spi-pl022.c 63.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
/*
 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
 *
 * Copyright (C) 2008-2009 ST-Ericsson AB
 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
 *
 * Author: Linus Walleij <linus.walleij@stericsson.com>
 *
 * Initial version inspired by:
 *	linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
 * Initial adoption to PL022 by:
 *      Sachin Verma <sachin.verma@st.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/init.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/ioport.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/spi/spi.h>
#include <linux/delay.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/amba/bus.h>
#include <linux/amba/pl022.h>
#include <linux/io.h>
38
#include <linux/slab.h>
39 40 41
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/scatterlist.h>
R
Rabin Vincent 已提交
42
#include <linux/pm_runtime.h>
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

/*
 * This macro is used to define some register default values.
 * reg is masked with mask, the OR:ed with an (again masked)
 * val shifted sb steps to the left.
 */
#define SSP_WRITE_BITS(reg, val, mask, sb) \
 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))

/*
 * This macro is also used to define some default values.
 * It will just shift val by sb steps to the left and mask
 * the result with mask.
 */
#define GEN_MASK_BITS(val, mask, sb) \
 (((val)<<(sb)) & (mask))

#define DRIVE_TX		0
#define DO_NOT_DRIVE_TX		1

#define DO_NOT_QUEUE_DMA	0
#define QUEUE_DMA		1

#define RX_TRANSFER		1
#define TX_TRANSFER		2

/*
 * Macros to access SSP Registers with their offsets
 */
#define SSP_CR0(r)	(r + 0x000)
#define SSP_CR1(r)	(r + 0x004)
#define SSP_DR(r)	(r + 0x008)
#define SSP_SR(r)	(r + 0x00C)
#define SSP_CPSR(r)	(r + 0x010)
#define SSP_IMSC(r)	(r + 0x014)
#define SSP_RIS(r)	(r + 0x018)
#define SSP_MIS(r)	(r + 0x01C)
#define SSP_ICR(r)	(r + 0x020)
#define SSP_DMACR(r)	(r + 0x024)
#define SSP_ITCR(r)	(r + 0x080)
#define SSP_ITIP(r)	(r + 0x084)
#define SSP_ITOP(r)	(r + 0x088)
#define SSP_TDR(r)	(r + 0x08C)

#define SSP_PID0(r)	(r + 0xFE0)
#define SSP_PID1(r)	(r + 0xFE4)
#define SSP_PID2(r)	(r + 0xFE8)
#define SSP_PID3(r)	(r + 0xFEC)

#define SSP_CID0(r)	(r + 0xFF0)
#define SSP_CID1(r)	(r + 0xFF4)
#define SSP_CID2(r)	(r + 0xFF8)
#define SSP_CID3(r)	(r + 0xFFC)

/*
 * SSP Control Register 0  - SSP_CR0
 */
100 101
#define SSP_CR0_MASK_DSS	(0x0FUL << 0)
#define SSP_CR0_MASK_FRF	(0x3UL << 4)
102 103 104
#define SSP_CR0_MASK_SPO	(0x1UL << 6)
#define SSP_CR0_MASK_SPH	(0x1UL << 7)
#define SSP_CR0_MASK_SCR	(0xFFUL << 8)
105 106 107 108 109 110 111 112 113 114

/*
 * The ST version of this block moves som bits
 * in SSP_CR0 and extends it to 32 bits
 */
#define SSP_CR0_MASK_DSS_ST	(0x1FUL << 0)
#define SSP_CR0_MASK_HALFDUP_ST	(0x1UL << 5)
#define SSP_CR0_MASK_CSS_ST	(0x1FUL << 16)
#define SSP_CR0_MASK_FRF_ST	(0x3UL << 21)

115 116 117 118 119 120 121 122 123
/*
 * SSP Control Register 0  - SSP_CR1
 */
#define SSP_CR1_MASK_LBM	(0x1UL << 0)
#define SSP_CR1_MASK_SSE	(0x1UL << 1)
#define SSP_CR1_MASK_MS		(0x1UL << 2)
#define SSP_CR1_MASK_SOD	(0x1UL << 3)

/*
124 125
 * The ST version of this block adds some bits
 * in SSP_CR1
126
 */
127 128 129 130 131
#define SSP_CR1_MASK_RENDN_ST	(0x1UL << 4)
#define SSP_CR1_MASK_TENDN_ST	(0x1UL << 5)
#define SSP_CR1_MASK_MWAIT_ST	(0x1UL << 6)
#define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
#define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
132 133
/* This one is only in the PL023 variant */
#define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
134 135 136 137 138 139 140

/*
 * SSP Status Register - SSP_SR
 */
#define SSP_SR_MASK_TFE		(0x1UL << 0) /* Transmit FIFO empty */
#define SSP_SR_MASK_TNF		(0x1UL << 1) /* Transmit FIFO not full */
#define SSP_SR_MASK_RNE		(0x1UL << 2) /* Receive FIFO not empty */
141
#define SSP_SR_MASK_RFF		(0x1UL << 3) /* Receive FIFO full */
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
#define SSP_SR_MASK_BSY		(0x1UL << 4) /* Busy Flag */

/*
 * SSP Clock Prescale Register  - SSP_CPSR
 */
#define SSP_CPSR_MASK_CPSDVSR	(0xFFUL << 0)

/*
 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
 */
#define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
#define SSP_IMSC_MASK_RTIM  (0x1UL << 1) /* Receive timeout Interrupt mask */
#define SSP_IMSC_MASK_RXIM  (0x1UL << 2) /* Receive FIFO Interrupt mask */
#define SSP_IMSC_MASK_TXIM  (0x1UL << 3) /* Transmit FIFO Interrupt mask */

/*
 * SSP Raw Interrupt Status Register - SSP_RIS
 */
/* Receive Overrun Raw Interrupt status */
#define SSP_RIS_MASK_RORRIS		(0x1UL << 0)
/* Receive Timeout Raw Interrupt status */
#define SSP_RIS_MASK_RTRIS		(0x1UL << 1)
/* Receive FIFO Raw Interrupt status */
#define SSP_RIS_MASK_RXRIS		(0x1UL << 2)
/* Transmit FIFO Raw Interrupt status */
#define SSP_RIS_MASK_TXRIS		(0x1UL << 3)

/*
 * SSP Masked Interrupt Status Register - SSP_MIS
 */
/* Receive Overrun Masked Interrupt status */
#define SSP_MIS_MASK_RORMIS		(0x1UL << 0)
/* Receive Timeout Masked Interrupt status */
#define SSP_MIS_MASK_RTMIS		(0x1UL << 1)
/* Receive FIFO Masked Interrupt status */
#define SSP_MIS_MASK_RXMIS		(0x1UL << 2)
/* Transmit FIFO Masked Interrupt status */
#define SSP_MIS_MASK_TXMIS		(0x1UL << 3)

/*
 * SSP Interrupt Clear Register - SSP_ICR
 */
/* Receive Overrun Raw Clear Interrupt bit */
#define SSP_ICR_MASK_RORIC		(0x1UL << 0)
/* Receive Timeout Clear Interrupt bit */
#define SSP_ICR_MASK_RTIC		(0x1UL << 1)

/*
 * SSP DMA Control Register - SSP_DMACR
 */
/* Receive DMA Enable bit */
#define SSP_DMACR_MASK_RXDMAE		(0x1UL << 0)
/* Transmit DMA Enable bit */
#define SSP_DMACR_MASK_TXDMAE		(0x1UL << 1)

/*
 * SSP Integration Test control Register - SSP_ITCR
 */
#define SSP_ITCR_MASK_ITEN		(0x1UL << 0)
#define SSP_ITCR_MASK_TESTFIFO		(0x1UL << 1)

/*
 * SSP Integration Test Input Register - SSP_ITIP
 */
#define ITIP_MASK_SSPRXD		 (0x1UL << 0)
#define ITIP_MASK_SSPFSSIN		 (0x1UL << 1)
#define ITIP_MASK_SSPCLKIN		 (0x1UL << 2)
#define ITIP_MASK_RXDMAC		 (0x1UL << 3)
#define ITIP_MASK_TXDMAC		 (0x1UL << 4)
#define ITIP_MASK_SSPTXDIN		 (0x1UL << 5)

/*
 * SSP Integration Test output Register - SSP_ITOP
 */
#define ITOP_MASK_SSPTXD		 (0x1UL << 0)
#define ITOP_MASK_SSPFSSOUT		 (0x1UL << 1)
#define ITOP_MASK_SSPCLKOUT		 (0x1UL << 2)
#define ITOP_MASK_SSPOEn		 (0x1UL << 3)
#define ITOP_MASK_SSPCTLOEn		 (0x1UL << 4)
#define ITOP_MASK_RORINTR		 (0x1UL << 5)
#define ITOP_MASK_RTINTR		 (0x1UL << 6)
#define ITOP_MASK_RXINTR		 (0x1UL << 7)
#define ITOP_MASK_TXINTR		 (0x1UL << 8)
#define ITOP_MASK_INTR			 (0x1UL << 9)
#define ITOP_MASK_RXDMABREQ		 (0x1UL << 10)
#define ITOP_MASK_RXDMASREQ		 (0x1UL << 11)
#define ITOP_MASK_TXDMABREQ		 (0x1UL << 12)
#define ITOP_MASK_TXDMASREQ		 (0x1UL << 13)

/*
 * SSP Test Data Register - SSP_TDR
 */
234
#define TDR_MASK_TESTDATA		(0xFFFFFFFF)
235 236 237 238 239 240 241

