82571.c 55.2 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel PRO/1000 Linux driver
B
Bruce Allan 已提交
4
  Copyright(c) 1999 - 2012 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  Linux NICS <linux.nics@intel.com>
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

/*
 * 82571EB Gigabit Ethernet Controller
31
 * 82571EB Gigabit Ethernet Controller (Copper)
32
 * 82571EB Gigabit Ethernet Controller (Fiber)
33 34 35
 * 82571EB Dual Port Gigabit Mezzanine Adapter
 * 82571EB Quad Port Gigabit Mezzanine Adapter
 * 82571PT Gigabit PT Quad Port Server ExpressModule
36 37 38 39 40 41
 * 82572EI Gigabit Ethernet Controller (Copper)
 * 82572EI Gigabit Ethernet Controller (Fiber)
 * 82572EI Gigabit Ethernet Controller
 * 82573V Gigabit Ethernet Controller (Copper)
 * 82573E Gigabit Ethernet Controller (Copper)
 * 82573L Gigabit Ethernet Controller
42
 * 82574L Gigabit Network Connection
43
 * 82583V Gigabit Network Connection
44 45 46 47 48 49 50 51 52 53 54
 */

#include "e1000.h"

#define ID_LED_RESERVED_F746 0xF746
#define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
			      (ID_LED_OFF1_ON2  <<  8) | \
			      (ID_LED_DEF1_DEF2 <<  4) | \
			      (ID_LED_DEF1_DEF2))

#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
55
#define AN_RETRY_COUNT          5 /* Autoneg Retry Count value */
56 57 58 59
#define E1000_BASE1000T_STATUS          10
#define E1000_IDLE_ERROR_COUNT_MASK     0xFF
#define E1000_RECEIVE_ERROR_COUNTER     21
#define E1000_RECEIVE_ERROR_MAX         0xFFFF
60

61 62
#define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */

63 64 65
static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
66
static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
67 68 69 70 71 72
static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
				      u16 words, u16 *data);
static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
static s32 e1000_setup_link_82571(struct e1000_hw *hw);
static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
73
static void e1000_clear_vfta_82571(struct e1000_hw *hw);
74 75
static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
static s32 e1000_led_on_82574(struct e1000_hw *hw);
76
static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
77
static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
78 79 80
static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw);
static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw);
static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw);
81 82
static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active);
static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active);
83 84 85 86 87 88 89 90 91 92

/**
 *  e1000_init_phy_params_82571 - Init PHY func ptrs.
 *  @hw: pointer to the HW structure
 **/
static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;

93
	if (hw->phy.media_type != e1000_media_type_copper) {
94 95 96 97 98 99 100 101
		phy->type = e1000_phy_none;
		return 0;
	}

	phy->addr			 = 1;
	phy->autoneg_mask		 = AUTONEG_ADVERTISE_SPEED_DEFAULT;
	phy->reset_delay_us		 = 100;

102 103 104
	phy->ops.power_up		 = e1000_power_up_phy_copper;
	phy->ops.power_down		 = e1000_power_down_phy_copper_82571;

105 106 107 108 109 110 111 112
	switch (hw->mac.type) {
	case e1000_82571:
	case e1000_82572:
		phy->type		 = e1000_phy_igp_2;
		break;
	case e1000_82573:
		phy->type		 = e1000_phy_m88;
		break;
113
	case e1000_82574:
114
	case e1000_82583:
115
		phy->type		 = e1000_phy_bm;
116 117
		phy->ops.acquire = e1000_get_hw_semaphore_82574;
		phy->ops.release = e1000_put_hw_semaphore_82574;
118 119
		phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574;
		phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574;
120
		break;
121 122 123 124 125 126 127
	default:
		return -E1000_ERR_PHY;
		break;
	}

	/* This can only be done after all function pointers are setup. */
	ret_val = e1000_get_phy_id_82571(hw);
128 129 130 131
	if (ret_val) {
		e_dbg("Error getting PHY ID\n");
		return ret_val;
	}
132 133 134 135 136 137

	/* Verify phy id */
	switch (hw->mac.type) {
	case e1000_82571:
	case e1000_82572:
		if (phy->id != IGP01E1000_I_PHY_ID)
138
			ret_val = -E1000_ERR_PHY;
139 140 141
		break;
	case e1000_82573:
		if (phy->id != M88E1111_I_PHY_ID)
142
			ret_val = -E1000_ERR_PHY;
143
		break;
144
	case e1000_82574:
145
	case e1000_82583:
146
		if (phy->id != BME1000_E_PHY_ID_R2)
147
			ret_val = -E1000_ERR_PHY;
148
		break;
149
	default:
150
		ret_val = -E1000_ERR_PHY;
151 152 153
		break;
	}

154 155 156 157
	if (ret_val)
		e_dbg("PHY ID unknown: type = 0x%08x\n", phy->id);

	return ret_val;
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
}

/**
 *  e1000_init_nvm_params_82571 - Init NVM func ptrs.
 *  @hw: pointer to the HW structure
 **/
static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	u32 eecd = er32(EECD);
	u16 size;

	nvm->opcode_bits = 8;
	nvm->delay_usec = 1;
	switch (nvm->override) {
	case e1000_nvm_override_spi_large:
		nvm->page_size = 32;
		nvm->address_bits = 16;
		break;
	case e1000_nvm_override_spi_small:
		nvm->page_size = 8;
		nvm->address_bits = 8;
		break;
	default:
		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
		break;
	}

	switch (hw->mac.type) {
	case e1000_82573:
189
	case e1000_82574:
190
	case e1000_82583:
191 192 193
		if (((eecd >> 15) & 0x3) == 0x3) {
			nvm->type = e1000_nvm_flash_hw;
			nvm->word_size = 2048;
194 195
			/*
			 * Autonomous Flash update bit must be cleared due
196 197 198 199 200 201 202 203
			 * to Flash update issue.
			 */
			eecd &= ~E1000_EECD_AUPDEN;
			ew32(EECD, eecd);
			break;
		}
		/* Fall Through */
	default:
204
		nvm->type = e1000_nvm_eeprom_spi;
205 206
		size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
				  E1000_EECD_SIZE_EX_SHIFT);
207 208
		/*
		 * Added to a constant, "size" becomes the left-shift value
209 210 211
		 * for setting word_size.
		 */
		size += NVM_WORD_SIZE_BASE_SHIFT;
212 213 214 215

		/* EEPROM access above 16k is unsupported */
		if (size > 14)
			size = 14;
216 217 218 219
		nvm->word_size	= 1 << size;
		break;
	}

220 221 222 223 224 225 226 227 228 229 230
	/* Function Pointers */
	switch (hw->mac.type) {
	case e1000_82574:
	case e1000_82583:
		nvm->ops.acquire = e1000_get_hw_semaphore_82574;
		nvm->ops.release = e1000_put_hw_semaphore_82574;
		break;
	default:
		break;
	}

231 232 233 234 235 236 237
	return 0;
}

/**
 *  e1000_init_mac_params_82571 - Init MAC func ptrs.
 *  @hw: pointer to the HW structure
 **/
238
static s32 e1000_init_mac_params_82571(struct e1000_hw *hw)
239 240
{
	struct e1000_mac_info *mac = &hw->mac;
241 242 243
	u32 swsm = 0;
	u32 swsm2 = 0;
	bool force_clear_smbi = false;
244

245
	/* Set media type and media-dependent function pointers */
246
	switch (hw->adapter->pdev->device) {
247 248 249
	case E1000_DEV_ID_82571EB_FIBER:
	case E1000_DEV_ID_82572EI_FIBER:
	case E1000_DEV_ID_82571EB_QUAD_FIBER:
250
		hw->phy.media_type = e1000_media_type_fiber;
251 252 253 254 255
		mac->ops.setup_physical_interface =
		    e1000_setup_fiber_serdes_link_82571;
		mac->ops.check_for_link = e1000e_check_for_fiber_link;
		mac->ops.get_link_up_info =
		    e1000e_get_speed_and_duplex_fiber_serdes;
256 257
		break;
	case E1000_DEV_ID_82571EB_SERDES:
258 259
	case E1000_DEV_ID_82571EB_SERDES_DUAL:
	case E1000_DEV_ID_82571EB_SERDES_QUAD:
260
	case E1000_DEV_ID_82572EI_SERDES:
261
		hw->phy.media_type = e1000_media_type_internal_serdes;
262 263 264 265 266
		mac->ops.setup_physical_interface =
		    e1000_setup_fiber_serdes_link_82571;
		mac->ops.check_for_link = e1000_check_for_serdes_link_82571;
		mac->ops.get_link_up_info =
		    e1000e_get_speed_and_duplex_fiber_serdes;
267 268
		break;
	default:
269
		hw->phy.media_type = e1000_media_type_copper;
270 271 272 273
		mac->ops.setup_physical_interface =
		    e1000_setup_copper_link_82571;
		mac->ops.check_for_link = e1000e_check_for_copper_link;
		mac->ops.get_link_up_info = e1000e_get_speed_and_duplex_copper;
274 275 276 277 278 279 280
		break;
	}

