gtp.c 30.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
/* GTP according to GSM TS 09.60 / 3GPP TS 29.060
 *
 * (C) 2012-2014 by sysmocom - s.f.m.c. GmbH
 * (C) 2016 by Pablo Neira Ayuso <pablo@netfilter.org>
 *
 * Author: Harald Welte <hwelte@sysmocom.de>
 *	   Pablo Neira Ayuso <pablo@netfilter.org>
 *	   Andreas Schultz <aschultz@travelping.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/module.h>
#include <linux/skbuff.h>
#include <linux/udp.h>
#include <linux/rculist.h>
#include <linux/jhash.h>
#include <linux/if_tunnel.h>
#include <linux/net.h>
#include <linux/file.h>
#include <linux/gtp.h>

#include <net/net_namespace.h>
#include <net/protocol.h>
#include <net/ip.h>
#include <net/udp.h>
#include <net/udp_tunnel.h>
#include <net/icmp.h>
#include <net/xfrm.h>
#include <net/genetlink.h>
#include <net/netns/generic.h>
#include <net/gtp.h>

/* An active session for the subscriber. */
struct pdp_ctx {
	struct hlist_node	hlist_tid;
	struct hlist_node	hlist_addr;

	union {
		u64		tid;
		struct {
			u64	tid;
			u16	flow;
		} v0;
		struct {
			u32	i_tei;
			u32	o_tei;
		} v1;
	} u;
	u8			gtp_version;
	u16			af;

	struct in_addr		ms_addr_ip4;
	struct in_addr		sgsn_addr_ip4;

61 62
	struct net_device       *dev;

63 64 65 66 67 68 69 70
	atomic_t		tx_seq;
	struct rcu_head		rcu_head;
};

/* One instance of the GTP device. */
struct gtp_dev {
	struct list_head	list;

71 72
	struct sock		*sk0;
	struct sock		*sk1u;
73 74 75 76 77 78 79 80

	struct net_device	*dev;

	unsigned int		hash_size;
	struct hlist_head	*tid_hash;
	struct hlist_head	*addr_hash;
};

81
static unsigned int gtp_net_id __read_mostly;
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161

struct gtp_net {
	struct list_head gtp_dev_list;
};

static u32 gtp_h_initval;

static inline u32 gtp0_hashfn(u64 tid)
{
	u32 *tid32 = (u32 *) &tid;
	return jhash_2words(tid32[0], tid32[1], gtp_h_initval);
}

static inline u32 gtp1u_hashfn(u32 tid)
{
	return jhash_1word(tid, gtp_h_initval);
}

static inline u32 ipv4_hashfn(__be32 ip)
{
	return jhash_1word((__force u32)ip, gtp_h_initval);
}

/* Resolve a PDP context structure based on the 64bit TID. */
static struct pdp_ctx *gtp0_pdp_find(struct gtp_dev *gtp, u64 tid)
{
	struct hlist_head *head;
	struct pdp_ctx *pdp;

	head = &gtp->tid_hash[gtp0_hashfn(tid) % gtp->hash_size];

	hlist_for_each_entry_rcu(pdp, head, hlist_tid) {
		if (pdp->gtp_version == GTP_V0 &&
		    pdp->u.v0.tid == tid)
			return pdp;
	}
	return NULL;
}

/* Resolve a PDP context structure based on the 32bit TEI. */
static struct pdp_ctx *gtp1_pdp_find(struct gtp_dev *gtp, u32 tid)
{
	struct hlist_head *head;
	struct pdp_ctx *pdp;

	head = &gtp->tid_hash[gtp1u_hashfn(tid) % gtp->hash_size];

	hlist_for_each_entry_rcu(pdp, head, hlist_tid) {
		if (pdp->gtp_version == GTP_V1 &&
		    pdp->u.v1.i_tei == tid)
			return pdp;
	}
	return NULL;
}

/* Resolve a PDP context based on IPv4 address of MS. */
static struct pdp_ctx *ipv4_pdp_find(struct gtp_dev *gtp, __be32 ms_addr)
{
	struct hlist_head *head;
	struct pdp_ctx *pdp;

	head = &gtp->addr_hash[ipv4_hashfn(ms_addr) % gtp->hash_size];

	hlist_for_each_entry_rcu(pdp, head, hlist_addr) {
		if (pdp->af == AF_INET &&
		    pdp->ms_addr_ip4.s_addr == ms_addr)
			return pdp;
	}

	return NULL;
}

static bool gtp_check_src_ms_ipv4(struct sk_buff *skb, struct pdp_ctx *pctx,
				  unsigned int hdrlen)
{
	struct iphdr *iph;

	if (!pskb_may_pull(skb, hdrlen + sizeof(struct iphdr)))
		return false;

162
	iph = (struct iphdr *)(skb->data + hdrlen);
163

164
	return iph->saddr == pctx->ms_addr_ip4.s_addr;
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
}

/* Check if the inner IP source address in this packet is assigned to any
 * existing mobile subscriber.
 */
static bool gtp_check_src_ms(struct sk_buff *skb, struct pdp_ctx *pctx,
			     unsigned int hdrlen)
{
	switch (ntohs(skb->protocol)) {
	case ETH_P_IP:
		return gtp_check_src_ms_ipv4(skb, pctx, hdrlen);
	}
	return false;
}

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
static int gtp_rx(struct pdp_ctx *pctx, struct sk_buff *skb, unsigned int hdrlen,
		  bool xnet)
{
	struct pcpu_sw_netstats *stats;

	if (!gtp_check_src_ms(skb, pctx, hdrlen)) {
		netdev_dbg(pctx->dev, "No PDP ctx for this MS\n");
		return 1;
	}

	/* Get rid of the GTP + UDP headers. */
	if (iptunnel_pull_header(skb, hdrlen, skb->protocol, xnet))
		return -1;

	netdev_dbg(pctx->dev, "forwarding packet from GGSN to uplink\n");