/*
 * Message State
 * we use the spi_message.state (void *) pointer to
 * hold a single state value, that's why all this
 * (void *) casting is done here.
 */
242 243 244 245
#define STATE_START			((void *) 0)
#define STATE_RUNNING			((void *) 1)
#define STATE_DONE			((void *) 2)
#define STATE_ERROR			((void *) -1)
246 247 248 249

/*
 * SSP State - Whether Enabled or Disabled
 */
250 251
#define SSP_DISABLED			(0)
#define SSP_ENABLED			(1)
252 253 254 255

/*
 * SSP DMA State - Whether DMA Enabled or Disabled
 */
256 257
#define SSP_DMA_DISABLED		(0)
#define SSP_DMA_ENABLED			(1)
258 259 260 261

/*
 * SSP Clock Defaults
 */
262 263
#define SSP_DEFAULT_CLKRATE 0x2
#define SSP_DEFAULT_PRESCALE 0x40
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281

/*
 * SSP Clock Parameter ranges
 */
#define CPSDVR_MIN 0x02
#define CPSDVR_MAX 0xFE
#define SCR_MIN 0x00
#define SCR_MAX 0xFF

/*
 * SSP Interrupt related Macros
 */
#define DEFAULT_SSP_REG_IMSC  0x0UL
#define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
#define ENABLE_ALL_INTERRUPTS (~DEFAULT_SSP_REG_IMSC)

#define CLEAR_ALL_INTERRUPTS  0x3

282 283
#define SPI_POLLING_TIMEOUT 1000

284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
/*
 * The type of reading going on on this chip
 */
enum ssp_reading {
	READING_NULL,
	READING_U8,
	READING_U16,
	READING_U32
};

/**
 * The type of writing going on on this chip
 */
enum ssp_writing {
	WRITING_NULL,
	WRITING_U8,
	WRITING_U16,
	WRITING_U32
};

/**
 * struct vendor_data - vendor-specific config parameters
 * for PL022 derivates
 * @fifodepth: depth of FIFOs (both)
 * @max_bpw: maximum number of bits per word
 * @unidir: supports unidirection transfers
310 311
 * @extended_cr: 32 bit wide control register 0 with extra
 * features and extra features in CR1 as found in the ST variants
312
 * @pl023: supports a subset of the ST extensions called "PL023"
313 314 315 316 317
 */
struct vendor_data {
	int fifodepth;
	int max_bpw;
	bool unidir;
318
	bool extended_cr;
319
	bool pl023;
320
	bool loopback;
321 322 323 324 325
};

/**
 * struct pl022 - This is the private SSP driver data structure
 * @adev: AMBA device model hookup
326 327 328 329
 * @vendor: vendor data for the IP block
 * @phybase: the physical memory where the SSP device resides
 * @virtbase: the virtual memory where the SSP is mapped
 * @clk: outgoing clock "SPICLK" for the SPI bus
330 331
 * @master: SPI framework hookup
 * @master_info: controller-specific data from machine setup
332 333 334
 * @kworker: thread struct for message pump
 * @kworker_task: pointer to task for message pump kworker thread
 * @pump_messages: work struct for scheduling work to the message pump
335 336
 * @queue_lock: spinlock to syncronise access to message queue
 * @queue: message queue
337 338
 * @busy: message pump is busy
 * @running: message pump is running
339 340 341 342
 * @pump_transfers: Tasklet used in Interrupt Transfer mode
 * @cur_msg: Pointer to current spi_message being processed
 * @cur_transfer: Pointer to current spi_transfer
 * @cur_chip: pointer to current clients chip(assigned from controller_state)
343 344 345 346
 * @next_msg_cs_active: the next message in the queue has been examined
 *  and it was found that it uses the same chip select as the previous
 *  message, so we left it active after the previous transfer, and it's
 *  active already.
347 348 349 350
 * @tx: current position in TX buffer to be read
 * @tx_end: end position in TX buffer to be read
 * @rx: current position in RX buffer to be written
 * @rx_end: end position in RX buffer to be written
351 352 353 354 355 356 357 358
 * @read: the type of read currently going on
 * @write: the type of write currently going on
 * @exp_fifo_level: expected FIFO level
 * @dma_rx_channel: optional channel for RX DMA
 * @dma_tx_channel: optional channel for TX DMA
 * @sgt_rx: scattertable for the RX transfer
 * @sgt_tx: scattertable for the TX transfer
 * @dummypage: a dummy page used for driving data on the bus with DMA
359 360 361 362 363 364 365 366 367
 */
struct pl022 {
	struct amba_device		*adev;
	struct vendor_data		*vendor;
	resource_size_t			phybase;
	void __iomem			*virtbase;
	struct clk			*clk;
	struct spi_master		*master;
	struct pl022_ssp_controller	*master_info;
368
	/* Message per-transfer pump */
369 370 371 372
	struct tasklet_struct		pump_transfers;
	struct spi_message		*cur_msg;
	struct spi_transfer		*cur_transfer;
	struct chip_data		*cur_chip;
373
	bool				next_msg_cs_active;
374 375 376 377 378 379
	void				*tx;
	void				*tx_end;
	void				*rx;
	void				*rx_end;
	enum ssp_reading		read;
	enum ssp_writing		write;
380
	u32				exp_fifo_level;
381 382
	enum ssp_rx_level_trig		rx_lev_trig;
	enum ssp_tx_level_trig		tx_lev_trig;
383 384 385 386 387 388 389
	/* DMA settings */
#ifdef CONFIG_DMA_ENGINE
	struct dma_chan			*dma_rx_channel;
	struct dma_chan			*dma_tx_channel;
	struct sg_table			sgt_rx;
	struct sg_table			sgt_tx;
	char				*dummypage;
390
	bool				dma_running;
391
#endif
392 393 394 395
};

/**
 * struct chip_data - To maintain runtime state of SSP for each client chip
396 397
 * @cr0: Value of control register CR0 of SSP - on later ST variants this
 *       register is 32 bits wide rather than just 16
398 399 400 401 402 403
 * @cr1: Value of control register CR1 of SSP
 * @dmacr: Value of DMA control Register of SSP
 * @cpsr: Value of Clock prescale register
 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
 * @enable_dma: Whether to enable DMA or not
 * @read: function ptr to be used to read when doing xfer for this chip
404
 * @write: function ptr to be used to write when doing xfer for this chip
405 406 407 408 409 410 411
 * @cs_control: chip select callback provided by chip
 * @xfer_type: polling/interrupt/DMA
 *
 * Runtime state of the SSP controller, maintained per chip,
 * This would be set according to the current message that would be served
 */
struct chip_data {
412
	u32 cr0;
413 414 415 416
	u16 cr1;
	u16 dmacr;
	u16 cpsr;
	u8 n_bytes;
417
	bool enable_dma;
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
	enum ssp_reading read;
	enum ssp_writing write;
	void (*cs_control) (u32 command);
	int xfer_type;
};

/**
 * null_cs_control - Dummy chip select function
 * @command: select/delect the chip
 *
 * If no chip select function is provided by client this is used as dummy
 * chip select
 */
static void null_cs_control(u32 command)
{
	pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
}

/**
 * giveback - current spi_message is over, schedule next message and call
 * callback of this message. Assumes that caller already
 * set message->status; dma and pio irqs are blocked
 * @pl022: SSP driver private data structure
 */
static void giveback(struct pl022 *pl022)
{
	struct spi_transfer *last_transfer;
445
	pl022->next_msg_cs_active = false;
446

447
	last_transfer = list_entry(pl022->cur_msg->transfers.prev,
448 449 450 451 452 453 454 455 456 457 458
					struct spi_transfer,
					transfer_list);

	/* Delay if requested before any change in chip select */
	if (last_transfer->delay_usecs)
		/*
		 * FIXME: This runs in interrupt context.
		 * Is this really smart?
		 */
		udelay(last_transfer->delay_usecs);

459
	if (!last_transfer->cs_change) {
460 461
		struct spi_message *next_msg;

462 463 464 465
		/*
		 * cs_change was not set. We can keep the chip select
		 * enabled if there is message in the queue and it is
		 * for the same spi device.
466 467 468 469 470 471 472
		 *
		 * We cannot postpone this until pump_messages, because
		 * after calling msg->complete (below) the driver that
		 * sent the current message could be unloaded, which
		 * could invalidate the cs_control() callback...
		 */
		/* get a pointer to the next message, if any */
473
		next_msg = spi_get_next_queued_message(pl022->master);
474

475 476 477
		/*
		 * see if the next and current messages point
		 * to the same spi device.
478
		 */
479
		if (next_msg && next_msg->spi != pl022->cur_msg->spi)
480
			next_msg = NULL;
481 482 483 484
		if (!next_msg || pl022->cur_msg->state == STATE_ERROR)
			pl022->cur_chip->cs_control(SSP_CHIP_DESELECT);
		else
			pl022->next_msg_cs_active = true;
485

486
	}
487 488 489 490

	pl022->cur_msg = NULL;
	pl022->cur_transfer = NULL;
	pl022->cur_chip = NULL;
491
	spi_finalize_current_message(pl022->master);
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
}

/**
 * flush - flush the FIFO to reach a clean state
 * @pl022: SSP driver private data structure
 */
static int flush(struct pl022 *pl022)
{
	unsigned long limit = loops_per_jiffy << 1;

	dev_dbg(&pl022->adev->dev, "flush\n");
	do {
		while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
			readw(SSP_DR(pl022->virtbase));
	} while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
507 508 509

	pl022->exp_fifo_level = 0;

510 511 512 513 514 515 516 517 518 519 520
	return limit;
}

/**
 * restore_state - Load configuration of current chip
 * @pl022: SSP driver private data structure
 */
static void restore_state(struct pl022 *pl022)
{
	struct chip_data *chip = pl022->cur_chip;

