admin-cmd.c 23.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7
/*
 * NVMe admin command implementation.
 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
 */
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
8 9
#include <linux/rculist.h>

10
#include <generated/utsrelease.h>
11
#include <asm/unaligned.h>
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
#include "nvmet.h"

u32 nvmet_get_log_page_len(struct nvme_command *cmd)
{
	u32 len = le16_to_cpu(cmd->get_log_page.numdu);

	len <<= 16;
	len += le16_to_cpu(cmd->get_log_page.numdl);
	/* NUMD is a 0's based value */
	len += 1;
	len *= sizeof(u32);

	return len;
}

27 28 29 30 31
u64 nvmet_get_log_page_offset(struct nvme_command *cmd)
{
	return le64_to_cpu(cmd->get_log_page.lpo);
}

32 33 34 35 36
static void nvmet_execute_get_log_page_noop(struct nvmet_req *req)
{
	nvmet_req_complete(req, nvmet_zero_sgl(req, 0, req->data_len));
}

37 38 39 40 41 42 43 44 45 46 47 48
static void nvmet_execute_get_log_page_error(struct nvmet_req *req)
{
	struct nvmet_ctrl *ctrl = req->sq->ctrl;
	unsigned long flags;
	off_t offset = 0;
	u64 slot;
	u64 i;

	spin_lock_irqsave(&ctrl->error_lock, flags);
	slot = ctrl->err_counter % NVMET_ERROR_LOG_SLOTS;

	for (i = 0; i < NVMET_ERROR_LOG_SLOTS; i++) {
49 50
		if (nvmet_copy_to_sgl(req, offset, &ctrl->slots[slot],
				sizeof(struct nvme_error_slot)))
51 52 53 54 55 56 57 58 59
			break;

		if (slot == 0)
			slot = NVMET_ERROR_LOG_SLOTS - 1;
		else
			slot--;
		offset += sizeof(struct nvme_error_slot);
	}
	spin_unlock_irqrestore(&ctrl->error_lock, flags);
60
	nvmet_req_complete(req, 0);
61 62
}

63 64 65 66 67 68 69 70
static u16 nvmet_get_smart_log_nsid(struct nvmet_req *req,
		struct nvme_smart_log *slog)
{
	struct nvmet_ns *ns;
	u64 host_reads, host_writes, data_units_read, data_units_written;

	ns = nvmet_find_namespace(req->sq->ctrl, req->cmd->get_log_page.nsid);
	if (!ns) {
71
		pr_err("Could not find namespace id : %d\n",
72
				le32_to_cpu(req->cmd->get_log_page.nsid));
73
		req->error_loc = offsetof(struct nvme_rw_command, nsid);
74
		return NVME_SC_INVALID_NS;
75 76
	}

77 78 79 80
	/* we don't have the right data for file backed ns */
	if (!ns->bdev)
		goto out;

81
	host_reads = part_stat_read(ns->bdev->bd_part, ios[READ]);
82 83
	data_units_read = DIV_ROUND_UP(part_stat_read(ns->bdev->bd_part,
		sectors[READ]), 1000);
84
	host_writes = part_stat_read(ns->bdev->bd_part, ios[WRITE]);
85 86
	data_units_written = DIV_ROUND_UP(part_stat_read(ns->bdev->bd_part,
		sectors[WRITE]), 1000);
87 88 89 90 91

	put_unaligned_le64(host_reads, &slog->host_reads[0]);
	put_unaligned_le64(data_units_read, &slog->data_units_read[0]);
	put_unaligned_le64(host_writes, &slog->host_writes[0]);
	put_unaligned_le64(data_units_written, &slog->data_units_written[0]);
92
out:
93
	nvmet_put_namespace(ns);
94 95

	return NVME_SC_SUCCESS;
96 97 98 99 100 101 102 103 104 105 106 107 108 109
}

static u16 nvmet_get_smart_log_all(struct nvmet_req *req,
		struct nvme_smart_log *slog)
{
	u64 host_reads = 0, host_writes = 0;
	u64 data_units_read = 0, data_units_written = 0;
	struct nvmet_ns *ns;
	struct nvmet_ctrl *ctrl;

	ctrl = req->sq->ctrl;

