hyperv.h 32.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 *
 * Copyright (c) 2011, Microsoft Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
 * Place - Suite 330, Boston, MA 02111-1307 USA.
 *
 * Authors:
 *   Haiyang Zhang <haiyangz@microsoft.com>
 *   Hank Janssen  <hjanssen@microsoft.com>
 *   K. Y. Srinivasan <kys@microsoft.com>
 *
 */
24 25 26 27

#ifndef _HYPERV_H
#define _HYPERV_H

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
#include <linux/types.h>

/*
 * An implementation of HyperV key value pair (KVP) functionality for Linux.
 *
 *
 * Copyright (C) 2010, Novell, Inc.
 * Author : K. Y. Srinivasan <ksrinivasan@novell.com>
 *
 */

/*
 * Maximum value size - used for both key names and value data, and includes
 * any applicable NULL terminators.
 *
 * Note:  This limit is somewhat arbitrary, but falls easily within what is
 * supported for all native guests (back to Win 2000) and what is reasonable
 * for the IC KVP exchange functionality.  Note that Windows Me/98/95 are
 * limited to 255 character key names.
 *
 * MSDN recommends not storing data values larger than 2048 bytes in the
 * registry.
 *
 * Note:  This value is used in defining the KVP exchange message - this value
 * cannot be modified without affecting the message size and compatibility.
 */

/*
 * bytes, including any null terminators
 */
#define HV_KVP_EXCHANGE_MAX_VALUE_SIZE          (2048)


/*
 * Maximum key size - the registry limit for the length of an entry name
 * is 256 characters, including the null terminator
 */

#define HV_KVP_EXCHANGE_MAX_KEY_SIZE            (512)

/*
 * In Linux, we implement the KVP functionality in two components:
 * 1) The kernel component which is packaged as part of the hv_utils driver
 * is responsible for communicating with the host and responsible for
 * implementing the host/guest protocol. 2) A user level daemon that is
 * responsible for data gathering.
 *
 * Host/Guest Protocol: The host iterates over an index and expects the guest
 * to assign a key name to the index and also return the value corresponding to
 * the key. The host will have atmost one KVP transaction outstanding at any
 * given point in time. The host side iteration stops when the guest returns
 * an error. Microsoft has specified the following mapping of key names to
 * host specified index:
 *
 *	Index		Key Name
 *	0		FullyQualifiedDomainName
 *	1		IntegrationServicesVersion
 *	2		NetworkAddressIPv4
 *	3		NetworkAddressIPv6
 *	4		OSBuildNumber
 *	5		OSName
 *	6		OSMajorVersion
 *	7		OSMinorVersion
 *	8		OSVersion
 *	9		ProcessorArchitecture
 *
 * The Windows host expects the Key Name and Key Value to be encoded in utf16.
 *
 * Guest Kernel/KVP Daemon Protocol: As noted earlier, we implement all of the
 * data gathering functionality in a user mode daemon. The user level daemon
 * is also responsible for binding the key name to the index as well. The
 * kernel and user-level daemon communicate using a connector channel.
 *
 * The user mode component first registers with the
 * the kernel component. Subsequently, the kernel component requests, data
 * for the specified keys. In response to this message the user mode component
 * fills in the value corresponding to the specified key. We overload the
 * sequence field in the cn_msg header to define our KVP message types.
 *
 *
 * The kernel component simply acts as a conduit for communication between the
 * Windows host and the user-level daemon. The kernel component passes up the
 * index received from the Host to the user-level daemon. If the index is
 * valid (supported), the corresponding key as well as its
 * value (both are strings) is returned. If the index is invalid
 * (not supported), a NULL key string is returned.
 */


/*
 * Registry value types.
 */

#define REG_SZ 1
122 123
#define REG_U32 4
#define REG_U64 8
124

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
/*
 * As we look at expanding the KVP functionality to include
 * IP injection functionality, we need to maintain binary
 * compatibility with older daemons.
 *
 * The KVP opcodes are defined by the host and it was unfortunate
 * that I chose to treat the registration operation as part of the
 * KVP operations defined by the host.
 * Here is the level of compatibility
 * (between the user level daemon and the kernel KVP driver) that we
 * will implement:
 *
 * An older daemon will always be supported on a newer driver.
 * A given user level daemon will require a minimal version of the
 * kernel driver.
 * If we cannot handle the version differences, we will fail gracefully
 * (this can happen when we have a user level daemon that is more
 * advanced than the KVP driver.
 *
 * We will use values used in this handshake for determining if we have
 * workable user level daemon and the kernel driver. We begin by taking the
 * registration opcode out of the KVP opcode namespace. We will however,
 * maintain compatibility with the existing user-level daemon code.
 */

/*
 * Daemon code not supporting IP injection (legacy daemon).
 */

#define KVP_OP_REGISTER	4

/*
 * Daemon code supporting IP injection.
 * The KVP opcode field is used to communicate the
 * registration information; so define a namespace that
 * will be distinct from the host defined KVP opcode.
 */