521 522 523 524
	if (pl022->vendor->extended_cr)
		writel(chip->cr0, SSP_CR0(pl022->virtbase));
	else
		writew(chip->cr0, SSP_CR0(pl022->virtbase));
525 526 527 528 529 530 531 532 533 534 535 536
	writew(chip->cr1, SSP_CR1(pl022->virtbase));
	writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
	writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
}

/*
 * Default SSP Register Values
 */
#define DEFAULT_SSP_REG_CR0 ( \
	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0)	| \
537 538 539 540 541 542 543 544 545 546
	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
)

/* ST versions have slightly different bit layout */
#define DEFAULT_SSP_REG_CR0_ST ( \
	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
	GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
547
	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
548
	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
549 550 551
	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
	GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16)	| \
	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
552 553
)

554 555 556 557 558 559 560 561
/* The PL023 version is slightly different again */
#define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
)

562 563 564 565
#define DEFAULT_SSP_REG_CR1 ( \
	GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
566
	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
567 568
)

569 570 571 572 573 574 575 576 577 578
/* ST versions extend this register to use all 16 bits */
#define DEFAULT_SSP_REG_CR1_ST ( \
	DEFAULT_SSP_REG_CR1 | \
	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
	GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
)

579 580 581 582 583 584 585 586 587 588 589 590 591 592
/*
 * The PL023 variant has further differences: no loopback mode, no microwire
 * support, and a new clock feedback delay setting.
 */
#define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
	GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
)
593

594
#define DEFAULT_SSP_REG_CPSR ( \
595
	GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
596 597 598 599 600 601 602
)

#define DEFAULT_SSP_REG_DMACR (\
	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
)

603 604 605 606
/**
 * load_ssp_default_config - Load default configuration for SSP
 * @pl022: SSP driver private data structure
 */
607 608
static void load_ssp_default_config(struct pl022 *pl022)
{
609 610 611 612
	if (pl022->vendor->pl023) {
		writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
		writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
	} else if (pl022->vendor->extended_cr) {
613 614 615 616 617 618
		writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
		writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
	} else {
		writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
		writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
	}
619 620 621 622 623 624 625 626 627 628 629 630 631 632
	writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
	writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
}

/**
 * This will write to TX and read from RX according to the parameters
 * set in pl022.
 */
static void readwriter(struct pl022 *pl022)
{

	/*
L
Lucas De Marchi 已提交
633
	 * The FIFO depth is different between primecell variants.
634 635 636 637
	 * I believe filling in too much in the FIFO might cause
	 * errons in 8bit wide transfers on ARM variants (just 8 words
	 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
	 *
638 639 640
	 * To prevent this issue, the TX FIFO is only filled to the
	 * unused RX FIFO fill length, regardless of what the TX
	 * FIFO status flag indicates.
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
	 */
	dev_dbg(&pl022->adev->dev,
		"%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
		__func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);

	/* Read as much as you can */
	while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
	       && (pl022->rx < pl022->rx_end)) {
		switch (pl022->read) {
		case READING_NULL:
			readw(SSP_DR(pl022->virtbase));
			break;
		case READING_U8:
			*(u8 *) (pl022->rx) =
				readw(SSP_DR(pl022->virtbase)) & 0xFFU;
			break;
		case READING_U16:
			*(u16 *) (pl022->rx) =
				(u16) readw(SSP_DR(pl022->virtbase));
			break;
		case READING_U32:
			*(u32 *) (pl022->rx) =
				readl(SSP_DR(pl022->virtbase));
			break;
		}
		pl022->rx += (pl022->cur_chip->n_bytes);
667
		pl022->exp_fifo_level--;
668 669
	}
	/*
670
	 * Write as much as possible up to the RX FIFO size
671
	 */
672
	while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
	       && (pl022->tx < pl022->tx_end)) {
		switch (pl022->write) {
		case WRITING_NULL:
			writew(0x0, SSP_DR(pl022->virtbase));
			break;
		case WRITING_U8:
			writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
			break;
		case WRITING_U16:
			writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
			break;
		case WRITING_U32:
			writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
			break;
		}
		pl022->tx += (pl022->cur_chip->n_bytes);
689
		pl022->exp_fifo_level++;
690 691 692 693
		/*
		 * This inner reader takes care of things appearing in the RX
		 * FIFO as we're transmitting. This will happen a lot since the
		 * clock starts running when you put things into the TX FIFO,
L
Lucas De Marchi 已提交
694
		 * and then things are continuously clocked into the RX FIFO.
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
		 */
		while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
		       && (pl022->rx < pl022->rx_end)) {
			switch (pl022->read) {
			case READING_NULL:
				readw(SSP_DR(pl022->virtbase));
				break;
			case READING_U8:
				*(u8 *) (pl022->rx) =
					readw(SSP_DR(pl022->virtbase)) & 0xFFU;
				break;
			case READING_U16:
				*(u16 *) (pl022->rx) =
					(u16) readw(SSP_DR(pl022->virtbase));
				break;
			case READING_U32:
				*(u32 *) (pl022->rx) =
					readl(SSP_DR(pl022->virtbase));
				break;
			}
			pl022->rx += (pl022->cur_chip->n_bytes);
716
			pl022->exp_fifo_level--;
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
		}
	}
	/*
	 * When we exit here the TX FIFO should be full and the RX FIFO
	 * should be empty
	 */
}

/**
 * next_transfer - Move to the Next transfer in the current spi message
 * @pl022: SSP driver private data structure
 *
 * This function moves though the linked list of spi transfers in the
 * current spi message and returns with the state of current spi
 * message i.e whether its last transfer is done(STATE_DONE) or
 * Next transfer is ready(STATE_RUNNING)
 */
static void *next_transfer(struct pl022 *pl022)
{
	struct spi_message *msg = pl022->cur_msg;
	struct spi_transfer *trans = pl022->cur_transfer;

	/* Move to next transfer */
	if (trans->transfer_list.next != &msg->transfers) {
		pl022->cur_transfer =
		    list_entry(trans->transfer_list.next,
			       struct spi_transfer, transfer_list);
		return STATE_RUNNING;
	}
	return STATE_DONE;
}
748 749 750 751 752 753 754 755 756

/*
 * This DMA functionality is only compiled in if we have
 * access to the generic DMA devices/DMA engine.
 */
#ifdef CONFIG_DMA_ENGINE
static void unmap_free_dma_scatter(struct pl022 *pl022)
{
	/* Unmap and free the SG tables */
757
	dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
758
		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
759
	dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
		     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
	sg_free_table(&pl022->sgt_rx);
	sg_free_table(&pl022->sgt_tx);
}

static void dma_callback(void *data)
{
	struct pl022 *pl022 = data;
	struct spi_message *msg = pl022->cur_msg;

	BUG_ON(!pl022->sgt_rx.sgl);

#ifdef VERBOSE_DEBUG
	/*
	 * Optionally dump out buffers to inspect contents, this is
	 * good if you want to convince yourself that the loopback
	 * read/write contents are the same, when adopting to a new
	 * DMA engine.
	 */
	{
		struct scatterlist *sg;
		unsigned int i;

		dma_sync_sg_for_cpu(&pl022->adev->dev,
				    pl022->sgt_rx.sgl,
				    pl022->sgt_rx.nents,
				    DMA_FROM_DEVICE);

		for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
			dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
			print_hex_dump(KERN_ERR, "SPI RX: ",
				       DUMP_PREFIX_OFFSET,
				       16,
				       1,
				       sg_virt(sg),
				       sg_dma_len(sg),
				       1);
		}
		for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
			dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
			print_hex_dump(KERN_ERR, "SPI TX: ",
				       DUMP_PREFIX_OFFSET,
				       16,
				       1,
				       sg_virt(sg),
				       sg_dma_len(sg),
				       1);
		}
	}
#endif

	unmap_free_dma_scatter(pl022);

L
Lucas De Marchi 已提交
813
	/* Update total bytes transferred */
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
	msg->actual_length += pl022->cur_transfer->len;
	if (pl022->cur_transfer->cs_change)
		pl022->cur_chip->
			cs_control(SSP_CHIP_DESELECT);

	/* Move to next transfer */
	msg->state = next_transfer(pl022);
	tasklet_schedule(&pl022->pump_transfers);
}

static void setup_dma_scatter(struct pl022 *pl022,
			      void *buffer,
			      unsigned int length,
			      struct sg_table *sgtab)
{
	struct scatterlist *sg;
	int bytesleft = length;
	void *bufp = buffer;
	int mapbytes;
	int i;

	if (buffer) {
		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
			/*
			 * If there are less bytes left than what fits
			 * in the current page (plus page alignment offset)
			 * we just feed in this, else we stuff in as much
			 * as we can.
			 */
			if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
				mapbytes = bytesleft;
			else
				mapbytes = PAGE_SIZE - offset_in_page(bufp);
			sg_set_page(sg, virt_to_page(bufp),
				    mapbytes, offset_in_page(bufp));
			bufp += mapbytes;
			bytesleft -= mapbytes;
			dev_dbg(&pl022->adev->dev,
				"set RX/TX target page @ %p, %d bytes, %d left\n",
				bufp, mapbytes, bytesleft);
		}
	} else {
		/* Map the dummy buffer on every page */
		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
			if (bytesleft < PAGE_SIZE)
				mapbytes = bytesleft;
			else
				mapbytes = PAGE_SIZE;
			sg_set_page(sg, virt_to_page(pl022->dummypage),
				    mapbytes, 0);
			bytesleft -= mapbytes;
			dev_dbg(&pl022->adev->dev,
				"set RX/TX to dummy page %d bytes, %d left\n",
				mapbytes, bytesleft);

