spi-nor.h 19.3 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0+ */
2 3 4 5
/*
 * Copyright (C) 2014 Freescale Semiconductor, Inc.
 */

6 7 8
#ifndef __LINUX_MTD_SPI_NOR_H
#define __LINUX_MTD_SPI_NOR_H

9
#include <linux/bitops.h>
10
#include <linux/mtd/cfi.h>
11
#include <linux/mtd/mtd.h>
12 13 14 15 16 17 18 19

/*
 * Manufacturer IDs
 *
 * The first byte returned from the flash after sending opcode SPINOR_OP_RDID.
 * Sometimes these are the same as CFI IDs, but sometimes they aren't.
 */
#define SNOR_MFR_ATMEL		CFI_MFR_ATMEL
20
#define SNOR_MFR_GIGADEVICE	0xc8
21
#define SNOR_MFR_INTEL		CFI_MFR_INTEL
22 23
#define SNOR_MFR_ST		CFI_MFR_ST	/* ST Micro */
#define SNOR_MFR_MICRON		CFI_MFR_MICRON	/* Micron */
24 25 26
#define SNOR_MFR_MACRONIX	CFI_MFR_MACRONIX
#define SNOR_MFR_SPANSION	CFI_MFR_AMD
#define SNOR_MFR_SST		CFI_MFR_SST
27
#define SNOR_MFR_WINBOND	0xef /* Also used by some Spansion */
28

29 30 31 32 33 34 35 36
/*
 * Note on opcode nomenclature: some opcodes have a format like
 * SPINOR_OP_FUNCTION{4,}_x_y_z. The numbers x, y, and z stand for the number
 * of I/O lines used for the opcode, address, and data (respectively). The
 * FUNCTION has an optional suffix of '4', to represent an opcode which
 * requires a 4-byte (32-bit) address.
 */

37
/* Flash opcodes. */
38 39 40
#define SPINOR_OP_WREN		0x06	/* Write enable */
#define SPINOR_OP_RDSR		0x05	/* Read status register */
#define SPINOR_OP_WRSR		0x01	/* Write status register 1 byte */
41 42
#define SPINOR_OP_RDSR2		0x3f	/* Read status register 2 */
#define SPINOR_OP_WRSR2		0x3e	/* Write status register 2 */
43 44
#define SPINOR_OP_READ		0x03	/* Read data bytes (low frequency) */
#define SPINOR_OP_READ_FAST	0x0b	/* Read data bytes (high frequency) */
45 46 47 48
#define SPINOR_OP_READ_1_1_2	0x3b	/* Read data bytes (Dual Output SPI) */
#define SPINOR_OP_READ_1_2_2	0xbb	/* Read data bytes (Dual I/O SPI) */
#define SPINOR_OP_READ_1_1_4	0x6b	/* Read data bytes (Quad Output SPI) */
#define SPINOR_OP_READ_1_4_4	0xeb	/* Read data bytes (Quad I/O SPI) */
49 50
#define SPINOR_OP_READ_1_1_8	0x8b	/* Read data bytes (Octal Output SPI) */
#define SPINOR_OP_READ_1_8_8	0xcb	/* Read data bytes (Octal I/O SPI) */
51
#define SPINOR_OP_PP		0x02	/* Page program (up to 256 bytes) */
52 53
#define SPINOR_OP_PP_1_1_4	0x32	/* Quad page program */
#define SPINOR_OP_PP_1_4_4	0x38	/* Quad page program */
54 55
#define SPINOR_OP_PP_1_1_8	0x82	/* Octal page program */
#define SPINOR_OP_PP_1_8_8	0xc2	/* Octal page program */
56 57 58 59 60 61
#define SPINOR_OP_BE_4K		0x20	/* Erase 4KiB block */
#define SPINOR_OP_BE_4K_PMC	0xd7	/* Erase 4KiB block on PMC chips */
#define SPINOR_OP_BE_32K	0x52	/* Erase 32KiB block */
#define SPINOR_OP_CHIP_ERASE	0xc7	/* Erase whole flash chip */
#define SPINOR_OP_SE		0xd8	/* Sector erase (usually 64KiB) */
#define SPINOR_OP_RDID		0x9f	/* Read JEDEC ID */
62
#define SPINOR_OP_RDSFDP	0x5a	/* Read SFDP */
63
#define SPINOR_OP_RDCR		0x35	/* Read configuration register */
64
#define SPINOR_OP_RDFSR		0x70	/* Read flag status register */
65
#define SPINOR_OP_CLFSR		0x50	/* Clear flag status register */
66 67
#define SPINOR_OP_RDEAR		0xc8	/* Read Extended Address Register */
#define SPINOR_OP_WREAR		0xc5	/* Write Extended Address Register */
68 69