	/* Set mta register count */
	mac->mta_reg_count = 128;
	/* Set rar entry count */
	mac->rar_entry_count = E1000_RAR_ENTRIES;
281 282
	/* Adaptive IFS supported */
	mac->adaptive_ifs = true;
283

284
	/* MAC-specific function pointers */
285
	switch (hw->mac.type) {
286
	case e1000_82573:
287 288 289 290
		mac->ops.set_lan_id = e1000_set_lan_id_single_port;
		mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
		mac->ops.led_on = e1000e_led_on_generic;
		mac->ops.blink_led = e1000e_blink_led_generic;
291 292 293 294 295 296 297

		/* FWSM register */
		mac->has_fwsm = true;
		/*
		 * ARC supported; valid only if manageability features are
		 * enabled.
		 */
B
Bruce Allan 已提交
298 299
		mac->arc_subsystem_valid = !!(er32(FWSM) &
					      E1000_FWSM_MODE_MASK);
300
		break;
301
	case e1000_82574:
302
	case e1000_82583:
303 304 305
		mac->ops.set_lan_id = e1000_set_lan_id_single_port;
		mac->ops.check_mng_mode = e1000_check_mng_mode_82574;
		mac->ops.led_on = e1000_led_on_82574;
306 307
		break;
	default:
308 309 310
		mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
		mac->ops.led_on = e1000e_led_on_generic;
		mac->ops.blink_led = e1000e_blink_led_generic;
311 312 313

		/* FWSM register */
		mac->has_fwsm = true;
314 315 316
		break;
	}

317 318
	/*
	 * Ensure that the inter-port SWSM.SMBI lock bit is clear before
319
	 * first NVM or PHY access. This should be done for single-port
320 321 322 323 324 325 326 327 328 329 330
	 * devices, and for one port only on dual-port devices so that
	 * for those devices we can still use the SMBI lock to synchronize
	 * inter-port accesses to the PHY & NVM.
	 */
	switch (hw->mac.type) {
	case e1000_82571:
	case e1000_82572:
		swsm2 = er32(SWSM2);

		if (!(swsm2 & E1000_SWSM2_LOCK)) {
			/* Only do this for the first interface on this card */
331
			ew32(SWSM2, swsm2 | E1000_SWSM2_LOCK);
332
			force_clear_smbi = true;
333
		} else {
334
			force_clear_smbi = false;
335
		}
336 337 338 339 340 341 342 343 344 345 346 347 348 349
		break;
	default:
		force_clear_smbi = true;
		break;
	}

	if (force_clear_smbi) {
		/* Make sure SWSM.SMBI is clear */
		swsm = er32(SWSM);
		if (swsm & E1000_SWSM_SMBI) {
			/* This bit should not be set on a first interface, and
			 * indicates that the bootagent or EFI code has
			 * improperly left this bit enabled
			 */
350
			e_dbg("Please update your 82571 Bootagent\n");
351 352 353 354 355
		}
		ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
	}

	/*
J
Joe Perches 已提交
356
	 * Initialize device specific counter of SMBI acquisition
357 358 359 360
	 * timeouts.
	 */
	 hw->dev_spec.e82571.smb_counter = 0;

361 362 363
	return 0;
}

J
Jeff Kirsher 已提交
364
static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
365 366 367 368 369 370 371
{
	struct e1000_hw *hw = &adapter->hw;
	static int global_quad_port_a; /* global port a indication */
	struct pci_dev *pdev = adapter->pdev;
	int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
	s32 rc;

372
	rc = e1000_init_mac_params_82571(hw);
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
	if (rc)
		return rc;

	rc = e1000_init_nvm_params_82571(hw);
	if (rc)
		return rc;

	rc = e1000_init_phy_params_82571(hw);
	if (rc)
		return rc;

	/* tag quad port adapters first, it's used below */
	switch (pdev->device) {
	case E1000_DEV_ID_82571EB_QUAD_COPPER:
	case E1000_DEV_ID_82571EB_QUAD_FIBER:
	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
389
	case E1000_DEV_ID_82571PT_QUAD_COPPER:
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
		adapter->flags |= FLAG_IS_QUAD_PORT;
		/* mark the first port */
		if (global_quad_port_a == 0)
			adapter->flags |= FLAG_IS_QUAD_PORT_A;
		/* Reset for multiple quad port adapters */
		global_quad_port_a++;
		if (global_quad_port_a == 4)
			global_quad_port_a = 0;
		break;
	default:
		break;
	}

	switch (adapter->hw.mac.type) {
	case e1000_82571:
		/* these dual ports don't have WoL on port B at all */
		if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
		     (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
		     (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
		    (is_port_b))
			adapter->flags &= ~FLAG_HAS_WOL;
		/* quad ports only support WoL on port A */
		if (adapter->flags & FLAG_IS_QUAD_PORT &&
R
Roel Kluin 已提交
413
		    (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
414
			adapter->flags &= ~FLAG_HAS_WOL;
415 416 417
		/* Does not support WoL on any port */
		if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
			adapter->flags &= ~FLAG_HAS_WOL;
418 419 420
		break;
	case e1000_82573:
		if (pdev->device == E1000_DEV_ID_82573L) {
421 422
			adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
			adapter->max_hw_frame_size = DEFAULT_JUMBO;
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
		}
		break;
	default:
		break;
	}

	return 0;
}

/**
 *  e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
 *  @hw: pointer to the HW structure
 *
 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
 *  revision in the hardware structure.
 **/
static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
442 443
	s32 ret_val;
	u16 phy_id = 0;
444 445 446 447

	switch (hw->mac.type) {
	case e1000_82571:
	case e1000_82572:
448 449
		/*
		 * The 82571 firmware may still be configuring the PHY.
450 451
		 * In this case, we cannot access the PHY until the
		 * configuration is done.  So we explicitly set the
452 453
		 * PHY ID.
		 */
454 455 456 457 458
		phy->id = IGP01E1000_I_PHY_ID;
		break;
	case e1000_82573:
		return e1000e_get_phy_id(hw);
		break;
459
	case e1000_82574:
460
	case e1000_82583:
461 462 463 464 465 466 467 468 469 470 471 472 473
		ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
		if (ret_val)
			return ret_val;

		phy->id = (u32)(phy_id << 16);
		udelay(20);
		ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
		if (ret_val)
			return ret_val;

		phy->id |= (u32)(phy_id);
		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
		break;
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
	default:
		return -E1000_ERR_PHY;
		break;
	}

	return 0;
}

/**
 *  e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
 *  @hw: pointer to the HW structure
 *
 *  Acquire the HW semaphore to access the PHY or NVM
 **/
static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
{
	u32 swsm;
491 492
	s32 sw_timeout = hw->nvm.word_size + 1;
	s32 fw_timeout = hw->nvm.word_size + 1;
493 494
	s32 i = 0;

495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
	/*
	 * If we have timedout 3 times on trying to acquire
	 * the inter-port SMBI semaphore, there is old code
	 * operating on the other port, and it is not
	 * releasing SMBI. Modify the number of times that
	 * we try for the semaphore to interwork with this
	 * older code.
	 */
	if (hw->dev_spec.e82571.smb_counter > 2)
		sw_timeout = 1;

	/* Get the SW semaphore */
	while (i < sw_timeout) {
		swsm = er32(SWSM);
		if (!(swsm & E1000_SWSM_SMBI))
			break;

		udelay(50);
		i++;
	}

	if (i == sw_timeout) {
517
		e_dbg("Driver can't access device - SMBI bit is set.\n");
518 519
		hw->dev_spec.e82571.smb_counter++;
	}
520
	/* Get the FW semaphore. */
521
	for (i = 0; i < fw_timeout; i++) {
522 523 524 525 526 527 528 529 530 531
		swsm = er32(SWSM);
		ew32(SWSM, swsm | E1000_SWSM_SWESMBI);