		}
	}
	BUG_ON(bytesleft);
}

/**
 * configure_dma - configures the channels for the next transfer
 * @pl022: SSP driver's private data structure
 */
static int configure_dma(struct pl022 *pl022)
{
	struct dma_slave_config rx_conf = {
		.src_addr = SSP_DR(pl022->phybase),
882
		.direction = DMA_DEV_TO_MEM,
883
		.device_fc = false,
884 885 886
	};
	struct dma_slave_config tx_conf = {
		.dst_addr = SSP_DR(pl022->phybase),
887
		.direction = DMA_MEM_TO_DEV,
888
		.device_fc = false,
889 890 891
	};
	unsigned int pages;
	int ret;
892
	int rx_sglen, tx_sglen;
893 894 895 896 897 898 899 900 901
	struct dma_chan *rxchan = pl022->dma_rx_channel;
	struct dma_chan *txchan = pl022->dma_tx_channel;
	struct dma_async_tx_descriptor *rxdesc;
	struct dma_async_tx_descriptor *txdesc;

	/* Check that the channels are available */
	if (!rxchan || !txchan)
		return -ENODEV;

902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
	/*
	 * If supplied, the DMA burstsize should equal the FIFO trigger level.
	 * Notice that the DMA engine uses one-to-one mapping. Since we can
	 * not trigger on 2 elements this needs explicit mapping rather than
	 * calculation.
	 */
	switch (pl022->rx_lev_trig) {
	case SSP_RX_1_OR_MORE_ELEM:
		rx_conf.src_maxburst = 1;
		break;
	case SSP_RX_4_OR_MORE_ELEM:
		rx_conf.src_maxburst = 4;
		break;
	case SSP_RX_8_OR_MORE_ELEM:
		rx_conf.src_maxburst = 8;
		break;
	case SSP_RX_16_OR_MORE_ELEM:
		rx_conf.src_maxburst = 16;
		break;
	case SSP_RX_32_OR_MORE_ELEM:
		rx_conf.src_maxburst = 32;
		break;
	default:
		rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
		break;
	}

	switch (pl022->tx_lev_trig) {
	case SSP_TX_1_OR_MORE_EMPTY_LOC:
		tx_conf.dst_maxburst = 1;
		break;
	case SSP_TX_4_OR_MORE_EMPTY_LOC:
		tx_conf.dst_maxburst = 4;
		break;
	case SSP_TX_8_OR_MORE_EMPTY_LOC:
		tx_conf.dst_maxburst = 8;
		break;
	case SSP_TX_16_OR_MORE_EMPTY_LOC:
		tx_conf.dst_maxburst = 16;
		break;
	case SSP_TX_32_OR_MORE_EMPTY_LOC:
		tx_conf.dst_maxburst = 32;
		break;
	default:
		tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
		break;
	}

950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
	switch (pl022->read) {
	case READING_NULL:
		/* Use the same as for writing */
		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
		break;
	case READING_U8:
		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
		break;
	case READING_U16:
		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
		break;
	case READING_U32:
		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
		break;
	}

	switch (pl022->write) {
	case WRITING_NULL:
		/* Use the same as for reading */
		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
		break;
	case WRITING_U8:
		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
		break;
	case WRITING_U16:
		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
		break;
	case WRITING_U32:
978
		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
979 980 981 982 983 984 985 986 987 988
		break;
	}

	/* SPI pecularity: we need to read and write the same width */
	if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
		rx_conf.src_addr_width = tx_conf.dst_addr_width;
	if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
		tx_conf.dst_addr_width = rx_conf.src_addr_width;
	BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);

989 990
	dmaengine_slave_config(rxchan, &rx_conf);
	dmaengine_slave_config(txchan, &tx_conf);
991 992

	/* Create sglists for the transfers */
993
	pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
994 995
	dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);

996
	ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
997 998 999
	if (ret)
		goto err_alloc_rx_sg;

1000
	ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
	if (ret)
		goto err_alloc_tx_sg;

	/* Fill in the scatterlists for the RX+TX buffers */
	setup_dma_scatter(pl022, pl022->rx,
			  pl022->cur_transfer->len, &pl022->sgt_rx);
	setup_dma_scatter(pl022, pl022->tx,
			  pl022->cur_transfer->len, &pl022->sgt_tx);

	/* Map DMA buffers */
1011
	rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1012
			   pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1013
	if (!rx_sglen)
1014 1015
		goto err_rx_sgmap;

1016
	tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1017
			   pl022->sgt_tx.nents, DMA_TO_DEVICE);
1018
	if (!tx_sglen)
1019 1020 1021
		goto err_tx_sgmap;

	/* Send both scatterlists */
1022
	rxdesc = dmaengine_prep_slave_sg(rxchan,
1023
				      pl022->sgt_rx.sgl,
1024
				      rx_sglen,
1025
				      DMA_DEV_TO_MEM,
1026 1027 1028 1029
				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
	if (!rxdesc)
		goto err_rxdesc;

1030
	txdesc = dmaengine_prep_slave_sg(txchan,
1031
				      pl022->sgt_tx.sgl,
1032
				      tx_sglen,
1033
				      DMA_MEM_TO_DEV,
1034 1035 1036 1037 1038 1039 1040 1041 1042
				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
	if (!txdesc)
		goto err_txdesc;

	/* Put the callback on the RX transfer only, that should finish last */
	rxdesc->callback = dma_callback;
	rxdesc->callback_param = pl022;

	/* Submit and fire RX and TX with TX last so we're ready to read! */
1043 1044 1045 1046
	dmaengine_submit(rxdesc);
	dmaengine_submit(txdesc);
	dma_async_issue_pending(rxchan);
	dma_async_issue_pending(txchan);
1047
	pl022->dma_running = true;
1048 1049 1050 1051

	return 0;

err_txdesc:
1052
	dmaengine_terminate_all(txchan);
1053
err_rxdesc:
1054
	dmaengine_terminate_all(rxchan);
1055
	dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1056 1057
		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
err_tx_sgmap:
1058
	dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1059 1060 1061 1062 1063 1064 1065 1066 1067
		     pl022->sgt_tx.nents, DMA_FROM_DEVICE);
err_rx_sgmap:
	sg_free_table(&pl022->sgt_tx);
err_alloc_tx_sg:
	sg_free_table(&pl022->sgt_rx);
err_alloc_rx_sg:
	return -ENOMEM;
}

1068
static int __devinit pl022_dma_probe(struct pl022 *pl022)
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
{
	dma_cap_mask_t mask;

	/* Try to acquire a generic DMA engine slave channel */
	dma_cap_zero(mask);
	dma_cap_set(DMA_SLAVE, mask);
	/*
	 * We need both RX and TX channels to do DMA, else do none
	 * of them.
	 */
	pl022->dma_rx_channel = dma_request_channel(mask,
					    pl022->master_info->dma_filter,
					    pl022->master_info->dma_rx_param);
	if (!pl022->dma_rx_channel) {
1083
		dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
1084 1085 1086 1087 1088 1089 1090
		goto err_no_rxchan;
	}

	pl022->dma_tx_channel = dma_request_channel(mask,
					    pl022->master_info->dma_filter,
					    pl022->master_info->dma_tx_param);
	if (!pl022->dma_tx_channel) {
1091
		dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
1092 1093 1094 1095 1096
		goto err_no_txchan;
	}

	pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!pl022->dummypage) {
1097
		dev_dbg(&pl022->adev->dev, "no DMA dummypage!\n");
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
		goto err_no_dummypage;
	}

	dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
		 dma_chan_name(pl022->dma_rx_channel),
		 dma_chan_name(pl022->dma_tx_channel));

	return 0;

err_no_dummypage:
	dma_release_channel(pl022->dma_tx_channel);
err_no_txchan:
	dma_release_channel(pl022->dma_rx_channel);
	pl022->dma_rx_channel = NULL;
err_no_rxchan:
1113 1114
	dev_err(&pl022->adev->dev,
			"Failed to work in dma mode, work without dma!\n");
1115 1116 1117 1118 1119 1120 1121 1122
	return -ENODEV;
}

static void terminate_dma(struct pl022 *pl022)
{
	struct dma_chan *rxchan = pl022->dma_rx_channel;
	struct dma_chan *txchan = pl022->dma_tx_channel;

1123 1124
	dmaengine_terminate_all(rxchan);
	dmaengine_terminate_all(txchan);
1125
	unmap_free_dma_scatter(pl022);
1126
	pl022->dma_running = false;
1127 1128 1129 1130
}

static void pl022_dma_remove(struct pl022 *pl022)
{
1131
	if (pl022->dma_running)
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
		terminate_dma(pl022);
	if (pl022->dma_tx_channel)
		dma_release_channel(pl022->dma_tx_channel);
	if (pl022->dma_rx_channel)
		dma_release_channel(pl022->dma_rx_channel);
	kfree(pl022->dummypage);
}

#else
static inline int configure_dma(struct pl022 *pl022)
{
	return -ENODEV;
}

static inline int pl022_dma_probe(struct pl022 *pl022)
{
	return 0;
}

static inline void pl022_dma_remove(struct pl022 *pl022)
{
}
#endif

1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
/**
 * pl022_interrupt_handler - Interrupt handler for SSP controller
 *
 * This function handles interrupts generated for an interrupt based transfer.
 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
 * current message's state as STATE_ERROR and schedule the tasklet
 * pump_transfers which will do the postprocessing of the current message by
 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
 * more data, and writes data in TX FIFO till it is not full. If we complete
 * the transfer we move to the next transfer and schedule the tasklet.
 */
static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
{
	struct pl022 *pl022 = dev_id;
	struct spi_message *msg = pl022->cur_msg;
	u16 irq_status = 0;
	u16 flag = 0;

	if (unlikely(!msg)) {
		dev_err(&pl022->adev->dev,
			"bad message state in interrupt handler");
		/* Never fail */
		return IRQ_HANDLED;
	}

