coproc.c 35.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Authors: Rusty Russell <rusty@rustcorp.com.au>
 *          Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 */
19
#include <linux/mm.h>
20
#include <linux/kvm_host.h>
21
#include <linux/uaccess.h>
22 23 24 25
#include <asm/kvm_arm.h>
#include <asm/kvm_host.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_coproc.h>
26
#include <asm/kvm_mmu.h>
27 28 29
#include <asm/cacheflush.h>
#include <asm/cputype.h>
#include <trace/events/kvm.h>
30 31
#include <asm/vfp.h>
#include "../vfp/vfpinstr.h"
32

33 34 35 36 37 38 39 40
#include "trace.h"
#include "coproc.h"


/******************************************************************************
 * Co-processor emulation
 *****************************************************************************/

41 42 43 44 45 46
/* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
static u32 cache_levels;

/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
#define CSSELR_MAX 12

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
/*
 * kvm_vcpu_arch.cp15 holds cp15 registers as an array of u32, but some
 * of cp15 registers can be viewed either as couple of two u32 registers
 * or one u64 register. Current u64 register encoding is that least
 * significant u32 word is followed by most significant u32 word.
 */
static inline void vcpu_cp15_reg64_set(struct kvm_vcpu *vcpu,
				       const struct coproc_reg *r,
				       u64 val)
{
	vcpu->arch.cp15[r->reg] = val & 0xffffffff;
	vcpu->arch.cp15[r->reg + 1] = val >> 32;
}

static inline u64 vcpu_cp15_reg64_get(struct kvm_vcpu *vcpu,
				      const struct coproc_reg *r)
{
	u64 val;

	val = vcpu->arch.cp15[r->reg + 1];
	val = val << 32;
	val = val | vcpu->arch.cp15[r->reg];
	return val;
}

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
int kvm_handle_cp10_id(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	kvm_inject_undefined(vcpu);
	return 1;
}

int kvm_handle_cp_0_13_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	/*
	 * We can get here, if the host has been built without VFPv3 support,
	 * but the guest attempted a floating point operation.
	 */
	kvm_inject_undefined(vcpu);
	return 1;
}

int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	kvm_inject_undefined(vcpu);
	return 1;
}

int kvm_handle_cp14_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	kvm_inject_undefined(vcpu);
	return 1;
}

100 101 102
static void reset_mpidr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
{
	/*
103 104 105
	 * Compute guest MPIDR. We build a virtual cluster out of the
	 * vcpu_id, but we read the 'U' bit from the underlying
	 * hardware directly.
106
	 */
107 108 109
	vcpu->arch.cp15[c0_MPIDR] = ((read_cpuid_mpidr() & MPIDR_SMP_BITMASK) |
				     ((vcpu->vcpu_id >> 2) << MPIDR_LEVEL_BITS) |
				     (vcpu->vcpu_id & 3));
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
}

/* TRM entries A7:4.3.31 A15:4.3.28 - RO WI */
static bool access_actlr(struct kvm_vcpu *vcpu,
			 const struct coproc_params *p,
			 const struct coproc_reg *r)
{
	if (p->is_write)
		return ignore_write(vcpu, p);

	*vcpu_reg(vcpu, p->Rt1) = vcpu->arch.cp15[c1_ACTLR];
	return true;
}

/* TRM entries A7:4.3.56, A15:4.3.60 - R/O. */
static bool access_cbar(struct kvm_vcpu *vcpu,
			const struct coproc_params *p,
			const struct coproc_reg *r)
{
	if (p->is_write)
		return write_to_read_only(vcpu, p);
	return read_zero(vcpu, p);
}

/* TRM entries A7:4.3.49, A15:4.3.48 - R/O WI */
static bool access_l2ctlr(struct kvm_vcpu *vcpu,
			  const struct coproc_params *p,
			  const struct coproc_reg *r)
{
	if (p->is_write)
		return ignore_write(vcpu, p);

	*vcpu_reg(vcpu, p->Rt1) = vcpu->arch.cp15[c9_L2CTLR];
	return true;
}

static void reset_l2ctlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
{
	u32 l2ctlr, ncores;

	asm volatile("mrc p15, 1, %0, c9, c0, 2\n" : "=r" (l2ctlr));
	l2ctlr &= ~(3 << 24);
	ncores = atomic_read(&vcpu->kvm->online_vcpus) - 1;
153 154 155 156
	/* How many cores in the current cluster and the next ones */
	ncores -= (vcpu->vcpu_id & ~3);
	/* Cap it to the maximum number of cores in a single cluster */
	ncores = min(ncores, 3U);
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
	l2ctlr |= (ncores & 3) << 24;

	vcpu->arch.cp15[c9_L2CTLR] = l2ctlr;
}

static void reset_actlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
{
	u32 actlr;

	/* ACTLR contains SMP bit: make sure you create all cpus first! */
	asm volatile("mrc p15, 0, %0, c1, c0, 1\n" : "=r" (actlr));
	/* Make the SMP bit consistent with the guest configuration */
	if (atomic_read(&vcpu->kvm->online_vcpus) > 1)
		actlr |= 1U << 6;
	else
		actlr &= ~(1U << 6);

	vcpu->arch.cp15[c1_ACTLR] = actlr;
}

/*
 * TRM entries: A7:4.3.50, A15:4.3.49
 * R/O WI (even if NSACR.NS_L2ERR, a write of 1 is ignored).
 */
static bool access_l2ectlr(struct kvm_vcpu *vcpu,
			   const struct coproc_params *p,
			   const struct coproc_reg *r)
{
	if (p->is_write)
		return ignore_write(vcpu, p);