/* 4-byte address opcodes - used on Spansion and some Macronix flashes. */
70 71 72 73 74 75
#define SPINOR_OP_READ_4B	0x13	/* Read data bytes (low frequency) */
#define SPINOR_OP_READ_FAST_4B	0x0c	/* Read data bytes (high frequency) */
#define SPINOR_OP_READ_1_1_2_4B	0x3c	/* Read data bytes (Dual Output SPI) */
#define SPINOR_OP_READ_1_2_2_4B	0xbc	/* Read data bytes (Dual I/O SPI) */
#define SPINOR_OP_READ_1_1_4_4B	0x6c	/* Read data bytes (Quad Output SPI) */
#define SPINOR_OP_READ_1_4_4_4B	0xec	/* Read data bytes (Quad I/O SPI) */
76 77
#define SPINOR_OP_READ_1_1_8_4B	0x7c	/* Read data bytes (Octal Output SPI) */
#define SPINOR_OP_READ_1_8_8_4B	0xcc	/* Read data bytes (Octal I/O SPI) */
78
#define SPINOR_OP_PP_4B		0x12	/* Page program (up to 256 bytes) */
79 80
#define SPINOR_OP_PP_1_1_4_4B	0x34	/* Quad page program */
#define SPINOR_OP_PP_1_4_4_4B	0x3e	/* Quad page program */
81 82
#define SPINOR_OP_PP_1_1_8_4B	0x84	/* Octal page program */
#define SPINOR_OP_PP_1_8_8_4B	0x8e	/* Octal page program */
83 84
#define SPINOR_OP_BE_4K_4B	0x21	/* Erase 4KiB block */
#define SPINOR_OP_BE_32K_4B	0x5c	/* Erase 32KiB block */
85
#define SPINOR_OP_SE_4B		0xdc	/* Sector erase (usually 64KiB) */
86

87 88 89 90 91 92 93 94 95
/* Double Transfer Rate opcodes - defined in JEDEC JESD216B. */
#define SPINOR_OP_READ_1_1_1_DTR	0x0d
#define SPINOR_OP_READ_1_2_2_DTR	0xbd
#define SPINOR_OP_READ_1_4_4_DTR	0xed

#define SPINOR_OP_READ_1_1_1_DTR_4B	0x0e
#define SPINOR_OP_READ_1_2_2_DTR_4B	0xbe
#define SPINOR_OP_READ_1_4_4_DTR_4B	0xee

96
/* Used for SST flashes only. */
97 98 99
#define SPINOR_OP_BP		0x02	/* Byte program */
#define SPINOR_OP_WRDI		0x04	/* Write disable */
#define SPINOR_OP_AAI_WP	0xad	/* Auto address increment word program */
100

101 102 103 104 105 106 107 108 109
/* Used for S3AN flashes only */
#define SPINOR_OP_XSE		0x50	/* Sector erase */
#define SPINOR_OP_XPP		0x82	/* Page program */
#define SPINOR_OP_XRDSR		0xd7	/* Read status register */

#define XSR_PAGESIZE		BIT(0)	/* Page size in Po2 or Linear */
#define XSR_RDY			BIT(7)	/* Ready */


110
/* Used for Macronix and Winbond flashes. */
111 112
#define SPINOR_OP_EN4B		0xb7	/* Enter 4-byte mode */
#define SPINOR_OP_EX4B		0xe9	/* Exit 4-byte mode */
113 114

/* Used for Spansion flashes only. */
115
#define SPINOR_OP_BRWR		0x17	/* Bank register write */
116
#define SPINOR_OP_CLSR		0x30	/* Clear status register 1 */
117

118 119 120 121
/* Used for Micron flashes only. */
#define SPINOR_OP_RD_EVCR      0x65    /* Read EVCR register */
#define SPINOR_OP_WD_EVCR      0x61    /* Write EVCR register */