#define KVP_OP_REGISTER1 100

165 166 167 168 169
enum hv_kvp_exchg_op {
	KVP_OP_GET = 0,
	KVP_OP_SET,
	KVP_OP_DELETE,
	KVP_OP_ENUMERATE,
170 171
	KVP_OP_GET_IP_INFO,
	KVP_OP_SET_IP_INFO,
172 173 174 175 176 177 178 179 180 181 182 183
	KVP_OP_COUNT /* Number of operations, must be last. */
};

enum hv_kvp_exchg_pool {
	KVP_POOL_EXTERNAL = 0,
	KVP_POOL_GUEST,
	KVP_POOL_AUTO,
	KVP_POOL_AUTO_EXTERNAL,
	KVP_POOL_AUTO_INTERNAL,
	KVP_POOL_COUNT /* Number of pools, must be last. */
};

184 185 186 187 188 189 190 191 192 193
/*
 * Some Hyper-V status codes.
 */

#define HV_S_OK				0x00000000
#define HV_E_FAIL			0x80004005
#define HV_S_CONT			0x80070103
#define HV_ERROR_NOT_SUPPORTED		0x80070032
#define HV_ERROR_MACHINE_LOCKED		0x800704F7
#define HV_ERROR_DEVICE_NOT_CONNECTED	0x8007048F
194 195
#define HV_INVALIDARG			0x80070057
#define HV_GUID_NOTFOUND		0x80041002
196

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
#define ADDR_FAMILY_NONE	0x00
#define ADDR_FAMILY_IPV4	0x01
#define ADDR_FAMILY_IPV6	0x02

#define MAX_ADAPTER_ID_SIZE	128
#define MAX_IP_ADDR_SIZE	1024
#define MAX_GATEWAY_SIZE	512


struct hv_kvp_ipaddr_value {
	__u16	adapter_id[MAX_ADAPTER_ID_SIZE];
	__u8	addr_family;
	__u8	dhcp_enabled;
	__u16	ip_addr[MAX_IP_ADDR_SIZE];
	__u16	sub_net[MAX_IP_ADDR_SIZE];
	__u16	gate_way[MAX_GATEWAY_SIZE];
	__u16	dns_addr[MAX_IP_ADDR_SIZE];
} __attribute__((packed));


217
struct hv_kvp_hdr {
218 219 220 221
	__u8 operation;
	__u8 pool;
	__u16 pad;
} __attribute__((packed));
222 223

struct hv_kvp_exchg_msg_value {
224 225 226 227
	__u32 value_type;
	__u32 key_size;
	__u32 value_size;
	__u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
228 229 230 231 232
	union {
		__u8 value[HV_KVP_EXCHANGE_MAX_VALUE_SIZE];
		__u32 value_u32;
		__u64 value_u64;
	};
233
} __attribute__((packed));
234 235

struct hv_kvp_msg_enumerate {
236
	__u32 index;
237
	struct hv_kvp_exchg_msg_value data;
238
} __attribute__((packed));
239

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
struct hv_kvp_msg_get {
	struct hv_kvp_exchg_msg_value data;
};

struct hv_kvp_msg_set {
	struct hv_kvp_exchg_msg_value data;
};

struct hv_kvp_msg_delete {
	__u32 key_size;
	__u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
};

struct hv_kvp_register {
	__u8 version[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
};

257
struct hv_kvp_msg {
258 259 260 261
	union {
		struct hv_kvp_hdr	kvp_hdr;
		int error;
	};
262
	union {
263 264 265 266
		struct hv_kvp_msg_get		kvp_get;
		struct hv_kvp_msg_set		kvp_set;
		struct hv_kvp_msg_delete	kvp_delete;
		struct hv_kvp_msg_enumerate	kvp_enum_data;
267
		struct hv_kvp_ipaddr_value      kvp_ip_val;
268
		struct hv_kvp_register		kvp_register;
269
	} body;
270
} __attribute__((packed));
271

272 273 274 275 276 277
struct hv_kvp_ip_msg {
	__u8 operation;
	__u8 pool;
	struct hv_kvp_ipaddr_value      kvp_ip_val;
} __attribute__((packed));

278
#ifdef __KERNEL__
279 280
#include <linux/scatterlist.h>
#include <linux/list.h>
281
#include <linux/uuid.h>
282 283 284 285
#include <linux/timer.h>
#include <linux/workqueue.h>
#include <linux/completion.h>
#include <linux/device.h>
286
#include <linux/mod_devicetable.h>
287 288


289
#define MAX_PAGE_BUFFER_COUNT				19
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
#define MAX_MULTIPAGE_BUFFER_COUNT			32 /* 128K */

#pragma pack(push, 1)

/* Single-page buffer */
struct hv_page_buffer {
	u32 len;
	u32 offset;
	u64 pfn;
};

/* Multiple-page buffer */
struct hv_multipage_buffer {
	/* Length and Offset determines the # of pfns in the array */
	u32 len;
	u32 offset;
	u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT];
};