	/* Now that the UDP and the GTP header have been removed, set up the
	 * new network header. This is required by the upper layer to
	 * calculate the transport header.
	 */
	skb_reset_network_header(skb);

	skb->dev = pctx->dev;

	stats = this_cpu_ptr(pctx->dev->tstats);
	u64_stats_update_begin(&stats->syncp);
	stats->rx_packets++;
	stats->rx_bytes += skb->len;
	u64_stats_update_end(&stats->syncp);

	netif_rx(skb);
	return 0;
}

214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
/* 1 means pass up to the stack, -1 means drop and 0 means decapsulated. */
static int gtp0_udp_encap_recv(struct gtp_dev *gtp, struct sk_buff *skb,
			       bool xnet)
{
	unsigned int hdrlen = sizeof(struct udphdr) +
			      sizeof(struct gtp0_header);
	struct gtp0_header *gtp0;
	struct pdp_ctx *pctx;

	if (!pskb_may_pull(skb, hdrlen))
		return -1;

	gtp0 = (struct gtp0_header *)(skb->data + sizeof(struct udphdr));

	if ((gtp0->flags >> 5) != GTP_V0)
		return 1;

	if (gtp0->type != GTP_TPDU)
		return 1;

	pctx = gtp0_pdp_find(gtp, be64_to_cpu(gtp0->tid));
	if (!pctx) {
		netdev_dbg(gtp->dev, "No PDP ctx to decap skb=%p\n", skb);
237
		return 1;
238 239
	}

240
	return gtp_rx(pctx, skb, hdrlen, xnet);
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
}

static int gtp1u_udp_encap_recv(struct gtp_dev *gtp, struct sk_buff *skb,
				bool xnet)
{
	unsigned int hdrlen = sizeof(struct udphdr) +
			      sizeof(struct gtp1_header);
	struct gtp1_header *gtp1;
	struct pdp_ctx *pctx;

	if (!pskb_may_pull(skb, hdrlen))
		return -1;

	gtp1 = (struct gtp1_header *)(skb->data + sizeof(struct udphdr));

	if ((gtp1->flags >> 5) != GTP_V1)
		return 1;

	if (gtp1->type != GTP_TPDU)
		return 1;

	/* From 29.060: "This field shall be present if and only if any one or
	 * more of the S, PN and E flags are set.".
	 *
	 * If any of the bit is set, then the remaining ones also have to be
	 * set.
	 */
	if (gtp1->flags & GTP1_F_MASK)
		hdrlen += 4;

	/* Make sure the header is larger enough, including extensions. */
	if (!pskb_may_pull(skb, hdrlen))
		return -1;

275 276
	gtp1 = (struct gtp1_header *)(skb->data + sizeof(struct udphdr));

277 278 279
	pctx = gtp1_pdp_find(gtp, ntohl(gtp1->tid));
	if (!pctx) {
		netdev_dbg(gtp->dev, "No PDP ctx to decap skb=%p\n", skb);
280
		return 1;
281 282
	}

283
	return gtp_rx(pctx, skb, hdrlen, xnet);
284 285
}

286
static void gtp_encap_destroy(struct sock *sk)
287
{
288
	struct gtp_dev *gtp;
289

290 291 292 293 294 295
	gtp = rcu_dereference_sk_user_data(sk);
	if (gtp) {
		udp_sk(sk)->encap_type = 0;
		rcu_assign_sk_user_data(sk, NULL);
		sock_put(sk);
	}
296 297
}

298
static void gtp_encap_disable_sock(struct sock *sk)
299
{
300 301
	if (!sk)
		return;
302

303 304 305 306 307 308 309
	gtp_encap_destroy(sk);
}

static void gtp_encap_disable(struct gtp_dev *gtp)
{
	gtp_encap_disable_sock(gtp->sk0);
	gtp_encap_disable_sock(gtp->sk1u);
310 311 312 313 314 315 316 317
}

/* UDP encapsulation receive handler. See net/ipv4/udp.c.
 * Return codes: 0: success, <0: error, >0: pass up to userspace UDP socket.
 */
static int gtp_encap_recv(struct sock *sk, struct sk_buff *skb)
{
	struct gtp_dev *gtp;
318
	int ret = 0;
319 320 321 322 323 324 325 326
	bool xnet;

	gtp = rcu_dereference_sk_user_data(sk);
	if (!gtp)
		return 1;

	netdev_dbg(gtp->dev, "encap_recv sk=%p\n", sk);

327
	xnet = !net_eq(sock_net(sk), dev_net(gtp->dev));
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344

	switch (udp_sk(sk)->encap_type) {
	case UDP_ENCAP_GTP0:
		netdev_dbg(gtp->dev, "received GTP0 packet\n");
		ret = gtp0_udp_encap_recv(gtp, skb, xnet);
		break;
	case UDP_ENCAP_GTP1U:
		netdev_dbg(gtp->dev, "received GTP1U packet\n");
		ret = gtp1u_udp_encap_recv(gtp, skb, xnet);
		break;
	default:
		ret = -1; /* Shouldn't happen. */
	}

	switch (ret) {
	case 1:
		netdev_dbg(gtp->dev, "pass up to the process\n");
345
		break;
346 347 348 349 350
	case 0:
		break;
	case -1:
		netdev_dbg(gtp->dev, "GTP packet has been dropped\n");
		kfree_skb(skb);
351 352
		ret = 0;
		break;
353 354
	}

