages to preallocate");
module_param(num_prealloc_crypto_ctxs, uint, 0444);
MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
		 "Number of crypto contexts to preallocate");

static mempool_t *ext4_bounce_page_pool;

static LIST_HEAD(ext4_free_crypto_ctxs);
static DEFINE_SPINLOCK(ext4_crypto_ctx_lock);

T
Theodore Ts'o 已提交
58 59 60
static struct kmem_cache *ext4_crypto_ctx_cachep;
struct kmem_cache *ext4_crypt_info_cachep;

61 62 63 64 65 66 67 68 69 70 71 72 73
/**
 * ext4_release_crypto_ctx() - Releases an encryption context
 * @ctx: The encryption context to release.
 *
 * If the encryption context was allocated from the pre-allocated pool, returns
 * it to that pool. Else, frees it.
 *
 * If there's a bounce page in the context, this frees that.
 */
void ext4_release_crypto_ctx(struct ext4_crypto_ctx *ctx)
{
	unsigned long flags;

74
	if (ctx->flags & EXT4_WRITE_PATH_FL && ctx->w.bounce_page) {
75
		if (ctx->flags & EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL)
76
			__free_page(ctx->w.bounce_page);
77
		else
78
			mempool_free(ctx->w.bounce_page, ext4_bounce_page_pool);
79
	}
80 81
	ctx->w.bounce_page = NULL;
	ctx->w.control_page = NULL;
82 83 84
	if (ctx->flags & EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL) {
		if (ctx->tfm)
			crypto_free_tfm(ctx->tfm);
T
Theodore Ts'o 已提交
85
		kmem_cache_free(ext4_crypto_ctx_cachep, ctx);
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
	} else {
		spin_lock_irqsave(&ext4_crypto_ctx_lock, flags);
		list_add(&ctx->free_list, &ext4_free_crypto_ctxs);
		spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags);
	}
}

/**
 * ext4_get_crypto_ctx() - Gets an encryption context
 * @inode:       The inode for which we are doing the crypto
 *
 * Allocates and initializes an encryption context.
 *
 * Return: An allocated and initialized encryption context on success; error
 * value or NULL otherwise.
 */
struct ext4_crypto_ctx *ext4_get_crypto_ctx(struct inode *inode)
{
	struct ext4_crypto_ctx *ctx = NULL;
	int res = 0;
	unsigned long flags;
107
	struct ext4_crypt_info *ci = EXT4_I(inode)->i_crypt_info;
108

109
	BUG_ON(ci == NULL);
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

	/*
	 * We first try getting the ctx from a free list because in
	 * the common case the ctx will have an allocated and
	 * initialized crypto tfm, so it's probably a worthwhile
	 * optimization. For the bounce page, we first try getting it
	 * from the kernel allocator because that's just about as fast
	 * as getting it from a list and because a cache of free pages
	 * should generally be a "last resort" option for a filesystem
	 * to be able to do its job.
	 */
	spin_lock_irqsave(&ext4_crypto_ctx_lock, flags);
	ctx = list_first_entry_or_null(&ext4_free_crypto_ctxs,
				       struct ext4_crypto_ctx, free_list);
	if (ctx)
		list_del(&ctx->free_list);
	spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags);
	if (!ctx) {
T
Theodore Ts'o 已提交
128 129 130
		ctx = kmem_cache_zalloc(ext4_crypto_ctx_cachep, GFP_NOFS);
		if (!ctx) {
			res = -ENOMEM;
131 132 133 134 135 136
			goto out;
		}
		ctx->flags |= EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL;
	} else {
		ctx->flags &= ~EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL;
	}
137
	ctx->flags &= ~EXT4_WRITE_PATH_FL;
138 139 140

	/* Allocate a new Crypto API context if we don't already have
	 * one or if it isn't the right mode. */
141
	if (ctx->tfm && (ctx->mode != ci->ci_data_mode)) {
142 143 144 145 146
		crypto_free_tfm(ctx->tfm);
		ctx->tfm = NULL;
		ctx->mode = EXT4_ENCRYPTION_MODE_INVALID;
	}
	if (!ctx->tfm) {
147
		switch (ci->ci_data_mode) {
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
		case EXT4_ENCRYPTION_MODE_AES_256_XTS:
			ctx->tfm = crypto_ablkcipher_tfm(
				crypto_alloc_ablkcipher("xts(aes)", 0, 0));
			break;
		case EXT4_ENCRYPTION_MODE_AES_256_GCM:
			/* TODO(mhalcrow): AEAD w/ gcm(aes);
			 * crypto_aead_setauthsize() */
			ctx->tfm = ERR_PTR(-ENOTSUPP);
			break;
		default:
			BUG();
		}
		if (IS_ERR_OR_NULL(ctx->tfm)) {
			res = PTR_ERR(ctx->tfm);
			ctx->tfm = NULL;
			goto out;
		}
165
		ctx->mode = ci->ci_data_mode;
166
	}
167
	BUG_ON(ci->ci_size != ext4_encryption_key_size(ci->ci_data_mode));
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190

out:
	if (res) {
		if (!IS_ERR_OR_NULL(ctx))
			ext4_release_crypto_ctx(ctx);
		ctx = ERR_PTR(res);
	}
	return ctx;
}

struct workqueue_struct *ext4_read_workqueue;
static DEFINE_MUTEX(crypto_init);

