i915_active.c 6.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 * SPDX-License-Identifier: MIT
 *
 * Copyright © 2019 Intel Corporation
 */

#include "i915_drv.h"
#include "i915_active.h"

#define BKL(ref) (&(ref)->i915->drm.struct_mutex)

12 13 14 15 16 17 18 19 20 21 22
/*
 * Active refs memory management
 *
 * To be more economical with memory, we reap all the i915_active trees as
 * they idle (when we know the active requests are inactive) and allocate the
 * nodes from a local slab cache to hopefully reduce the fragmentation.
 */
static struct i915_global_active {
	struct kmem_cache *slab_cache;
} global;

23 24 25 26 27 28 29
struct active_node {
	struct i915_gem_active base;
	struct i915_active *ref;
	struct rb_node node;
	u64 timeline;
};

30 31 32 33 34 35 36
static void
__active_park(struct i915_active *ref)
{
	struct active_node *it, *n;

	rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
		GEM_BUG_ON(i915_gem_active_isset(&it->base));
37
		kmem_cache_free(global.slab_cache, it);
38 39 40 41
	}
	ref->tree = RB_ROOT;
}

42 43 44 45
static void
__active_retire(struct i915_active *ref)
{
	GEM_BUG_ON(!ref->count);
46 47 48 49 50 51 52
	if (--ref->count)
		return;

	/* return the unused nodes to our slabcache */
	__active_park(ref);

	ref->retire(ref);
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
}

static void
node_retire(struct i915_gem_active *base, struct i915_request *rq)
{
	__active_retire(container_of(base, struct active_node, base)->ref);
}

static void
last_retire(struct i915_gem_active *base, struct i915_request *rq)
{
	__active_retire(container_of(base, struct i915_active, last));
}

static struct i915_gem_active *
active_instance(struct i915_active *ref, u64 idx)
{
	struct active_node *node;
	struct rb_node **p, *parent;
	struct i915_request *old;

	/*
	 * We track the most recently used timeline to skip a rbtree search
	 * for the common case, under typical loads we never need the rbtree
	 * at all. We can reuse the last slot if it is empty, that is
	 * after the previous activity has been retired, or if it matches the
	 * current timeline.
	 *
	 * Note that we allow the timeline to be active simultaneously in
	 * the rbtree and the last cache. We do this to avoid having
	 * to search and replace the rbtree element for a new timeline, with
	 * the cost being that we must be aware that the ref may be retired
	 * twice for the same timeline (as the older rbtree element will be
	 * retired before the new request added to last).
	 */
	old = i915_gem_active_raw(&ref->last, BKL(ref));
	if (!old || old->fence.context == idx)
		goto out;

	/* Move the currently active fence into the rbtree */
	idx = old->fence.context;

	parent = NULL;
	p = &ref->tree.rb_node;
	while (*p) {
		parent = *p;

		node = rb_entry(parent, struct active_node, node);
		if (node->timeline == idx)
			goto replace;

		if (node->timeline < idx)
			p = &parent->rb_right;
		else
			p = &parent->rb_left;
	}

110
	node = kmem_cache_alloc(global.slab_cache, GFP_KERNEL);
111 112 113

	/* kmalloc may retire the ref->last (thanks shrinker)! */
	if (unlikely(!i915_gem_active_raw(&ref->last, BKL(ref)))) {
114
		kmem_cache_free(global.slab_cache, node);
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
		goto out;
	}

	if (unlikely(!node))
		return ERR_PTR(-ENOMEM);

	init_request_active(&node->base, node_retire);
	node->ref = ref;
	node->timeline = idx;

	rb_link_node(&node->node, parent, p);
	rb_insert_color(&node->node, &ref->tree);

replace:
	/*
	 * Overwrite the previous active slot in the rbtree with last,
	 * leaving last zeroed. If the previous slot is still active,
	 * we must be careful as we now only expect to receive one retire
	 * callback not two, and so much undo the active counting for the
	 * overwritten slot.
	 */
	if (i915_gem_active_isset(&node->base)) {
		/* Retire ourselves from the old rq->active_list */
		__list_del_entry(&node->base.link);
		ref->count--;
		GEM_BUG_ON(!ref->count);
	}
	GEM_BUG_ON(list_empty(&ref->last.link));
	list_replace_init(&ref->last.link, &node->base.link);
	node->base.request = fetch_and_zero(&ref->last.request);

out:
	return &ref->last;
}

void i915_active_init(struct drm_i915_private *i915,
		      struct i915_active *ref,
		      void (*retire)(struct i915_active *ref))
{
	ref->i915 = i915;
	ref->retire = retire;
	ref->tree = RB_ROOT;
	init_request_active(&ref->last, last_retire);
	ref->count = 0;
}

int i915_active_ref(struct i915_active *ref,
		    u64 timeline,
		    struct i915_request *rq)
{
	struct i915_gem_active *active;

	active = active_instance(ref, timeline);
	if (IS_ERR(active))
		return PTR_ERR(active);

	if (!i915_gem_active_isset(active))
		ref->count++;
	i915_gem_active_set(active, rq);

	GEM_BUG_ON(!ref->count);
	return 0;
}

bool i915_active_acquire(struct i915_active *ref)
{
	lockdep_assert_held(BKL(ref));
	return !ref->count++;
}

void i915_active_release(struct i915_active *ref)
{
	lockdep_assert_held(BKL(ref));
	__active_retire(ref);
}

int i915_active_wait(struct i915_active *ref)
{
	struct active_node *it, *n;
	int ret = 0;

	if (i915_active_acquire(ref))
		goto out_release;

	ret = i915_gem_active_retire(&ref->last, BKL(ref));
	if (ret)
		goto out_release;

	rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
		ret = i915_gem_active_retire(&it->base, BKL(ref));
		if (ret)
			break;
	}

out_release:
	i915_active_release(ref);
	return ret;
}

static int __i915_request_await_active(struct i915_request *rq,
				       struct i915_gem_active *active)
{
	struct i915_request *barrier =
		i915_gem_active_raw(active, &rq->i915->drm.struct_mutex);

	return barrier ? i915_request_await_dma_fence(rq, &barrier->fence) : 0;
}

int i915_request_await_active(struct i915_request *rq, struct i915_active *ref)
{
	struct active_node *it, *n;
	int ret;

	ret = __i915_request_await_active(rq, &ref->last);
	if (ret)
		return ret;

	rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
		ret = __i915_request_await_active(rq, &it->base);
		if (ret)
			return ret;
	}

	return 0;
}

241
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
242 243 244
void i915_active_fini(struct i915_active *ref)
{
	GEM_BUG_ON(i915_gem_active_isset(&ref->last));
245 246
	GEM_BUG_ON(!RB_EMPTY_ROOT(&ref->tree));
	GEM_BUG_ON(ref->count);
247
}
248
#endif
249 250 251 252

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/i915_active.c"
#endif
253 254 255 256 257 258 259 260 261 262 263 264 265 266

int __init i915_global_active_init(void)
{
	global.slab_cache = KMEM_CACHE(active_node, SLAB_HWCACHE_ALIGN);
	if (!global.slab_cache)
		return -ENOMEM;

	return 0;
}

void __exit i915_global_active_exit(void)
{
	kmem_cache_destroy(global.slab_cache);
}