	rcu_read_lock();
	list_for_each_entry_rcu(ns, &ctrl->subsys->namespaces, dev_link) {
110 111 112
		/* we don't have the right data for file backed ns */
		if (!ns->bdev)
			continue;
113
		host_reads += part_stat_read(ns->bdev->bd_part, ios[READ]);
114 115
		data_units_read += DIV_ROUND_UP(
			part_stat_read(ns->bdev->bd_part, sectors[READ]), 1000);
116
		host_writes += part_stat_read(ns->bdev->bd_part, ios[WRITE]);
117 118
		data_units_written += DIV_ROUND_UP(
			part_stat_read(ns->bdev->bd_part, sectors[WRITE]), 1000);
119 120 121 122 123 124 125 126 127

	}
	rcu_read_unlock();

	put_unaligned_le64(host_reads, &slog->host_reads[0]);
	put_unaligned_le64(data_units_read, &slog->data_units_read[0]);
	put_unaligned_le64(host_writes, &slog->host_writes[0]);
	put_unaligned_le64(data_units_written, &slog->data_units_written[0]);

128
	return NVME_SC_SUCCESS;
129 130
}

131
static void nvmet_execute_get_log_page_smart(struct nvmet_req *req)
132
{
133 134
	struct nvme_smart_log *log;
	u16 status = NVME_SC_INTERNAL;
135
	unsigned long flags;
136

137
	if (req->data_len != sizeof(*log))
138 139
		goto out;

140 141 142
	log = kzalloc(sizeof(*log), GFP_KERNEL);
	if (!log)
		goto out;
143

144 145 146 147 148
	if (req->cmd->get_log_page.nsid == cpu_to_le32(NVME_NSID_ALL))
		status = nvmet_get_smart_log_all(req, log);
	else
		status = nvmet_get_smart_log_nsid(req, log);
	if (status)
149
		goto out_free_log;
150

151 152 153 154 155
	spin_lock_irqsave(&req->sq->ctrl->error_lock, flags);
	put_unaligned_le64(req->sq->ctrl->err_counter,
			&log->num_err_log_entries);
	spin_unlock_irqrestore(&req->sq->ctrl->error_lock, flags);

156
	status = nvmet_copy_to_sgl(req, 0, log, sizeof(*log));
157 158
out_free_log:
	kfree(log);
159 160 161 162
out:
	nvmet_req_complete(req, status);
}

163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
static void nvmet_execute_get_log_cmd_effects_ns(struct nvmet_req *req)
{
	u16 status = NVME_SC_INTERNAL;
	struct nvme_effects_log *log;

	log = kzalloc(sizeof(*log), GFP_KERNEL);
	if (!log)
		goto out;

	log->acs[nvme_admin_get_log_page]	= cpu_to_le32(1 << 0);
	log->acs[nvme_admin_identify]		= cpu_to_le32(1 << 0);
	log->acs[nvme_admin_abort_cmd]		= cpu_to_le32(1 << 0);
	log->acs[nvme_admin_set_features]	= cpu_to_le32(1 << 0);
	log->acs[nvme_admin_get_features]	= cpu_to_le32(1 << 0);
	log->acs[nvme_admin_async_event]	= cpu_to_le32(1 << 0);
	log->acs[nvme_admin_keep_alive]		= cpu_to_le32(1 << 0);

	log->iocs[nvme_cmd_read]		= cpu_to_le32(1 << 0);
	log->iocs[nvme_cmd_write]		= cpu_to_le32(1 << 0);
	log->iocs[nvme_cmd_flush]		= cpu_to_le32(1 << 0);
	log->iocs[nvme_cmd_dsm]			= cpu_to_le32(1 << 0);
	log->iocs[nvme_cmd_write_zeroes]	= cpu_to_le32(1 << 0);

	status = nvmet_copy_to_sgl(req, 0, log, sizeof(*log));

	kfree(log);
out:
	nvmet_req_complete(req, status);
}

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
static void nvmet_execute_get_log_changed_ns(struct nvmet_req *req)
{
	struct nvmet_ctrl *ctrl = req->sq->ctrl;
	u16 status = NVME_SC_INTERNAL;
	size_t len;

	if (req->data_len != NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32))
		goto out;

	mutex_lock(&ctrl->lock);
	if (ctrl->nr_changed_ns == U32_MAX)
		len = sizeof(__le32);
	else
		len = ctrl->nr_changed_ns * sizeof(__le32);
	status = nvmet_copy_to_sgl(req, 0, ctrl->changed_ns_list, len);
	if (!status)
		status = nvmet_zero_sgl(req, len, req->data_len - len);
	ctrl->nr_changed_ns = 0;
211
	nvmet_clear_aen_bit(req, NVME_AEN_BIT_NS_ATTR);
212 213 214 215 216
	mutex_unlock(&ctrl->lock);
out:
	nvmet_req_complete(req, status);
}