		/* Semaphore acquired if bit latched */
		if (er32(SWSM) & E1000_SWSM_SWESMBI)
			break;

		udelay(50);
	}

532
	if (i == fw_timeout) {
533
		/* Release semaphores */
534
		e1000_put_hw_semaphore_82571(hw);
535
		e_dbg("Driver can't access the NVM\n");
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
		return -E1000_ERR_NVM;
	}

	return 0;
}

/**
 *  e1000_put_hw_semaphore_82571 - Release hardware semaphore
 *  @hw: pointer to the HW structure
 *
 *  Release hardware semaphore used to access the PHY or NVM
 **/
static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
{
	u32 swsm;

	swsm = er32(SWSM);
553
	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
554 555
	ew32(SWSM, swsm);
}
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
/**
 *  e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
 *  @hw: pointer to the HW structure
 *
 *  Acquire the HW semaphore during reset.
 *
 **/
static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw)
{
	u32 extcnf_ctrl;
	s32 i = 0;

	extcnf_ctrl = er32(EXTCNF_CTRL);
	extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
	do {
		ew32(EXTCNF_CTRL, extcnf_ctrl);
		extcnf_ctrl = er32(EXTCNF_CTRL);

		if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
			break;

		extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;

579
		usleep_range(2000, 4000);
580 581 582 583 584 585 586
		i++;
	} while (i < MDIO_OWNERSHIP_TIMEOUT);

	if (i == MDIO_OWNERSHIP_TIMEOUT) {
		/* Release semaphores */
		e1000_put_hw_semaphore_82573(hw);
		e_dbg("Driver can't access the PHY\n");
587
		return -E1000_ERR_PHY;
588 589
	}

590
	return 0;
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
}

/**
 *  e1000_put_hw_semaphore_82573 - Release hardware semaphore
 *  @hw: pointer to the HW structure
 *
 *  Release hardware semaphore used during reset.
 *
 **/
static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw)
{
	u32 extcnf_ctrl;

	extcnf_ctrl = er32(EXTCNF_CTRL);
	extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
	ew32(EXTCNF_CTRL, extcnf_ctrl);
}

static DEFINE_MUTEX(swflag_mutex);

/**
 *  e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
 *  @hw: pointer to the HW structure
 *
 *  Acquire the HW semaphore to access the PHY or NVM.
 *
 **/
static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw)
{
	s32 ret_val;

	mutex_lock(&swflag_mutex);
	ret_val = e1000_get_hw_semaphore_82573(hw);
	if (ret_val)
		mutex_unlock(&swflag_mutex);
	return ret_val;
}

/**
 *  e1000_put_hw_semaphore_82574 - Release hardware semaphore
 *  @hw: pointer to the HW structure
 *
 *  Release hardware semaphore used to access the PHY or NVM
 *
 **/
static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw)
{
	e1000_put_hw_semaphore_82573(hw);
	mutex_unlock(&swflag_mutex);
}
641

642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
/**
 *  e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
 *  @hw: pointer to the HW structure
 *  @active: true to enable LPLU, false to disable
 *
 *  Sets the LPLU D0 state according to the active flag.
 *  LPLU will not be activated unless the
 *  device autonegotiation advertisement meets standards of
 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 *  This is a function pointer entry point only called by
 *  PHY setup routines.
 **/
static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active)
{
	u16 data = er32(POEMB);

	if (active)
		data |= E1000_PHY_CTRL_D0A_LPLU;
	else
		data &= ~E1000_PHY_CTRL_D0A_LPLU;

	ew32(POEMB, data);
	return 0;
}

/**
 *  e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
 *  @hw: pointer to the HW structure
 *  @active: boolean used to enable/disable lplu
 *
 *  The low power link up (lplu) state is set to the power management level D3
 *  when active is true, else clear lplu for D3. LPLU
 *  is used during Dx states where the power conservation is most important.
 *  During driver activity, SmartSpeed should be enabled so performance is
 *  maintained.
 **/
static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active)
{
	u16 data = er32(POEMB);

	if (!active) {
		data &= ~E1000_PHY_CTRL_NOND0A_LPLU;
	} else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
		   (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) ||
		   (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) {
		data |= E1000_PHY_CTRL_NOND0A_LPLU;
	}

	ew32(POEMB, data);
	return 0;
}

694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
/**
 *  e1000_acquire_nvm_82571 - Request for access to the EEPROM
 *  @hw: pointer to the HW structure
 *
 *  To gain access to the EEPROM, first we must obtain a hardware semaphore.
 *  Then for non-82573 hardware, set the EEPROM access request bit and wait
 *  for EEPROM access grant bit.  If the access grant bit is not set, release
 *  hardware semaphore.
 **/
static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
{
	s32 ret_val;

	ret_val = e1000_get_hw_semaphore_82571(hw);
	if (ret_val)
		return ret_val;

711 712 713 714
	switch (hw->mac.type) {
	case e1000_82573:
		break;
	default:
715
		ret_val = e1000e_acquire_nvm(hw);
716 717
		break;
	}
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746

	if (ret_val)
		e1000_put_hw_semaphore_82571(hw);

	return ret_val;
}

/**
 *  e1000_release_nvm_82571 - Release exclusive access to EEPROM
 *  @hw: pointer to the HW structure
 *
 *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
 **/
static void e1000_release_nvm_82571(struct e1000_hw *hw)
{
	e1000e_release_nvm(hw);
	e1000_put_hw_semaphore_82571(hw);
}

/**
 *  e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
 *  @hw: pointer to the HW structure
 *  @offset: offset within the EEPROM to be written to
 *  @words: number of words to write
 *  @data: 16 bit word(s) to be written to the EEPROM
 *
 *  For non-82573 silicon, write data to EEPROM at offset using SPI interface.
 *
 *  If e1000e_update_nvm_checksum is not called after this function, the
747
 *  EEPROM will most likely contain an invalid checksum.
748 749 750 751 752 753 754 755
 **/
static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
				 u16 *data)
{
	s32 ret_val;

	switch (hw->mac.type) {
	case e1000_82573:
756
	case e1000_82574:
757
	case e1000_82583:
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
		ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
		break;
	case e1000_82571:
	case e1000_82572:
		ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
		break;
	default:
		ret_val = -E1000_ERR_NVM;
		break;
	}

	return ret_val;
}

/**
 *  e1000_update_nvm_checksum_82571 - Update EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
 *  value to the EEPROM.
 **/
static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
{
	u32 eecd;
	s32 ret_val;
	u16 i;

	ret_val = e1000e_update_nvm_checksum_generic(hw);
	if (ret_val)
		return ret_val;

790 791 792 793
	/*
	 * If our nvm is an EEPROM, then we're done
	 * otherwise, commit the checksum to the flash NVM.
	 */
794
	if (hw->nvm.type != e1000_nvm_flash_hw)
B
Bruce Allan 已提交
795
		return 0;
796 797 798

	/* Check for pending operations. */
	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
799
		usleep_range(1000, 2000);
B
Bruce Allan 已提交
800
		if (!(er32(EECD) & E1000_EECD_FLUPD))
801 802 803 804 805 806 807 808
			break;
	}

	if (i == E1000_FLASH_UPDATES)
		return -E1000_ERR_NVM;

	/* Reset the firmware if using STM opcode. */
	if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
809 810
		/*
		 * The enabling of and the actual reset must be done
811 812 813 814 815 816 817 818 819 820 821 822
		 * in two write cycles.
		 */
		ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
		e1e_flush();
		ew32(HICR, E1000_HICR_FW_RESET);
	}

	/* Commit the write to flash */
	eecd = er32(EECD) | E1000_EECD_FLUPD;
	ew32(EECD, eecd);

	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
823
		usleep_range(1000, 2000);
B
Bruce Allan 已提交
824
		if (!(er32(EECD) & E1000_EECD_FLUPD))
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
			break;
	}

	if (i == E1000_FLASH_UPDATES)
		return -E1000_ERR_NVM;

	return 0;
}

/**
 *  e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
 **/
static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
{
	if (hw->nvm.type == e1000_nvm_flash_hw)
		e1000_fix_nvm_checksum_82571(hw);

	return e1000e_validate_nvm_checksum_generic(hw);
}

/**
 *  e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
 *  @hw: pointer to the HW structure
 *  @offset: offset within the EEPROM to be written to
 *  @words: number of words to write
 *  @data: 16 bit word(s) to be written to the EEPROM
 *
 *  After checking for invalid values, poll the EEPROM to ensure the previous
 *  command has completed before trying to write the next word.  After write
 *  poll for completion.
 *
 *  If e1000e_update_nvm_checksum is not called after this function, the
861
 *  EEPROM will most likely contain an invalid checksum.
862 863 864 865 866
 **/
static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
				      u16 words, u16 *data)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
867
	u32 i, eewr = 0;
868 869
	s32 ret_val = 0;