355
	return ret;
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
}

static int gtp_dev_init(struct net_device *dev)
{
	struct gtp_dev *gtp = netdev_priv(dev);

	gtp->dev = dev;

	dev->tstats = alloc_percpu(struct pcpu_sw_netstats);
	if (!dev->tstats)
		return -ENOMEM;

	return 0;
}

static void gtp_dev_uninit(struct net_device *dev)
{
	struct gtp_dev *gtp = netdev_priv(dev);

	gtp_encap_disable(gtp);
	free_percpu(dev->tstats);
}

static struct rtable *ip4_route_output_gtp(struct net *net, struct flowi4 *fl4,
					   const struct sock *sk, __be32 daddr)
{
	memset(fl4, 0, sizeof(*fl4));
	fl4->flowi4_oif		= sk->sk_bound_dev_if;
	fl4->daddr		= daddr;
	fl4->saddr		= inet_sk(sk)->inet_saddr;
	fl4->flowi4_tos		= RT_CONN_FLAGS(sk);
	fl4->flowi4_proto	= sk->sk_protocol;

	return ip_route_output_key(net, fl4);
}

static inline void gtp0_push_header(struct sk_buff *skb, struct pdp_ctx *pctx)
{
	int payload_len = skb->len;
	struct gtp0_header *gtp0;

	gtp0 = (struct gtp0_header *) skb_push(skb, sizeof(*gtp0));

	gtp0->flags	= 0x1e; /* v0, GTP-non-prime. */
	gtp0->type	= GTP_TPDU;
	gtp0->length	= htons(payload_len);
	gtp0->seq	= htons((atomic_inc_return(&pctx->tx_seq) - 1) % 0xffff);
	gtp0->flow	= htons(pctx->u.v0.flow);
	gtp0->number	= 0xff;
	gtp0->spare[0]	= gtp0->spare[1] = gtp0->spare[2] = 0xff;
	gtp0->tid	= cpu_to_be64(pctx->u.v0.tid);
}

static inline void gtp1_push_header(struct sk_buff *skb, struct pdp_ctx *pctx)
{
	int payload_len = skb->len;
	struct gtp1_header *gtp1;

	gtp1 = (struct gtp1_header *) skb_push(skb, sizeof(*gtp1));

	/* Bits    8  7  6  5  4  3  2	1
	 *	  +--+--+--+--+--+--+--+--+
418
	 *	  |version |PT| 0| E| S|PN|
419 420 421
	 *	  +--+--+--+--+--+--+--+--+
	 *	    0  0  1  1	1  0  0  0
	 */
422
	gtp1->flags	= 0x30; /* v1, GTP-non-prime. */
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
	gtp1->type	= GTP_TPDU;
	gtp1->length	= htons(payload_len);
	gtp1->tid	= htonl(pctx->u.v1.o_tei);

	/* TODO: Suppport for extension header, sequence number and N-PDU.
	 *	 Update the length field if any of them is available.
	 */
}

struct gtp_pktinfo {
	struct sock		*sk;
	struct iphdr		*iph;
	struct flowi4		fl4;
	struct rtable		*rt;
	struct pdp_ctx		*pctx;
	struct net_device	*dev;
	__be16			gtph_port;
};

static void gtp_push_header(struct sk_buff *skb, struct gtp_pktinfo *pktinfo)
{
	switch (pktinfo->pctx->gtp_version) {
	case GTP_V0:
		pktinfo->gtph_port = htons(GTP0_PORT);
		gtp0_push_header(skb, pktinfo->pctx);
		break;
	case GTP_V1:
		pktinfo->gtph_port = htons(GTP1U_PORT);
		gtp1_push_header(skb, pktinfo->pctx);
		break;
	}
}

static inline void gtp_set_pktinfo_ipv4(struct gtp_pktinfo *pktinfo,
					struct sock *sk, struct iphdr *iph,
					struct pdp_ctx *pctx, struct rtable *rt,
					struct flowi4 *fl4,
					struct net_device *dev)
{
	pktinfo->sk	= sk;
	pktinfo->iph	= iph;
	pktinfo->pctx	= pctx;
	pktinfo->rt	= rt;
	pktinfo->fl4	= *fl4;
	pktinfo->dev	= dev;
}

static int gtp_build_skb_ip4(struct sk_buff *skb, struct net_device *dev,
			     struct gtp_pktinfo *pktinfo)
{
	struct gtp_dev *gtp = netdev_priv(dev);
	struct pdp_ctx *pctx;
	struct rtable *rt;
	struct flowi4 fl4;
	struct iphdr *iph;
	struct sock *sk;
	__be16 df;
	int mtu;

	/* Read the IP destination address and resolve the PDP context.
	 * Prepend PDP header with TEI/TID from PDP ctx.
	 */
	iph = ip_hdr(skb);
	pctx = ipv4_pdp_find(gtp, iph->daddr);
	if (!pctx) {
		netdev_dbg(dev, "no PDP ctx found for %pI4, skip\n",
			   &iph->daddr);
		return -ENOENT;
	}
	netdev_dbg(dev, "found PDP context %p\n", pctx);

	switch (pctx->gtp_version) {
	case GTP_V0:
496 497
		if (gtp->sk0)
			sk = gtp->sk0;
498 499 500 501
		else
			sk = NULL;
		break;
	case GTP_V1:
502 503
		if (gtp->sk1u)
			sk = gtp->sk1u;
504 505 506 507 508 509 510 511 512 513 514 515
		else
			sk = NULL;
		break;
	default:
		return -ENOENT;
	}

	if (!sk) {
		netdev_dbg(dev, "no userspace socket is available, skip\n");
		return -ENOENT;
	}

516
	rt = ip4_route_output_gtp(sock_net(sk), &fl4, gtp->sk0,
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
				  pctx->sgsn_addr_ip4.s_addr);
	if (IS_ERR(rt)) {
		netdev_dbg(dev, "no route to SSGN %pI4\n",
			   &pctx->sgsn_addr_ip4.s_addr);
		dev->stats.tx_carrier_errors++;
		goto err;
	}

	if (rt->dst.dev == dev) {
		netdev_dbg(dev, "circular route to SSGN %pI4\n",
			   &pctx->sgsn_addr_ip4.s_addr);
		dev->stats.collisions++;
		goto err_rt;
	}

	skb_dst_drop(skb);