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
static u32 nvmet_format_ana_group(struct nvmet_req *req, u32 grpid,
		struct nvme_ana_group_desc *desc)
{
	struct nvmet_ctrl *ctrl = req->sq->ctrl;
	struct nvmet_ns *ns;
	u32 count = 0;

	if (!(req->cmd->get_log_page.lsp & NVME_ANA_LOG_RGO)) {
		rcu_read_lock();
		list_for_each_entry_rcu(ns, &ctrl->subsys->namespaces, dev_link)
			if (ns->anagrpid == grpid)
				desc->nsids[count++] = cpu_to_le32(ns->nsid);
		rcu_read_unlock();
	}

	desc->grpid = cpu_to_le32(grpid);
	desc->nnsids = cpu_to_le32(count);
	desc->chgcnt = cpu_to_le64(nvmet_ana_chgcnt);
	desc->state = req->port->ana_state[grpid];
	memset(desc->rsvd17, 0, sizeof(desc->rsvd17));
	return sizeof(struct nvme_ana_group_desc) + count * sizeof(__le32);
}

static void nvmet_execute_get_log_page_ana(struct nvmet_req *req)
{
	struct nvme_ana_rsp_hdr hdr = { 0, };
	struct nvme_ana_group_desc *desc;
	size_t offset = sizeof(struct nvme_ana_rsp_hdr); /* start beyond hdr */
	size_t len;
	u32 grpid;
	u16 ngrps = 0;
	u16 status;

	status = NVME_SC_INTERNAL;
	desc = kmalloc(sizeof(struct nvme_ana_group_desc) +
			NVMET_MAX_NAMESPACES * sizeof(__le32), GFP_KERNEL);
	if (!desc)
		goto out;

	down_read(&nvmet_ana_sem);
	for (grpid = 1; grpid <= NVMET_MAX_ANAGRPS; grpid++) {
		if (!nvmet_ana_group_enabled[grpid])
			continue;
		len = nvmet_format_ana_group(req, grpid, desc);
		status = nvmet_copy_to_sgl(req, offset, desc, len);
		if (status)
			break;
		offset += len;
		ngrps++;
	}
267 268 269 270
	for ( ; grpid <= NVMET_MAX_ANAGRPS; grpid++) {
		if (nvmet_ana_group_enabled[grpid])
			ngrps++;
	}
271 272 273

	hdr.chgcnt = cpu_to_le64(nvmet_ana_chgcnt);
	hdr.ngrps = cpu_to_le16(ngrps);
274
	nvmet_clear_aen_bit(req, NVME_AEN_BIT_ANA_CHANGE);
275 276 277 278 279 280 281 282 283 284
	up_read(&nvmet_ana_sem);

	kfree(desc);

	/* copy the header last once we know the number of groups */
	status = nvmet_copy_to_sgl(req, 0, &hdr, sizeof(hdr));
out:
	nvmet_req_complete(req, status);
}

285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
static void nvmet_execute_get_log_page(struct nvmet_req *req)
{
	switch (req->cmd->get_log_page.lid) {
	case NVME_LOG_ERROR:
		return nvmet_execute_get_log_page_error(req);
	case NVME_LOG_SMART:
		return nvmet_execute_get_log_page_smart(req);
	case NVME_LOG_FW_SLOT:
		/*
		 * We only support a single firmware slot which always is
		 * active, so we can zero out the whole firmware slot log and
		 * still claim to fully implement this mandatory log page.
		 */
		return nvmet_execute_get_log_page_noop(req);
	case NVME_LOG_CHANGED_NS:
		return nvmet_execute_get_log_changed_ns(req);
	case NVME_LOG_CMD_EFFECTS:
		return nvmet_execute_get_log_cmd_effects_ns(req);
	case NVME_LOG_ANA:
		return nvmet_execute_get_log_page_ana(req);
	}
	pr_err("unhandled lid %d on qid %d\n",
	       req->cmd->get_log_page.lid, req->sq->qid);
	req->error_loc = offsetof(struct nvme_get_log_page_command, lid);
	nvmet_req_complete(req, NVME_SC_INVALID_FIELD | NVME_SC_DNR);
}