/* 0x18 includes the proprietary packet header */
#define MAX_PAGE_BUFFER_PACKET		(0x18 +			\
					(sizeof(struct hv_page_buffer) * \
					 MAX_PAGE_BUFFER_COUNT))
#define MAX_MULTIPAGE_BUFFER_PACKET	(0x18 +			\
					 sizeof(struct hv_multipage_buffer))


#pragma pack(pop)

319 320 321 322 323 324 325 326 327
struct hv_ring_buffer {
	/* Offset in bytes from the start of ring data below */
	u32 write_index;

	/* Offset in bytes from the start of ring data below */
	u32 read_index;

	u32 interrupt_mask;

328 329 330 331 332 333 334 335
	/*
	 * Win8 uses some of the reserved bits to implement
	 * interrupt driven flow management. On the send side
	 * we can request that the receiver interrupt the sender
	 * when the ring transitions from being full to being able
	 * to handle a message of size "pending_send_sz".
	 *
	 * Add necessary state for this enhancement.
336
	 */
337 338 339 340 341 342 343 344 345 346 347 348 349
	u32 pending_send_sz;

	u32 reserved1[12];

	union {
		struct {
			u32 feat_pending_send_sz:1;
		};
		u32 value;
	} feature_bits;

	/* Pad it to PAGE_SIZE so that data starts on page boundary */
	u8	reserved2[4028];
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373

	/*
	 * Ring data starts here + RingDataStartOffset
	 * !!! DO NOT place any fields below this !!!
	 */
	u8 buffer[0];
} __packed;

struct hv_ring_buffer_info {
	struct hv_ring_buffer *ring_buffer;
	u32 ring_size;			/* Include the shared header */
	spinlock_t ring_lock;

	u32 ring_datasize;		/* < ring_size */
	u32 ring_data_startoffset;
};

struct hv_ring_buffer_debug_info {
	u32 current_interrupt_mask;
	u32 current_read_index;
	u32 current_write_index;
	u32 bytes_avail_toread;
	u32 bytes_avail_towrite;
};
374

375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401

/*
 *
 * hv_get_ringbuffer_availbytes()
 *
 * Get number of bytes available to read and to write to
 * for the specified ring buffer
 */
static inline void
hv_get_ringbuffer_availbytes(struct hv_ring_buffer_info *rbi,
			  u32 *read, u32 *write)
{
	u32 read_loc, write_loc, dsize;

	smp_read_barrier_depends();

	/* Capture the read/write indices before they changed */
	read_loc = rbi->ring_buffer->read_index;
	write_loc = rbi->ring_buffer->write_index;
	dsize = rbi->ring_datasize;

	*write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
		read_loc - write_loc;
	*read = dsize - *write;
}


402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
/*
 * We use the same version numbering for all Hyper-V modules.
 *
 * Definition of versioning is as follows;
 *
 *	Major Number	Changes for these scenarios;
 *			1.	When a new version of Windows Hyper-V
 *				is released.
 *			2.	A Major change has occurred in the
 *				Linux IC's.
 *			(For example the merge for the first time
 *			into the kernel) Every time the Major Number
 *			changes, the Revision number is reset to 0.
 *	Minor Number	Changes when new functionality is added
 *			to the Linux IC's that is not a bug fix.
 *
 * 3.1 - Added completed hv_utils driver. Shutdown/Heartbeat/Timesync
 */
#define HV_DRV_VERSION           "3.1"

422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
/*
 * VMBUS version is 32 bit entity broken up into
 * two 16 bit quantities: major_number. minor_number.
 *
 * 0 . 13 (Windows Server 2008)
 * 1 . 1  (Windows 7)
 * 2 . 4  (Windows 8)
 */

#define VERSION_WS2008  ((0 << 16) | (13))
#define VERSION_WIN7    ((1 << 16) | (1))
#define VERSION_WIN8    ((2 << 16) | (4))

#define VERSION_INVAL -1

437

438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
/* Make maximum size of pipe payload of 16K */
#define MAX_PIPE_DATA_PAYLOAD		(sizeof(u8) * 16384)

/* Define PipeMode values. */
#define VMBUS_PIPE_TYPE_BYTE		0x00000000
#define VMBUS_PIPE_TYPE_MESSAGE		0x00000004

/* The size of the user defined data buffer for non-pipe offers. */
#define MAX_USER_DEFINED_BYTES		120

/* The size of the user defined data buffer for pipe offers. */
#define MAX_PIPE_USER_DEFINED_BYTES	116

/*
 * At the center of the Channel Management library is the Channel Offer. This
 * struct contains the fundamental information about an offer.
 */
struct vmbus_channel_offer {
456 457
	uuid_le if_type;
	uuid_le if_instance;
458 459 460 461 462 463 464

	/*
	 * These two fields are not currently used.
	 */
	u64 reserved1;
	u64 reserved2;

465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
	u16 chn_flags;
	u16 mmio_megabytes;		/* in bytes * 1024 * 1024 */

	union {
		/* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */
		struct {
			unsigned char user_def[MAX_USER_DEFINED_BYTES];
		} std;