	*vcpu_reg(vcpu, p->Rt1) = 0;
	return true;
}

192 193 194 195 196
/* See note at ARM ARM B1.14.4 */
static bool access_dcsw(struct kvm_vcpu *vcpu,
			const struct coproc_params *p,
			const struct coproc_reg *r)
{
197
	unsigned long val;
198 199 200 201 202
	int cpu;

	if (!p->is_write)
		return read_from_write_only(vcpu, p);

203 204
	cpu = get_cpu();

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
	cpumask_setall(&vcpu->arch.require_dcache_flush);
	cpumask_clear_cpu(cpu, &vcpu->arch.require_dcache_flush);

	/* If we were already preempted, take the long way around */
	if (cpu != vcpu->arch.last_pcpu) {
		flush_cache_all();
		goto done;
	}

	val = *vcpu_reg(vcpu, p->Rt1);

	switch (p->CRm) {
	case 6:			/* Upgrade DCISW to DCCISW, as per HCR.SWIO */
	case 14:		/* DCCISW */
		asm volatile("mcr p15, 0, %0, c7, c14, 2" : : "r" (val));
		break;

	case 10:		/* DCCSW */
		asm volatile("mcr p15, 0, %0, c7, c10, 2" : : "r" (val));
		break;
	}

done:
	put_cpu();

	return true;
}

233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
/*
 * Generic accessor for VM registers. Only called as long as HCR_TVM
 * is set.
 */
static bool access_vm_reg(struct kvm_vcpu *vcpu,
			  const struct coproc_params *p,
			  const struct coproc_reg *r)
{
	BUG_ON(!p->is_write);

	vcpu->arch.cp15[r->reg] = *vcpu_reg(vcpu, p->Rt1);
	if (p->is_64bit)
		vcpu->arch.cp15[r->reg + 1] = *vcpu_reg(vcpu, p->Rt2);

	return true;
}

/*
 * SCTLR accessor. Only called as long as HCR_TVM is set.  If the
 * guest enables the MMU, we stop trapping the VM sys_regs and leave
 * it in complete control of the caches.
 *
 * Used by the cpu-specific code.
 */
bool access_sctlr(struct kvm_vcpu *vcpu,
		  const struct coproc_params *p,
		  const struct coproc_reg *r)
{
	access_vm_reg(vcpu, p, r);

	if (vcpu_has_cache_enabled(vcpu)) {	/* MMU+Caches enabled? */
		vcpu->arch.hcr &= ~HCR_TVM;
		stage2_flush_vm(vcpu->kvm);
	}

	return true;
}

271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
/*
 * We could trap ID_DFR0 and tell the guest we don't support performance
 * monitoring.  Unfortunately the patch to make the kernel check ID_DFR0 was
 * NAKed, so it will read the PMCR anyway.
 *
 * Therefore we tell the guest we have 0 counters.  Unfortunately, we
 * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
 * all PM registers, which doesn't crash the guest kernel at least.
 */
static bool pm_fake(struct kvm_vcpu *vcpu,
		    const struct coproc_params *p,
		    const struct coproc_reg *r)
{
	if (p->is_write)
		return ignore_write(vcpu, p);
	else
		return read_zero(vcpu, p);
}

#define access_pmcr pm_fake
#define access_pmcntenset pm_fake
#define access_pmcntenclr pm_fake
#define access_pmovsr pm_fake
#define access_pmselr pm_fake
#define access_pmceid0 pm_fake
#define access_pmceid1 pm_fake
#define access_pmccntr pm_fake
#define access_pmxevtyper pm_fake
#define access_pmxevcntr pm_fake
#define access_pmuserenr pm_fake
#define access_pmintenset pm_fake
#define access_pmintenclr pm_fake

/* Architected CP15 registers.
305 306 307 308 309
 * CRn denotes the primary register number, but is copied to the CRm in the
 * user space API for 64-bit register access in line with the terminology used
 * in the ARM ARM.
 * Important: Must be sorted ascending by CRn, CRM, Op1, Op2 and with 64-bit
 *            registers preceding 32-bit ones.
310 311
 */
static const struct coproc_reg cp15_regs[] = {
312 313 314 315
	/* MPIDR: we use VMPIDR for guest access. */
	{ CRn( 0), CRm( 0), Op1( 0), Op2( 5), is32,
			NULL, reset_mpidr, c0_MPIDR },

316 317 318 319
	/* CSSELR: swapped by interrupt.S. */
	{ CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32,
			NULL, reset_unknown, c0_CSSELR },

320 321 322 323 324 325 326 327
	/* ACTLR: trapped by HCR.TAC bit. */
	{ CRn( 1), CRm( 0), Op1( 0), Op2( 1), is32,
			access_actlr, reset_actlr, c1_ACTLR },

	/* CPACR: swapped by interrupt.S. */
	{ CRn( 1), CRm( 0), Op1( 0), Op2( 2), is32,
			NULL, reset_val, c1_CPACR, 0x00000000 },