870 871 872 873
	/*
	 * A check for invalid values:  offset too large, too many words,
	 * and not enough words.
	 */
874 875
	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
	    (words == 0)) {
876
		e_dbg("nvm parameter(s) out of bounds\n");
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
		return -E1000_ERR_NVM;
	}

	for (i = 0; i < words; i++) {
		eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
		       ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
		       E1000_NVM_RW_REG_START;

		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
		if (ret_val)
			break;

		ew32(EEWR, eewr);

		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
		if (ret_val)
			break;
	}

	return ret_val;
}

/**
 *  e1000_get_cfg_done_82571 - Poll for configuration done
 *  @hw: pointer to the HW structure
 *
 *  Reads the management control register for the config done bit to be set.
 **/
static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
{
	s32 timeout = PHY_CFG_TIMEOUT;

	while (timeout) {
		if (er32(EEMNGCTL) &
		    E1000_NVM_CFG_DONE_PORT_0)
			break;
913
		usleep_range(1000, 2000);
914 915 916
		timeout--;
	}
	if (!timeout) {
917
		e_dbg("MNG configuration cycle has not completed.\n");
918 919 920 921 922 923 924 925 926
		return -E1000_ERR_RESET;
	}

	return 0;
}

/**
 *  e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
 *  @hw: pointer to the HW structure
927
 *  @active: true to enable LPLU, false to disable
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
 *
 *  Sets the LPLU D0 state according to the active flag.  When activating LPLU
 *  this function also disables smart speed and vice versa.  LPLU will not be
 *  activated unless the device autonegotiation advertisement meets standards
 *  of either 10 or 10/100 or 10/100/1000 at all duplexes.  This is a function
 *  pointer entry point only called by PHY setup routines.
 **/
static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;

	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
	if (ret_val)
		return ret_val;

	if (active) {
		data |= IGP02E1000_PM_D0_LPLU;
		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
		if (ret_val)
			return ret_val;

		/* When LPLU is enabled, we should disable SmartSpeed */
		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
		if (ret_val)
			return ret_val;
	} else {
		data &= ~IGP02E1000_PM_D0_LPLU;
		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
960 961
		/*
		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
962 963
		 * during Dx states where the power conservation is most
		 * important.  During driver activity we should enable
964 965
		 * SmartSpeed, so performance is maintained.
		 */
966 967
		if (phy->smart_speed == e1000_smart_speed_on) {
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
968
					   &data);
969 970 971 972 973
			if (ret_val)
				return ret_val;

			data |= IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
974
					   data);
975 976 977 978
			if (ret_val)
				return ret_val;
		} else if (phy->smart_speed == e1000_smart_speed_off) {
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
979
					   &data);
980 981 982 983 984
			if (ret_val)
				return ret_val;

			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
985
					   data);
986 987 988 989 990 991 992 993 994 995 996 997
			if (ret_val)
				return ret_val;
		}
	}

	return 0;
}

/**
 *  e1000_reset_hw_82571 - Reset hardware
 *  @hw: pointer to the HW structure
 *
998
 *  This resets the hardware into a known state.
999 1000 1001
 **/
static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
{
1002
	u32 ctrl, ctrl_ext, eecd;
1003 1004
	s32 ret_val;

1005 1006
	/*
	 * Prevent the PCI-E bus from sticking if there is no TLP connection
1007 1008 1009 1010
	 * on the last TLP read/write transaction when MAC is reset.
	 */
	ret_val = e1000e_disable_pcie_master(hw);
	if (ret_val)
1011
		e_dbg("PCI-E Master disable polling has failed.\n");
1012

1013
	e_dbg("Masking off all interrupts\n");
1014 1015 1016 1017 1018 1019
	ew32(IMC, 0xffffffff);

	ew32(RCTL, 0);
	ew32(TCTL, E1000_TCTL_PSP);
	e1e_flush();

1020
	usleep_range(10000, 20000);
1021

1022 1023 1024 1025
	/*
	 * Must acquire the MDIO ownership before MAC reset.
	 * Ownership defaults to firmware after a reset.
	 */
1026 1027
	switch (hw->mac.type) {
	case e1000_82573:
1028 1029
		ret_val = e1000_get_hw_semaphore_82573(hw);
		break;
1030 1031
	case e1000_82574:
	case e1000_82583:
1032
		ret_val = e1000_get_hw_semaphore_82574(hw);
1033 1034 1035
		break;
	default:
		break;
1036
	}
1037 1038
	if (ret_val)
		e_dbg("Cannot acquire MDIO ownership\n");
1039 1040 1041

	ctrl = er32(CTRL);

1042
	e_dbg("Issuing a global reset to MAC\n");
1043 1044
	ew32(CTRL, ctrl | E1000_CTRL_RST);

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
	/* Must release MDIO ownership and mutex after MAC reset. */
	switch (hw->mac.type) {
	case e1000_82574:
	case e1000_82583:
		e1000_put_hw_semaphore_82574(hw);
		break;
	default:
		break;
	}

1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
	if (hw->nvm.type == e1000_nvm_flash_hw) {
		udelay(10);
		ctrl_ext = er32(CTRL_EXT);
		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
		ew32(CTRL_EXT, ctrl_ext);
		e1e_flush();
	}

	ret_val = e1000e_get_auto_rd_done(hw);
	if (ret_val)
		/* We don't want to continue accessing MAC registers. */
		return ret_val;

1068 1069
	/*
	 * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
1070 1071 1072
	 * Need to wait for Phy configuration completion before accessing
	 * NVM and Phy.
	 */
1073 1074

	switch (hw->mac.type) {
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
	case e1000_82571:
	case e1000_82572:
		/*
		 * REQ and GNT bits need to be cleared when using AUTO_RD
		 * to access the EEPROM.
		 */
		eecd = er32(EECD);
		eecd &= ~(E1000_EECD_REQ | E1000_EECD_GNT);
		ew32(EECD, eecd);
		break;
1085 1086 1087
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
1088
		msleep(25);
1089 1090 1091 1092
		break;
	default:
		break;
	}
1093 1094 1095

	/* Clear any pending interrupt events. */
	ew32(IMC, 0xffffffff);
1096
	er32(ICR);
1097

1098 1099 1100 1101 1102
	if (hw->mac.type == e1000_82571) {
		/* Install any alternate MAC address into RAR0 */
		ret_val = e1000_check_alt_mac_addr_generic(hw);
		if (ret_val)
			return ret_val;
1103

1104 1105
		e1000e_set_laa_state_82571(hw, true);
	}
1106

1107 1108 1109 1110
	/* Reinitialize the 82571 serdes link state machine */
	if (hw->phy.media_type == e1000_media_type_internal_serdes)
		hw->mac.serdes_link_state = e1000_serdes_link_down;

1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
	return 0;
}

/**
 *  e1000_init_hw_82571 - Initialize hardware
 *  @hw: pointer to the HW structure
 *
 *  This inits the hardware readying it for operation.
 **/
static s32 e1000_init_hw_82571(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 reg_data;
	s32 ret_val;
1125
	u16 i, rar_count = mac->rar_entry_count;
1126 1127 1128 1129

	e1000_initialize_hw_bits_82571(hw);

	/* Initialize identification LED */
1130
	ret_val = mac->ops.id_led_init(hw);
1131
	if (ret_val)
1132
		e_dbg("Error initializing identification LED\n");
1133
		/* This is not fatal and we should not stop init due to this */
1134 1135

	/* Disabling VLAN filtering */
1136
	e_dbg("Initializing the IEEE VLAN\n");
1137
	mac->ops.clear_vfta(hw);
1138 1139

	/* Setup the receive address. */
1140 1141
	/*
	 * If, however, a locally administered address was assigned to the
1142 1143 1144 1145 1146 1147 1148 1149
	 * 82571, we must reserve a RAR for it to work around an issue where
	 * resetting one port will reload the MAC on the other port.
	 */
	if (e1000e_get_laa_state_82571(hw))
		rar_count--;
	e1000e_init_rx_addrs(hw, rar_count);

	/* Zero out the Multicast HASH table */
1150
	e_dbg("Zeroing the MTA\n");
1151 1152 1153 1154
	for (i = 0; i < mac->mta_reg_count; i++)
		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);

	/* Setup link and flow control */
1155
	ret_val = mac->ops.setup_link(hw);
1156 1157

	/* Set the transmit descriptor write-back policy */
1158
	reg_data = er32(TXDCTL(0));
1159 1160 1161
	reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
		   E1000_TXDCTL_FULL_TX_DESC_WB |
		   E1000_TXDCTL_COUNT_DESC;
1162
	ew32(TXDCTL(0), reg_data);
1163 1164