312 313 314 315 316
static void nvmet_execute_identify_ctrl(struct nvmet_req *req)
{
	struct nvmet_ctrl *ctrl = req->sq->ctrl;
	struct nvme_id_ctrl *id;
	u16 status = 0;
317
	const char model[] = "Linux";
318 319 320 321 322 323 324 325 326 327 328

	id = kzalloc(sizeof(*id), GFP_KERNEL);
	if (!id) {
		status = NVME_SC_INTERNAL;
		goto out;
	}

	/* XXX: figure out how to assign real vendors IDs. */
	id->vid = 0;
	id->ssvid = 0;

329
	memset(id->sn, ' ', sizeof(id->sn));
330 331
	bin2hex(id->sn, &ctrl->subsys->serial,
		min(sizeof(ctrl->subsys->serial), sizeof(id->sn) / 2));
332 333 334
	memcpy_and_pad(id->mn, sizeof(id->mn), model, sizeof(model) - 1, ' ');
	memcpy_and_pad(id->fr, sizeof(id->fr),
		       UTS_RELEASE, strlen(UTS_RELEASE), ' ');
335 336 337 338 339 340 341 342

	id->rab = 6;

	/*
	 * XXX: figure out how we can assign a IEEE OUI, but until then
	 * the safest is to leave it as zeroes.
	 */

343 344
	/* we support multiple ports, multiples hosts and ANA: */
	id->cmic = (1 << 0) | (1 << 1) | (1 << 3);
345 346 347 348 349 350 351

	/* no limit on data transfer sizes for now */
	id->mdts = 0;
	id->cntlid = cpu_to_le16(ctrl->cntlid);
	id->ver = cpu_to_le32(ctrl->subsys->ver);

	/* XXX: figure out what to do about RTD3R/RTD3 */
352
	id->oaes = cpu_to_le32(NVMET_AEN_CFG_OPTIONAL);
353 354
	id->ctratt = cpu_to_le32(NVME_CTRL_ATTR_HID_128_BIT |
		NVME_CTRL_ATTR_TBKAS);
355 356 357 358 359 360 361 362 363 364 365 366 367 368

	id->oacs = 0;

	/*
	 * We don't really have a practical limit on the number of abort
	 * comands.  But we don't do anything useful for abort either, so
	 * no point in allowing more abort commands than the spec requires.
	 */
	id->acl = 3;

	id->aerl = NVMET_ASYNC_EVENTS - 1;

	/* first slot is read-only, only one slot supported */
	id->frmw = (1 << 0) | (1 << 1);
369
	id->lpa = (1 << 0) | (1 << 1) | (1 << 2);
370 371 372 373 374 375 376 377 378 379 380 381 382
	id->elpe = NVMET_ERROR_LOG_SLOTS - 1;
	id->npss = 0;

	/* We support keep-alive timeout in granularity of seconds */
	id->kas = cpu_to_le16(NVMET_KAS);

	id->sqes = (0x6 << 4) | 0x6;
	id->cqes = (0x4 << 4) | 0x4;

	/* no enforcement soft-limit for maxcmd - pick arbitrary high value */
	id->maxcmd = cpu_to_le16(NVMET_MAX_CMD);

	id->nn = cpu_to_le32(ctrl->subsys->max_nsid);
383
	id->mnan = cpu_to_le32(NVMET_MAX_NAMESPACES);
384 385
	id->oncs = cpu_to_le16(NVME_CTRL_ONCS_DSM |
			NVME_CTRL_ONCS_WRITE_ZEROES);
386 387 388 389 390 391 392 393 394 395 396 397 398 399

	/* XXX: don't report vwc if the underlying device is write through */
	id->vwc = NVME_CTRL_VWC_PRESENT;