328 329 330 331 332 333
	/* TTBR0/TTBR1/TTBCR: swapped by interrupt.S. */
	{ CRm64( 2), Op1( 0), is64, access_vm_reg, reset_unknown64, c2_TTBR0 },
	{ CRn(2), CRm( 0), Op1( 0), Op2( 0), is32,
			access_vm_reg, reset_unknown, c2_TTBR0 },
	{ CRn(2), CRm( 0), Op1( 0), Op2( 1), is32,
			access_vm_reg, reset_unknown, c2_TTBR1 },
334
	{ CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32,
335 336 337
			access_vm_reg, reset_val, c2_TTBCR, 0x00000000 },
	{ CRm64( 2), Op1( 1), is64, access_vm_reg, reset_unknown64, c2_TTBR1 },

338 339 340

	/* DACR: swapped by interrupt.S. */
	{ CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32,
341
			access_vm_reg, reset_unknown, c3_DACR },
342 343 344

	/* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */
	{ CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32,
345
			access_vm_reg, reset_unknown, c5_DFSR },
346
	{ CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32,
347
			access_vm_reg, reset_unknown, c5_IFSR },
348
	{ CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32,
349
			access_vm_reg, reset_unknown, c5_ADFSR },
350
	{ CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32,
351
			access_vm_reg, reset_unknown, c5_AIFSR },
352 353 354

	/* DFAR/IFAR: swapped by interrupt.S. */
	{ CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32,
355
			access_vm_reg, reset_unknown, c6_DFAR },
356
	{ CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32,
357
			access_vm_reg, reset_unknown, c6_IFAR },
358 359

	/* PAR swapped by interrupt.S */
360
	{ CRm64( 7), Op1( 0), is64, NULL, reset_unknown64, c7_PAR },
361

362 363 364 365 366 367
	/*
	 * DC{C,I,CI}SW operations:
	 */
	{ CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32, access_dcsw},
	{ CRn( 7), CRm(10), Op1( 0), Op2( 2), is32, access_dcsw},
	{ CRn( 7), CRm(14), Op1( 0), Op2( 2), is32, access_dcsw},
368 369 370 371 372 373 374
	/*
	 * L2CTLR access (guest wants to know #CPUs).
	 */
	{ CRn( 9), CRm( 0), Op1( 1), Op2( 2), is32,
			access_l2ctlr, reset_l2ctlr, c9_L2CTLR },
	{ CRn( 9), CRm( 0), Op1( 1), Op2( 3), is32, access_l2ectlr},

375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
	/*
	 * Dummy performance monitor implementation.
	 */
	{ CRn( 9), CRm(12), Op1( 0), Op2( 0), is32, access_pmcr},
	{ CRn( 9), CRm(12), Op1( 0), Op2( 1), is32, access_pmcntenset},
	{ CRn( 9), CRm(12), Op1( 0), Op2( 2), is32, access_pmcntenclr},
	{ CRn( 9), CRm(12), Op1( 0), Op2( 3), is32, access_pmovsr},
	{ CRn( 9), CRm(12), Op1( 0), Op2( 5), is32, access_pmselr},
	{ CRn( 9), CRm(12), Op1( 0), Op2( 6), is32, access_pmceid0},
	{ CRn( 9), CRm(12), Op1( 0), Op2( 7), is32, access_pmceid1},
	{ CRn( 9), CRm(13), Op1( 0), Op2( 0), is32, access_pmccntr},
	{ CRn( 9), CRm(13), Op1( 0), Op2( 1), is32, access_pmxevtyper},
	{ CRn( 9), CRm(13), Op1( 0), Op2( 2), is32, access_pmxevcntr},
	{ CRn( 9), CRm(14), Op1( 0), Op2( 0), is32, access_pmuserenr},
	{ CRn( 9), CRm(14), Op1( 0), Op2( 1), is32, access_pmintenset},
	{ CRn( 9), CRm(14), Op1( 0), Op2( 2), is32, access_pmintenclr},

	/* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */
	{ CRn(10), CRm( 2), Op1( 0), Op2( 0), is32,
394
			access_vm_reg, reset_unknown, c10_PRRR},
395
	{ CRn(10), CRm( 2), Op1( 0), Op2( 1), is32,
396
			access_vm_reg, reset_unknown, c10_NMRR},
397

398 399 400 401 402 403
	/* AMAIR0/AMAIR1: swapped by interrupt.S. */
	{ CRn(10), CRm( 3), Op1( 0), Op2( 0), is32,
			access_vm_reg, reset_unknown, c10_AMAIR0},
	{ CRn(10), CRm( 3), Op1( 0), Op2( 1), is32,
			access_vm_reg, reset_unknown, c10_AMAIR1},

404 405 406 407 408 409
	/* VBAR: swapped by interrupt.S. */
	{ CRn(12), CRm( 0), Op1( 0), Op2( 0), is32,
			NULL, reset_val, c12_VBAR, 0x00000000 },

	/* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */
	{ CRn(13), CRm( 0), Op1( 0), Op2( 1), is32,
410
			access_vm_reg, reset_val, c13_CID, 0x00000000 },
411 412 413 414 415 416
	{ CRn(13), CRm( 0), Op1( 0), Op2( 2), is32,
			NULL, reset_unknown, c13_TID_URW },
	{ CRn(13), CRm( 0), Op1( 0), Op2( 3), is32,
			NULL, reset_unknown, c13_TID_URO },
	{ CRn(13), CRm( 0), Op1( 0), Op2( 4), is32,
			NULL, reset_unknown, c13_TID_PRIV },
417 418 419 420