	/* ...for both queues. */
1165 1166
	switch (mac->type) {
	case e1000_82573:
1167 1168
		e1000e_enable_tx_pkt_filtering(hw);
		/* fall through */
1169 1170 1171 1172 1173 1174 1175
	case e1000_82574:
	case e1000_82583:
		reg_data = er32(GCR);
		reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
		ew32(GCR, reg_data);
		break;
	default:
1176
		reg_data = er32(TXDCTL(1));
1177 1178 1179
		reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
			   E1000_TXDCTL_FULL_TX_DESC_WB |
			   E1000_TXDCTL_COUNT_DESC;
1180
		ew32(TXDCTL(1), reg_data);
1181
		break;
1182 1183
	}

1184 1185
	/*
	 * Clear all of the statistics registers (clear on read).  It is
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
	 * important that we do this after we have tried to establish link
	 * because the symbol error count will increment wildly if there
	 * is no link.
	 */
	e1000_clear_hw_cntrs_82571(hw);

	return ret_val;
}

/**
 *  e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
 *  @hw: pointer to the HW structure
 *
 *  Initializes required hardware-dependent bits needed for normal operation.
 **/
static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
{
	u32 reg;

	/* Transmit Descriptor Control 0 */
1206
	reg = er32(TXDCTL(0));
1207
	reg |= (1 << 22);
1208
	ew32(TXDCTL(0), reg);
1209 1210

	/* Transmit Descriptor Control 1 */
1211
	reg = er32(TXDCTL(1));
1212
	reg |= (1 << 22);
1213
	ew32(TXDCTL(1), reg);
1214 1215

	/* Transmit Arbitration Control 0 */
1216
	reg = er32(TARC(0));
1217 1218 1219 1220 1221 1222
	reg &= ~(0xF << 27); /* 30:27 */
	switch (hw->mac.type) {
	case e1000_82571:
	case e1000_82572:
		reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
		break;
1223 1224 1225 1226
	case e1000_82574:
	case e1000_82583:
		reg |= (1 << 26);
		break;
1227 1228 1229
	default:
		break;
	}
1230
	ew32(TARC(0), reg);
1231 1232

	/* Transmit Arbitration Control 1 */
1233
	reg = er32(TARC(1));
1234 1235 1236 1237 1238 1239 1240 1241 1242
	switch (hw->mac.type) {
	case e1000_82571:
	case e1000_82572:
		reg &= ~((1 << 29) | (1 << 30));
		reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
		if (er32(TCTL) & E1000_TCTL_MULR)
			reg &= ~(1 << 28);
		else
			reg |= (1 << 28);
1243
		ew32(TARC(1), reg);
1244 1245 1246 1247 1248 1249
		break;
	default:
		break;
	}

	/* Device Control */
1250 1251 1252 1253
	switch (hw->mac.type) {
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
1254 1255 1256
		reg = er32(CTRL);
		reg &= ~(1 << 29);
		ew32(CTRL, reg);
1257 1258 1259
		break;
	default:
		break;
1260 1261 1262
	}

	/* Extended Device Control */
1263 1264 1265 1266
	switch (hw->mac.type) {
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
1267 1268 1269 1270
		reg = er32(CTRL_EXT);
		reg &= ~(1 << 23);
		reg |= (1 << 22);
		ew32(CTRL_EXT, reg);
1271 1272 1273
		break;
	default:
		break;
1274
	}
1275

1276 1277 1278 1279 1280
	if (hw->mac.type == e1000_82571) {
		reg = er32(PBA_ECC);
		reg |= E1000_PBA_ECC_CORR_EN;
		ew32(PBA_ECC, reg);
	}
1281

1282 1283 1284 1285
	/*
	 * Workaround for hardware errata.
	 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
	 */
1286 1287 1288 1289 1290
	if ((hw->mac.type == e1000_82571) || (hw->mac.type == e1000_82572)) {
		reg = er32(CTRL_EXT);
		reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
		ew32(CTRL_EXT, reg);
	}
1291

1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
	/*
	 * Disable IPv6 extension header parsing because some malformed
	 * IPv6 headers can hang the Rx.
	 */
	if (hw->mac.type <= e1000_82573) {
		reg = er32(RFCTL);
		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
		ew32(RFCTL, reg);
	}

J
Jesse Brandeburg 已提交
1302
	/* PCI-Ex Control Registers */
1303 1304 1305
	switch (hw->mac.type) {
	case e1000_82574:
	case e1000_82583:
1306 1307 1308
		reg = er32(GCR);
		reg |= (1 << 22);
		ew32(GCR, reg);
J
Jesse Brandeburg 已提交
1309

1310 1311 1312 1313 1314
		/*
		 * Workaround for hardware errata.
		 * apply workaround for hardware errata documented in errata
		 * docs Fixes issue where some error prone or unreliable PCIe
		 * completions are occurring, particularly with ASPM enabled.
1315
		 * Without fix, issue can cause Tx timeouts.
1316
		 */
J
Jesse Brandeburg 已提交
1317 1318 1319
		reg = er32(GCR2);
		reg |= 1;
		ew32(GCR2, reg);
1320 1321 1322
		break;
	default:
		break;
1323
	}
1324 1325 1326
}

/**
1327
 *  e1000_clear_vfta_82571 - Clear VLAN filter table
1328 1329 1330 1331 1332
 *  @hw: pointer to the HW structure
 *
 *  Clears the register array which contains the VLAN filter table by
 *  setting all the values to 0.
 **/
1333
static void e1000_clear_vfta_82571(struct e1000_hw *hw)
1334 1335 1336 1337 1338 1339
{
	u32 offset;
	u32 vfta_value = 0;
	u32 vfta_offset = 0;
	u32 vfta_bit_in_reg = 0;

1340 1341 1342 1343
	switch (hw->mac.type) {
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
1344
		if (hw->mng_cookie.vlan_id != 0) {
1345 1346
			/*
			 * The VFTA is a 4096b bit-field, each identifying
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
			 * a single VLAN ID.  The following operations
			 * determine which 32b entry (i.e. offset) into the
			 * array we want to set the VLAN ID (i.e. bit) of
			 * the manageability unit.
			 */
			vfta_offset = (hw->mng_cookie.vlan_id >>
				       E1000_VFTA_ENTRY_SHIFT) &
				      E1000_VFTA_ENTRY_MASK;
			vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
					       E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
		}
1358 1359 1360
		break;
	default:
		break;
1361 1362
	}
	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
1363 1364
		/*
		 * If the offset we want to clear is the same offset of the
1365 1366 1367 1368 1369 1370 1371 1372 1373
		 * manageability VLAN ID, then clear all bits except that of
		 * the manageability unit.
		 */
		vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
		e1e_flush();
	}
}

1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
/**
 *  e1000_check_mng_mode_82574 - Check manageability is enabled
 *  @hw: pointer to the HW structure
 *
 *  Reads the NVM Initialization Control Word 2 and returns true
 *  (>0) if any manageability is enabled, else false (0).
 **/
static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
{
	u16 data;

	e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
	return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
}

/**
 *  e1000_led_on_82574 - Turn LED on
 *  @hw: pointer to the HW structure
 *
 *  Turn LED on.
 **/
static s32 e1000_led_on_82574(struct e1000_hw *hw)
{
	u32 ctrl;
	u32 i;

	ctrl = hw->mac.ledctl_mode2;
	if (!(E1000_STATUS_LU & er32(STATUS))) {
		/*
		 * If no link, then turn LED on by setting the invert bit
		 * for each LED that's "on" (0x0E) in ledctl_mode2.
		 */
		for (i = 0; i < 4; i++)
			if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
			    E1000_LEDCTL_MODE_LED_ON)
				ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
	}
	ew32(LEDCTL, ctrl);

	return 0;
}

1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
/**
 *  e1000_check_phy_82574 - check 82574 phy hung state
 *  @hw: pointer to the HW structure
 *
 *  Returns whether phy is hung or not
 **/
bool e1000_check_phy_82574(struct e1000_hw *hw)
{
	u16 status_1kbt = 0;
	u16 receive_errors = 0;
	s32 ret_val = 0;