		/*
		 * Pipes:
		 * The following sructure is an integrated pipe protocol, which
		 * is implemented on top of standard user-defined data. Pipe
		 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own
		 * use.
		 */
		struct {
			u32  pipe_mode;
			unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES];
		} pipe;
	} u;
486 487 488 489 490
	/*
	 * The sub_channel_index is defined in win8.
	 */
	u16 sub_channel_index;
	u16 reserved3;
491 492 493 494 495 496 497 498 499 500 501
} __packed;

/* Server Flags */
#define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE	1
#define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES	2
#define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS		4
#define VMBUS_CHANNEL_NAMED_PIPE_MODE			0x10
#define VMBUS_CHANNEL_LOOPBACK_OFFER			0x100
#define VMBUS_CHANNEL_PARENT_OFFER			0x200
#define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION	0x400

502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
struct vmpacket_descriptor {
	u16 type;
	u16 offset8;
	u16 len8;
	u16 flags;
	u64 trans_id;
} __packed;

struct vmpacket_header {
	u32 prev_pkt_start_offset;
	struct vmpacket_descriptor descriptor;
} __packed;

struct vmtransfer_page_range {
	u32 byte_count;
	u32 byte_offset;
} __packed;

struct vmtransfer_page_packet_header {
	struct vmpacket_descriptor d;
	u16 xfer_pageset_id;
523
	u8  sender_owns_set;
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
	u8 reserved;
	u32 range_cnt;
	struct vmtransfer_page_range ranges[1];
} __packed;

struct vmgpadl_packet_header {
	struct vmpacket_descriptor d;
	u32 gpadl;
	u32 reserved;
} __packed;

struct vmadd_remove_transfer_page_set {
	struct vmpacket_descriptor d;
	u32 gpadl;
	u16 xfer_pageset_id;
	u16 reserved;
} __packed;

/*
 * This structure defines a range in guest physical space that can be made to
 * look virtually contiguous.
 */
struct gpa_range {
	u32 byte_count;
	u32 byte_offset;
	u64 pfn_array[0];
};

/*
 * This is the format for an Establish Gpadl packet, which contains a handle by
 * which this GPADL will be known and a set of GPA ranges associated with it.
 * This can be converted to a MDL by the guest OS.  If there are multiple GPA
 * ranges, then the resulting MDL will be "chained," representing multiple VA
 * ranges.
 */
struct vmestablish_gpadl {
	struct vmpacket_descriptor d;
	u32 gpadl;
	u32 range_cnt;
	struct gpa_range range[1];
} __packed;

/*
 * This is the format for a Teardown Gpadl packet, which indicates that the
 * GPADL handle in the Establish Gpadl packet will never be referenced again.
 */
struct vmteardown_gpadl {
	struct vmpacket_descriptor d;
	u32 gpadl;
	u32 reserved;	/* for alignment to a 8-byte boundary */
} __packed;

/*
 * This is the format for a GPA-Direct packet, which contains a set of GPA
 * ranges, in addition to commands and/or data.
 */
struct vmdata_gpa_direct {
	struct vmpacket_descriptor d;
	u32 reserved;
	u32 range_cnt;
	struct gpa_range range[1];
} __packed;

/* This is the format for a Additional Data Packet. */
struct vmadditional_data {
	struct vmpacket_descriptor d;
	u64 total_bytes;
	u32 offset;
	u32 byte_cnt;
	unsigned char data[1];
} __packed;

union vmpacket_largest_possible_header {
	struct vmpacket_descriptor simple_hdr;
	struct vmtransfer_page_packet_header xfer_page_hdr;
	struct vmgpadl_packet_header gpadl_hdr;
	struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr;
	struct vmestablish_gpadl establish_gpadl_hdr;
	struct vmteardown_gpadl teardown_gpadl_hdr;
	struct vmdata_gpa_direct data_gpa_direct_hdr;
};

#define VMPACKET_DATA_START_ADDRESS(__packet)	\
	(void *)(((unsigned char *)__packet) +	\
	 ((struct vmpacket_descriptor)__packet)->offset8 * 8)

#define VMPACKET_DATA_LENGTH(__packet)		\
	((((struct vmpacket_descriptor)__packet)->len8 -	\
	  ((struct vmpacket_descriptor)__packet)->offset8) * 8)

#define VMPACKET_TRANSFER_MODE(__packet)	\
	(((struct IMPACT)__packet)->type)

enum vmbus_packet_type {
	VM_PKT_INVALID				= 0x0,
	VM_PKT_SYNCH				= 0x1,
	VM_PKT_ADD_XFER_PAGESET			= 0x2,
	VM_PKT_RM_XFER_PAGESET			= 0x3,
	VM_PKT_ESTABLISH_GPADL			= 0x4,
	VM_PKT_TEARDOWN_GPADL			= 0x5,
	VM_PKT_DATA_INBAND			= 0x6,
	VM_PKT_DATA_USING_XFER_PAGES		= 0x7,
	VM_PKT_DATA_USING_GPADL			= 0x8,
	VM_PKT_DATA_USING_GPA_DIRECT		= 0x9,
	VM_PKT_CANCEL_REQUEST			= 0xa,
	VM_PKT_COMP				= 0xb,
	VM_PKT_DATA_USING_ADDITIONAL_PKT	= 0xc,
	VM_PKT_ADDITIONAL_DATA			= 0xd
};