122
/* Status Register bits. */
123 124
#define SR_WIP			BIT(0)	/* Write in progress */
#define SR_WEL			BIT(1)	/* Write enable latch */
125
/* meaning of other SR_* bits may differ between vendors */
126 127 128
#define SR_BP0			BIT(2)	/* Block protect 0 */
#define SR_BP1			BIT(3)	/* Block protect 1 */
#define SR_BP2			BIT(4)	/* Block protect 2 */
129
#define SR_TB			BIT(5)	/* Top/Bottom protect */
130
#define SR_SRWD			BIT(7)	/* SR write protect */
131 132 133
/* Spansion/Cypress specific status bits */
#define SR_E_ERR		BIT(5)
#define SR_P_ERR		BIT(6)
134

135
#define SR_QUAD_EN_MX		BIT(6)	/* Macronix Quad I/O */
136

137
/* Enhanced Volatile Configuration Register bits */
138
#define EVCR_QUAD_EN_MICRON	BIT(7)	/* Micron Quad I/O */
139

140
/* Flag Status Register bits */
141 142 143 144
#define FSR_READY		BIT(7)	/* Device status, 0 = Busy, 1 = Ready */
#define FSR_E_ERR		BIT(5)	/* Erase operation status */
#define FSR_P_ERR		BIT(4)	/* Program operation status */
#define FSR_PT_ERR		BIT(1)	/* Protection error bit */
145

146
/* Configuration Register bits. */
147
#define CR_QUAD_EN_SPAN		BIT(1)	/* Spansion Quad I/O */
148

149 150 151
/* Status Register 2 bits. */
#define SR2_QUAD_EN_BIT7	BIT(7)

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
/* Supported SPI protocols */
#define SNOR_PROTO_INST_MASK	GENMASK(23, 16)
#define SNOR_PROTO_INST_SHIFT	16
#define SNOR_PROTO_INST(_nbits)	\
	((((unsigned long)(_nbits)) << SNOR_PROTO_INST_SHIFT) & \
	 SNOR_PROTO_INST_MASK)

#define SNOR_PROTO_ADDR_MASK	GENMASK(15, 8)
#define SNOR_PROTO_ADDR_SHIFT	8
#define SNOR_PROTO_ADDR(_nbits)	\
	((((unsigned long)(_nbits)) << SNOR_PROTO_ADDR_SHIFT) & \
	 SNOR_PROTO_ADDR_MASK)

#define SNOR_PROTO_DATA_MASK	GENMASK(7, 0)
#define SNOR_PROTO_DATA_SHIFT	0
#define SNOR_PROTO_DATA(_nbits)	\
	((((unsigned long)(_nbits)) << SNOR_PROTO_DATA_SHIFT) & \
	 SNOR_PROTO_DATA_MASK)

171 172
#define SNOR_PROTO_IS_DTR	BIT(24)	/* Double Transfer Rate */

173 174 175 176
#define SNOR_PROTO_STR(_inst_nbits, _addr_nbits, _data_nbits)	\
	(SNOR_PROTO_INST(_inst_nbits) |				\
	 SNOR_PROTO_ADDR(_addr_nbits) |				\
	 SNOR_PROTO_DATA(_data_nbits))
177 178 179
#define SNOR_PROTO_DTR(_inst_nbits, _addr_nbits, _data_nbits)	\
	(SNOR_PROTO_IS_DTR |					\
	 SNOR_PROTO_STR(_inst_nbits, _addr_nbits, _data_nbits))
180 181 182 183 184

enum spi_nor_protocol {
	SNOR_PROTO_1_1_1 = SNOR_PROTO_STR(1, 1, 1),
	SNOR_PROTO_1_1_2 = SNOR_PROTO_STR(1, 1, 2),
	SNOR_PROTO_1_1_4 = SNOR_PROTO_STR(1, 1, 4),
185
	SNOR_PROTO_1_1_8 = SNOR_PROTO_STR(1, 1, 8),
186 187
	SNOR_PROTO_1_2_2 = SNOR_PROTO_STR(1, 2, 2),
	SNOR_PROTO_1_4_4 = SNOR_PROTO_STR(1, 4, 4),
188
	SNOR_PROTO_1_8_8 = SNOR_PROTO_STR(1, 8, 8),
189 190
	SNOR_PROTO_2_2_2 = SNOR_PROTO_STR(2, 2, 2),
	SNOR_PROTO_4_4_4 = SNOR_PROTO_STR(4, 4, 4),
191
	SNOR_PROTO_8_8_8 = SNOR_PROTO_STR(8, 8, 8),
192 193 194 195