	/*
	 * Read PHY Receive Error counter first, if its is max - all F's then
	 * read the Base1000T status register If both are max then PHY is hung.
	 */
	ret_val = e1e_rphy(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors);
	if (ret_val)
1434
		return false;
1435 1436 1437
	if (receive_errors == E1000_RECEIVE_ERROR_MAX)  {
		ret_val = e1e_rphy(hw, E1000_BASE1000T_STATUS, &status_1kbt);
		if (ret_val)
1438
			return false;
1439 1440
		if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) ==
		    E1000_IDLE_ERROR_COUNT_MASK)
1441
			return true;
1442
	}
1443 1444

	return false;
1445 1446
}

1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
/**
 *  e1000_setup_link_82571 - Setup flow control and link settings
 *  @hw: pointer to the HW structure
 *
 *  Determines which flow control settings to use, then configures flow
 *  control.  Calls the appropriate media-specific link configuration
 *  function.  Assuming the adapter has a valid link partner, a valid link
 *  should be established.  Assumes the hardware has previously been reset
 *  and the transmitter and receiver are not enabled.
 **/
static s32 e1000_setup_link_82571(struct e1000_hw *hw)
{
1459 1460
	/*
	 * 82573 does not have a word in the NVM to determine
1461 1462 1463
	 * the default flow control setting, so we explicitly
	 * set it to full.
	 */
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
	switch (hw->mac.type) {
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
		if (hw->fc.requested_mode == e1000_fc_default)
			hw->fc.requested_mode = e1000_fc_full;
		break;
	default:
		break;
	}
1474

1475
	return e1000e_setup_link_generic(hw);
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
}

/**
 *  e1000_setup_copper_link_82571 - Configure copper link settings
 *  @hw: pointer to the HW structure
 *
 *  Configures the link for auto-neg or forced speed and duplex.  Then we check
 *  for link, once link is established calls to configure collision distance
 *  and flow control are called.
 **/
static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
{
	u32 ctrl;
	s32 ret_val;

	ctrl = er32(CTRL);
	ctrl |= E1000_CTRL_SLU;
	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
	ew32(CTRL, ctrl);

	switch (hw->phy.type) {
	case e1000_phy_m88:
1498
	case e1000_phy_bm:
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
		ret_val = e1000e_copper_link_setup_m88(hw);
		break;
	case e1000_phy_igp_2:
		ret_val = e1000e_copper_link_setup_igp(hw);
		break;
	default:
		return -E1000_ERR_PHY;
		break;
	}

	if (ret_val)
		return ret_val;

1512
	return e1000e_setup_copper_link(hw);
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
}

/**
 *  e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
 *  @hw: pointer to the HW structure
 *
 *  Configures collision distance and flow control for fiber and serdes links.
 *  Upon successful setup, poll for link.
 **/
static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
{
	switch (hw->mac.type) {
	case e1000_82571:
	case e1000_82572:
1527 1528
		/*
		 * If SerDes loopback mode is entered, there is no form
1529 1530
		 * of reset to take the adapter out of that mode.  So we
		 * have to explicitly take the adapter out of loopback
1531
		 * mode.  This prevents drivers from twiddling their thumbs
1532 1533
		 * if another tool failed to take it out of loopback mode.
		 */
1534
		ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1535 1536 1537 1538 1539 1540 1541 1542
		break;
	default:
		break;
	}

	return e1000e_setup_fiber_serdes_link(hw);
}

1543 1544 1545 1546
/**
 *  e1000_check_for_serdes_link_82571 - Check for link (Serdes)
 *  @hw: pointer to the HW structure
 *
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
 *  Reports the link state as up or down.
 *
 *  If autonegotiation is supported by the link partner, the link state is
 *  determined by the result of autonegotiation. This is the most likely case.
 *  If autonegotiation is not supported by the link partner, and the link
 *  has a valid signal, force the link up.
 *
 *  The link state is represented internally here by 4 states:
 *
 *  1) down
 *  2) autoneg_progress
D
Daniel Mack 已提交
1558
 *  3) autoneg_complete (the link successfully autonegotiated)
1559 1560
 *  4) forced_up (the link has been forced up, it did not autonegotiate)
 *
1561
 **/
1562
static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
1563 1564 1565 1566 1567
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 rxcw;
	u32 ctrl;
	u32 status;
1568 1569
	u32 txcw;
	u32 i;
1570 1571 1572 1573 1574
	s32 ret_val = 0;

	ctrl = er32(CTRL);
	status = er32(STATUS);
	rxcw = er32(RXCW);
1575 1576 1577
	/* SYNCH bit and IV bit are sticky */
	udelay(10);
	rxcw = er32(RXCW);
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590

	if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {

		/* Receiver is synchronized with no invalid bits.  */
		switch (mac->serdes_link_state) {
		case e1000_serdes_link_autoneg_complete:
			if (!(status & E1000_STATUS_LU)) {
				/*
				 * We have lost link, retry autoneg before
				 * reporting link failure
				 */
				mac->serdes_link_state =
				    e1000_serdes_link_autoneg_progress;
1591
				mac->serdes_has_link = false;
1592
				e_dbg("AN_UP     -> AN_PROG\n");
1593 1594
			} else {
				mac->serdes_has_link = true;
1595
			}
1596
			break;
1597 1598 1599 1600 1601 1602 1603

		case e1000_serdes_link_forced_up:
			/*
			 * If we are receiving /C/ ordered sets, re-enable
			 * auto-negotiation in the TXCW register and disable
			 * forced link in the Device Control register in an
			 * attempt to auto-negotiate with our link partner.
1604 1605
			 * If the partner code word is null, stop forcing
			 * and restart auto negotiation.
1606
			 */
1607
			if ((rxcw & E1000_RXCW_C) || !(rxcw & E1000_RXCW_CW))  {
1608 1609
				/* Enable autoneg, and unforce link up */
				ew32(TXCW, mac->txcw);
1610
				ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1611 1612
				mac->serdes_link_state =
				    e1000_serdes_link_autoneg_progress;
1613
				mac->serdes_has_link = false;
1614
				e_dbg("FORCED_UP -> AN_PROG\n");
1615 1616
			} else {
				mac->serdes_has_link = true;
1617 1618 1619 1620
			}
			break;

		case e1000_serdes_link_autoneg_progress:
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
			if (rxcw & E1000_RXCW_C) {
				/*
				 * We received /C/ ordered sets, meaning the
				 * link partner has autonegotiated, and we can
				 * trust the Link Up (LU) status bit.
				 */
				if (status & E1000_STATUS_LU) {
					mac->serdes_link_state =
					    e1000_serdes_link_autoneg_complete;
					e_dbg("AN_PROG   -> AN_UP\n");
					mac->serdes_has_link = true;
				} else {
					/* Autoneg completed, but failed. */
					mac->serdes_link_state =
					    e1000_serdes_link_down;
					e_dbg("AN_PROG   -> DOWN\n");
				}
1638 1639
			} else {
				/*
1640 1641 1642
				 * The link partner did not autoneg.
				 * Force link up and full duplex, and change
				 * state to forced.
1643
				 */
1644
				ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
1645 1646 1647 1648
				ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
				ew32(CTRL, ctrl);

				/* Configure Flow Control after link up. */
1649
				ret_val = e1000e_config_fc_after_link_up(hw);
1650
				if (ret_val) {
1651
					e_dbg("Error config flow control\n");
1652 1653 1654 1655
					break;
				}
				mac->serdes_link_state =
				    e1000_serdes_link_forced_up;
1656
				mac->serdes_has_link = true;
1657
				e_dbg("AN_PROG   -> FORCED_UP\n");
1658 1659 1660 1661 1662
			}
			break;

		case e1000_serdes_link_down:
		default:
1663 1664
			/*
			 * The link was down but the receiver has now gained
1665
			 * valid sync, so lets see if we can bring the link
1666 1667
			 * up.
			 */
1668
			ew32(TXCW, mac->txcw);
1669
			ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1670 1671
			mac->serdes_link_state =
			    e1000_serdes_link_autoneg_progress;
1672
			mac->serdes_has_link = false;
1673
			e_dbg("DOWN      -> AN_PROG\n");
1674 1675 1676 1677 1678 1679
			break;
		}
	} else {
		if (!(rxcw & E1000_RXCW_SYNCH)) {
			mac->serdes_has_link = false;
			mac->serdes_link_state = e1000_serdes_link_down;
1680
			e_dbg("ANYSTATE  -> DOWN\n");
1681 1682
		} else {
			/*
1683 1684 1685
			 * Check several times, if SYNCH bit and CONFIG
			 * bit both are consistently 1 then simply ignore
			 * the IV bit and restart Autoneg
1686
			 */
1687 1688 1689
			for (i = 0; i < AN_RETRY_COUNT; i++) {
				udelay(10);
				rxcw = er32(RXCW);
1690 1691 1692 1693 1694
				if ((rxcw & E1000_RXCW_SYNCH) &&
				    (rxcw & E1000_RXCW_C))
					continue;

				if (rxcw & E1000_RXCW_IV) {
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
					mac->serdes_has_link = false;
					mac->serdes_link_state =
					    e1000_serdes_link_down;
					e_dbg("ANYSTATE  -> DOWN\n");
					break;
				}
			}

			if (i == AN_RETRY_COUNT) {
				txcw = er32(TXCW);
				txcw |= E1000_TXCW_ANE;
				ew32(TXCW, txcw);
				mac->serdes_link_state =
				    e1000_serdes_link_autoneg_progress;
1709
				mac->serdes_has_link = false;
1710
				e_dbg("ANYSTATE  -> AN_PROG\n");
1711 1712 1713 1714 1715 1716 1717
			}
		}
	}

	return ret_val;
}

1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
/**
 *  e1000_valid_led_default_82571 - Verify a valid default LED config
 *  @hw: pointer to the HW structure
 *  @data: pointer to the NVM (EEPROM)
 *
 *  Read the EEPROM for the current default LED configuration.  If the
 *  LED configuration is not valid, set to a valid LED configuration.
 **/
static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
{
	s32 ret_val;