#define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED	1
635

636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676

/* Version 1 messages */
enum vmbus_channel_message_type {
	CHANNELMSG_INVALID			=  0,
	CHANNELMSG_OFFERCHANNEL		=  1,
	CHANNELMSG_RESCIND_CHANNELOFFER	=  2,
	CHANNELMSG_REQUESTOFFERS		=  3,
	CHANNELMSG_ALLOFFERS_DELIVERED	=  4,
	CHANNELMSG_OPENCHANNEL		=  5,
	CHANNELMSG_OPENCHANNEL_RESULT		=  6,
	CHANNELMSG_CLOSECHANNEL		=  7,
	CHANNELMSG_GPADL_HEADER		=  8,
	CHANNELMSG_GPADL_BODY			=  9,
	CHANNELMSG_GPADL_CREATED		= 10,
	CHANNELMSG_GPADL_TEARDOWN		= 11,
	CHANNELMSG_GPADL_TORNDOWN		= 12,
	CHANNELMSG_RELID_RELEASED		= 13,
	CHANNELMSG_INITIATE_CONTACT		= 14,
	CHANNELMSG_VERSION_RESPONSE		= 15,
	CHANNELMSG_UNLOAD			= 16,
#ifdef VMBUS_FEATURE_PARENT_OR_PEER_MEMORY_MAPPED_INTO_A_CHILD
	CHANNELMSG_VIEWRANGE_ADD		= 17,
	CHANNELMSG_VIEWRANGE_REMOVE		= 18,
#endif
	CHANNELMSG_COUNT
};

struct vmbus_channel_message_header {
	enum vmbus_channel_message_type msgtype;
	u32 padding;
} __packed;

/* Query VMBus Version parameters */
struct vmbus_channel_query_vmbus_version {
	struct vmbus_channel_message_header header;
	u32 version;
} __packed;

/* VMBus Version Supported parameters */
struct vmbus_channel_version_supported {
	struct vmbus_channel_message_header header;
677
	u8 version_supported;
678 679 680 681 682 683 684 685
} __packed;

/* Offer Channel parameters */
struct vmbus_channel_offer_channel {
	struct vmbus_channel_message_header header;
	struct vmbus_channel_offer offer;
	u32 child_relid;
	u8 monitorid;
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
	/*
	 * win7 and beyond splits this field into a bit field.
	 */
	u8 monitor_allocated:1;
	u8 reserved:7;
	/*
	 * These are new fields added in win7 and later.
	 * Do not access these fields without checking the
	 * negotiated protocol.
	 *
	 * If "is_dedicated_interrupt" is set, we must not set the
	 * associated bit in the channel bitmap while sending the
	 * interrupt to the host.
	 *
	 * connection_id is to be used in signaling the host.
	 */
	u16 is_dedicated_interrupt:1;
	u16 reserved1:15;
	u32 connection_id;
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
} __packed;

/* Rescind Offer parameters */
struct vmbus_channel_rescind_offer {
	struct vmbus_channel_message_header header;
	u32 child_relid;
} __packed;

/*
 * Request Offer -- no parameters, SynIC message contains the partition ID
 * Set Snoop -- no parameters, SynIC message contains the partition ID
 * Clear Snoop -- no parameters, SynIC message contains the partition ID
 * All Offers Delivered -- no parameters, SynIC message contains the partition
 *		           ID
 * Flush Client -- no parameters, SynIC message contains the partition ID
 */

/* Open Channel parameters */
struct vmbus_channel_open_channel {
	struct vmbus_channel_message_header header;

	/* Identifies the specific VMBus channel that is being opened. */
	u32 child_relid;

	/* ID making a particular open request at a channel offer unique. */
	u32 openid;

	/* GPADL for the channel's ring buffer. */
	u32 ringbuffer_gpadlhandle;

735 736 737 738 739 740 741 742 743
	/*
	 * Starting with win8, this field will be used to specify
	 * the target virtual processor on which to deliver the interrupt for
	 * the host to guest communication.
	 * Prior to win8, incoming channel interrupts would only
	 * be delivered on cpu 0. Setting this value to 0 would
	 * preserve the earlier behavior.
	 */
	u32 target_vp;
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846

	/*
	* The upstream ring buffer begins at offset zero in the memory
	* described by RingBufferGpadlHandle. The downstream ring buffer
	* follows it at this offset (in pages).
	*/
	u32 downstream_ringbuffer_pageoffset;

	/* User-specific data to be passed along to the server endpoint. */
	unsigned char userdata[MAX_USER_DEFINED_BYTES];
} __packed;

/* Open Channel Result parameters */
struct vmbus_channel_open_result {
	struct vmbus_channel_message_header header;
	u32 child_relid;
	u32 openid;
	u32 status;
} __packed;