	/* This is similar to tnl_update_pmtu(). */
	df = iph->frag_off;
	if (df) {
		mtu = dst_mtu(&rt->dst) - dev->hard_header_len -
			sizeof(struct iphdr) - sizeof(struct udphdr);
		switch (pctx->gtp_version) {
		case GTP_V0:
			mtu -= sizeof(struct gtp0_header);
			break;
		case GTP_V1:
			mtu -= sizeof(struct gtp1_header);
			break;
		}
	} else {
		mtu = dst_mtu(&rt->dst);
	}

	rt->dst.ops->update_pmtu(&rt->dst, NULL, skb, mtu);

	if (!skb_is_gso(skb) && (iph->frag_off & htons(IP_DF)) &&
	    mtu < ntohs(iph->tot_len)) {
		netdev_dbg(dev, "packet too big, fragmentation needed\n");
		memset(IPCB(skb), 0, sizeof(*IPCB(skb)));
		icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
			  htonl(mtu));
		goto err_rt;
	}

	gtp_set_pktinfo_ipv4(pktinfo, sk, iph, pctx, rt, &fl4, dev);
	gtp_push_header(skb, pktinfo);

	return 0;
err_rt:
	ip_rt_put(rt);
err:
	return -EBADMSG;
}

static netdev_tx_t gtp_dev_xmit(struct sk_buff *skb, struct net_device *dev)
{
	unsigned int proto = ntohs(skb->protocol);
	struct gtp_pktinfo pktinfo;
	int err;

	/* Ensure there is sufficient headroom. */
	if (skb_cow_head(skb, dev->needed_headroom))
		goto tx_err;

	skb_reset_inner_headers(skb);

	/* PDP context lookups in gtp_build_skb_*() need rcu read-side lock. */
	rcu_read_lock();
	switch (proto) {
	case ETH_P_IP:
		err = gtp_build_skb_ip4(skb, dev, &pktinfo);
		break;
	default:
		err = -EOPNOTSUPP;
		break;
	}
	rcu_read_unlock();

	if (err < 0)
		goto tx_err;

	switch (proto) {
	case ETH_P_IP:
		netdev_dbg(pktinfo.dev, "gtp -> IP src: %pI4 dst: %pI4\n",
			   &pktinfo.iph->saddr, &pktinfo.iph->daddr);
		udp_tunnel_xmit_skb(pktinfo.rt, pktinfo.sk, skb,
				    pktinfo.fl4.saddr, pktinfo.fl4.daddr,
				    pktinfo.iph->tos,
				    ip4_dst_hoplimit(&pktinfo.rt->dst),
607
				    0,
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
				    pktinfo.gtph_port, pktinfo.gtph_port,
				    true, false);
		break;
	}

	return NETDEV_TX_OK;
tx_err:
	dev->stats.tx_errors++;
	dev_kfree_skb(skb);
	return NETDEV_TX_OK;
}

static const struct net_device_ops gtp_netdev_ops = {
	.ndo_init		= gtp_dev_init,
	.ndo_uninit		= gtp_dev_uninit,
	.ndo_start_xmit		= gtp_dev_xmit,
	.ndo_get_stats64	= ip_tunnel_get_stats64,
};

static void gtp_link_setup(struct net_device *dev)
{
	dev->netdev_ops		= &gtp_netdev_ops;
	dev->destructor		= free_netdev;

	dev->hard_header_len = 0;
	dev->addr_len = 0;

	/* Zero header length. */
	dev->type = ARPHRD_NONE;
	dev->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST;

	dev->priv_flags	|= IFF_NO_QUEUE;
	dev->features	|= NETIF_F_LLTX;
	netif_keep_dst(dev);

	/* Assume largest header, ie. GTPv0. */
	dev->needed_headroom	= LL_MAX_HEADER +
				  sizeof(struct iphdr) +
				  sizeof(struct udphdr) +
				  sizeof(struct gtp0_header);
}

static int gtp_hashtable_new(struct gtp_dev *gtp, int hsize);
static void gtp_hashtable_free(struct gtp_dev *gtp);
652
static int gtp_encap_enable(struct gtp_dev *gtp, struct nlattr *data[]);
653 654 655 656 657 658

static int gtp_newlink(struct net *src_net, struct net_device *dev,
			struct nlattr *tb[], struct nlattr *data[])
{
	struct gtp_dev *gtp;
	struct gtp_net *gn;
659
	int hashsize, err;
660

661
	if (!data[IFLA_GTP_FD0] && !data[IFLA_GTP_FD1])
662 663 664 665
		return -EINVAL;

	gtp = netdev_priv(dev);

666
	err = gtp_encap_enable(gtp, data);
667
	if (err < 0)
668
		return err;
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794

	if (!data[IFLA_GTP_PDP_HASHSIZE])
		hashsize = 1024;
	else
		hashsize = nla_get_u32(data[IFLA_GTP_PDP_HASHSIZE]);

	err = gtp_hashtable_new(gtp, hashsize);
	if (err < 0)
		goto out_encap;

	err = register_netdevice(dev);
	if (err < 0) {
		netdev_dbg(dev, "failed to register new netdev %d\n", err);
		goto out_hashtable;
	}

	gn = net_generic(dev_net(dev), gtp_net_id);
	list_add_rcu(&gtp->list, &gn->gtp_dev_list);

	netdev_dbg(dev, "registered new GTP interface\n");

	return 0;

out_hashtable:
	gtp_hashtable_free(gtp);
out_encap:
	gtp_encap_disable(gtp);
	return err;
}

static void gtp_dellink(struct net_device *dev, struct list_head *head)
{
	struct gtp_dev *gtp = netdev_priv(dev);

	gtp_encap_disable(gtp);
	gtp_hashtable_free(gtp);
	list_del_rcu(&gtp->list);
	unregister_netdevice_queue(dev, head);
}

static const struct nla_policy gtp_policy[IFLA_GTP_MAX + 1] = {
	[IFLA_GTP_FD0]			= { .type = NLA_U32 },
	[IFLA_GTP_FD1]			= { .type = NLA_U32 },
	[IFLA_GTP_PDP_HASHSIZE]		= { .type = NLA_U32 },
};