	/* CNTKCTL: swapped by interrupt.S. */
	{ CRn(14), CRm( 1), Op1( 0), Op2( 0), is32,
			NULL, reset_val, c14_CNTKCTL, 0x00000000 },
421 422 423

	/* The Configuration Base Address Register. */
	{ CRn(15), CRm( 0), Op1( 4), Op2( 0), is32, access_cbar},
424 425 426 427 428 429 430
};

/* Target specific emulation tables */
static struct kvm_coproc_target_table *target_tables[KVM_ARM_NUM_TARGETS];

void kvm_register_target_coproc_table(struct kvm_coproc_target_table *table)
{
431 432 433 434 435 436
	unsigned int i;

	for (i = 1; i < table->num; i++)
		BUG_ON(cmp_reg(&table->table[i-1],
			       &table->table[i]) >= 0);

437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
	target_tables[table->target] = table;
}

/* Get specific register table for this target. */
static const struct coproc_reg *get_target_table(unsigned target, size_t *num)
{
	struct kvm_coproc_target_table *table;

	table = target_tables[target];
	*num = table->num;
	return table->table;
}

static const struct coproc_reg *find_reg(const struct coproc_params *params,
					 const struct coproc_reg table[],
					 unsigned int num)
{
	unsigned int i;

	for (i = 0; i < num; i++) {
		const struct coproc_reg *r = &table[i];

		if (params->is_64bit != r->is_64)
			continue;
		if (params->CRn != r->CRn)
			continue;
		if (params->CRm != r->CRm)
			continue;
		if (params->Op1 != r->Op1)
			continue;
		if (params->Op2 != r->Op2)
			continue;

		return r;
	}
	return NULL;
}

static int emulate_cp15(struct kvm_vcpu *vcpu,
			const struct coproc_params *params)
{
	size_t num;
	const struct coproc_reg *table, *r;

	trace_kvm_emulate_cp15_imp(params->Op1, params->Rt1, params->CRn,
				   params->CRm, params->Op2, params->is_write);

	table = get_target_table(vcpu->arch.target, &num);

	/* Search target-specific then generic table. */
	r = find_reg(params, table, num);
	if (!r)
		r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));

	if (likely(r)) {
		/* If we don't have an accessor, we should never get here! */
		BUG_ON(!r->access);

		if (likely(r->access(vcpu, params, r))) {
			/* Skip instruction, since it was emulated */
497
			kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
498 499 500 501
			return 1;
		}
		/* If access function fails, it should complain. */
	} else {
502
		kvm_err("Unsupported guest CP15 access at: %08lx\n",
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
			*vcpu_pc(vcpu));
		print_cp_instr(params);
	}
	kvm_inject_undefined(vcpu);
	return 1;
}

/**
 * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
 * @vcpu: The VCPU pointer
 * @run:  The kvm_run struct
 */
int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	struct coproc_params params;

519
	params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
520 521
	params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
	params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
522 523
	params.is_64bit = true;

524
	params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 16) & 0xf;
525
	params.Op2 = 0;
526
	params.Rt2 = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
527
	params.CRm = 0;
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550

	return emulate_cp15(vcpu, &params);
}

static void reset_coproc_regs(struct kvm_vcpu *vcpu,
			      const struct coproc_reg *table, size_t num)
{
	unsigned long i;

	for (i = 0; i < num; i++)
		if (table[i].reset)
			table[i].reset(vcpu, &table[i]);
}

/**
 * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
 * @vcpu: The VCPU pointer
 * @run:  The kvm_run struct
 */
int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	struct coproc_params params;

551 552 553
	params.CRm = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
	params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
	params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
554 555
	params.is_64bit = false;

556 557 558
	params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
	params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 14) & 0x7;
	params.Op2 = (kvm_vcpu_get_hsr(vcpu) >> 17) & 0x7;
559 560 561 562 563
	params.Rt2 = 0;

	return emulate_cp15(vcpu, &params);
}

564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
/******************************************************************************
 * Userspace API
 *****************************************************************************/

static bool index_to_params(u64 id, struct coproc_params *params)
{
	switch (id & KVM_REG_SIZE_MASK) {
	case KVM_REG_SIZE_U32:
		/* Any unused index bits means it's not valid. */
		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
			   | KVM_REG_ARM_COPROC_MASK
			   | KVM_REG_ARM_32_CRN_MASK
			   | KVM_REG_ARM_CRM_MASK
			   | KVM_REG_ARM_OPC1_MASK
			   | KVM_REG_ARM_32_OPC2_MASK))
			return false;

		params->is_64bit = false;
		params->CRn = ((id & KVM_REG_ARM_32_CRN_MASK)
			       >> KVM_REG_ARM_32_CRN_SHIFT);
		params->CRm = ((id & KVM_REG_ARM_CRM_MASK)
			       >> KVM_REG_ARM_CRM_SHIFT);
		params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
			       >> KVM_REG_ARM_OPC1_SHIFT);
		params->Op2 = ((id & KVM_REG_ARM_32_OPC2_MASK)
			       >> KVM_REG_ARM_32_OPC2_SHIFT);
		return true;
	case KVM_REG_SIZE_U64:
		/* Any unused index bits means it's not valid. */
		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
			      | KVM_REG_ARM_COPROC_MASK
			      | KVM_REG_ARM_CRM_MASK
			      | KVM_REG_ARM_OPC1_MASK))
			return false;
		params->is_64bit = true;
599 600
		/* CRm to CRn: see cp15_to_index for details */
		params->CRn = ((id & KVM_REG_ARM_CRM_MASK)
601 602 603 604
			       >> KVM_REG_ARM_CRM_SHIFT);
		params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
			       >> KVM_REG_ARM_OPC1_SHIFT);
		params->Op2 = 0;
605
		params->CRm = 0;
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
		return true;
	default:
		return false;
	}
}