/* Close channel parameters; */
struct vmbus_channel_close_channel {
	struct vmbus_channel_message_header header;
	u32 child_relid;
} __packed;

/* Channel Message GPADL */
#define GPADL_TYPE_RING_BUFFER		1
#define GPADL_TYPE_SERVER_SAVE_AREA	2
#define GPADL_TYPE_TRANSACTION		8

/*
 * The number of PFNs in a GPADL message is defined by the number of
 * pages that would be spanned by ByteCount and ByteOffset.  If the
 * implied number of PFNs won't fit in this packet, there will be a
 * follow-up packet that contains more.
 */
struct vmbus_channel_gpadl_header {
	struct vmbus_channel_message_header header;
	u32 child_relid;
	u32 gpadl;
	u16 range_buflen;
	u16 rangecount;
	struct gpa_range range[0];
} __packed;

/* This is the followup packet that contains more PFNs. */
struct vmbus_channel_gpadl_body {
	struct vmbus_channel_message_header header;
	u32 msgnumber;
	u32 gpadl;
	u64 pfn[0];
} __packed;

struct vmbus_channel_gpadl_created {
	struct vmbus_channel_message_header header;
	u32 child_relid;
	u32 gpadl;
	u32 creation_status;
} __packed;

struct vmbus_channel_gpadl_teardown {
	struct vmbus_channel_message_header header;
	u32 child_relid;
	u32 gpadl;
} __packed;

struct vmbus_channel_gpadl_torndown {
	struct vmbus_channel_message_header header;
	u32 gpadl;
} __packed;

#ifdef VMBUS_FEATURE_PARENT_OR_PEER_MEMORY_MAPPED_INTO_A_CHILD
struct vmbus_channel_view_range_add {
	struct vmbus_channel_message_header header;
	PHYSICAL_ADDRESS viewrange_base;
	u64 viewrange_length;
	u32 child_relid;
} __packed;

struct vmbus_channel_view_range_remove {
	struct vmbus_channel_message_header header;
	PHYSICAL_ADDRESS viewrange_base;
	u32 child_relid;
} __packed;
#endif

struct vmbus_channel_relid_released {
	struct vmbus_channel_message_header header;
	u32 child_relid;
} __packed;

struct vmbus_channel_initiate_contact {
	struct vmbus_channel_message_header header;
	u32 vmbus_version_requested;
	u32 padding2;
	u64 interrupt_page;
	u64 monitor_page1;
	u64 monitor_page2;
} __packed;

struct vmbus_channel_version_response {
	struct vmbus_channel_message_header header;
847
	u8 version_supported;
848 849 850 851 852 853 854 855 856 857 858
} __packed;

enum vmbus_channel_state {
	CHANNEL_OFFER_STATE,
	CHANNEL_OPENING_STATE,
	CHANNEL_OPEN_STATE,
};

struct vmbus_channel_debug_info {
	u32 relid;
	enum vmbus_channel_state state;
859 860
	uuid_le interfacetype;
	uuid_le interface_instance;
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
	u32 monitorid;
	u32 servermonitor_pending;
	u32 servermonitor_latency;
	u32 servermonitor_connectionid;
	u32 clientmonitor_pending;
	u32 clientmonitor_latency;
	u32 clientmonitor_connectionid;

	struct hv_ring_buffer_debug_info inbound;
	struct hv_ring_buffer_debug_info outbound;
};

/*
 * Represents each channel msg on the vmbus connection This is a
 * variable-size data structure depending on the msg type itself
 */
struct vmbus_channel_msginfo {
	/* Bookkeeping stuff */
	struct list_head msglistentry;

	/* So far, this is only used to handle gpadl body message */
	struct list_head submsglist;

	/* Synchronize the request/response if needed */
	struct completion  waitevent;
	union {
		struct vmbus_channel_version_supported version_supported;
		struct vmbus_channel_open_result open_result;
		struct vmbus_channel_gpadl_torndown gpadl_torndown;
		struct vmbus_channel_gpadl_created gpadl_created;
		struct vmbus_channel_version_response version_response;
	} response;

	u32 msgsize;
	/*
	 * The channel message that goes out on the "wire".
	 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header
	 */
	unsigned char msg[0];
};

902 903 904 905 906
struct vmbus_close_msg {
	struct vmbus_channel_msginfo info;
	struct vmbus_channel_close_channel msg;
};

907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
/* Define connection identifier type. */
union hv_connection_id {
	u32 asu32;
	struct {
		u32 id:24;
		u32 reserved:8;
	} u;
};

/* Definition of the hv_signal_event hypercall input structure. */
struct hv_input_signal_event {
	union hv_connection_id connectionid;
	u16 flag_number;
	u16 rsvdz;
};

struct hv_input_signal_event_buffer {
	u64 align8;
	struct hv_input_signal_event event;
};