static int gtp_validate(struct nlattr *tb[], struct nlattr *data[])
{
	if (!data)
		return -EINVAL;

	return 0;
}

static size_t gtp_get_size(const struct net_device *dev)
{
	return nla_total_size(sizeof(__u32));	/* IFLA_GTP_PDP_HASHSIZE */
}

static int gtp_fill_info(struct sk_buff *skb, const struct net_device *dev)
{
	struct gtp_dev *gtp = netdev_priv(dev);

	if (nla_put_u32(skb, IFLA_GTP_PDP_HASHSIZE, gtp->hash_size))
		goto nla_put_failure;

	return 0;

nla_put_failure:
	return -EMSGSIZE;
}

static struct rtnl_link_ops gtp_link_ops __read_mostly = {
	.kind		= "gtp",
	.maxtype	= IFLA_GTP_MAX,
	.policy		= gtp_policy,
	.priv_size	= sizeof(struct gtp_dev),
	.setup		= gtp_link_setup,
	.validate	= gtp_validate,
	.newlink	= gtp_newlink,
	.dellink	= gtp_dellink,
	.get_size	= gtp_get_size,
	.fill_info	= gtp_fill_info,
};

static int gtp_hashtable_new(struct gtp_dev *gtp, int hsize)
{
	int i;

	gtp->addr_hash = kmalloc(sizeof(struct hlist_head) * hsize, GFP_KERNEL);
	if (gtp->addr_hash == NULL)
		return -ENOMEM;

	gtp->tid_hash = kmalloc(sizeof(struct hlist_head) * hsize, GFP_KERNEL);
	if (gtp->tid_hash == NULL)
		goto err1;

	gtp->hash_size = hsize;

	for (i = 0; i < hsize; i++) {
		INIT_HLIST_HEAD(&gtp->addr_hash[i]);
		INIT_HLIST_HEAD(&gtp->tid_hash[i]);
	}
	return 0;
err1:
	kfree(gtp->addr_hash);
	return -ENOMEM;
}

static void gtp_hashtable_free(struct gtp_dev *gtp)
{
	struct pdp_ctx *pctx;
	int i;

	for (i = 0; i < gtp->hash_size; i++) {
		hlist_for_each_entry_rcu(pctx, &gtp->tid_hash[i], hlist_tid) {
			hlist_del_rcu(&pctx->hlist_tid);
			hlist_del_rcu(&pctx->hlist_addr);
			kfree_rcu(pctx, rcu_head);
		}
	}
	synchronize_rcu();
	kfree(gtp->addr_hash);
	kfree(gtp->tid_hash);
}

795 796
static struct sock *gtp_encap_enable_socket(int fd, int type,
					    struct gtp_dev *gtp)
797 798
{
	struct udp_tunnel_sock_cfg tuncfg = {NULL};
799 800
	struct socket *sock;
	struct sock *sk;
801 802
	int err;

803
	pr_debug("enable gtp on %d, %d\n", fd, type);
804

805 806 807 808
	sock = sockfd_lookup(fd, &err);
	if (!sock) {
		pr_debug("gtp socket fd=%d not found\n", fd);
		return NULL;
809 810
	}

811 812 813 814
	if (sock->sk->sk_protocol != IPPROTO_UDP) {
		pr_debug("socket fd=%d not UDP\n", fd);
		sk = ERR_PTR(-EINVAL);
		goto out_sock;
815 816
	}

817 818 819
	if (rcu_dereference_sk_user_data(sock->sk)) {
		sk = ERR_PTR(-EBUSY);
		goto out_sock;
820 821
	}

822 823
	sk = sock->sk;
	sock_hold(sk);
824 825

	tuncfg.sk_user_data = gtp;
826
	tuncfg.encap_type = type;
827 828 829
	tuncfg.encap_rcv = gtp_encap_recv;
	tuncfg.encap_destroy = gtp_encap_destroy;

830
	setup_udp_tunnel_sock(sock_net(sock->sk), sock, &tuncfg);
831

832 833 834 835
out_sock:
	sockfd_put(sock);
	return sk;
}
836

837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
static int gtp_encap_enable(struct gtp_dev *gtp, struct nlattr *data[])
{
	struct sock *sk1u = NULL;
	struct sock *sk0 = NULL;

	if (data[IFLA_GTP_FD0]) {
		u32 fd0 = nla_get_u32(data[IFLA_GTP_FD0]);

		sk0 = gtp_encap_enable_socket(fd0, UDP_ENCAP_GTP0, gtp);
		if (IS_ERR(sk0))
			return PTR_ERR(sk0);
	}

	if (data[IFLA_GTP_FD1]) {
		u32 fd1 = nla_get_u32(data[IFLA_GTP_FD1]);

		sk1u = gtp_encap_enable_socket(fd1, UDP_ENCAP_GTP1U, gtp);
		if (IS_ERR(sk1u)) {
			if (sk0)
				gtp_encap_disable_sock(sk0);
			return PTR_ERR(sk1u);
		}
	}

	gtp->sk0 = sk0;
	gtp->sk1u = sk1u;

	return 0;
865 866
}

867
static struct gtp_dev *gtp_find_dev(struct net *src_net, struct nlattr *nla[])
868
{
869 870 871
	struct gtp_dev *gtp = NULL;
	struct net_device *dev;
	struct net *net;
872

873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
	/* Examine the link attributes and figure out which network namespace
	 * we are talking about.
	 */
	if (nla[GTPA_NET_NS_FD])
		net = get_net_ns_by_fd(nla_get_u32(nla[GTPA_NET_NS_FD]));
	else
		net = get_net(src_net);

	if (IS_ERR(net))
		return NULL;

