vgic-v2.c 10.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * Copyright (C) 2015, 2016 ARM Ltd.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <linux/irqchip/arm-gic.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
20 21
#include <kvm/arm_vgic.h>
#include <asm/kvm_mmu.h>
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

#include "vgic.h"

/*
 * Call this function to convert a u64 value to an unsigned long * bitmask
 * in a way that works on both 32-bit and 64-bit LE and BE platforms.
 *
 * Warning: Calling this function may modify *val.
 */
static unsigned long *u64_to_bitmask(u64 *val)
{
#if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 32
	*val = (*val >> 32) | (*val << 32);
#endif
	return (unsigned long *)val;
}

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
static inline void vgic_v2_write_lr(int lr, u32 val)
{
	void __iomem *base = kvm_vgic_global_state.vctrl_base;

	writel_relaxed(val, base + GICH_LR0 + (lr * 4));
}

void vgic_v2_init_lrs(void)
{
	int i;

	for (i = 0; i < kvm_vgic_global_state.nr_lr; i++)
		vgic_v2_write_lr(i, 0);
}

54 55 56 57 58 59 60 61 62 63 64 65 66 67
void vgic_v2_process_maintenance(struct kvm_vcpu *vcpu)
{
	struct vgic_v2_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v2;

	if (cpuif->vgic_misr & GICH_MISR_EOI) {
		u64 eisr = cpuif->vgic_eisr;
		unsigned long *eisr_bmap = u64_to_bitmask(&eisr);
		int lr;

		for_each_set_bit(lr, eisr_bmap, kvm_vgic_global_state.nr_lr) {
			u32 intid = cpuif->vgic_lr[lr] & GICH_LR_VIRTUALID;

			WARN_ON(cpuif->vgic_lr[lr] & GICH_LR_STATE);

68 69 70 71
			/* Only SPIs require notification */
			if (vgic_valid_spi(vcpu->kvm, intid))
				kvm_notify_acked_irq(vcpu->kvm, 0,
						     intid - VGIC_NR_PRIVATE_IRQS);
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
		}
	}

	/* check and disable underflow maintenance IRQ */
	cpuif->vgic_hcr &= ~GICH_HCR_UIE;

	/*
	 * In the next iterations of the vcpu loop, if we sync the
	 * vgic state after flushing it, but before entering the guest
	 * (this happens for pending signals and vmid rollovers), then
	 * make sure we don't pick up any old maintenance interrupts
	 * here.
	 */
	cpuif->vgic_eisr = 0;
}

void vgic_v2_set_underflow(struct kvm_vcpu *vcpu)
{
	struct vgic_v2_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v2;

	cpuif->vgic_hcr |= GICH_HCR_UIE;
}

/*
 * transfer the content of the LRs back into the corresponding ap_list:
 * - active bit is transferred as is
 * - pending bit is
 *   - transferred as is in case of edge sensitive IRQs
 *   - set to the line-level (resample time) for level sensitive IRQs
 */
void vgic_v2_fold_lr_state(struct kvm_vcpu *vcpu)
{
	struct vgic_v2_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v2;
	int lr;

	for (lr = 0; lr < vcpu->arch.vgic_cpu.used_lrs; lr++) {
		u32 val = cpuif->vgic_lr[lr];
		u32 intid = val & GICH_LR_VIRTUALID;
		struct vgic_irq *irq;

		irq = vgic_get_irq(vcpu->kvm, vcpu, intid);

		spin_lock(&irq->irq_lock);

		/* Always preserve the active bit */
		irq->active = !!(val & GICH_LR_ACTIVE_BIT);

		/* Edge is the only case where we preserve the pending bit */
		if (irq->config == VGIC_CONFIG_EDGE &&
		    (val & GICH_LR_PENDING_BIT)) {
122
			irq->pending_latch = true;
123 124 125 126 127 128 129 130 131

			if (vgic_irq_is_sgi(intid)) {
				u32 cpuid = val & GICH_LR_PHYSID_CPUID;

				cpuid >>= GICH_LR_PHYSID_CPUID_SHIFT;
				irq->source |= (1 << cpuid);
			}
		}

132 133 134 135 136 137
		/*
		 * Clear soft pending state when level irqs have been acked.
		 * Always regenerate the pending state.
		 */
		if (irq->config == VGIC_CONFIG_LEVEL) {
			if (!(val & GICH_LR_PENDING_BIT))
138
				irq->pending_latch = false;
139 140 141
		}

		spin_unlock(&irq->irq_lock);
142
		vgic_put_irq(vcpu->kvm, irq);
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
	}
}

/*
 * Populates the particular LR with the state of a given IRQ:
 * - for an edge sensitive IRQ the pending state is cleared in struct vgic_irq
 * - for a level sensitive IRQ the pending state value is unchanged;
 *   it is dictated directly by the input level
 *
 * If @irq describes an SGI with multiple sources, we choose the
 * lowest-numbered source VCPU and clear that bit in the source bitmap.
 *
 * The irq_lock must be held by the caller.
 */
void vgic_v2_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr)
{
	u32 val = irq->intid;