/* Decode an index value, and find the cp15 coproc_reg entry. */
static const struct coproc_reg *index_to_coproc_reg(struct kvm_vcpu *vcpu,
						    u64 id)
{
	size_t num;
	const struct coproc_reg *table, *r;
	struct coproc_params params;

	/* We only do cp15 for now. */
	if ((id & KVM_REG_ARM_COPROC_MASK) >> KVM_REG_ARM_COPROC_SHIFT != 15)
		return NULL;

	if (!index_to_params(id, &params))
		return NULL;

	table = get_target_table(vcpu->arch.target, &num);
	r = find_reg(&params, table, num);
	if (!r)
		r = find_reg(&params, cp15_regs, ARRAY_SIZE(cp15_regs));

	/* Not saved in the cp15 array? */
	if (r && !r->reg)
		r = NULL;

	return r;
}

/*
 * These are the invariant cp15 registers: we let the guest see the host
 * versions of these, so they're part of the guest state.
 *
 * A future CPU may provide a mechanism to present different values to
 * the guest, or a future kvm may trap them.
 */
/* Unfortunately, there's no register-argument for mrc, so generate. */
#define FUNCTION_FOR32(crn, crm, op1, op2, name)			\
	static void get_##name(struct kvm_vcpu *v,			\
			       const struct coproc_reg *r)		\
	{								\
		u32 val;						\
									\
		asm volatile("mrc p15, " __stringify(op1)		\
			     ", %0, c" __stringify(crn)			\
			     ", c" __stringify(crm)			\
			     ", " __stringify(op2) "\n" : "=r" (val));	\
		((struct coproc_reg *)r)->val = val;			\
	}

FUNCTION_FOR32(0, 0, 0, 0, MIDR)
FUNCTION_FOR32(0, 0, 0, 1, CTR)
FUNCTION_FOR32(0, 0, 0, 2, TCMTR)
FUNCTION_FOR32(0, 0, 0, 3, TLBTR)
FUNCTION_FOR32(0, 0, 0, 6, REVIDR)
FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0)
FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1)
FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0)
FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0)
FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0)
FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1)
FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2)
FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3)
FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0)
FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1)
FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2)
FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3)
FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4)
FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5)
FUNCTION_FOR32(0, 0, 1, 1, CLIDR)
FUNCTION_FOR32(0, 0, 1, 7, AIDR)

/* ->val is filled in by kvm_invariant_coproc_table_init() */
static struct coproc_reg invariant_cp15[] = {
	{ CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32, NULL, get_MIDR },
	{ CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32, NULL, get_CTR },
	{ CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32, NULL, get_TCMTR },
	{ CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32, NULL, get_TLBTR },
	{ CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32, NULL, get_REVIDR },

	{ CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32, NULL, get_ID_PFR0 },
	{ CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32, NULL, get_ID_PFR1 },
	{ CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32, NULL, get_ID_DFR0 },
	{ CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32, NULL, get_ID_AFR0 },
	{ CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32, NULL, get_ID_MMFR0 },
	{ CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32, NULL, get_ID_MMFR1 },
	{ CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32, NULL, get_ID_MMFR2 },
	{ CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32, NULL, get_ID_MMFR3 },

	{ CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32, NULL, get_ID_ISAR0 },
	{ CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32, NULL, get_ID_ISAR1 },
	{ CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32, NULL, get_ID_ISAR2 },
	{ CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32, NULL, get_ID_ISAR3 },
	{ CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32, NULL, get_ID_ISAR4 },
	{ CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32, NULL, get_ID_ISAR5 },

	{ CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32, NULL, get_CLIDR },
	{ CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32, NULL, get_AIDR },
};

710 711 712 713
/*
 * Reads a register value from a userspace address to a kernel
 * variable. Make sure that register size matches sizeof(*__val).
 */
714 715 716 717 718 719 720
static int reg_from_user(void *val, const void __user *uaddr, u64 id)
{
	if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
		return -EFAULT;
	return 0;
}

721 722 723 724
/*
 * Writes a register value to a userspace address from a kernel variable.
 * Make sure that register size matches sizeof(*__val).
 */
725 726 727 728 729 730 731 732 733 734 735
static int reg_to_user(void __user *uaddr, const void *val, u64 id)
{
	if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
		return -EFAULT;
	return 0;
}

static int get_invariant_cp15(u64 id, void __user *uaddr)
{
	struct coproc_params params;
	const struct coproc_reg *r;
736
	int ret;
737 738 739 740 741 742 743 744

	if (!index_to_params(id, &params))
		return -ENOENT;

	r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
	if (!r)
		return -ENOENT;

745 746 747 748 749 750 751 752 753
	ret = -ENOENT;
	if (KVM_REG_SIZE(id) == 4) {
		u32 val = r->val;

		ret = reg_to_user(uaddr, &val, id);
	} else if (KVM_REG_SIZE(id) == 8) {
		ret = reg_to_user(uaddr, &r->val, id);
	}
	return ret;
754 755 756 757 758 759 760
}

static int set_invariant_cp15(u64 id, void __user *uaddr)
{
	struct coproc_params params;
	const struct coproc_reg *r;
	int err;
761
	u64 val;
762 763 764 765 766 767 768

	if (!index_to_params(id, &params))
		return -ENOENT;
	r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
	if (!r)
		return -ENOENT;