	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
	if (ret_val) {
1732
		e_dbg("NVM Read Error\n");
1733 1734 1735
		return ret_val;
	}

1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
	switch (hw->mac.type) {
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
		if (*data == ID_LED_RESERVED_F746)
			*data = ID_LED_DEFAULT_82573;
		break;
	default:
		if (*data == ID_LED_RESERVED_0000 ||
		    *data == ID_LED_RESERVED_FFFF)
			*data = ID_LED_DEFAULT;
		break;
	}
1749 1750 1751 1752 1753 1754 1755 1756

	return 0;
}

/**
 *  e1000e_get_laa_state_82571 - Get locally administered address state
 *  @hw: pointer to the HW structure
 *
1757
 *  Retrieve and return the current locally administered address state.
1758 1759 1760 1761
 **/
bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
{
	if (hw->mac.type != e1000_82571)
1762
		return false;
1763 1764 1765 1766 1767 1768 1769 1770 1771

	return hw->dev_spec.e82571.laa_is_present;
}

/**
 *  e1000e_set_laa_state_82571 - Set locally administered address state
 *  @hw: pointer to the HW structure
 *  @state: enable/disable locally administered address
 *
B
Bruce Allan 已提交
1772
 *  Enable/Disable the current locally administered address state.
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
 **/
void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
{
	if (hw->mac.type != e1000_82571)
		return;

	hw->dev_spec.e82571.laa_is_present = state;

	/* If workaround is activated... */
	if (state)
1783 1784
		/*
		 * Hold a copy of the LAA in RAR[14] This is done so that
1785 1786 1787 1788 1789
		 * between the time RAR[0] gets clobbered and the time it
		 * gets fixed, the actual LAA is in one of the RARs and no
		 * incoming packets directed to this port are dropped.
		 * Eventually the LAA will be in RAR[0] and RAR[14].
		 */
1790 1791
		hw->mac.ops.rar_set(hw, hw->mac.addr,
				    hw->mac.rar_entry_count - 1);
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
}

/**
 *  e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Verifies that the EEPROM has completed the update.  After updating the
 *  EEPROM, we need to check bit 15 in work 0x23 for the checksum fix.  If
 *  the checksum fix is not implemented, we need to set the bit and update
 *  the checksum.  Otherwise, if bit 15 is set and the checksum is incorrect,
 *  we need to return bad checksum.
 **/
static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	s32 ret_val;
	u16 data;

	if (nvm->type != e1000_nvm_flash_hw)
		return 0;

1813 1814
	/*
	 * Check bit 4 of word 10h.  If it is 0, firmware is done updating
1815 1816 1817 1818 1819 1820 1821
	 * 10h-12h.  Checksum may need to be fixed.
	 */
	ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
	if (ret_val)
		return ret_val;

	if (!(data & 0x10)) {
1822 1823
		/*
		 * Read 0x23 and check bit 15.  This bit is a 1
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
		 * when the checksum has already been fixed.  If
		 * the checksum is still wrong and this bit is a
		 * 1, we need to return bad checksum.  Otherwise,
		 * we need to set this bit to a 1 and update the
		 * checksum.
		 */
		ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
		if (ret_val)
			return ret_val;

		if (!(data & 0x8000)) {
			data |= 0x8000;
			ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
			if (ret_val)
				return ret_val;
			ret_val = e1000e_update_nvm_checksum(hw);
		}
	}

	return 0;
}

1846 1847 1848 1849 1850 1851
/**
 *  e1000_read_mac_addr_82571 - Read device MAC address
 *  @hw: pointer to the HW structure
 **/
static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
{
1852
	if (hw->mac.type == e1000_82571) {
1853 1854
		s32 ret_val = 0;

1855 1856 1857 1858 1859 1860 1861
		/*
		 * If there's an alternate MAC address place it in RAR0
		 * so that it will override the Si installed default perm
		 * address.
		 */
		ret_val = e1000_check_alt_mac_addr_generic(hw);
		if (ret_val)
1862
			return ret_val;
1863
	}
1864

1865
	return e1000_read_mac_addr_generic(hw);
1866 1867
}

1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
/**
 * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
 * @hw: pointer to the HW structure
 *
 * In the case of a PHY power down to save power, or to turn off link during a
 * driver unload, or wake on lan is not enabled, remove the link.
 **/
static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	struct e1000_mac_info *mac = &hw->mac;

1880
	if (!phy->ops.check_reset_block)
1881 1882 1883 1884 1885 1886 1887
		return;

	/* If the management interface is not enabled, then power down */
	if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
		e1000_power_down_phy_copper(hw);
}

1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
/**
 *  e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
 *  @hw: pointer to the HW structure
 *
 *  Clears the hardware counters by reading the counter registers.
 **/
static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
{
	e1000e_clear_hw_cntrs_base(hw);

1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
	er32(PRC64);
	er32(PRC127);
	er32(PRC255);
	er32(PRC511);
	er32(PRC1023);
	er32(PRC1522);
	er32(PTC64);
	er32(PTC127);
	er32(PTC255);
	er32(PTC511);
	er32(PTC1023);
	er32(PTC1522);

	er32(ALGNERRC);
	er32(RXERRC);
	er32(TNCRS);
	er32(CEXTERR);
	er32(TSCTC);
	er32(TSCTFC);

	er32(MGTPRC);
	er32(MGTPDC);
	er32(MGTPTC);

	er32(IAC);
	er32(ICRXOC);

	er32(ICRXPTC);
	er32(ICRXATC);
	er32(ICTXPTC);
	er32(ICTXATC);
	er32(ICTXQEC);
	er32(ICTXQMTC);
	er32(ICRXDMTC);
1932 1933
}

J
Jeff Kirsher 已提交
1934
static const struct e1000_mac_operations e82571_mac_ops = {
1935
	/* .check_mng_mode: mac type dependent */
1936
	/* .check_for_link: media type dependent */
1937
	.id_led_init		= e1000e_id_led_init_generic,
1938 1939 1940
	.cleanup_led		= e1000e_cleanup_led_generic,
	.clear_hw_cntrs		= e1000_clear_hw_cntrs_82571,
	.get_bus_info		= e1000e_get_bus_info_pcie,
1941
	.set_lan_id		= e1000_set_lan_id_multi_port_pcie,
1942
	/* .get_link_up_info: media type dependent */
1943
	/* .led_on: mac type dependent */
1944
	.led_off		= e1000e_led_off_generic,
1945
	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
1946 1947
	.write_vfta		= e1000_write_vfta_generic,
	.clear_vfta		= e1000_clear_vfta_82571,
1948 1949 1950 1951
	.reset_hw		= e1000_reset_hw_82571,
	.init_hw		= e1000_init_hw_82571,
	.setup_link		= e1000_setup_link_82571,
	/* .setup_physical_interface: media type dependent */
1952
	.setup_led		= e1000e_setup_led_generic,
1953
	.config_collision_dist	= e1000e_config_collision_dist_generic,
1954
	.read_mac_addr		= e1000_read_mac_addr_82571,
1955
	.rar_set		= e1000e_rar_set_generic,
1956 1957
};

J
Jeff Kirsher 已提交
1958
static const struct e1000_phy_operations e82_phy_ops_igp = {
1959
	.acquire		= e1000_get_hw_semaphore_82571,
1960
	.check_polarity		= e1000_check_polarity_igp,
1961
	.check_reset_block	= e1000e_check_reset_block_generic,
1962
	.commit			= NULL,
1963 1964 1965
	.force_speed_duplex	= e1000e_phy_force_speed_duplex_igp,
	.get_cfg_done		= e1000_get_cfg_done_82571,
	.get_cable_length	= e1000e_get_cable_length_igp_2,
1966 1967 1968 1969
	.get_info		= e1000e_get_phy_info_igp,
	.read_reg		= e1000e_read_phy_reg_igp,
	.release		= e1000_put_hw_semaphore_82571,
	.reset			= e1000e_phy_hw_reset_generic,
1970 1971
	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
1972
	.write_reg		= e1000e_write_phy_reg_igp,
B
Bruce Allan 已提交
1973
	.cfg_on_link_up      	= NULL,
1974 1975
};