928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
struct vmbus_channel {
	struct list_head listentry;

	struct hv_device *device_obj;

	struct work_struct work;

	enum vmbus_channel_state state;

	struct vmbus_channel_offer_channel offermsg;
	/*
	 * These are based on the OfferMsg.MonitorId.
	 * Save it here for easy access.
	 */
	u8 monitor_grp;
	u8 monitor_bit;

	u32 ringbuffer_gpadlhandle;

	/* Allocated memory for ring buffer */
	void *ringbuffer_pages;
	u32 ringbuffer_pagecount;
	struct hv_ring_buffer_info outbound;	/* send to parent */
	struct hv_ring_buffer_info inbound;	/* receive from parent */
	spinlock_t inbound_lock;
	struct workqueue_struct *controlwq;

955 956
	struct vmbus_close_msg close_msg;

957 958 959 960 961
	/* Channel callback are invoked in this workqueue context */
	/* HANDLE dataWorkQueue; */

	void (*onchannel_callback)(void *context);
	void *channel_callback_context;
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976

	/*
	 * A channel can be marked for efficient (batched)
	 * reading:
	 * If batched_reading is set to "true", we read until the
	 * channel is empty and hold off interrupts from the host
	 * during the entire read process.
	 * If batched_reading is set to "false", the client is not
	 * going to perform batched reading.
	 *
	 * By default we will enable batched reading; specific
	 * drivers that don't want this behavior can turn it off.
	 */

	bool batched_reading;
977 978 979 980

	bool is_dedicated_interrupt;
	struct hv_input_signal_event_buffer sig_buf;
	struct hv_input_signal_event *sig_event;
981 982 983 984 985 986 987 988 989 990

	/*
	 * Starting with win8, this field will be used to specify
	 * the target virtual processor on which to deliver the interrupt for
	 * the host to guest communication.
	 * Prior to win8, incoming channel interrupts would only
	 * be delivered on cpu 0. Setting this value to 0 would
	 * preserve the earlier behavior.
	 */
	u32 target_vp;
991
};
992

993 994 995 996 997
static inline void set_channel_read_state(struct vmbus_channel *c, bool state)
{
	c->batched_reading = state;
}

998 999 1000 1001
void vmbus_onmessage(void *context);

int vmbus_request_offers(void);

1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
/* The format must be the same as struct vmdata_gpa_direct */
struct vmbus_channel_packet_page_buffer {
	u16 type;
	u16 dataoffset8;
	u16 length8;
	u16 flags;
	u64 transactionid;
	u32 reserved;
	u32 rangecount;
	struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT];
} __packed;

/* The format must be the same as struct vmdata_gpa_direct */
struct vmbus_channel_packet_multipage_buffer {
	u16 type;
	u16 dataoffset8;
	u16 length8;
	u16 flags;
	u64 transactionid;
	u32 reserved;
	u32 rangecount;		/* Always 1 in this case */
	struct hv_multipage_buffer range;
} __packed;


extern int vmbus_open(struct vmbus_channel *channel,
			    u32 send_ringbuffersize,
			    u32 recv_ringbuffersize,
			    void *userdata,
			    u32 userdatalen,
			    void(*onchannel_callback)(void *context),
			    void *context);

extern void vmbus_close(struct vmbus_channel *channel);

extern int vmbus_sendpacket(struct vmbus_channel *channel,
				  const void *buffer,
				  u32 bufferLen,
				  u64 requestid,
				  enum vmbus_packet_type type,
				  u32 flags);

extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel,
					    struct hv_page_buffer pagebuffers[],
					    u32 pagecount,
					    void *buffer,
					    u32 bufferlen,
					    u64 requestid);

extern int vmbus_sendpacket_multipagebuffer(struct vmbus_channel *channel,
					struct hv_multipage_buffer *mpb,
					void *buffer,
					u32 bufferlen,
					u64 requestid);

extern int vmbus_establish_gpadl(struct vmbus_channel *channel,
				      void *kbuffer,
				      u32 size,
				      u32 *gpadl_handle);

extern int vmbus_teardown_gpadl(struct vmbus_channel *channel,
				     u32 gpadl_handle);

extern int vmbus_recvpacket(struct vmbus_channel *channel,
				  void *buffer,
				  u32 bufferlen,
				  u32 *buffer_actual_len,
				  u64 *requestid);

extern int vmbus_recvpacket_raw(struct vmbus_channel *channel,
				     void *buffer,
				     u32 bufferlen,
				     u32 *buffer_actual_len,
				     u64 *requestid);


extern void vmbus_get_debug_info(struct vmbus_channel *channel,
				     struct vmbus_channel_debug_info *debug);

extern void vmbus_ontimer(unsigned long data);

1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
struct hv_dev_port_info {
	u32 int_mask;
	u32 read_idx;
	u32 write_idx;
	u32 bytes_avail_toread;
	u32 bytes_avail_towrite;
};

/* Base driver object */
struct hv_driver {
	const char *name;

	/* the device type supported by this driver */
1096
	uuid_le dev_type;
1097
	const struct hv_vmbus_device_id *id_table;
1098 1099 1100

	struct device_driver driver;