	SNOR_PROTO_1_1_1_DTR = SNOR_PROTO_DTR(1, 1, 1),
	SNOR_PROTO_1_2_2_DTR = SNOR_PROTO_DTR(1, 2, 2),
	SNOR_PROTO_1_4_4_DTR = SNOR_PROTO_DTR(1, 4, 4),
196
	SNOR_PROTO_1_8_8_DTR = SNOR_PROTO_DTR(1, 8, 8),
197 198
};

199 200 201 202 203
static inline bool spi_nor_protocol_is_dtr(enum spi_nor_protocol proto)
{
	return !!(proto & SNOR_PROTO_IS_DTR);
}

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
static inline u8 spi_nor_get_protocol_inst_nbits(enum spi_nor_protocol proto)
{
	return ((unsigned long)(proto & SNOR_PROTO_INST_MASK)) >>
		SNOR_PROTO_INST_SHIFT;
}

static inline u8 spi_nor_get_protocol_addr_nbits(enum spi_nor_protocol proto)
{
	return ((unsigned long)(proto & SNOR_PROTO_ADDR_MASK)) >>
		SNOR_PROTO_ADDR_SHIFT;
}

static inline u8 spi_nor_get_protocol_data_nbits(enum spi_nor_protocol proto)
{
	return ((unsigned long)(proto & SNOR_PROTO_DATA_MASK)) >>
		SNOR_PROTO_DATA_SHIFT;
}

static inline u8 spi_nor_get_protocol_width(enum spi_nor_protocol proto)
{
	return spi_nor_get_protocol_data_nbits(proto);
}

227
#define SPI_NOR_MAX_CMD_SIZE	8
228 229 230 231 232 233 234 235
enum spi_nor_ops {
	SPI_NOR_OPS_READ = 0,
	SPI_NOR_OPS_WRITE,
	SPI_NOR_OPS_ERASE,
	SPI_NOR_OPS_LOCK,
	SPI_NOR_OPS_UNLOCK,
};

236 237
enum spi_nor_option_flags {
	SNOR_F_USE_FSR		= BIT(0),
238
	SNOR_F_HAS_SR_TB	= BIT(1),
239 240 241
	SNOR_F_NO_OP_CHIP_ERASE	= BIT(2),
	SNOR_F_S3AN_ADDR_DEFAULT = BIT(3),
	SNOR_F_READY_XSR_RDY	= BIT(4),
242
	SNOR_F_USE_CLSR		= BIT(5),
243
	SNOR_F_BROKEN_RESET	= BIT(6),
244
	SNOR_F_4B_OPCODES	= BIT(7),
245
	SNOR_F_HAS_4BAIT	= BIT(8),
246 247
};

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
/**
 * struct spi_nor_erase_type - Structure to describe a SPI NOR erase type
 * @size:		the size of the sector/block erased by the erase type.
 *			JEDEC JESD216B imposes erase sizes to be a power of 2.
 * @size_shift:		@size is a power of 2, the shift is stored in
 *			@size_shift.
 * @size_mask:		the size mask based on @size_shift.
 * @opcode:		the SPI command op code to erase the sector/block.
 * @idx:		Erase Type index as sorted in the Basic Flash Parameter
 *			Table. It will be used to synchronize the supported
 *			Erase Types with the ones identified in the SFDP
 *			optional tables.
 */
struct spi_nor_erase_type {
	u32	size;
	u32	size_shift;
	u32	size_mask;
	u8	opcode;
	u8	idx;
};

/**
 * struct spi_nor_erase_command - Used for non-uniform erases
 * The structure is used to describe a list of erase commands to be executed
 * once we validate that the erase can be performed. The elements in the list
 * are run-length encoded.
 * @list:		for inclusion into the list of erase commands.
 * @count:		how many times the same erase command should be
 *			consecutively used.
 * @size:		the size of the sector/block erased by the command.
 * @opcode:		the SPI command op code to erase the sector/block.
 */
struct spi_nor_erase_command {
	struct list_head	list;
	u32			count;
	u32			size;
	u8			opcode;
};