769 770 771 772 773 774 775 776 777 778
	err = -ENOENT;
	if (KVM_REG_SIZE(id) == 4) {
		u32 val32;

		err = reg_from_user(&val32, uaddr, id);
		if (!err)
			val = val32;
	} else if (KVM_REG_SIZE(id) == 8) {
		err = reg_from_user(&val, uaddr, id);
	}
779 780 781 782 783 784 785 786 787 788
	if (err)
		return err;

	/* This is what we mean by invariant: you can't change it. */
	if (r->val != val)
		return -EINVAL;

	return 0;
}

789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
static bool is_valid_cache(u32 val)
{
	u32 level, ctype;

	if (val >= CSSELR_MAX)
		return -ENOENT;

	/* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
        level = (val >> 1);
        ctype = (cache_levels >> (level * 3)) & 7;

	switch (ctype) {
	case 0: /* No cache */
		return false;
	case 1: /* Instruction cache only */
		return (val & 1);
	case 2: /* Data cache only */
	case 4: /* Unified cache */
		return !(val & 1);
	case 3: /* Separate instruction and data caches */
		return true;
	default: /* Reserved: we can't know instruction or data. */
		return false;
	}
}

/* Which cache CCSIDR represents depends on CSSELR value. */
static u32 get_ccsidr(u32 csselr)
{
	u32 ccsidr;

	/* Make sure noone else changes CSSELR during this! */
	local_irq_disable();
	/* Put value into CSSELR */
	asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr));
	isb();
	/* Read result out of CCSIDR */
	asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr));
	local_irq_enable();

	return ccsidr;
}

static int demux_c15_get(u64 id, void __user *uaddr)
{
	u32 val;
	u32 __user *uval = uaddr;

	/* Fail if we have unknown bits set. */
	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
		return -ENOENT;

	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
		if (KVM_REG_SIZE(id) != 4)
			return -ENOENT;
		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
		if (!is_valid_cache(val))
			return -ENOENT;

		return put_user(get_ccsidr(val), uval);
	default:
		return -ENOENT;
	}
}

static int demux_c15_set(u64 id, void __user *uaddr)
{
	u32 val, newval;
	u32 __user *uval = uaddr;

	/* Fail if we have unknown bits set. */
	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
		return -ENOENT;

	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
		if (KVM_REG_SIZE(id) != 4)
			return -ENOENT;
		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
		if (!is_valid_cache(val))
			return -ENOENT;

		if (get_user(newval, uval))
			return -EFAULT;

		/* This is also invariant: you can't change it. */
		if (newval != get_ccsidr(val))
			return -EINVAL;
		return 0;
	default:
		return -ENOENT;
	}
}

888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
#ifdef CONFIG_VFPv3
static const int vfp_sysregs[] = { KVM_REG_ARM_VFP_FPEXC,
				   KVM_REG_ARM_VFP_FPSCR,
				   KVM_REG_ARM_VFP_FPINST,
				   KVM_REG_ARM_VFP_FPINST2,
				   KVM_REG_ARM_VFP_MVFR0,
				   KVM_REG_ARM_VFP_MVFR1,
				   KVM_REG_ARM_VFP_FPSID };

static unsigned int num_fp_regs(void)
{
	if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK) >> MVFR0_A_SIMD_BIT) == 2)
		return 32;
	else
		return 16;
}

static unsigned int num_vfp_regs(void)
{
	/* Normal FP regs + control regs. */
	return num_fp_regs() + ARRAY_SIZE(vfp_sysregs);
}

static int copy_vfp_regids(u64 __user *uindices)
{
	unsigned int i;
	const u64 u32reg = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP;
	const u64 u64reg = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;

	for (i = 0; i < num_fp_regs(); i++) {
		if (put_user((u64reg | KVM_REG_ARM_VFP_BASE_REG) + i,
			     uindices))
			return -EFAULT;
		uindices++;
	}

	for (i = 0; i < ARRAY_SIZE(vfp_sysregs); i++) {
		if (put_user(u32reg | vfp_sysregs[i], uindices))
			return -EFAULT;
		uindices++;
	}

	return num_vfp_regs();
}

static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
{
	u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
	u32 val;

	/* Fail if we have unknown bits set. */
	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
		return -ENOENT;

	if (vfpid < num_fp_regs()) {
		if (KVM_REG_SIZE(id) != 8)
			return -ENOENT;
		return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpregs[vfpid],
				   id);
	}

	/* FP control registers are all 32 bit. */
	if (KVM_REG_SIZE(id) != 4)
		return -ENOENT;

	switch (vfpid) {
	case KVM_REG_ARM_VFP_FPEXC:
		return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpexc, id);
	case KVM_REG_ARM_VFP_FPSCR:
		return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpscr, id);
	case KVM_REG_ARM_VFP_FPINST:
		return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpinst, id);
	case KVM_REG_ARM_VFP_FPINST2:
		return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpinst2, id);
	case KVM_REG_ARM_VFP_MVFR0:
		val = fmrx(MVFR0);
		return reg_to_user(uaddr, &val, id);
	case KVM_REG_ARM_VFP_MVFR1:
		val = fmrx(MVFR1);
		return reg_to_user(uaddr, &val, id);
	case KVM_REG_ARM_VFP_FPSID:
		val = fmrx(FPSID);
		return reg_to_user(uaddr, &val, id);
	default:
		return -ENOENT;
	}
}

static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
{
	u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
	u32 val;