	/* Check if there's an existing gtpX device to configure */
	dev = dev_get_by_index_rcu(net, nla_get_u32(nla[GTPA_LINK]));
	if (dev->netdev_ops == &gtp_netdev_ops)
		gtp = netdev_priv(dev);

	put_net(net);
	return gtp;
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
}

static void ipv4_pdp_fill(struct pdp_ctx *pctx, struct genl_info *info)
{
	pctx->gtp_version = nla_get_u32(info->attrs[GTPA_VERSION]);
	pctx->af = AF_INET;
	pctx->sgsn_addr_ip4.s_addr =
		nla_get_be32(info->attrs[GTPA_SGSN_ADDRESS]);
	pctx->ms_addr_ip4.s_addr =
		nla_get_be32(info->attrs[GTPA_MS_ADDRESS]);

	switch (pctx->gtp_version) {
	case GTP_V0:
		/* According to TS 09.60, sections 7.5.1 and 7.5.2, the flow
		 * label needs to be the same for uplink and downlink packets,
		 * so let's annotate this.
		 */
		pctx->u.v0.tid = nla_get_u64(info->attrs[GTPA_TID]);
		pctx->u.v0.flow = nla_get_u16(info->attrs[GTPA_FLOW]);
		break;
	case GTP_V1:
		pctx->u.v1.i_tei = nla_get_u32(info->attrs[GTPA_I_TEI]);
		pctx->u.v1.o_tei = nla_get_u32(info->attrs[GTPA_O_TEI]);
		break;
	default:
		break;
	}
}

920
static int ipv4_pdp_add(struct gtp_dev *gtp, struct genl_info *info)
921
{
922
	struct net_device *dev = gtp->dev;
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
	u32 hash_ms, hash_tid = 0;
	struct pdp_ctx *pctx;
	bool found = false;
	__be32 ms_addr;

	ms_addr = nla_get_be32(info->attrs[GTPA_MS_ADDRESS]);
	hash_ms = ipv4_hashfn(ms_addr) % gtp->hash_size;

	hlist_for_each_entry_rcu(pctx, &gtp->addr_hash[hash_ms], hlist_addr) {
		if (pctx->ms_addr_ip4.s_addr == ms_addr) {
			found = true;
			break;
		}
	}

	if (found) {
		if (info->nlhdr->nlmsg_flags & NLM_F_EXCL)
			return -EEXIST;
		if (info->nlhdr->nlmsg_flags & NLM_F_REPLACE)
			return -EOPNOTSUPP;

		ipv4_pdp_fill(pctx, info);

		if (pctx->gtp_version == GTP_V0)
			netdev_dbg(dev, "GTPv0-U: update tunnel id = %llx (pdp %p)\n",
				   pctx->u.v0.tid, pctx);
		else if (pctx->gtp_version == GTP_V1)
			netdev_dbg(dev, "GTPv1-U: update tunnel id = %x/%x (pdp %p)\n",
				   pctx->u.v1.i_tei, pctx->u.v1.o_tei, pctx);

		return 0;

	}

	pctx = kmalloc(sizeof(struct pdp_ctx), GFP_KERNEL);
	if (pctx == NULL)
		return -ENOMEM;

961
	pctx->dev = gtp->dev;
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
	ipv4_pdp_fill(pctx, info);
	atomic_set(&pctx->tx_seq, 0);

	switch (pctx->gtp_version) {
	case GTP_V0:
		/* TS 09.60: "The flow label identifies unambiguously a GTP
		 * flow.". We use the tid for this instead, I cannot find a
		 * situation in which this doesn't unambiguosly identify the
		 * PDP context.
		 */
		hash_tid = gtp0_hashfn(pctx->u.v0.tid) % gtp->hash_size;
		break;
	case GTP_V1:
		hash_tid = gtp1u_hashfn(pctx->u.v1.i_tei) % gtp->hash_size;
		break;
	}

	hlist_add_head_rcu(&pctx->hlist_addr, &gtp->addr_hash[hash_ms]);
	hlist_add_head_rcu(&pctx->hlist_tid, &gtp->tid_hash[hash_tid]);

	switch (pctx->gtp_version) {
	case GTP_V0:
		netdev_dbg(dev, "GTPv0-U: new PDP ctx id=%llx ssgn=%pI4 ms=%pI4 (pdp=%p)\n",
			   pctx->u.v0.tid, &pctx->sgsn_addr_ip4,
			   &pctx->ms_addr_ip4, pctx);
		break;
	case GTP_V1:
		netdev_dbg(dev, "GTPv1-U: new PDP ctx id=%x/%x ssgn=%pI4 ms=%pI4 (pdp=%p)\n",
			   pctx->u.v1.i_tei, pctx->u.v1.o_tei,
			   &pctx->sgsn_addr_ip4, &pctx->ms_addr_ip4, pctx);
		break;
	}

	return 0;
}

static int gtp_genl_new_pdp(struct sk_buff *skb, struct genl_info *info)
{
1000 1001
	struct gtp_dev *gtp;
	int err;
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024

	if (!info->attrs[GTPA_VERSION] ||
	    !info->attrs[GTPA_LINK] ||
	    !info->attrs[GTPA_SGSN_ADDRESS] ||
	    !info->attrs[GTPA_MS_ADDRESS])
		return -EINVAL;

	switch (nla_get_u32(info->attrs[GTPA_VERSION])) {
	case GTP_V0:
		if (!info->attrs[GTPA_TID] ||
		    !info->attrs[GTPA_FLOW])
			return -EINVAL;
		break;
	case GTP_V1:
		if (!info->attrs[GTPA_I_TEI] ||
		    !info->attrs[GTPA_O_TEI])
			return -EINVAL;
		break;

	default:
		return -EINVAL;
	}

1025
	rcu_read_lock();
1026

1027 1028 1029 1030
	gtp = gtp_find_dev(sock_net(skb->sk), info->attrs);
	if (!gtp) {
		err = -ENODEV;
		goto out_unlock;
1031
	}
1032