/**
 * struct spi_nor_erase_region - Structure to describe a SPI NOR erase region
 * @offset:		the offset in the data array of erase region start.
 *			LSB bits are used as a bitmask encoding flags to
 *			determine if this region is overlaid, if this region is
 *			the last in the SPI NOR flash memory and to indicate
 *			all the supported erase commands inside this region.
 *			The erase types are sorted in ascending order with the
 *			smallest Erase Type size being at BIT(0).
 * @size:		the size of the region in bytes.
 */
struct spi_nor_erase_region {
	u64		offset;
	u64		size;
};

#define SNOR_ERASE_TYPE_MAX	4
#define SNOR_ERASE_TYPE_MASK	GENMASK_ULL(SNOR_ERASE_TYPE_MAX - 1, 0)

#define SNOR_LAST_REGION	BIT(4)
#define SNOR_OVERLAID_REGION	BIT(5)

#define SNOR_ERASE_FLAGS_MAX	6
#define SNOR_ERASE_FLAGS_MASK	GENMASK_ULL(SNOR_ERASE_FLAGS_MAX - 1, 0)

/**
 * struct spi_nor_erase_map - Structure to describe the SPI NOR erase map
 * @regions:		array of erase regions. The regions are consecutive in
 *			address space. Walking through the regions is done
 *			incrementally.
 * @uniform_region:	a pre-allocated erase region for SPI NOR with a uniform
 *			sector size (legacy implementation).
 * @erase_type:		an array of erase types shared by all the regions.
 *			The erase types are sorted in ascending order, with the
 *			smallest Erase Type size being the first member in the
 *			erase_type array.
 * @uniform_erase_type:	bitmask encoding erase types that can erase the
 *			entire memory. This member is completed at init by
 *			uniform and non-uniform SPI NOR flash memories if they
 *			support at least one erase type that can erase the
 *			entire memory.
 */
struct spi_nor_erase_map {
	struct spi_nor_erase_region	*regions;
	struct spi_nor_erase_region	uniform_region;
	struct spi_nor_erase_type	erase_type[SNOR_ERASE_TYPE_MAX];
	u8				uniform_erase_type;
};

336 337 338 339 340 341
/**
 * struct flash_info - Forward declaration of a structure used internally by
 *		       spi_nor_scan()
 */
struct flash_info;

342 343 344 345 346
/**
 * struct spi_nor - Structure for defining a the SPI NOR layer
 * @mtd:		point to a mtd_info structure
 * @lock:		the lock for the read/write/erase/lock/unlock operations
 * @dev:		point to a spi device, or a spi nor controller device.
347
 * @info:		spi-nor part JDEC MFR id and other info
348 349 350 351 352 353 354
 * @page_size:		the page size of the SPI NOR
 * @addr_width:		number of address bytes
 * @erase_opcode:	the opcode for erasing a sector
 * @read_opcode:	the read opcode
 * @read_dummy:		the dummy needed by the read operation
 * @program_opcode:	the program opcode
 * @sst_write_second:	used by the SST write operation
355
 * @flags:		flag options for the current SPI-NOR (SNOR_F_*)
356 357 358
 * @read_proto:		the SPI protocol for read operations
 * @write_proto:	the SPI protocol for write operations
 * @reg_proto		the SPI protocol for read_reg/write_reg/erase operations
359
 * @cmd_buf:		used by the write_reg
360
 * @erase_map:		the erase map of the SPI NOR
361 362 363 364 365 366 367 368 369
 * @prepare:		[OPTIONAL] do some preparations for the
 *			read/write/erase/lock/unlock operations
 * @unprepare:		[OPTIONAL] do some post work after the
 *			read/write/erase/lock/unlock operations
 * @read_reg:		[DRIVER-SPECIFIC] read out the register
 * @write_reg:		[DRIVER-SPECIFIC] write data to the register
 * @read:		[DRIVER-SPECIFIC] read data from the SPI NOR
 * @write:		[DRIVER-SPECIFIC] write data to the SPI NOR
 * @erase:		[DRIVER-SPECIFIC] erase a sector of the SPI NOR
370 371
 *			at the offset @offs; if not provided by the driver,
 *			spi-nor will send the erase opcode via write_reg()
372 373
 * @flash_lock:		[FLASH-SPECIFIC] lock a region of the SPI NOR
 * @flash_unlock:	[FLASH-SPECIFIC] unlock a region of the SPI NOR
374
 * @flash_is_locked:	[FLASH-SPECIFIC] check if a region of the SPI NOR is
375
 * @quad_enable:	[FLASH-SPECIFIC] enables SPI NOR quad mode
376 377
 * @clear_sr_bp:	[FLASH-SPECIFIC] clears the Block Protection Bits from
 *			the SPI NOR Status Register.
378
 *			completely locked
379 380 381
 * @priv:		the private data
 */
struct spi_nor {
382
	struct mtd_info		mtd;
383 384
	struct mutex		lock;
	struct device		*dev;
385
	const struct flash_info	*info;
386 387 388 389 390 391
	u32			page_size;
	u8			addr_width;
	u8			erase_opcode;
	u8			read_opcode;
	u8			read_dummy;
	u8			program_opcode;
392 393 394
	enum spi_nor_protocol	read_proto;
	enum spi_nor_protocol	write_proto;
	enum spi_nor_protocol	reg_proto;
395
	bool			sst_write_second;
396
	u32			flags;
397
	u8			cmd_buf[SPI_NOR_MAX_CMD_SIZE];
398
	struct spi_nor_erase_map	erase_map;
399 400 401 402