/**
 * ext4_exit_crypto() - Shutdown the ext4 encryption system
 */
void ext4_exit_crypto(void)
{
	struct ext4_crypto_ctx *pos, *n;

	list_for_each_entry_safe(pos, n, &ext4_free_crypto_ctxs, free_list) {
		if (pos->tfm)
			crypto_free_tfm(pos->tfm);
T
Theodore Ts'o 已提交
191
		kmem_cache_free(ext4_crypto_ctx_cachep, pos);
192 193 194 195 196 197 198 199
	}
	INIT_LIST_HEAD(&ext4_free_crypto_ctxs);
	if (ext4_bounce_page_pool)
		mempool_destroy(ext4_bounce_page_pool);
	ext4_bounce_page_pool = NULL;
	if (ext4_read_workqueue)
		destroy_workqueue(ext4_read_workqueue);
	ext4_read_workqueue = NULL;
T
Theodore Ts'o 已提交
200 201 202 203 204 205
	if (ext4_crypto_ctx_cachep)
		kmem_cache_destroy(ext4_crypto_ctx_cachep);
	ext4_crypto_ctx_cachep = NULL;
	if (ext4_crypt_info_cachep)
		kmem_cache_destroy(ext4_crypt_info_cachep);
	ext4_crypt_info_cachep = NULL;
206 207 208 209 210 211 212 213 214 215 216 217
}

/**
 * ext4_init_crypto() - Set up for ext4 encryption.
 *
 * We only call this when we start accessing encrypted files, since it
 * results in memory getting allocated that wouldn't otherwise be used.
 *
 * Return: Zero on success, non-zero otherwise.
 */
int ext4_init_crypto(void)
{
T
Theodore Ts'o 已提交
218
	int i, res = -ENOMEM;
219 220 221 222 223

	mutex_lock(&crypto_init);
	if (ext4_read_workqueue)
		goto already_initialized;
	ext4_read_workqueue = alloc_workqueue("ext4_crypto", WQ_HIGHPRI, 0);
T
Theodore Ts'o 已提交
224 225 226 227 228 229 230 231 232 233 234
	if (!ext4_read_workqueue)
		goto fail;

	ext4_crypto_ctx_cachep = KMEM_CACHE(ext4_crypto_ctx,
					    SLAB_RECLAIM_ACCOUNT);
	if (!ext4_crypto_ctx_cachep)
		goto fail;

	ext4_crypt_info_cachep = KMEM_CACHE(ext4_crypt_info,
					    SLAB_RECLAIM_ACCOUNT);
	if (!ext4_crypt_info_cachep)
235 236 237 238 239
		goto fail;

	for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
		struct ext4_crypto_ctx *ctx;

T
Theodore Ts'o 已提交
240 241 242
		ctx = kmem_cache_zalloc(ext4_crypto_ctx_cachep, GFP_NOFS);
		if (!ctx) {
			res = -ENOMEM;
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
			goto fail;
		}
		list_add(&ctx->free_list, &ext4_free_crypto_ctxs);
	}

	ext4_bounce_page_pool =
		mempool_create_page_pool(num_prealloc_crypto_pages, 0);
	if (!ext4_bounce_page_pool) {
		res = -ENOMEM;
		goto fail;
	}
already_initialized:
	mutex_unlock(&crypto_init);
	return 0;
fail:
	ext4_exit_crypto();
	mutex_unlock(&crypto_init);
	return res;
}

void ext4_restore_control_page(struct page *data_page)
{
	struct ext4_crypto_ctx *ctx =
		(struct ext4_crypto_ctx *)page_private(data_page);

	set_page_private(data_page, (unsigned long)NULL);
	ClearPagePrivate(data_page);
	unlock_page(data_page);
	ext4_release_crypto_ctx(ctx);
}