	/*
	 * We can't support atomic writes bigger than a LBA without support
	 * from the backend device.
	 */
	id->awun = 0;
	id->awupf = 0;

	id->sgls = cpu_to_le32(1 << 0);	/* we always support SGLs */
	if (ctrl->ops->has_keyed_sgls)
		id->sgls |= cpu_to_le32(1 << 2);
400
	if (req->port->inline_data_size)
401 402
		id->sgls |= cpu_to_le32(1 << 20);

403
	strlcpy(id->subnqn, ctrl->subsys->subsysnqn, sizeof(id->subnqn));
404 405 406

	/* Max command capsule size is sqe + single page of in-capsule data */
	id->ioccsz = cpu_to_le32((sizeof(struct nvme_command) +
407
				  req->port->inline_data_size) / 16);
408 409 410 411 412
	/* Max response capsule size is cqe */
	id->iorcsz = cpu_to_le32(sizeof(struct nvme_completion) / 16);

	id->msdbd = ctrl->ops->msdbd;

413 414 415 416 417
	id->anacap = (1 << 0) | (1 << 1) | (1 << 2) | (1 << 3) | (1 << 4);
	id->anatt = 10; /* random value */
	id->anagrpmax = cpu_to_le32(NVMET_MAX_ANAGRPS);
	id->nanagrpid = cpu_to_le32(NVMET_MAX_ANAGRPS);

418 419 420 421 422 423 424 425
	/*
	 * Meh, we don't really support any power state.  Fake up the same
	 * values that qemu does.
	 */
	id->psd[0].max_power = cpu_to_le16(0x9c4);
	id->psd[0].entry_lat = cpu_to_le32(0x10);
	id->psd[0].exit_lat = cpu_to_le32(0x4);

426 427
	id->nwpc = 1 << 0; /* write protect and no write protect */

428 429 430 431 432 433 434 435 436 437 438 439 440
	status = nvmet_copy_to_sgl(req, 0, id, sizeof(*id));

	kfree(id);
out:
	nvmet_req_complete(req, status);
}

static void nvmet_execute_identify_ns(struct nvmet_req *req)
{
	struct nvmet_ns *ns;
	struct nvme_id_ns *id;
	u16 status = 0;

441
	if (le32_to_cpu(req->cmd->identify.nsid) == NVME_NSID_ALL) {
442
		req->error_loc = offsetof(struct nvme_identify, nsid);
443 444 445 446 447 448 449
		status = NVME_SC_INVALID_NS | NVME_SC_DNR;
		goto out;
	}

	id = kzalloc(sizeof(*id), GFP_KERNEL);
	if (!id) {
		status = NVME_SC_INTERNAL;
450
		goto out;
451 452
	}

453 454 455 456 457
	/* return an all zeroed buffer if we can't find an active namespace */
	ns = nvmet_find_namespace(req->sq->ctrl, req->cmd->identify.nsid);
	if (!ns)
		goto done;

458
	/*
459
	 * nuse = ncap = nsze isn't always true, but we have no way to find
460 461
	 * that out from the underlying device.
	 */
462 463 464 465 466 467 468 469 470
	id->ncap = id->nsze = cpu_to_le64(ns->size >> ns->blksize_shift);
	switch (req->port->ana_state[ns->anagrpid]) {
	case NVME_ANA_INACCESSIBLE:
	case NVME_ANA_PERSISTENT_LOSS:
		break;
	default:
		id->nuse = id->nsze;
		break;
        }
471

472 473 474
	if (ns->bdev)
		nvmet_bdev_set_limits(ns->bdev, id);

475 476 477 478 479 480 481 482 483 484 485 486
	/*
	 * We just provide a single LBA format that matches what the
	 * underlying device reports.
	 */
	id->nlbaf = 0;
	id->flbas = 0;

	/*
	 * Our namespace might always be shared.  Not just with other
	 * controllers, but also with any other user of the block device.
	 */
	id->nmic = (1 << 0);
487
	id->anagrpid = cpu_to_le32(ns->anagrpid);
488

A
Andy Shevchenko 已提交
489
	memcpy(&id->nguid, &ns->nguid, sizeof(id->nguid));
490 491 492

	id->lbaf[0].ds = ns->blksize_shift;