	int (*prepare)(struct spi_nor *nor, enum spi_nor_ops ops);
	void (*unprepare)(struct spi_nor *nor, enum spi_nor_ops ops);
	int (*read_reg)(struct spi_nor *nor, u8 opcode, u8 *buf, int len);
403
	int (*write_reg)(struct spi_nor *nor, u8 opcode, u8 *buf, int len);
404

405
	ssize_t (*read)(struct spi_nor *nor, loff_t from,
406
			size_t len, u_char *read_buf);
407
	ssize_t (*write)(struct spi_nor *nor, loff_t to,
408
			size_t len, const u_char *write_buf);
409 410
	int (*erase)(struct spi_nor *nor, loff_t offs);

411 412
	int (*flash_lock)(struct spi_nor *nor, loff_t ofs, uint64_t len);
	int (*flash_unlock)(struct spi_nor *nor, loff_t ofs, uint64_t len);
413
	int (*flash_is_locked)(struct spi_nor *nor, loff_t ofs, uint64_t len);
414
	int (*quad_enable)(struct spi_nor *nor);
415
	int (*clear_sr_bp)(struct spi_nor *nor);
416

417 418
	void *priv;
};
419

420 421 422 423 424 425 426 427 428 429 430 431
static u64 __maybe_unused
spi_nor_region_is_last(const struct spi_nor_erase_region *region)
{
	return region->offset & SNOR_LAST_REGION;
}

static u64 __maybe_unused
spi_nor_region_end(const struct spi_nor_erase_region *region)
{
	return (region->offset & ~SNOR_ERASE_FLAGS_MASK) + region->size;
}

432 433 434 435 436 437 438 439 440 441 442 443
static void __maybe_unused
spi_nor_region_mark_end(struct spi_nor_erase_region *region)
{
	region->offset |= SNOR_LAST_REGION;
}

static void __maybe_unused
spi_nor_region_mark_overlay(struct spi_nor_erase_region *region)
{
	region->offset |= SNOR_OVERLAID_REGION;
}

444 445 446 447 448
static bool __maybe_unused spi_nor_has_uniform_erase(const struct spi_nor *nor)
{
	return !!nor->erase_map.uniform_erase_type;
}

449 450 451
static inline void spi_nor_set_flash_node(struct spi_nor *nor,
					  struct device_node *np)
{
B
Brian Norris 已提交
452
	mtd_set_of_node(&nor->mtd, np);
453 454 455 456
}

static inline struct device_node *spi_nor_get_flash_node(struct spi_nor *nor)
{
B
Brian Norris 已提交
457
	return mtd_get_of_node(&nor->mtd);
458 459
}

460 461 462 463 464 465 466 467 468 469 470 471
/**
 * struct spi_nor_hwcaps - Structure for describing the hardware capabilies
 * supported by the SPI controller (bus master).
 * @mask:		the bitmask listing all the supported hw capabilies
 */
struct spi_nor_hwcaps {
	u32	mask;
};