/**
 * ext4_crypt_complete() - The completion callback for page encryption
 * @req: The asynchronous encryption request context
 * @res: The result of the encryption operation
 */
static void ext4_crypt_complete(struct crypto_async_request *req, int res)
{
	struct ext4_completion_result *ecr = req->data;

	if (res == -EINPROGRESS)
		return;
	ecr->res = res;
	complete(&ecr->completion);
}

typedef enum {
	EXT4_DECRYPT = 0,
	EXT4_ENCRYPT,
} ext4_direction_t;

static int ext4_page_crypto(struct ext4_crypto_ctx *ctx,
			    struct inode *inode,
			    ext4_direction_t rw,
			    pgoff_t index,
			    struct page *src_page,
			    struct page *dest_page)

{
	u8 xts_tweak[EXT4_XTS_TWEAK_SIZE];
	struct ablkcipher_request *req = NULL;
	DECLARE_EXT4_COMPLETION_RESULT(ecr);
	struct scatterlist dst, src;
	struct ext4_inode_info *ei = EXT4_I(inode);
	struct crypto_ablkcipher *atfm = __crypto_ablkcipher_cast(ctx->tfm);
	int res = 0;

	BUG_ON(!ctx->tfm);
311
	BUG_ON(ctx->mode != ei->i_crypt_info->ci_data_mode);
312 313 314 315 316 317 318 319 320 321 322

	if (ctx->mode != EXT4_ENCRYPTION_MODE_AES_256_XTS) {
		printk_ratelimited(KERN_ERR
				   "%s: unsupported crypto algorithm: %d\n",
				   __func__, ctx->mode);
		return -ENOTSUPP;
	}

	crypto_ablkcipher_clear_flags(atfm, ~0);
	crypto_tfm_set_flags(ctx->tfm, CRYPTO_TFM_REQ_WEAK_KEY);

323 324
	res = crypto_ablkcipher_setkey(atfm, ei->i_crypt_info->ci_raw,
				       ei->i_crypt_info->ci_size);
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
	if (res) {
		printk_ratelimited(KERN_ERR
				   "%s: crypto_ablkcipher_setkey() failed\n",
				   __func__);
		return res;
	}
	req = ablkcipher_request_alloc(atfm, GFP_NOFS);
	if (!req) {
		printk_ratelimited(KERN_ERR
				   "%s: crypto_request_alloc() failed\n",
				   __func__);
		return -ENOMEM;
	}
	ablkcipher_request_set_callback(
		req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
		ext4_crypt_complete, &ecr);

	BUILD_BUG_ON(EXT4_XTS_TWEAK_SIZE < sizeof(index));
	memcpy(xts_tweak, &index, sizeof(index));
	memset(&xts_tweak[sizeof(index)], 0,
	       EXT4_XTS_TWEAK_SIZE - sizeof(index));

	sg_init_table(&dst, 1);
	sg_set_page(&dst, dest_page, PAGE_CACHE_SIZE, 0);
	sg_init_table(&src, 1);
	sg_set_page(&src, src_page, PAGE_CACHE_SIZE, 0);
	ablkcipher_request_set_crypt(req, &src, &dst, PAGE_CACHE_SIZE,
				     xts_tweak);
	if (rw == EXT4_DECRYPT)
		res = crypto_ablkcipher_decrypt(req);
	else
		res = crypto_ablkcipher_encrypt(req);
	if (res == -EINPROGRESS || res == -EBUSY) {
		BUG_ON(req->base.data != &ecr);
		wait_for_completion(&ecr.completion);
		res = ecr.res;
	}
	ablkcipher_request_free(req);
	if (res) {
		printk_ratelimited(
			KERN_ERR
			"%s: crypto_ablkcipher_encrypt() returned %d\n",
			__func__, res);
		return res;
	}
	return 0;
}

/**
 * ext4_encrypt() - Encrypts a page
 * @inode:          The inode for which the encryption should take place
 * @plaintext_page: The page to encrypt. Must be locked.
 *
 * Allocates a ciphertext page and encrypts plaintext_page into it using the ctx
 * encryption context.
 *
 * Called on the page write path.  The caller must call
 * ext4_restore_control_page() on the returned ciphertext page to
 * release the bounce buffer and the encryption context.
 *
 * Return: An allocated page with the encrypted content on success. Else, an
 * error value or NULL.
 */
struct page *ext4_encrypt(struct inode *inode,
			  struct page *plaintext_page)
{
	struct ext4_crypto_ctx *ctx;
	struct page *ciphertext_page = NULL;
	int err;

	BUG_ON(!PageLocked(plaintext_page));

	ctx = ext4_get_crypto_ctx(inode);
	if (IS_ERR(ctx))
		return (struct page *) ctx;