	/* Fail if we have unknown bits set. */
	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
		return -ENOENT;

	if (vfpid < num_fp_regs()) {
		if (KVM_REG_SIZE(id) != 8)
			return -ENOENT;
		return reg_from_user(&vcpu->arch.vfp_guest.fpregs[vfpid],
				     uaddr, id);
	}

	/* FP control registers are all 32 bit. */
	if (KVM_REG_SIZE(id) != 4)
		return -ENOENT;

	switch (vfpid) {
	case KVM_REG_ARM_VFP_FPEXC:
		return reg_from_user(&vcpu->arch.vfp_guest.fpexc, uaddr, id);
	case KVM_REG_ARM_VFP_FPSCR:
		return reg_from_user(&vcpu->arch.vfp_guest.fpscr, uaddr, id);
	case KVM_REG_ARM_VFP_FPINST:
		return reg_from_user(&vcpu->arch.vfp_guest.fpinst, uaddr, id);
	case KVM_REG_ARM_VFP_FPINST2:
		return reg_from_user(&vcpu->arch.vfp_guest.fpinst2, uaddr, id);
	/* These are invariant. */
	case KVM_REG_ARM_VFP_MVFR0:
		if (reg_from_user(&val, uaddr, id))
			return -EFAULT;
		if (val != fmrx(MVFR0))
			return -EINVAL;
		return 0;
	case KVM_REG_ARM_VFP_MVFR1:
		if (reg_from_user(&val, uaddr, id))
			return -EFAULT;
		if (val != fmrx(MVFR1))
			return -EINVAL;
		return 0;
	case KVM_REG_ARM_VFP_FPSID:
		if (reg_from_user(&val, uaddr, id))
			return -EFAULT;
		if (val != fmrx(FPSID))
			return -EINVAL;
		return 0;
	default:
		return -ENOENT;
	}
}
#else /* !CONFIG_VFPv3 */
static unsigned int num_vfp_regs(void)
{
	return 0;
}

static int copy_vfp_regids(u64 __user *uindices)
{
	return 0;
}

static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
{
	return -ENOENT;
}

static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
{
	return -ENOENT;
}
#endif /* !CONFIG_VFPv3 */

1052 1053 1054 1055
int kvm_arm_coproc_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
	const struct coproc_reg *r;
	void __user *uaddr = (void __user *)(long)reg->addr;
1056
	int ret;
1057

1058 1059 1060
	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
		return demux_c15_get(reg->id, uaddr);

1061 1062 1063
	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
		return vfp_get_reg(vcpu, reg->id, uaddr);

1064 1065 1066 1067
	r = index_to_coproc_reg(vcpu, reg->id);
	if (!r)
		return get_invariant_cp15(reg->id, uaddr);

1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
	ret = -ENOENT;
	if (KVM_REG_SIZE(reg->id) == 8) {
		u64 val;

		val = vcpu_cp15_reg64_get(vcpu, r);
		ret = reg_to_user(uaddr, &val, reg->id);
	} else if (KVM_REG_SIZE(reg->id) == 4) {
		ret = reg_to_user(uaddr, &vcpu->arch.cp15[r->reg], reg->id);
	}

	return ret;
1079 1080 1081 1082 1083 1084
}

int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
	const struct coproc_reg *r;
	void __user *uaddr = (void __user *)(long)reg->addr;
1085
	int ret;
1086

1087 1088 1089
	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
		return demux_c15_set(reg->id, uaddr);

1090 1091 1092
	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
		return vfp_set_reg(vcpu, reg->id, uaddr);

1093 1094 1095 1096
	r = index_to_coproc_reg(vcpu, reg->id);
	if (!r)
		return set_invariant_cp15(reg->id, uaddr);

1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
	ret = -ENOENT;
	if (KVM_REG_SIZE(reg->id) == 8) {
		u64 val;

		ret = reg_from_user(&val, uaddr, reg->id);
		if (!ret)
			vcpu_cp15_reg64_set(vcpu, r, val);
	} else if (KVM_REG_SIZE(reg->id) == 4) {
		ret = reg_from_user(&vcpu->arch.cp15[r->reg], uaddr, reg->id);
	}

	return ret;
1109 1110
}

1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
static unsigned int num_demux_regs(void)
{
	unsigned int i, count = 0;

	for (i = 0; i < CSSELR_MAX; i++)
		if (is_valid_cache(i))
			count++;

	return count;
}

static int write_demux_regids(u64 __user *uindices)
{
	u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
	unsigned int i;

	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
	for (i = 0; i < CSSELR_MAX; i++) {
		if (!is_valid_cache(i))
			continue;
		if (put_user(val | i, uindices))
			return -EFAULT;
		uindices++;
	}
	return 0;
}