/*
 *(Fast) Read capabilities.
 * MUST be ordered by priority: the higher bit position, the higher priority.
472
 * As a matter of performances, it is relevant to use Octal SPI protocols first,
473 474
 * then Quad SPI protocols before Dual SPI protocols, Fast Read and lastly
 * (Slow) Read.
475
 */
476
#define SNOR_HWCAPS_READ_MASK		GENMASK(14, 0)
477 478
#define SNOR_HWCAPS_READ		BIT(0)
#define SNOR_HWCAPS_READ_FAST		BIT(1)
479 480 481 482 483 484 485 486 487 488 489 490 491
#define SNOR_HWCAPS_READ_1_1_1_DTR	BIT(2)

#define SNOR_HWCAPS_READ_DUAL		GENMASK(6, 3)
#define SNOR_HWCAPS_READ_1_1_2		BIT(3)
#define SNOR_HWCAPS_READ_1_2_2		BIT(4)
#define SNOR_HWCAPS_READ_2_2_2		BIT(5)
#define SNOR_HWCAPS_READ_1_2_2_DTR	BIT(6)

#define SNOR_HWCAPS_READ_QUAD		GENMASK(10, 7)
#define SNOR_HWCAPS_READ_1_1_4		BIT(7)
#define SNOR_HWCAPS_READ_1_4_4		BIT(8)
#define SNOR_HWCAPS_READ_4_4_4		BIT(9)
#define SNOR_HWCAPS_READ_1_4_4_DTR	BIT(10)
492

493
#define SNOR_HWCAPS_READ_OCTAL		GENMASK(14, 11)
494 495 496 497 498
#define SNOR_HWCAPS_READ_1_1_8		BIT(11)
#define SNOR_HWCAPS_READ_1_8_8		BIT(12)
#define SNOR_HWCAPS_READ_8_8_8		BIT(13)
#define SNOR_HWCAPS_READ_1_8_8_DTR	BIT(14)

499 500 501
/*
 * Page Program capabilities.
 * MUST be ordered by priority: the higher bit position, the higher priority.
502
 * Like (Fast) Read capabilities, Octal/Quad SPI protocols are preferred to the
503 504 505 506 507
 * legacy SPI 1-1-1 protocol.
 * Note that Dual Page Programs are not supported because there is no existing
 * JEDEC/SFDP standard to define them. Also at this moment no SPI flash memory
 * implements such commands.
 */
508
#define SNOR_HWCAPS_PP_MASK	GENMASK(22, 16)
509 510 511 512 513 514 515
#define SNOR_HWCAPS_PP		BIT(16)

#define SNOR_HWCAPS_PP_QUAD	GENMASK(19, 17)
#define SNOR_HWCAPS_PP_1_1_4	BIT(17)
#define SNOR_HWCAPS_PP_1_4_4	BIT(18)
#define SNOR_HWCAPS_PP_4_4_4	BIT(19)

516
#define SNOR_HWCAPS_PP_OCTAL	GENMASK(22, 20)
517 518 519 520
#define SNOR_HWCAPS_PP_1_1_8	BIT(20)
#define SNOR_HWCAPS_PP_1_8_8	BIT(21)
#define SNOR_HWCAPS_PP_8_8_8	BIT(22)

521 522 523
/**
 * spi_nor_scan() - scan the SPI NOR
 * @nor:	the spi_nor structure
524
 * @name:	the chip type name
525
 * @hwcaps:	the hardware capabilities supported by the controller driver
526 527 528 529 530
 *
 * The drivers can use this fuction to scan the SPI NOR.
 * In the scanning, it will try to get all the necessary information to
 * fill the mtd_info{} and the spi_nor{}.
 *
531
 * The chip type name can be provided through the @name parameter.
532 533 534
 *
 * Return: 0 for success, others for failure.
 */
535 536
int spi_nor_scan(struct spi_nor *nor, const char *name,
		 const struct spi_nor_hwcaps *hwcaps);
537

538 539 540 541 542 543
/**
 * spi_nor_restore_addr_mode() - restore the status of SPI NOR
 * @nor:	the spi_nor structure
 */
void spi_nor_restore(struct spi_nor *nor);

544
#endif