	/* Read the Interrupt Status Register */
	irq_status = readw(SSP_MIS(pl022->virtbase));

	if (unlikely(!irq_status))
		return IRQ_NONE;

1187 1188 1189 1190 1191
	/*
	 * This handles the FIFO interrupts, the timeout
	 * interrupts are flatly ignored, they cannot be
	 * trusted.
	 */
1192 1193 1194 1195 1196
	if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
		/*
		 * Overrun interrupt - bail out since our Data has been
		 * corrupted
		 */
1197
		dev_err(&pl022->adev->dev, "FIFO overrun\n");
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
		if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
			dev_err(&pl022->adev->dev,
				"RXFIFO is full\n");
		if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_TNF)
			dev_err(&pl022->adev->dev,
				"TXFIFO is full\n");

		/*
		 * Disable and clear interrupts, disable SSP,
		 * mark message with bad status so it can be
		 * retried.
		 */
		writew(DISABLE_ALL_INTERRUPTS,
		       SSP_IMSC(pl022->virtbase));
		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
		writew((readw(SSP_CR1(pl022->virtbase)) &
			(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
		msg->state = STATE_ERROR;

		/* Schedule message queue handler */
		tasklet_schedule(&pl022->pump_transfers);
		return IRQ_HANDLED;
	}

	readwriter(pl022);

	if ((pl022->tx == pl022->tx_end) && (flag == 0)) {
		flag = 1;
1226 1227 1228
		/* Disable Transmit interrupt, enable receive interrupt */
		writew((readw(SSP_IMSC(pl022->virtbase)) &
		       ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM,
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
		       SSP_IMSC(pl022->virtbase));
	}

	/*
	 * Since all transactions must write as much as shall be read,
	 * we can conclude the entire transaction once RX is complete.
	 * At this point, all TX will always be finished.
	 */
	if (pl022->rx >= pl022->rx_end) {
		writew(DISABLE_ALL_INTERRUPTS,
		       SSP_IMSC(pl022->virtbase));
		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
		if (unlikely(pl022->rx > pl022->rx_end)) {
			dev_warn(&pl022->adev->dev, "read %u surplus "
				 "bytes (did you request an odd "
				 "number of bytes on a 16bit bus?)\n",
				 (u32) (pl022->rx - pl022->rx_end));
		}
L
Lucas De Marchi 已提交
1247
		/* Update total bytes transferred */
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
		msg->actual_length += pl022->cur_transfer->len;
		if (pl022->cur_transfer->cs_change)
			pl022->cur_chip->
				cs_control(SSP_CHIP_DESELECT);
		/* Move to next transfer */
		msg->state = next_transfer(pl022);
		tasklet_schedule(&pl022->pump_transfers);
		return IRQ_HANDLED;
	}

	return IRQ_HANDLED;
}

/**
 * This sets up the pointers to memory for the next message to
 * send out on the SPI bus.
 */
static int set_up_next_transfer(struct pl022 *pl022,
				struct spi_transfer *transfer)
{
	int residue;

	/* Sanity check the message for this bus width */
	residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
	if (unlikely(residue != 0)) {
		dev_err(&pl022->adev->dev,
			"message of %u bytes to transmit but the current "
			"chip bus has a data width of %u bytes!\n",
			pl022->cur_transfer->len,
			pl022->cur_chip->n_bytes);
		dev_err(&pl022->adev->dev, "skipping this message\n");
		return -EIO;
	}
	pl022->tx = (void *)transfer->tx_buf;
	pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
	pl022->rx = (void *)transfer->rx_buf;
	pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
	pl022->write =
	    pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
	pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
	return 0;
}

/**
1292 1293
 * pump_transfers - Tasklet function which schedules next transfer
 * when running in interrupt or DMA transfer mode.
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
 * @data: SSP driver private data structure
 *
 */
static void pump_transfers(unsigned long data)
{
	struct pl022 *pl022 = (struct pl022 *) data;
	struct spi_message *message = NULL;
	struct spi_transfer *transfer = NULL;
	struct spi_transfer *previous = NULL;

	/* Get current state information */
	message = pl022->cur_msg;
	transfer = pl022->cur_transfer;

	/* Handle for abort */
	if (message->state == STATE_ERROR) {
		message->status = -EIO;
		giveback(pl022);
		return;
	}

	/* Handle end of message */
	if (message->state == STATE_DONE) {
		message->status = 0;
		giveback(pl022);
		return;
	}

	/* Delay if requested at end of transfer before CS change */
	if (message->state == STATE_RUNNING) {
		previous = list_entry(transfer->transfer_list.prev,
					struct spi_transfer,
					transfer_list);
		if (previous->delay_usecs)
			/*
			 * FIXME: This runs in interrupt context.
			 * Is this really smart?
			 */
			udelay(previous->delay_usecs);

1334
		/* Reselect chip select only if cs_change was requested */
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
		if (previous->cs_change)
			pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
	} else {
		/* STATE_START */
		message->state = STATE_RUNNING;
	}

	if (set_up_next_transfer(pl022, transfer)) {
		message->state = STATE_ERROR;
		message->status = -EIO;
		giveback(pl022);
		return;
	}
	/* Flush the FIFOs and let's go! */
	flush(pl022);

1351 1352 1353 1354 1355 1356
	if (pl022->cur_chip->enable_dma) {
		if (configure_dma(pl022)) {
			dev_dbg(&pl022->adev->dev,
				"configuration of DMA failed, fall back to interrupt mode\n");
			goto err_config_dma;
		}
1357 1358 1359
		return;
	}

1360
err_config_dma:
1361 1362
	/* enable all interrupts except RX */
	writew(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM, SSP_IMSC(pl022->virtbase));
1363 1364
}

1365
static void do_interrupt_dma_transfer(struct pl022 *pl022)
1366
{
1367 1368 1369 1370 1371
	/*
	 * Default is to enable all interrupts except RX -
	 * this will be enabled once TX is complete
	 */
	u32 irqflags = ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM;
1372

1373 1374 1375
	/* Enable target chip, if not already active */
	if (!pl022->next_msg_cs_active)
		pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1376 1377 1378 1379 1380 1381 1382 1383

	if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
		/* Error path */
		pl022->cur_msg->state = STATE_ERROR;
		pl022->cur_msg->status = -EIO;
		giveback(pl022);
		return;
	}
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
	/* If we're using DMA, set up DMA here */
	if (pl022->cur_chip->enable_dma) {
		/* Configure DMA transfer */
		if (configure_dma(pl022)) {
			dev_dbg(&pl022->adev->dev,
				"configuration of DMA failed, fall back to interrupt mode\n");
			goto err_config_dma;
		}
		/* Disable interrupts in DMA mode, IRQ from DMA controller */
		irqflags = DISABLE_ALL_INTERRUPTS;
	}
err_config_dma:
1396 1397 1398
	/* Enable SSP, turn on interrupts */
	writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
	       SSP_CR1(pl022->virtbase));
1399
	writew(irqflags, SSP_IMSC(pl022->virtbase));
1400 1401
}

1402
static void do_polling_transfer(struct pl022 *pl022)
1403 1404 1405 1406 1407
{
	struct spi_message *message = NULL;
	struct spi_transfer *transfer = NULL;
	struct spi_transfer *previous = NULL;
	struct chip_data *chip;
1408
	unsigned long time, timeout;
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430

	chip = pl022->cur_chip;
	message = pl022->cur_msg;

	while (message->state != STATE_DONE) {
		/* Handle for abort */
		if (message->state == STATE_ERROR)
			break;
		transfer = pl022->cur_transfer;

		/* Delay if requested at end of transfer */
		if (message->state == STATE_RUNNING) {
			previous =
			    list_entry(transfer->transfer_list.prev,
				       struct spi_transfer, transfer_list);
			if (previous->delay_usecs)
				udelay(previous->delay_usecs);
			if (previous->cs_change)
				pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
		} else {
			/* STATE_START */
			message->state = STATE_RUNNING;
1431 1432
			if (!pl022->next_msg_cs_active)
				pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
		}

		/* Configuration Changing Per Transfer */
		if (set_up_next_transfer(pl022, transfer)) {
			/* Error path */
			message->state = STATE_ERROR;
			break;
		}
		/* Flush FIFOs and enable SSP */
		flush(pl022);
		writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
		       SSP_CR1(pl022->virtbase));

1446
		dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
1447 1448 1449 1450

		timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
		while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
			time = jiffies;
1451
			readwriter(pl022);
1452 1453 1454 1455 1456 1457
			if (time_after(time, timeout)) {
				dev_warn(&pl022->adev->dev,
				"%s: timeout!\n", __func__);
				message->state = STATE_ERROR;
				goto out;
			}
1458
			cpu_relax();
1459
		}
1460

L
Lucas De Marchi 已提交
1461
		/* Update total byte transferred */
1462 1463 1464 1465 1466 1467
		message->actual_length += pl022->cur_transfer->len;
		if (pl022->cur_transfer->cs_change)
			pl022->cur_chip->cs_control(SSP_CHIP_DESELECT);
		/* Move to next transfer */
		message->state = next_transfer(pl022);
	}
1468
out:
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
	/* Handle end of message */
	if (message->state == STATE_DONE)
		message->status = 0;
	else
		message->status = -EIO;

	giveback(pl022);
	return;
}

1479 1480
static int pl022_transfer_one_message(struct spi_master *master,
				      struct spi_message *msg)
1481
{
1482
	struct pl022 *pl022 = spi_master_get_devdata(master);
1483 1484