493 494
	if (ns->readonly)
		id->nsattr |= (1 << 0);
495 496
	nvmet_put_namespace(ns);
done:
497 498 499 500 501 502 503 504
	status = nvmet_copy_to_sgl(req, 0, id, sizeof(*id));
	kfree(id);
out:
	nvmet_req_complete(req, status);
}

static void nvmet_execute_identify_nslist(struct nvmet_req *req)
{
505
	static const int buf_size = NVME_IDENTIFY_DATA_SIZE;
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
	struct nvmet_ctrl *ctrl = req->sq->ctrl;
	struct nvmet_ns *ns;
	u32 min_nsid = le32_to_cpu(req->cmd->identify.nsid);
	__le32 *list;
	u16 status = 0;
	int i = 0;

	list = kzalloc(buf_size, GFP_KERNEL);
	if (!list) {
		status = NVME_SC_INTERNAL;
		goto out;
	}

	rcu_read_lock();
	list_for_each_entry_rcu(ns, &ctrl->subsys->namespaces, dev_link) {
		if (ns->nsid <= min_nsid)
			continue;
		list[i++] = cpu_to_le32(ns->nsid);
		if (i == buf_size / sizeof(__le32))
			break;
	}
	rcu_read_unlock();

	status = nvmet_copy_to_sgl(req, 0, list, buf_size);

	kfree(list);
out:
	nvmet_req_complete(req, status);
}

536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
static u16 nvmet_copy_ns_identifier(struct nvmet_req *req, u8 type, u8 len,
				    void *id, off_t *off)
{
	struct nvme_ns_id_desc desc = {
		.nidt = type,
		.nidl = len,
	};
	u16 status;

	status = nvmet_copy_to_sgl(req, *off, &desc, sizeof(desc));
	if (status)
		return status;
	*off += sizeof(desc);

	status = nvmet_copy_to_sgl(req, *off, id, len);
	if (status)
		return status;
	*off += len;

	return 0;
}

static void nvmet_execute_identify_desclist(struct nvmet_req *req)
{
	struct nvmet_ns *ns;
	u16 status = 0;
	off_t off = 0;

	ns = nvmet_find_namespace(req->sq->ctrl, req->cmd->identify.nsid);
	if (!ns) {
566
		req->error_loc = offsetof(struct nvme_identify, nsid);
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
		status = NVME_SC_INVALID_NS | NVME_SC_DNR;
		goto out;
	}

	if (memchr_inv(&ns->uuid, 0, sizeof(ns->uuid))) {
		status = nvmet_copy_ns_identifier(req, NVME_NIDT_UUID,
						  NVME_NIDT_UUID_LEN,
						  &ns->uuid, &off);
		if (status)
			goto out_put_ns;
	}
	if (memchr_inv(ns->nguid, 0, sizeof(ns->nguid))) {
		status = nvmet_copy_ns_identifier(req, NVME_NIDT_NGUID,
						  NVME_NIDT_NGUID_LEN,
						  &ns->nguid, &off);
		if (status)
			goto out_put_ns;
	}

	if (sg_zero_buffer(req->sg, req->sg_cnt, NVME_IDENTIFY_DATA_SIZE - off,
			off) != NVME_IDENTIFY_DATA_SIZE - off)
		status = NVME_SC_INTERNAL | NVME_SC_DNR;
out_put_ns:
	nvmet_put_namespace(ns);
out:
	nvmet_req_complete(req, status);
}

595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
static void nvmet_execute_identify(struct nvmet_req *req)
{
	switch (req->cmd->identify.cns) {
	case NVME_ID_CNS_NS:
		return nvmet_execute_identify_ns(req);
	case NVME_ID_CNS_CTRL:
		return nvmet_execute_identify_ctrl(req);
	case NVME_ID_CNS_NS_ACTIVE_LIST:
		return nvmet_execute_identify_nslist(req);
	case NVME_ID_CNS_NS_DESC_LIST:
		return nvmet_execute_identify_desclist(req);
	}

	pr_err("unhandled identify cns %d on qid %d\n",
	       req->cmd->identify.cns, req->sq->qid);
	req->error_loc = offsetof(struct nvme_identify, cns);
	nvmet_req_complete(req, NVME_SC_INVALID_FIELD | NVME_SC_DNR);
}

614
/*
615
 * A "minimum viable" abort implementation: the command is mandatory in the
616 617 618 619 620 621 622 623 624 625 626
 * spec, but we are not required to do any useful work.  We couldn't really
 * do a useful abort, so don't bother even with waiting for the command
 * to be exectuted and return immediately telling the command to abort
 * wasn't found.
 */
static void nvmet_execute_abort(struct nvmet_req *req)
{
	nvmet_set_result(req, 1);
	nvmet_req_complete(req, 0);
}