1101
	int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *);
1102 1103 1104 1105 1106 1107 1108 1109
	int (*remove)(struct hv_device *);
	void (*shutdown)(struct hv_device *);

};

/* Base device object */
struct hv_device {
	/* the device type id of this device */
1110
	uuid_le dev_type;
1111 1112

	/* the device instance id of this device */
1113
	uuid_le dev_instance;
1114 1115 1116 1117 1118 1119

	struct device device;

	struct vmbus_channel *channel;
};

1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130

static inline struct hv_device *device_to_hv_device(struct device *d)
{
	return container_of(d, struct hv_device, device);
}

static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d)
{
	return container_of(d, struct hv_driver, driver);
}

1131 1132 1133 1134 1135 1136 1137 1138 1139
static inline void hv_set_drvdata(struct hv_device *dev, void *data)
{
	dev_set_drvdata(&dev->device, data);
}

static inline void *hv_get_drvdata(struct hv_device *dev)
{
	return dev_get_drvdata(&dev->device);
}
1140 1141

/* Vmbus interface */
1142 1143 1144 1145 1146 1147
#define vmbus_driver_register(driver)	\
	__vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME)
int __must_check __vmbus_driver_register(struct hv_driver *hv_driver,
					 struct module *owner,
					 const char *mod_name);
void vmbus_driver_unregister(struct hv_driver *hv_driver);
1148

1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
/**
 * VMBUS_DEVICE - macro used to describe a specific hyperv vmbus device
 *
 * This macro is used to create a struct hv_vmbus_device_id that matches a
 * specific device.
 */
#define VMBUS_DEVICE(g0, g1, g2, g3, g4, g5, g6, g7,	\
		     g8, g9, ga, gb, gc, gd, ge, gf)	\
	.guid = { g0, g1, g2, g3, g4, g5, g6, g7,	\
		  g8, g9, ga, gb, gc, gd, ge, gf },

1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
/*
 * Common header for Hyper-V ICs
 */

#define ICMSGTYPE_NEGOTIATE		0
#define ICMSGTYPE_HEARTBEAT		1
#define ICMSGTYPE_KVPEXCHANGE		2
#define ICMSGTYPE_SHUTDOWN		3
#define ICMSGTYPE_TIMESYNC		4
#define ICMSGTYPE_VSS			5

#define ICMSGHDRFLAG_TRANSACTION	1
#define ICMSGHDRFLAG_REQUEST		2
#define ICMSGHDRFLAG_RESPONSE		4


1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
/*
 * While we want to handle util services as regular devices,
 * there is only one instance of each of these services; so
 * we statically allocate the service specific state.
 */

struct hv_util_service {
	u8 *recv_buffer;
	void (*util_cb)(void *);
	int (*util_init)(struct hv_util_service *);
	void (*util_deinit)(void);
};

1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
struct vmbuspipe_hdr {
	u32 flags;
	u32 msgsize;
} __packed;

struct ic_version {
	u16 major;
	u16 minor;
} __packed;

struct icmsg_hdr {
	struct ic_version icverframe;
	u16 icmsgtype;
	struct ic_version icvermsg;
	u16 icmsgsize;
	u32 status;
	u8 ictransaction_id;
	u8 icflags;
	u8 reserved[2];
} __packed;

struct icmsg_negotiate {
	u16 icframe_vercnt;
	u16 icmsg_vercnt;
	u32 reserved;
	struct ic_version icversion_data[1]; /* any size array */
} __packed;

struct shutdown_msg_data {
	u32 reason_code;
	u32 timeout_seconds;
	u32 flags;
	u8  display_message[2048];
} __packed;

struct heartbeat_msg_data {
	u64 seq_num;
	u32 reserved[8];
} __packed;

/* Time Sync IC defs */
#define ICTIMESYNCFLAG_PROBE	0
#define ICTIMESYNCFLAG_SYNC	1
#define ICTIMESYNCFLAG_SAMPLE	2

#ifdef __x86_64__
#define WLTIMEDELTA	116444736000000000L	/* in 100ns unit */
#else
#define WLTIMEDELTA	116444736000000000LL
#endif

struct ictimesync_data {
	u64 parenttime;
	u64 childtime;
	u64 roundtriptime;
	u8 flags;
} __packed;

struct hyperv_service_callback {
	u8 msg_type;
	char *log_msg;
1250
	uuid_le data;
1251 1252 1253 1254
	struct vmbus_channel *channel;
	void (*callback) (void *context);
};

1255
#define MAX_SRV_VER	0x7ffffff
1256
extern void vmbus_prep_negotiate_resp(struct icmsg_hdr *,
1257 1258
					struct icmsg_negotiate *, u8 *, int,
					int);
1259

1260 1261 1262 1263
int hv_kvp_init(struct hv_util_service *);
void hv_kvp_deinit(void);
void hv_kvp_onchannelcallback(void *);

1264 1265 1266 1267 1268 1269
/*
 * Negotiated version with the Host.
 */

extern __u32 vmbus_proto_version;

1270
#endif /* __KERNEL__ */
1271
#endif /* _HYPERV_H */