	/* The encryption operation will require a bounce page. */
	ciphertext_page = alloc_page(GFP_NOFS);
	if (!ciphertext_page) {
		/* This is a potential bottleneck, but at least we'll have
		 * forward progress. */
		ciphertext_page = mempool_alloc(ext4_bounce_page_pool,
						 GFP_NOFS);
		if (WARN_ON_ONCE(!ciphertext_page)) {
			ciphertext_page = mempool_alloc(ext4_bounce_page_pool,
							 GFP_NOFS | __GFP_WAIT);
		}
		ctx->flags &= ~EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL;
	} else {
		ctx->flags |= EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL;
	}
416 417 418
	ctx->flags |= EXT4_WRITE_PATH_FL;
	ctx->w.bounce_page = ciphertext_page;
	ctx->w.control_page = plaintext_page;
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
	err = ext4_page_crypto(ctx, inode, EXT4_ENCRYPT, plaintext_page->index,
			       plaintext_page, ciphertext_page);
	if (err) {
		ext4_release_crypto_ctx(ctx);
		return ERR_PTR(err);
	}
	SetPagePrivate(ciphertext_page);
	set_page_private(ciphertext_page, (unsigned long)ctx);
	lock_page(ciphertext_page);
	return ciphertext_page;
}

/**
 * ext4_decrypt() - Decrypts a page in-place
 * @ctx:  The encryption context.
 * @page: The page to decrypt. Must be locked.
 *
 * Decrypts page in-place using the ctx encryption context.
 *
 * Called from the read completion callback.
 *
 * Return: Zero on success, non-zero otherwise.
 */
int ext4_decrypt(struct ext4_crypto_ctx *ctx, struct page *page)
{
	BUG_ON(!PageLocked(page));

	return ext4_page_crypto(ctx, page->mapping->host,
				EXT4_DECRYPT, page->index, page, page);
}

/*
 * Convenience function which takes care of allocating and
 * deallocating the encryption context
 */
int ext4_decrypt_one(struct inode *inode, struct page *page)
{
	int ret;

	struct ext4_crypto_ctx *ctx = ext4_get_crypto_ctx(inode);

	if (!ctx)
		return -ENOMEM;
	ret = ext4_decrypt(ctx, page);
	ext4_release_crypto_ctx(ctx);
	return ret;
}

int ext4_encrypted_zeroout(struct inode *inode, struct ext4_extent *ex)
{
	struct ext4_crypto_ctx	*ctx;
	struct page		*ciphertext_page = NULL;
	struct bio		*bio;
	ext4_lblk_t		lblk = ex->ee_block;
	ext4_fsblk_t		pblk = ext4_ext_pblock(ex);
	unsigned int		len = ext4_ext_get_actual_len(ex);
	int			err = 0;

	BUG_ON(inode->i_sb->s_blocksize != PAGE_CACHE_SIZE);

	ctx = ext4_get_crypto_ctx(inode);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	ciphertext_page = alloc_page(GFP_NOFS);
	if (!ciphertext_page) {
		/* This is a potential bottleneck, but at least we'll have
		 * forward progress. */
		ciphertext_page = mempool_alloc(ext4_bounce_page_pool,
						 GFP_NOFS);
		if (WARN_ON_ONCE(!ciphertext_page)) {
			ciphertext_page = mempool_alloc(ext4_bounce_page_pool,
							 GFP_NOFS | __GFP_WAIT);
		}
		ctx->flags &= ~EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL;
	} else {
		ctx->flags |= EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL;
	}
497
	ctx->w.bounce_page = ciphertext_page;
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545

	while (len--) {
		err = ext4_page_crypto(ctx, inode, EXT4_ENCRYPT, lblk,
				       ZERO_PAGE(0), ciphertext_page);
		if (err)
			goto errout;

		bio = bio_alloc(GFP_KERNEL, 1);
		if (!bio) {
			err = -ENOMEM;
			goto errout;
		}
		bio->bi_bdev = inode->i_sb->s_bdev;
		bio->bi_iter.bi_sector = pblk;
		err = bio_add_page(bio, ciphertext_page,
				   inode->i_sb->s_blocksize, 0);
		if (err) {
			bio_put(bio);
			goto errout;
		}
		err = submit_bio_wait(WRITE, bio);
		if (err)
			goto errout;
	}
	err = 0;
errout:
	ext4_release_crypto_ctx(ctx);
	return err;
}

bool ext4_valid_contents_enc_mode(uint32_t mode)
{
	return (mode == EXT4_ENCRYPTION_MODE_AES_256_XTS);
}

/**
 * ext4_validate_encryption_key_size() - Validate the encryption key size
 * @mode: The key mode.
 * @size: The key size to validate.
 *
 * Return: The validated key size for @mode. Zero if invalid.
 */
uint32_t ext4_validate_encryption_key_size(uint32_t mode, uint32_t size)
{
	if (size == ext4_encryption_key_size(mode))
		return size;
	return 0;
}