1138 1139 1140 1141 1142 1143
static u64 cp15_to_index(const struct coproc_reg *reg)
{
	u64 val = KVM_REG_ARM | (15 << KVM_REG_ARM_COPROC_SHIFT);
	if (reg->is_64) {
		val |= KVM_REG_SIZE_U64;
		val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
1144 1145 1146 1147 1148 1149 1150 1151
		/*
		 * CRn always denotes the primary coproc. reg. nr. for the
		 * in-kernel representation, but the user space API uses the
		 * CRm for the encoding, because it is modelled after the
		 * MRRC/MCRR instructions: see the ARM ARM rev. c page
		 * B3-1445
		 */
		val |= (reg->CRn << KVM_REG_ARM_CRM_SHIFT);
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
	} else {
		val |= KVM_REG_SIZE_U32;
		val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
		val |= (reg->Op2 << KVM_REG_ARM_32_OPC2_SHIFT);
		val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT);
		val |= (reg->CRn << KVM_REG_ARM_32_CRN_SHIFT);
	}
	return val;
}

static bool copy_reg_to_user(const struct coproc_reg *reg, u64 __user **uind)
{
	if (!*uind)
		return true;

	if (put_user(cp15_to_index(reg), *uind))
		return false;

	(*uind)++;
	return true;
}

/* Assumed ordered tables, see kvm_coproc_table_init. */
static int walk_cp15(struct kvm_vcpu *vcpu, u64 __user *uind)
{
	const struct coproc_reg *i1, *i2, *end1, *end2;
	unsigned int total = 0;
	size_t num;

	/* We check for duplicates here, to allow arch-specific overrides. */
	i1 = get_target_table(vcpu->arch.target, &num);
	end1 = i1 + num;
	i2 = cp15_regs;
	end2 = cp15_regs + ARRAY_SIZE(cp15_regs);

	BUG_ON(i1 == end1 || i2 == end2);

	/* Walk carefully, as both tables may refer to the same register. */
	while (i1 || i2) {
		int cmp = cmp_reg(i1, i2);
		/* target-specific overrides generic entry. */
		if (cmp <= 0) {
			/* Ignore registers we trap but don't save. */
			if (i1->reg) {
				if (!copy_reg_to_user(i1, &uind))
					return -EFAULT;
				total++;
			}
		} else {
			/* Ignore registers we trap but don't save. */
			if (i2->reg) {
				if (!copy_reg_to_user(i2, &uind))
					return -EFAULT;
				total++;
			}
		}

		if (cmp <= 0 && ++i1 == end1)
			i1 = NULL;
		if (cmp >= 0 && ++i2 == end2)
			i2 = NULL;
	}
	return total;
}

unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu *vcpu)
{
	return ARRAY_SIZE(invariant_cp15)
1220
		+ num_demux_regs()
1221
		+ num_vfp_regs()
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
		+ walk_cp15(vcpu, (u64 __user *)NULL);
}

int kvm_arm_copy_coproc_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
{
	unsigned int i;
	int err;

	/* Then give them all the invariant registers' indices. */
	for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) {
		if (put_user(cp15_to_index(&invariant_cp15[i]), uindices))
			return -EFAULT;
		uindices++;
	}

	err = walk_cp15(vcpu, uindices);
1238 1239 1240 1241
	if (err < 0)
		return err;
	uindices += err;

1242 1243 1244 1245 1246
	err = copy_vfp_regids(uindices);
	if (err < 0)
		return err;
	uindices += err;

1247
	return write_demux_regids(uindices);
1248 1249
}

1250 1251 1252 1253 1254 1255 1256
void kvm_coproc_table_init(void)
{
	unsigned int i;

	/* Make sure tables are unique and in order. */
	for (i = 1; i < ARRAY_SIZE(cp15_regs); i++)
		BUG_ON(cmp_reg(&cp15_regs[i-1], &cp15_regs[i]) >= 0);
1257 1258 1259 1260

	/* We abuse the reset function to overwrite the table itself. */
	for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++)
		invariant_cp15[i].reset(NULL, &invariant_cp15[i]);
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277

	/*
	 * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
	 *
	 *   If software reads the Cache Type fields from Ctype1
	 *   upwards, once it has seen a value of 0b000, no caches
	 *   exist at further-out levels of the hierarchy. So, for
	 *   example, if Ctype3 is the first Cache Type field with a
	 *   value of 0b000, the values of Ctype4 to Ctype7 must be
	 *   ignored.
	 */
	asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels));
	for (i = 0; i < 7; i++)
		if (((cache_levels >> (i*3)) & 7) == 0)
			break;
	/* Clear all higher bits. */
	cache_levels &= (1 << (i*3))-1;
1278 1279 1280 1281 1282 1283 1284 1285 1286
}

/**
 * kvm_reset_coprocs - sets cp15 registers to reset value
 * @vcpu: The VCPU pointer
 *
 * This function finds the right table above and sets the registers on the
 * virtual CPU struct to their architecturally defined reset values.
 */
1287 1288
void kvm_reset_coprocs(struct kvm_vcpu *vcpu)
{
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
	size_t num;
	const struct coproc_reg *table;

	/* Catch someone adding a register without putting in reset entry. */
	memset(vcpu->arch.cp15, 0x42, sizeof(vcpu->arch.cp15));

	/* Generic chip reset first (so target could override). */
	reset_coproc_regs(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));

	table = get_target_table(vcpu->arch.target, &num);
	reset_coproc_regs(vcpu, table, num);

	for (num = 1; num < NR_CP15_REGS; num++)
		if (vcpu->arch.cp15[num] == 0x42424242)
			panic("Didn't reset vcpu->arch.cp15[%zi]", num);
1304
}