161
	if (irq_is_pending(irq)) {
162 163 164
		val |= GICH_LR_PENDING_BIT;

		if (irq->config == VGIC_CONFIG_EDGE)
165
			irq->pending_latch = false;
166 167 168 169 170 171 172 173

		if (vgic_irq_is_sgi(irq->intid)) {
			u32 src = ffs(irq->source);

			BUG_ON(!src);
			val |= (src - 1) << GICH_LR_PHYSID_CPUID_SHIFT;
			irq->source &= ~(1 << (src - 1));
			if (irq->source)
174
				irq->pending_latch = true;
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
		}
	}

	if (irq->active)
		val |= GICH_LR_ACTIVE_BIT;

	if (irq->hw) {
		val |= GICH_LR_HW;
		val |= irq->hwintid << GICH_LR_PHYSID_CPUID_SHIFT;
	} else {
		if (irq->config == VGIC_CONFIG_LEVEL)
			val |= GICH_LR_EOI;
	}

	/* The GICv2 LR only holds five bits of priority. */
	val |= (irq->priority >> 3) << GICH_LR_PRIORITY_SHIFT;

	vcpu->arch.vgic_cpu.vgic_v2.vgic_lr[lr] = val;
}

void vgic_v2_clear_lr(struct kvm_vcpu *vcpu, int lr)
{
	vcpu->arch.vgic_cpu.vgic_v2.vgic_lr[lr] = 0;
}
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227

void vgic_v2_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
{
	u32 vmcr;

	vmcr  = (vmcrp->ctlr << GICH_VMCR_CTRL_SHIFT) & GICH_VMCR_CTRL_MASK;
	vmcr |= (vmcrp->abpr << GICH_VMCR_ALIAS_BINPOINT_SHIFT) &
		GICH_VMCR_ALIAS_BINPOINT_MASK;
	vmcr |= (vmcrp->bpr << GICH_VMCR_BINPOINT_SHIFT) &
		GICH_VMCR_BINPOINT_MASK;
	vmcr |= (vmcrp->pmr << GICH_VMCR_PRIMASK_SHIFT) &
		GICH_VMCR_PRIMASK_MASK;

	vcpu->arch.vgic_cpu.vgic_v2.vgic_vmcr = vmcr;
}

void vgic_v2_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
{
	u32 vmcr = vcpu->arch.vgic_cpu.vgic_v2.vgic_vmcr;

	vmcrp->ctlr = (vmcr & GICH_VMCR_CTRL_MASK) >>
			GICH_VMCR_CTRL_SHIFT;
	vmcrp->abpr = (vmcr & GICH_VMCR_ALIAS_BINPOINT_MASK) >>
			GICH_VMCR_ALIAS_BINPOINT_SHIFT;
	vmcrp->bpr  = (vmcr & GICH_VMCR_BINPOINT_MASK) >>
			GICH_VMCR_BINPOINT_SHIFT;
	vmcrp->pmr  = (vmcr & GICH_VMCR_PRIMASK_MASK) >>
			GICH_VMCR_PRIMASK_SHIFT;
}
228

229 230
void vgic_v2_enable(struct kvm_vcpu *vcpu)
{
231 232 233 234 235 236 237 238 239 240
	/*
	 * By forcing VMCR to zero, the GIC will restore the binary
	 * points to their reset values. Anything else resets to zero
	 * anyway.
	 */
	vcpu->arch.vgic_cpu.vgic_v2.vgic_vmcr = 0;
	vcpu->arch.vgic_cpu.vgic_v2.vgic_elrsr = ~0;

	/* Get the show on the road... */
	vcpu->arch.vgic_cpu.vgic_v2.vgic_hcr = GICH_HCR_EN;
241 242
}

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
/* check for overlapping regions and for regions crossing the end of memory */
static bool vgic_v2_check_base(gpa_t dist_base, gpa_t cpu_base)
{
	if (dist_base + KVM_VGIC_V2_DIST_SIZE < dist_base)
		return false;
	if (cpu_base + KVM_VGIC_V2_CPU_SIZE < cpu_base)
		return false;

	if (dist_base + KVM_VGIC_V2_DIST_SIZE <= cpu_base)
		return true;
	if (cpu_base + KVM_VGIC_V2_CPU_SIZE <= dist_base)
		return true;

	return false;
}

int vgic_v2_map_resources(struct kvm *kvm)
{
	struct vgic_dist *dist = &kvm->arch.vgic;
	int ret = 0;

	if (vgic_ready(kvm))
		goto out;

	if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base) ||
	    IS_VGIC_ADDR_UNDEF(dist->vgic_cpu_base)) {
		kvm_err("Need to set vgic cpu and dist addresses first\n");
		ret = -ENXIO;
		goto out;
	}

	if (!vgic_v2_check_base(dist->vgic_dist_base, dist->vgic_cpu_base)) {
		kvm_err("VGIC CPU and dist frames overlap\n");
		ret = -EINVAL;
		goto out;
	}