J
Jeff Kirsher 已提交
1976
static const struct e1000_phy_operations e82_phy_ops_m88 = {
1977
	.acquire		= e1000_get_hw_semaphore_82571,
1978
	.check_polarity		= e1000_check_polarity_m88,
1979
	.check_reset_block	= e1000e_check_reset_block_generic,
1980
	.commit			= e1000e_phy_sw_reset,
1981 1982 1983
	.force_speed_duplex	= e1000e_phy_force_speed_duplex_m88,
	.get_cfg_done		= e1000e_get_cfg_done,
	.get_cable_length	= e1000e_get_cable_length_m88,
1984 1985 1986 1987
	.get_info		= e1000e_get_phy_info_m88,
	.read_reg		= e1000e_read_phy_reg_m88,
	.release		= e1000_put_hw_semaphore_82571,
	.reset			= e1000e_phy_hw_reset_generic,
1988 1989
	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
1990
	.write_reg		= e1000e_write_phy_reg_m88,
B
Bruce Allan 已提交
1991
	.cfg_on_link_up      	= NULL,
1992 1993
};

J
Jeff Kirsher 已提交
1994
static const struct e1000_phy_operations e82_phy_ops_bm = {
1995
	.acquire		= e1000_get_hw_semaphore_82571,
1996
	.check_polarity		= e1000_check_polarity_m88,
1997
	.check_reset_block	= e1000e_check_reset_block_generic,
1998
	.commit			= e1000e_phy_sw_reset,
1999 2000 2001
	.force_speed_duplex	= e1000e_phy_force_speed_duplex_m88,
	.get_cfg_done		= e1000e_get_cfg_done,
	.get_cable_length	= e1000e_get_cable_length_m88,
2002 2003 2004 2005
	.get_info		= e1000e_get_phy_info_m88,
	.read_reg		= e1000e_read_phy_reg_bm2,
	.release		= e1000_put_hw_semaphore_82571,
	.reset			= e1000e_phy_hw_reset_generic,
2006 2007
	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
2008
	.write_reg		= e1000e_write_phy_reg_bm2,
B
Bruce Allan 已提交
2009
	.cfg_on_link_up      	= NULL,
2010 2011
};

J
Jeff Kirsher 已提交
2012
static const struct e1000_nvm_operations e82571_nvm_ops = {
2013 2014 2015
	.acquire		= e1000_acquire_nvm_82571,
	.read			= e1000e_read_nvm_eerd,
	.release		= e1000_release_nvm_82571,
2016
	.reload			= e1000e_reload_nvm_generic,
2017
	.update			= e1000_update_nvm_checksum_82571,
2018
	.valid_led_default	= e1000_valid_led_default_82571,
2019 2020
	.validate		= e1000_validate_nvm_checksum_82571,
	.write			= e1000_write_nvm_82571,
2021 2022
};

J
Jeff Kirsher 已提交
2023
const struct e1000_info e1000_82571_info = {
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
	.mac			= e1000_82571,
	.flags			= FLAG_HAS_HW_VLAN_FILTER
				  | FLAG_HAS_JUMBO_FRAMES
				  | FLAG_HAS_WOL
				  | FLAG_APME_IN_CTRL3
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_HAS_SMART_POWER_DOWN
				  | FLAG_RESET_OVERWRITES_LAA /* errata */
				  | FLAG_TARC_SPEED_MODE_BIT /* errata */
				  | FLAG_APME_CHECK_PORT_B,
2034 2035
	.flags2			= FLAG2_DISABLE_ASPM_L1 /* errata 13 */
				  | FLAG2_DMA_BURST,
2036
	.pba			= 38,
2037
	.max_hw_frame_size	= DEFAULT_JUMBO,
J
Jeff Kirsher 已提交
2038
	.get_variants		= e1000_get_variants_82571,
2039 2040 2041 2042 2043
	.mac_ops		= &e82571_mac_ops,
	.phy_ops		= &e82_phy_ops_igp,
	.nvm_ops		= &e82571_nvm_ops,
};

J
Jeff Kirsher 已提交
2044
const struct e1000_info e1000_82572_info = {
2045 2046 2047 2048 2049 2050 2051
	.mac			= e1000_82572,
	.flags			= FLAG_HAS_HW_VLAN_FILTER
				  | FLAG_HAS_JUMBO_FRAMES
				  | FLAG_HAS_WOL
				  | FLAG_APME_IN_CTRL3
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_TARC_SPEED_MODE_BIT, /* errata */
2052 2053
	.flags2			= FLAG2_DISABLE_ASPM_L1 /* errata 13 */
				  | FLAG2_DMA_BURST,
2054
	.pba			= 38,
2055
	.max_hw_frame_size	= DEFAULT_JUMBO,
J
Jeff Kirsher 已提交
2056
	.get_variants		= e1000_get_variants_82571,
2057 2058 2059 2060 2061
	.mac_ops		= &e82571_mac_ops,
	.phy_ops		= &e82_phy_ops_igp,
	.nvm_ops		= &e82571_nvm_ops,
};

J
Jeff Kirsher 已提交
2062
const struct e1000_info e1000_82573_info = {
2063 2064 2065 2066 2067 2068 2069
	.mac			= e1000_82573,
	.flags			= FLAG_HAS_HW_VLAN_FILTER
				  | FLAG_HAS_WOL
				  | FLAG_APME_IN_CTRL3
				  | FLAG_HAS_SMART_POWER_DOWN
				  | FLAG_HAS_AMT
				  | FLAG_HAS_SWSM_ON_LOAD,
2070 2071
	.flags2			= FLAG2_DISABLE_ASPM_L1
				  | FLAG2_DISABLE_ASPM_L0S,
2072
	.pba			= 20,
2073
	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
J
Jeff Kirsher 已提交
2074
	.get_variants		= e1000_get_variants_82571,
2075 2076
	.mac_ops		= &e82571_mac_ops,
	.phy_ops		= &e82_phy_ops_m88,
2077
	.nvm_ops		= &e82571_nvm_ops,
2078 2079
};

J
Jeff Kirsher 已提交
2080
const struct e1000_info e1000_82574_info = {
2081 2082 2083 2084 2085 2086 2087 2088 2089
	.mac			= e1000_82574,
	.flags			= FLAG_HAS_HW_VLAN_FILTER
				  | FLAG_HAS_MSIX
				  | FLAG_HAS_JUMBO_FRAMES
				  | FLAG_HAS_WOL
				  | FLAG_APME_IN_CTRL3
				  | FLAG_HAS_SMART_POWER_DOWN
				  | FLAG_HAS_AMT
				  | FLAG_HAS_CTRLEXT_ON_LOAD,
C
Chris Boot 已提交
2090
	.flags2			 = FLAG2_CHECK_PHY_HANG
2091
				  | FLAG2_DISABLE_ASPM_L0S
C
Chris Boot 已提交
2092
				  | FLAG2_DISABLE_ASPM_L1
2093 2094
				  | FLAG2_NO_DISABLE_RX
				  | FLAG2_DMA_BURST,
2095
	.pba			= 32,
2096
	.max_hw_frame_size	= DEFAULT_JUMBO,
2097 2098 2099 2100 2101 2102
	.get_variants		= e1000_get_variants_82571,
	.mac_ops		= &e82571_mac_ops,
	.phy_ops		= &e82_phy_ops_bm,
	.nvm_ops		= &e82571_nvm_ops,
};

J
Jeff Kirsher 已提交
2103
const struct e1000_info e1000_82583_info = {
2104 2105 2106 2107 2108 2109
	.mac			= e1000_82583,
	.flags			= FLAG_HAS_HW_VLAN_FILTER
				  | FLAG_HAS_WOL
				  | FLAG_APME_IN_CTRL3
				  | FLAG_HAS_SMART_POWER_DOWN
				  | FLAG_HAS_AMT
2110
				  | FLAG_HAS_JUMBO_FRAMES
2111
				  | FLAG_HAS_CTRLEXT_ON_LOAD,
2112 2113
	.flags2			= FLAG2_DISABLE_ASPM_L0S
				  | FLAG2_NO_DISABLE_RX,
2114
	.pba			= 32,
2115
	.max_hw_frame_size	= DEFAULT_JUMBO,
2116 2117 2118 2119 2120 2121
	.get_variants		= e1000_get_variants_82571,
	.mac_ops		= &e82571_mac_ops,
	.phy_ops		= &e82_phy_ops_bm,
	.nvm_ops		= &e82571_nvm_ops,
};