1033 1034 1035 1036 1037
	err = ipv4_pdp_add(gtp, info);

out_unlock:
	rcu_read_unlock();
	return err;
1038 1039 1040 1041 1042 1043
}

static int gtp_genl_del_pdp(struct sk_buff *skb, struct genl_info *info)
{
	struct pdp_ctx *pctx;
	struct gtp_dev *gtp;
1044
	int err = 0;
1045 1046 1047 1048 1049

	if (!info->attrs[GTPA_VERSION] ||
	    !info->attrs[GTPA_LINK])
		return -EINVAL;

1050
	rcu_read_lock();
1051

1052 1053 1054 1055
	gtp = gtp_find_dev(sock_net(skb->sk), info->attrs);
	if (!gtp) {
		err = -ENODEV;
		goto out_unlock;
1056
	}
1057 1058 1059

	switch (nla_get_u32(info->attrs[GTPA_VERSION])) {
	case GTP_V0:
1060 1061 1062 1063
		if (!info->attrs[GTPA_TID]) {
			err = -EINVAL;
			goto out_unlock;
		}
1064 1065 1066
		pctx = gtp0_pdp_find(gtp, nla_get_u64(info->attrs[GTPA_TID]));
		break;
	case GTP_V1:
1067 1068 1069 1070
		if (!info->attrs[GTPA_I_TEI]) {
			err = -EINVAL;
			goto out_unlock;
		}
1071 1072 1073 1074
		pctx = gtp1_pdp_find(gtp, nla_get_u64(info->attrs[GTPA_I_TEI]));
		break;

	default:
1075 1076
		err = -EINVAL;
		goto out_unlock;
1077 1078
	}

1079 1080 1081 1082
	if (!pctx) {
		err = -ENOENT;
		goto out_unlock;
	}
1083 1084

	if (pctx->gtp_version == GTP_V0)
1085
		netdev_dbg(gtp->dev, "GTPv0-U: deleting tunnel id = %llx (pdp %p)\n",
1086 1087
			   pctx->u.v0.tid, pctx);
	else if (pctx->gtp_version == GTP_V1)
1088
		netdev_dbg(gtp->dev, "GTPv1-U: deleting tunnel id = %x/%x (pdp %p)\n",
1089 1090 1091 1092 1093 1094
			   pctx->u.v1.i_tei, pctx->u.v1.o_tei, pctx);

	hlist_del_rcu(&pctx->hlist_tid);
	hlist_del_rcu(&pctx->hlist_addr);
	kfree_rcu(pctx, rcu_head);

1095 1096 1097
out_unlock:
	rcu_read_unlock();
	return err;
1098 1099
}

1100
static struct genl_family gtp_genl_family;
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158

static int gtp_genl_fill_info(struct sk_buff *skb, u32 snd_portid, u32 snd_seq,
			      u32 type, struct pdp_ctx *pctx)
{
	void *genlh;

	genlh = genlmsg_put(skb, snd_portid, snd_seq, &gtp_genl_family, 0,
			    type);
	if (genlh == NULL)
		goto nlmsg_failure;

	if (nla_put_u32(skb, GTPA_VERSION, pctx->gtp_version) ||
	    nla_put_be32(skb, GTPA_SGSN_ADDRESS, pctx->sgsn_addr_ip4.s_addr) ||
	    nla_put_be32(skb, GTPA_MS_ADDRESS, pctx->ms_addr_ip4.s_addr))
		goto nla_put_failure;

	switch (pctx->gtp_version) {
	case GTP_V0:
		if (nla_put_u64_64bit(skb, GTPA_TID, pctx->u.v0.tid, GTPA_PAD) ||
		    nla_put_u16(skb, GTPA_FLOW, pctx->u.v0.flow))
			goto nla_put_failure;
		break;
	case GTP_V1:
		if (nla_put_u32(skb, GTPA_I_TEI, pctx->u.v1.i_tei) ||
		    nla_put_u32(skb, GTPA_O_TEI, pctx->u.v1.o_tei))
			goto nla_put_failure;
		break;
	}
	genlmsg_end(skb, genlh);
	return 0;

nlmsg_failure:
nla_put_failure:
	genlmsg_cancel(skb, genlh);
	return -EMSGSIZE;
}

static int gtp_genl_get_pdp(struct sk_buff *skb, struct genl_info *info)
{
	struct pdp_ctx *pctx = NULL;
	struct sk_buff *skb2;
	struct gtp_dev *gtp;
	u32 gtp_version;
	int err;

	if (!info->attrs[GTPA_VERSION] ||
	    !info->attrs[GTPA_LINK])
		return -EINVAL;

	gtp_version = nla_get_u32(info->attrs[GTPA_VERSION]);
	switch (gtp_version) {
	case GTP_V0:
	case GTP_V1:
		break;
	default:
		return -EINVAL;
	}

1159
	rcu_read_lock();
1160

1161 1162 1163 1164
	gtp = gtp_find_dev(sock_net(skb->sk), info->attrs);
	if (!gtp) {
		err = -ENODEV;
		goto err_unlock;
1165
	}
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286

	if (gtp_version == GTP_V0 &&
	    info->attrs[GTPA_TID]) {
		u64 tid = nla_get_u64(info->attrs[GTPA_TID]);

		pctx = gtp0_pdp_find(gtp, tid);
	} else if (gtp_version == GTP_V1 &&
		 info->attrs[GTPA_I_TEI]) {
		u32 tid = nla_get_u32(info->attrs[GTPA_I_TEI]);

		pctx = gtp1_pdp_find(gtp, tid);
	} else if (info->attrs[GTPA_MS_ADDRESS]) {
		__be32 ip = nla_get_be32(info->attrs[GTPA_MS_ADDRESS]);

		pctx = ipv4_pdp_find(gtp, ip);
	}

	if (pctx == NULL) {
		err = -ENOENT;
		goto err_unlock;
	}

	skb2 = genlmsg_new(NLMSG_GOODSIZE, GFP_ATOMIC);
	if (skb2 == NULL) {
		err = -ENOMEM;
		goto err_unlock;
	}

	err = gtp_genl_fill_info(skb2, NETLINK_CB(skb).portid,
				 info->snd_seq, info->nlhdr->nlmsg_type, pctx);
	if (err < 0)
		goto err_unlock_free;