	/*
	 * Initialize the vgic if this hasn't already been done on demand by
	 * accessing the vgic state from userspace.
	 */
	ret = vgic_init(kvm);
	if (ret) {
		kvm_err("Unable to initialize VGIC dynamic data structures\n");
		goto out;
	}

	ret = vgic_register_dist_iodev(kvm, dist->vgic_dist_base, VGIC_V2);
	if (ret) {
		kvm_err("Unable to register VGIC MMIO regions\n");
		goto out;
	}

296 297 298 299 300 301 302 303
	if (!static_branch_unlikely(&vgic_v2_cpuif_trap)) {
		ret = kvm_phys_addr_ioremap(kvm, dist->vgic_cpu_base,
					    kvm_vgic_global_state.vcpu_base,
					    KVM_VGIC_V2_CPU_SIZE, true);
		if (ret) {
			kvm_err("Unable to remap VGIC CPU to VCPU\n");
			goto out;
		}
304 305 306 307 308 309 310 311
	}

	dist->ready = true;

out:
	return ret;
}

312 313
DEFINE_STATIC_KEY_FALSE(vgic_v2_cpuif_trap);

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
/**
 * vgic_v2_probe - probe for a GICv2 compatible interrupt controller in DT
 * @node:	pointer to the DT node
 *
 * Returns 0 if a GICv2 has been found, returns an error code otherwise
 */
int vgic_v2_probe(const struct gic_kvm_info *info)
{
	int ret;
	u32 vtr;

	if (!info->vctrl.start) {
		kvm_err("GICH not present in the firmware table\n");
		return -ENXIO;
	}

330 331 332 333 334 335 336 337 338
	if (!PAGE_ALIGNED(info->vcpu.start) ||
	    !PAGE_ALIGNED(resource_size(&info->vcpu))) {
		kvm_info("GICV region size/alignment is unsafe, using trapping (reduced performance)\n");
		kvm_vgic_global_state.vcpu_base_va = ioremap(info->vcpu.start,
							     resource_size(&info->vcpu));
		if (!kvm_vgic_global_state.vcpu_base_va) {
			kvm_err("Cannot ioremap GICV\n");
			return -ENOMEM;
		}
339

340 341 342 343 344 345 346 347 348
		ret = create_hyp_io_mappings(kvm_vgic_global_state.vcpu_base_va,
					     kvm_vgic_global_state.vcpu_base_va + resource_size(&info->vcpu),
					     info->vcpu.start);
		if (ret) {
			kvm_err("Cannot map GICV into hyp\n");
			goto out;
		}

		static_branch_enable(&vgic_v2_cpuif_trap);
349 350 351 352 353 354
	}

	kvm_vgic_global_state.vctrl_base = ioremap(info->vctrl.start,
						   resource_size(&info->vctrl));
	if (!kvm_vgic_global_state.vctrl_base) {
		kvm_err("Cannot ioremap GICH\n");
355 356
		ret = -ENOMEM;
		goto out;
357 358 359 360 361 362 363 364 365 366 367
	}

	vtr = readl_relaxed(kvm_vgic_global_state.vctrl_base + GICH_VTR);
	kvm_vgic_global_state.nr_lr = (vtr & 0x3f) + 1;

	ret = create_hyp_io_mappings(kvm_vgic_global_state.vctrl_base,
				     kvm_vgic_global_state.vctrl_base +
					 resource_size(&info->vctrl),
				     info->vctrl.start);
	if (ret) {
		kvm_err("Cannot map VCTRL into hyp\n");
368 369 370 371 372 373 374
		goto out;
	}

	ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V2);
	if (ret) {
		kvm_err("Cannot register GICv2 KVM device\n");
		goto out;
375 376 377 378 379 380 381 382 383 384
	}

	kvm_vgic_global_state.can_emulate_gicv2 = true;
	kvm_vgic_global_state.vcpu_base = info->vcpu.start;
	kvm_vgic_global_state.type = VGIC_V2;
	kvm_vgic_global_state.max_gic_vcpus = VGIC_V2_MAX_CPUS;

	kvm_info("vgic-v2@%llx\n", info->vctrl.start);

	return 0;
385 386 387 388 389 390 391
out:
	if (kvm_vgic_global_state.vctrl_base)
		iounmap(kvm_vgic_global_state.vctrl_base);
	if (kvm_vgic_global_state.vcpu_base_va)
		iounmap(kvm_vgic_global_state.vcpu_base_va);

	return ret;
392
}