	/* Initial message state */
1485 1486 1487 1488 1489
	pl022->cur_msg = msg;
	msg->state = STATE_START;

	pl022->cur_transfer = list_entry(msg->transfers.next,
					 struct spi_transfer, transfer_list);
1490 1491

	/* Setup the SPI using the per chip configuration */
1492
	pl022->cur_chip = spi_get_ctldata(msg->spi);
1493

1494 1495 1496 1497 1498 1499
	restore_state(pl022);
	flush(pl022);

	if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
		do_polling_transfer(pl022);
	else
1500
		do_interrupt_dma_transfer(pl022);
1501 1502 1503 1504

	return 0;
}

1505
static int pl022_prepare_transfer_hardware(struct spi_master *master)
1506
{
1507
	struct pl022 *pl022 = spi_master_get_devdata(master);
1508

1509 1510 1511 1512 1513
	/*
	 * Just make sure we have all we need to run the transfer by syncing
	 * with the runtime PM framework.
	 */
	pm_runtime_get_sync(&pl022->adev->dev);
1514 1515 1516
	return 0;
}

1517
static int pl022_unprepare_transfer_hardware(struct spi_master *master)
1518
{
1519
	struct pl022 *pl022 = spi_master_get_devdata(master);
1520

1521 1522 1523
	/* nothing more to do - disable spi/ssp and power off */
	writew((readw(SSP_CR1(pl022->virtbase)) &
		(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1524

1525 1526 1527 1528 1529
	if (pl022->master_info->autosuspend_delay > 0) {
		pm_runtime_mark_last_busy(&pl022->adev->dev);
		pm_runtime_put_autosuspend(&pl022->adev->dev);
	} else {
		pm_runtime_put(&pl022->adev->dev);
1530 1531 1532 1533 1534 1535
	}

	return 0;
}

static int verify_controller_parameters(struct pl022 *pl022,
1536
				struct pl022_config_chip const *chip_info)
1537 1538 1539
{
	if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
	    || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
1540
		dev_err(&pl022->adev->dev,
1541 1542 1543 1544 1545
			"interface is configured incorrectly\n");
		return -EINVAL;
	}
	if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
	    (!pl022->vendor->unidir)) {
1546
		dev_err(&pl022->adev->dev,
1547 1548 1549 1550 1551 1552
			"unidirectional mode not supported in this "
			"hardware version\n");
		return -EINVAL;
	}
	if ((chip_info->hierarchy != SSP_MASTER)
	    && (chip_info->hierarchy != SSP_SLAVE)) {
1553
		dev_err(&pl022->adev->dev,
1554 1555 1556 1557 1558 1559
			"hierarchy is configured incorrectly\n");
		return -EINVAL;
	}
	if ((chip_info->com_mode != INTERRUPT_TRANSFER)
	    && (chip_info->com_mode != DMA_TRANSFER)
	    && (chip_info->com_mode != POLLING_TRANSFER)) {
1560
		dev_err(&pl022->adev->dev,
1561 1562 1563
			"Communication mode is configured incorrectly\n");
		return -EINVAL;
	}
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
	switch (chip_info->rx_lev_trig) {
	case SSP_RX_1_OR_MORE_ELEM:
	case SSP_RX_4_OR_MORE_ELEM:
	case SSP_RX_8_OR_MORE_ELEM:
		/* These are always OK, all variants can handle this */
		break;
	case SSP_RX_16_OR_MORE_ELEM:
		if (pl022->vendor->fifodepth < 16) {
			dev_err(&pl022->adev->dev,
			"RX FIFO Trigger Level is configured incorrectly\n");
			return -EINVAL;
		}
		break;
	case SSP_RX_32_OR_MORE_ELEM:
		if (pl022->vendor->fifodepth < 32) {
			dev_err(&pl022->adev->dev,
			"RX FIFO Trigger Level is configured incorrectly\n");
			return -EINVAL;
		}
		break;
	default:
1585
		dev_err(&pl022->adev->dev,
1586 1587
			"RX FIFO Trigger Level is configured incorrectly\n");
		return -EINVAL;
1588
		break;
1589
	}
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
	switch (chip_info->tx_lev_trig) {
	case SSP_TX_1_OR_MORE_EMPTY_LOC:
	case SSP_TX_4_OR_MORE_EMPTY_LOC:
	case SSP_TX_8_OR_MORE_EMPTY_LOC:
		/* These are always OK, all variants can handle this */
		break;
	case SSP_TX_16_OR_MORE_EMPTY_LOC:
		if (pl022->vendor->fifodepth < 16) {
			dev_err(&pl022->adev->dev,
			"TX FIFO Trigger Level is configured incorrectly\n");
			return -EINVAL;
		}
		break;
	case SSP_TX_32_OR_MORE_EMPTY_LOC:
		if (pl022->vendor->fifodepth < 32) {
			dev_err(&pl022->adev->dev,
			"TX FIFO Trigger Level is configured incorrectly\n");
			return -EINVAL;
		}
		break;
	default:
1611
		dev_err(&pl022->adev->dev,
1612 1613
			"TX FIFO Trigger Level is configured incorrectly\n");
		return -EINVAL;
1614
		break;
1615 1616 1617 1618
	}
	if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
		if ((chip_info->ctrl_len < SSP_BITS_4)
		    || (chip_info->ctrl_len > SSP_BITS_32)) {
1619
			dev_err(&pl022->adev->dev,
1620 1621 1622 1623 1624
				"CTRL LEN is configured incorrectly\n");
			return -EINVAL;
		}
		if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
		    && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
1625
			dev_err(&pl022->adev->dev,
1626 1627 1628
				"Wait State is configured incorrectly\n");
			return -EINVAL;
		}
1629 1630 1631 1632 1633
		/* Half duplex is only available in the ST Micro version */
		if (pl022->vendor->extended_cr) {
			if ((chip_info->duplex !=
			     SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
			    && (chip_info->duplex !=
1634
				SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1635
				dev_err(&pl022->adev->dev,
1636 1637
					"Microwire duplex mode is configured incorrectly\n");
				return -EINVAL;
1638
			}
1639 1640
		} else {
			if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1641
				dev_err(&pl022->adev->dev,
1642 1643 1644
					"Microwire half duplex mode requested,"
					" but this is only available in the"
					" ST version of PL022\n");
1645 1646 1647 1648 1649 1650
			return -EINVAL;
		}
	}
	return 0;
}

1651 1652 1653 1654 1655 1656 1657
static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
{
	return rate / (cpsdvsr * (1 + scr));
}

static int calculate_effective_freq(struct pl022 *pl022, int freq, struct
				    ssp_clock_params * clk_freq)
1658 1659
{
	/* Lets calculate the frequency parameters */
1660 1661 1662
	u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN;
	u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0,
		best_scr = 0, tmp, found = 0;
1663 1664 1665

	rate = clk_get_rate(pl022->clk);
	/* cpsdvscr = 2 & scr 0 */
1666
	max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN);
1667
	/* cpsdvsr = 254 & scr = 255 */
1668 1669 1670
	min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX);

	if (!((freq <= max_tclk) && (freq >= min_tclk))) {
1671 1672 1673 1674
		dev_err(&pl022->adev->dev,
			"controller data is incorrect: out of range frequency");
		return -EINVAL;
	}
1675 1676 1677 1678 1679 1680 1681 1682 1683

	/*
	 * best_freq will give closest possible available rate (<= requested
	 * freq) for all values of scr & cpsdvsr.
	 */
	while ((cpsdvsr <= CPSDVR_MAX) && !found) {
		while (scr <= SCR_MAX) {
			tmp = spi_rate(rate, cpsdvsr, scr);

1684 1685
			if (tmp > freq) {
				/* we need lower freq */
1686
				scr++;
1687 1688 1689
				continue;
			}

1690
			/*
1691 1692
			 * If found exact value, mark found and break.
			 * If found more closer value, update and break.
1693
			 */
1694
			if (tmp > best_freq) {
1695 1696 1697 1698 1699
				best_freq = tmp;
				best_cpsdvsr = cpsdvsr;
				best_scr = scr;

				if (tmp == freq)
1700
					found = 1;
1701
			}
1702 1703 1704 1705 1706
			/*
			 * increased scr will give lower rates, which are not
			 * required
			 */
			break;
1707 1708 1709 1710 1711
		}
		cpsdvsr += 2;
		scr = SCR_MIN;
	}

1712 1713 1714
	WARN(!best_freq, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n",
			freq);

1715 1716 1717 1718 1719 1720 1721 1722
	clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF);
	clk_freq->scr = (u8) (best_scr & 0xFF);
	dev_dbg(&pl022->adev->dev,
		"SSP Target Frequency is: %u, Effective Frequency is %u\n",
		freq, best_freq);
	dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n",
		clk_freq->cpsdvsr, clk_freq->scr);

1723 1724 1725
	return 0;
}

1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
/*
 * A piece of default chip info unless the platform
 * supplies it.
 */
static const struct pl022_config_chip pl022_default_chip_info = {
	.com_mode = POLLING_TRANSFER,
	.iface = SSP_INTERFACE_MOTOROLA_SPI,
	.hierarchy = SSP_SLAVE,
	.slave_tx_disable = DO_NOT_DRIVE_TX,
	.rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
	.tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
	.ctrl_len = SSP_BITS_8,
	.wait_state = SSP_MWIRE_WAIT_ZERO,
	.duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
	.cs_control = null_cs_control,
};