	rcu_read_unlock();
	return genlmsg_unicast(genl_info_net(info), skb2, info->snd_portid);

err_unlock_free:
	kfree_skb(skb2);
err_unlock:
	rcu_read_unlock();
	return err;
}

static int gtp_genl_dump_pdp(struct sk_buff *skb,
				struct netlink_callback *cb)
{
	struct gtp_dev *last_gtp = (struct gtp_dev *)cb->args[2], *gtp;
	struct net *net = sock_net(skb->sk);
	struct gtp_net *gn = net_generic(net, gtp_net_id);
	unsigned long tid = cb->args[1];
	int i, k = cb->args[0], ret;
	struct pdp_ctx *pctx;

	if (cb->args[4])
		return 0;

	list_for_each_entry_rcu(gtp, &gn->gtp_dev_list, list) {
		if (last_gtp && last_gtp != gtp)
			continue;
		else
			last_gtp = NULL;

		for (i = k; i < gtp->hash_size; i++) {
			hlist_for_each_entry_rcu(pctx, &gtp->tid_hash[i], hlist_tid) {
				if (tid && tid != pctx->u.tid)
					continue;
				else
					tid = 0;

				ret = gtp_genl_fill_info(skb,
							 NETLINK_CB(cb->skb).portid,
							 cb->nlh->nlmsg_seq,
							 cb->nlh->nlmsg_type, pctx);
				if (ret < 0) {
					cb->args[0] = i;
					cb->args[1] = pctx->u.tid;
					cb->args[2] = (unsigned long)gtp;
					goto out;
				}
			}
		}
	}
	cb->args[4] = 1;
out:
	return skb->len;
}

static struct nla_policy gtp_genl_policy[GTPA_MAX + 1] = {
	[GTPA_LINK]		= { .type = NLA_U32, },
	[GTPA_VERSION]		= { .type = NLA_U32, },
	[GTPA_TID]		= { .type = NLA_U64, },
	[GTPA_SGSN_ADDRESS]	= { .type = NLA_U32, },
	[GTPA_MS_ADDRESS]	= { .type = NLA_U32, },
	[GTPA_FLOW]		= { .type = NLA_U16, },
	[GTPA_NET_NS_FD]	= { .type = NLA_U32, },
	[GTPA_I_TEI]		= { .type = NLA_U32, },
	[GTPA_O_TEI]		= { .type = NLA_U32, },
};

static const struct genl_ops gtp_genl_ops[] = {
	{
		.cmd = GTP_CMD_NEWPDP,
		.doit = gtp_genl_new_pdp,
		.policy = gtp_genl_policy,
		.flags = GENL_ADMIN_PERM,
	},
	{
		.cmd = GTP_CMD_DELPDP,
		.doit = gtp_genl_del_pdp,
		.policy = gtp_genl_policy,
		.flags = GENL_ADMIN_PERM,
	},
	{
		.cmd = GTP_CMD_GETPDP,
		.doit = gtp_genl_get_pdp,
		.dumpit = gtp_genl_dump_pdp,
		.policy = gtp_genl_policy,
		.flags = GENL_ADMIN_PERM,
	},
};

1287
static struct genl_family gtp_genl_family __ro_after_init = {
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
	.name		= "gtp",
	.version	= 0,
	.hdrsize	= 0,
	.maxattr	= GTPA_MAX,
	.netnsok	= true,
	.module		= THIS_MODULE,
	.ops		= gtp_genl_ops,
	.n_ops		= ARRAY_SIZE(gtp_genl_ops),
};

1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
static int __net_init gtp_net_init(struct net *net)
{
	struct gtp_net *gn = net_generic(net, gtp_net_id);

	INIT_LIST_HEAD(&gn->gtp_dev_list);
	return 0;
}

static void __net_exit gtp_net_exit(struct net *net)
{
	struct gtp_net *gn = net_generic(net, gtp_net_id);
	struct gtp_dev *gtp;
	LIST_HEAD(list);

	rtnl_lock();
	list_for_each_entry(gtp, &gn->gtp_dev_list, list)
		gtp_dellink(gtp->dev, &list);

	unregister_netdevice_many(&list);
	rtnl_unlock();
}

static struct pernet_operations gtp_net_ops = {
	.init	= gtp_net_init,
	.exit	= gtp_net_exit,
	.id	= &gtp_net_id,
	.size	= sizeof(struct gtp_net),
};

static int __init gtp_init(void)
{
	int err;

	get_random_bytes(&gtp_h_initval, sizeof(gtp_h_initval));

	err = rtnl_link_register(&gtp_link_ops);
	if (err < 0)
		goto error_out;

1337
	err = genl_register_family(&gtp_genl_family);
1338 1339 1340 1341 1342 1343 1344
	if (err < 0)
		goto unreg_rtnl_link;

	err = register_pernet_subsys(&gtp_net_ops);
	if (err < 0)
		goto unreg_genl_family;

1345
	pr_info("GTP module loaded (pdp ctx size %zd bytes)\n",
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
		sizeof(struct pdp_ctx));
	return 0;

unreg_genl_family:
	genl_unregister_family(&gtp_genl_family);
unreg_rtnl_link:
	rtnl_link_unregister(&gtp_link_ops);
error_out:
	pr_err("error loading GTP module loaded\n");
	return err;
}
late_initcall(gtp_init);

static void __exit gtp_fini(void)
{
	unregister_pernet_subsys(&gtp_net_ops);
	genl_unregister_family(&gtp_genl_family);
	rtnl_link_unregister(&gtp_link_ops);

	pr_info("GTP module unloaded\n");
}
module_exit(gtp_fini);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Harald Welte <hwelte@sysmocom.de>");
MODULE_DESCRIPTION("Interface driver for GTP encapsulated traffic");
MODULE_ALIAS_RTNL_LINK("gtp");
1373
MODULE_ALIAS_GENL_FAMILY("gtp");