1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
/**
 * pl022_setup - setup function registered to SPI master framework
 * @spi: spi device which is requesting setup
 *
 * This function is registered to the SPI framework for this SPI master
 * controller. If it is the first time when setup is called by this device,
 * this function will initialize the runtime state for this chip and save
 * the same in the device structure. Else it will update the runtime info
 * with the updated chip info. Nothing is really being written to the
 * controller hardware here, that is not done until the actual transfer
 * commence.
 */
static int pl022_setup(struct spi_device *spi)
{
1757
	struct pl022_config_chip const *chip_info;
1758
	struct chip_data *chip;
J
Jonas Aaberg 已提交
1759
	struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0};
1760 1761
	int status = 0;
	struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1762 1763
	unsigned int bits = spi->bits_per_word;
	u32 tmp;
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785

	if (!spi->max_speed_hz)
		return -EINVAL;

	/* Get controller_state if one is supplied */
	chip = spi_get_ctldata(spi);

	if (chip == NULL) {
		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
		if (!chip) {
			dev_err(&spi->dev,
				"cannot allocate controller state\n");
			return -ENOMEM;
		}
		dev_dbg(&spi->dev,
			"allocated memory for controller's runtime state\n");
	}

	/* Get controller data if one is supplied */
	chip_info = spi->controller_data;

	if (chip_info == NULL) {
1786
		chip_info = &pl022_default_chip_info;
1787 1788 1789
		/* spi_board_info.controller_data not is supplied */
		dev_dbg(&spi->dev,
			"using default controller_data settings\n");
1790
	} else
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
		dev_dbg(&spi->dev,
			"using user supplied controller_data settings\n");

	/*
	 * We can override with custom divisors, else we use the board
	 * frequency setting
	 */
	if ((0 == chip_info->clk_freq.cpsdvsr)
	    && (0 == chip_info->clk_freq.scr)) {
		status = calculate_effective_freq(pl022,
						  spi->max_speed_hz,
1802
						  &clk_freq);
1803 1804 1805
		if (status < 0)
			goto err_config_params;
	} else {
1806 1807 1808 1809
		memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
		if ((clk_freq.cpsdvsr % 2) != 0)
			clk_freq.cpsdvsr =
				clk_freq.cpsdvsr - 1;
1810
	}
1811 1812
	if ((clk_freq.cpsdvsr < CPSDVR_MIN)
	    || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1813
		status = -EINVAL;
1814 1815 1816 1817 1818
		dev_err(&spi->dev,
			"cpsdvsr is configured incorrectly\n");
		goto err_config_params;
	}

1819 1820 1821 1822 1823
	status = verify_controller_parameters(pl022, chip_info);
	if (status) {
		dev_err(&spi->dev, "controller data is incorrect");
		goto err_config_params;
	}
1824

1825 1826 1827
	pl022->rx_lev_trig = chip_info->rx_lev_trig;
	pl022->tx_lev_trig = chip_info->tx_lev_trig;

1828 1829
	/* Now set controller state based on controller data */
	chip->xfer_type = chip_info->com_mode;
1830 1831 1832 1833 1834 1835
	if (!chip_info->cs_control) {
		chip->cs_control = null_cs_control;
		dev_warn(&spi->dev,
			 "chip select function is NULL for this chip\n");
	} else
		chip->cs_control = chip_info->cs_control;
1836

1837 1838
	/* Check bits per word with vendor specific range */
	if ((bits <= 3) || (bits > pl022->vendor->max_bpw)) {
1839
		status = -ENOTSUPP;
1840 1841 1842
		dev_err(&spi->dev, "illegal data size for this controller!\n");
		dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n",
				pl022->vendor->max_bpw);
1843 1844 1845
		goto err_config_params;
	} else if (bits <= 8) {
		dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
1846 1847 1848
		chip->n_bytes = 1;
		chip->read = READING_U8;
		chip->write = WRITING_U8;
1849
	} else if (bits <= 16) {
1850 1851 1852 1853 1854
		dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
		chip->n_bytes = 2;
		chip->read = READING_U16;
		chip->write = WRITING_U16;
	} else {
1855 1856 1857 1858
		dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
		chip->n_bytes = 4;
		chip->read = READING_U32;
		chip->write = WRITING_U32;
1859 1860 1861 1862 1863 1864 1865 1866 1867
	}

	/* Now Initialize all register settings required for this chip */
	chip->cr0 = 0;
	chip->cr1 = 0;
	chip->dmacr = 0;
	chip->cpsr = 0;
	if ((chip_info->com_mode == DMA_TRANSFER)
	    && ((pl022->master_info)->enable_dma)) {
1868
		chip->enable_dma = true;
1869 1870 1871 1872 1873 1874
		dev_dbg(&spi->dev, "DMA mode set in controller state\n");
		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
			       SSP_DMACR_MASK_RXDMAE, 0);
		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
			       SSP_DMACR_MASK_TXDMAE, 1);
	} else {
1875
		chip->enable_dma = false;
1876 1877 1878 1879 1880 1881 1882
		dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
			       SSP_DMACR_MASK_RXDMAE, 0);
		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
			       SSP_DMACR_MASK_TXDMAE, 1);
	}

1883
	chip->cpsr = clk_freq.cpsdvsr;
1884

1885 1886
	/* Special setup for the ST micro extended control registers */
	if (pl022->vendor->extended_cr) {
1887 1888
		u32 etx;

1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
		if (pl022->vendor->pl023) {
			/* These bits are only in the PL023 */
			SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
				       SSP_CR1_MASK_FBCLKDEL_ST, 13);
		} else {
			/* These bits are in the PL022 but not PL023 */
			SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
				       SSP_CR0_MASK_HALFDUP_ST, 5);
			SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
				       SSP_CR0_MASK_CSS_ST, 16);
			SSP_WRITE_BITS(chip->cr0, chip_info->iface,
				       SSP_CR0_MASK_FRF_ST, 21);
			SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
				       SSP_CR1_MASK_MWAIT_ST, 6);
		}
1904
		SSP_WRITE_BITS(chip->cr0, bits - 1,
1905
			       SSP_CR0_MASK_DSS_ST, 0);
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915

		if (spi->mode & SPI_LSB_FIRST) {
			tmp = SSP_RX_LSB;
			etx = SSP_TX_LSB;
		} else {
			tmp = SSP_RX_MSB;
			etx = SSP_TX_MSB;
		}
		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
		SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
1916 1917 1918 1919 1920
		SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
			       SSP_CR1_MASK_RXIFLSEL_ST, 7);
		SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
			       SSP_CR1_MASK_TXIFLSEL_ST, 10);
	} else {
1921
		SSP_WRITE_BITS(chip->cr0, bits - 1,
1922 1923 1924 1925
			       SSP_CR0_MASK_DSS, 0);
		SSP_WRITE_BITS(chip->cr0, chip_info->iface,
			       SSP_CR0_MASK_FRF, 4);
	}
1926

1927
	/* Stuff that is common for all versions */
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
	if (spi->mode & SPI_CPOL)
		tmp = SSP_CLK_POL_IDLE_HIGH;
	else
		tmp = SSP_CLK_POL_IDLE_LOW;
	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);

	if (spi->mode & SPI_CPHA)
		tmp = SSP_CLK_SECOND_EDGE;
	else
		tmp = SSP_CLK_FIRST_EDGE;
	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);

1940
	SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
1941
	/* Loopback is available on all versions except PL023 */
1942
	if (pl022->vendor->loopback) {
1943 1944 1945 1946 1947 1948
		if (spi->mode & SPI_LOOP)
			tmp = LOOPBACK_ENABLED;
		else
			tmp = LOOPBACK_DISABLED;
		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
	}
1949 1950
	SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
	SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
1951 1952
	SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
		3);
1953 1954 1955 1956 1957

	/* Save controller_state */
	spi_set_ctldata(spi, chip);
	return status;
 err_config_params:
1958
	spi_set_ctldata(spi, NULL);
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
	kfree(chip);
	return status;
}

/**
 * pl022_cleanup - cleanup function registered to SPI master framework
 * @spi: spi device which is requesting cleanup
 *
 * This function is registered to the SPI framework for this SPI master
 * controller. It will free the runtime state of chip.
 */
static void pl022_cleanup(struct spi_device *spi)
{
	struct chip_data *chip = spi_get_ctldata(spi);

	spi_set_ctldata(spi, NULL);
	kfree(chip);
}

1978
static int __devinit
1979
pl022_probe(struct amba_device *adev, const struct amba_id *id)
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
{
	struct device *dev = &adev->dev;
	struct pl022_ssp_controller *platform_info = adev->dev.platform_data;
	struct spi_master *master;
	struct pl022 *pl022 = NULL;	/*Data for this driver */
	int status = 0;

	dev_info(&adev->dev,
		 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
	if (platform_info == NULL) {
		dev_err(&adev->dev, "probe - no platform data supplied\n");
		status = -ENODEV;
		goto err_no_pdata;
	}

	/* Allocate master with space for data */
	master = spi_alloc_master(dev, sizeof(struct pl022));
	if (master == NULL) {
		dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
		status = -ENOMEM;
		goto err_no_master;
	}

	pl022 = spi_master_get_devdata(master);
	pl022->master = master;
	pl022->master_info = platform_info;
	pl022->adev = adev;
	pl022->vendor = id->data;

	/*
	 * Bus Number Which has been Assigned to this SSP controller
	 * on this board
	 */
	master->bus_num = platform_info->bus_id;
	master->num_chipselect = platform_info->num_chipselect;
	master->cleanup = pl022_cleanup;
	master->setup = pl022_setup;
2017 2018 2019 2020
	master->prepare_transfer_hardware = pl022_prepare_transfer_hardware;
	master->transfer_one_message = pl022_transfer_one_message;
	master->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware;
	master->rt = platform_info->rt;
2021

2022 2023 2024 2025 2026 2027 2028 2029
	/*
	 * Supports mode 0-3, loopback, and active low CS. Transfers are
	 * always MS bit first on the original pl022.
	 */
	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
	if (pl022->vendor->extended_cr)
		master->mode_bits |= SPI_LSB_FIRST;

2030 2031 2032 2033 2034 2035
	dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);

	status = amba_request_regions(adev, NULL);
	if (status)
		goto err_no_ioregion;

2036
	pl022->phybase = adev->res.start;
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
	pl022->virtbase = ioremap(adev->res.start, resource_size(&adev->res));
	if (pl022->virtbase == NULL) {
		status = -ENOMEM;
		goto err_no_ioremap;
	}
	printk(KERN_INFO "pl022: mapped registers from 0x%08x to %p\n",
	       adev->res.start, pl022->virtbase);

	pl022->clk = clk_get(&adev->dev, NULL);
	if (IS_ERR(pl022->clk)) {
		status = PTR_ERR(pl022->clk);
		dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
		goto err_no_clk;
	}
2051 2052 2053 2054 2055 2056 2057

	status = clk_prepare(pl022->clk);
	if (status) {
		dev_err(&adev->dev, "could not prepare SSP/SPI bus clock\n");
		goto  err_clk_prep;
	}

2058 2059 2060 2061 2062 2063
	status = clk_enable(pl022->clk);
	if (status) {
		dev_err(&adev->dev, "could not enable SSP/SPI bus clock\n");
		goto err_no_clk_en;
	}

2064 2065 2066 2067
	/* Initialize transfer pump */
	tasklet_init(&pl022->pump_transfers, pump_transfers,
		     (unsigned long)pl022);

2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
	/* Disable SSP */
	writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
	       SSP_CR1(pl022->virtbase));
	load_ssp_default_config(pl022);

	status = request_irq(adev->irq[0], pl022_interrupt_handler, 0, "pl022",
			     pl022);
	if (status < 0) {
		dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
		goto err_no_irq;
	}
2079 2080 2081 2082 2083

	/* Get DMA channels */
	if (platform_info->enable_dma) {
		status = pl022_dma_probe(pl022);
		if (status != 0)
2084
			platform_info->enable_dma = 0;
2085 2086
	}

2087 2088 2089 2090 2091 2092 2093 2094
	/* Register with the SPI framework */
	amba_set_drvdata(adev, pl022);
	status = spi_register_master(master);
	if (status != 0) {
		dev_err(&adev->dev,
			"probe - problem registering spi master\n");
		goto err_spi_register;
	}
L
Lucas De Marchi 已提交
2095
	dev_dbg(dev, "probe succeeded\n");
2096 2097

	/* let runtime pm put suspend */
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
	if (platform_info->autosuspend_delay > 0) {
		dev_info(&adev->dev,
			"will use autosuspend for runtime pm, delay %dms\n",
			platform_info->autosuspend_delay);
		pm_runtime_set_autosuspend_delay(dev,
			platform_info->autosuspend_delay);
		pm_runtime_use_autosuspend(dev);
		pm_runtime_put_autosuspend(dev);
	} else {
		pm_runtime_put(dev);
	}
2109 2110 2111
	return 0;

 err_spi_register:
2112 2113 2114
	if (platform_info->enable_dma)
		pl022_dma_remove(pl022);

2115 2116
	free_irq(adev->irq[0], pl022);
 err_no_irq:
2117 2118
	clk_disable(pl022->clk);
 err_no_clk_en:
2119 2120
	clk_unprepare(pl022->clk);
 err_clk_prep:
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
	clk_put(pl022->clk);
 err_no_clk:
	iounmap(pl022->virtbase);
 err_no_ioremap:
	amba_release_regions(adev);
 err_no_ioregion:
	spi_master_put(master);
 err_no_master:
 err_no_pdata:
	return status;
}

2133
static int __devexit
2134 2135 2136
pl022_remove(struct amba_device *adev)
{
	struct pl022 *pl022 = amba_get_drvdata(adev);
2137

2138 2139 2140
	if (!pl022)
		return 0;

2141 2142 2143 2144 2145 2146
	/*
	 * undo pm_runtime_put() in probe.  I assume that we're not
	 * accessing the primecell here.
	 */
	pm_runtime_get_noresume(&adev->dev);

2147
	load_ssp_default_config(pl022);
2148 2149 2150
	if (pl022->master_info->enable_dma)
		pl022_dma_remove(pl022);

2151 2152
	free_irq(adev->irq[0], pl022);
	clk_disable(pl022->clk);
2153
	clk_unprepare(pl022->clk);
2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
	clk_put(pl022->clk);
	iounmap(pl022->virtbase);
	amba_release_regions(adev);
	tasklet_disable(&pl022->pump_transfers);
	spi_unregister_master(pl022->master);
	spi_master_put(pl022->master);
	amba_set_drvdata(adev, NULL);
	return 0;
}

2164
#ifdef CONFIG_SUSPEND
2165
static int pl022_suspend(struct device *dev)
2166
{
2167
	struct pl022 *pl022 = dev_get_drvdata(dev);
2168
	int ret;
2169

2170 2171 2172 2173
	ret = spi_master_suspend(pl022->master);
	if (ret) {
		dev_warn(dev, "cannot suspend master\n");
		return ret;
2174 2175
	}

2176
	dev_dbg(dev, "suspended\n");
2177 2178 2179
	return 0;
}

2180
static int pl022_resume(struct device *dev)
2181
{
2182
	struct pl022 *pl022 = dev_get_drvdata(dev);
2183
	int ret;
2184 2185

	/* Start the queue running */
2186 2187 2188
	ret = spi_master_resume(pl022->master);
	if (ret)
		dev_err(dev, "problem starting queue (%d)\n", ret);
2189
	else
2190
		dev_dbg(dev, "resumed\n");
2191

2192
	return ret;
2193 2194 2195
}
#endif	/* CONFIG_PM */

2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
#ifdef CONFIG_PM_RUNTIME
static int pl022_runtime_suspend(struct device *dev)
{
	struct pl022 *pl022 = dev_get_drvdata(dev);

	clk_disable(pl022->clk);

	return 0;
}

static int pl022_runtime_resume(struct device *dev)
{
	struct pl022 *pl022 = dev_get_drvdata(dev);

	clk_enable(pl022->clk);

	return 0;
}
#endif

static const struct dev_pm_ops pl022_dev_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
	SET_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
};

2221 2222 2223 2224
static struct vendor_data vendor_arm = {
	.fifodepth = 8,
	.max_bpw = 16,
	.unidir = false,
2225
	.extended_cr = false,
2226
	.pl023 = false,
2227
	.loopback = true,
2228 2229 2230 2231 2232 2233
};

static struct vendor_data vendor_st = {
	.fifodepth = 32,
	.max_bpw = 32,
	.unidir = false,
2234
	.extended_cr = true,
2235
	.pl023 = false,
2236
	.loopback = true,
2237 2238 2239 2240 2241 2242 2243 2244
};

static struct vendor_data vendor_st_pl023 = {
	.fifodepth = 32,
	.max_bpw = 32,
	.unidir = false,
	.extended_cr = true,
	.pl023 = true,
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
	.loopback = false,
};

static struct vendor_data vendor_db5500_pl023 = {
	.fifodepth = 32,
	.max_bpw = 32,
	.unidir = false,
	.extended_cr = true,
	.pl023 = true,
	.loopback = true,
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
};

static struct amba_id pl022_ids[] = {
	{
		/*
		 * ARM PL022 variant, this has a 16bit wide
		 * and 8 locations deep TX/RX FIFO
		 */
		.id	= 0x00041022,
		.mask	= 0x000fffff,
		.data	= &vendor_arm,
	},
	{
		/*
		 * ST Micro derivative, this has 32bit wide
		 * and 32 locations deep TX/RX FIFO
		 */
2272
		.id	= 0x01080022,
2273 2274 2275
		.mask	= 0xffffffff,
		.data	= &vendor_st,
	},
2276 2277 2278 2279 2280 2281 2282 2283
	{
		/*
		 * ST-Ericsson derivative "PL023" (this is not
		 * an official ARM number), this is a PL022 SSP block
		 * stripped to SPI mode only, it has 32bit wide
		 * and 32 locations deep TX/RX FIFO but no extended
		 * CR0/CR1 register
		 */
2284 2285 2286
		.id	= 0x00080023,
		.mask	= 0xffffffff,
		.data	= &vendor_st_pl023,
2287
	},
2288 2289 2290 2291 2292
	{
		.id	= 0x10080023,
		.mask	= 0xffffffff,
		.data	= &vendor_db5500_pl023,
	},
2293 2294 2295
	{ 0, 0 },
};

2296 2297
MODULE_DEVICE_TABLE(amba, pl022_ids);

2298 2299 2300
static struct amba_driver pl022_driver = {
	.drv = {
		.name	= "ssp-pl022",
2301
		.pm	= &pl022_dev_pm_ops,
2302 2303 2304
	},
	.id_table	= pl022_ids,
	.probe		= pl022_probe,
2305
	.remove		= __devexit_p(pl022_remove),
2306 2307 2308 2309 2310 2311
};

static int __init pl022_init(void)
{
	return amba_driver_register(&pl022_driver);
}
2312
subsys_initcall(pl022_init);
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322

static void __exit pl022_exit(void)
{
	amba_driver_unregister(&pl022_driver);
}
module_exit(pl022_exit);

MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
MODULE_DESCRIPTION("PL022 SSP Controller Driver");
MODULE_LICENSE("GPL");