627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
static u16 nvmet_write_protect_flush_sync(struct nvmet_req *req)
{
	u16 status;

	if (req->ns->file)
		status = nvmet_file_flush(req);
	else
		status = nvmet_bdev_flush(req);

	if (status)
		pr_err("write protect flush failed nsid: %u\n", req->ns->nsid);
	return status;
}

static u16 nvmet_set_feat_write_protect(struct nvmet_req *req)
{
643
	u32 write_protect = le32_to_cpu(req->cmd->common.cdw11);
644 645 646 647
	struct nvmet_subsys *subsys = req->sq->ctrl->subsys;
	u16 status = NVME_SC_FEATURE_NOT_CHANGEABLE;

	req->ns = nvmet_find_namespace(req->sq->ctrl, req->cmd->rw.nsid);
648 649
	if (unlikely(!req->ns)) {
		req->error_loc = offsetof(struct nvme_common_command, nsid);
650
		return status;
651
	}
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674

	mutex_lock(&subsys->lock);
	switch (write_protect) {
	case NVME_NS_WRITE_PROTECT:
		req->ns->readonly = true;
		status = nvmet_write_protect_flush_sync(req);
		if (status)
			req->ns->readonly = false;
		break;
	case NVME_NS_NO_WRITE_PROTECT:
		req->ns->readonly = false;
		status = 0;
		break;
	default:
		break;
	}

	if (!status)
		nvmet_ns_changed(subsys, req->ns->nsid);
	mutex_unlock(&subsys->lock);
	return status;
}

675 676
u16 nvmet_set_feat_kato(struct nvmet_req *req)
{
677
	u32 val32 = le32_to_cpu(req->cmd->common.cdw11);
678 679 680 681 682 683 684 685 686 687

	req->sq->ctrl->kato = DIV_ROUND_UP(val32, 1000);

	nvmet_set_result(req, req->sq->ctrl->kato);

	return 0;
}

u16 nvmet_set_feat_async_event(struct nvmet_req *req, u32 mask)
{
688
	u32 val32 = le32_to_cpu(req->cmd->common.cdw11);
689

690 691
	if (val32 & ~mask) {
		req->error_loc = offsetof(struct nvme_common_command, cdw11);
692
		return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
693
	}
694 695 696 697 698 699 700

	WRITE_ONCE(req->sq->ctrl->aen_enabled, val32);
	nvmet_set_result(req, val32);

	return 0;
}

701 702 703
static void nvmet_execute_set_features(struct nvmet_req *req)
{
	struct nvmet_subsys *subsys = req->sq->ctrl->subsys;
704
	u32 cdw10 = le32_to_cpu(req->cmd->common.cdw10);
705 706
	u16 status = 0;

707
	switch (cdw10 & 0xff) {
708 709 710 711 712
	case NVME_FEAT_NUM_QUEUES:
		nvmet_set_result(req,
			(subsys->max_qid - 1) | ((subsys->max_qid - 1) << 16));
		break;
	case NVME_FEAT_KATO:
713
		status = nvmet_set_feat_kato(req);
714
		break;
715
	case NVME_FEAT_ASYNC_EVENT:
716
		status = nvmet_set_feat_async_event(req, NVMET_AEN_CFG_ALL);
717
		break;
718 719 720
	case NVME_FEAT_HOST_ID:
		status = NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
		break;
721 722 723
	case NVME_FEAT_WRITE_PROTECT:
		status = nvmet_set_feat_write_protect(req);
		break;
724
	default:
725
		req->error_loc = offsetof(struct nvme_common_command, cdw10);
726 727 728 729 730 731 732
		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
		break;
	}

	nvmet_req_complete(req, status);
}

733 734 735 736 737 738
static u16 nvmet_get_feat_write_protect(struct nvmet_req *req)
{
	struct nvmet_subsys *subsys = req->sq->ctrl->subsys;
	u32 result;

	req->ns = nvmet_find_namespace(req->sq->ctrl, req->cmd->common.nsid);
739 740
	if (!req->ns)  {
		req->error_loc = offsetof(struct nvme_common_command, nsid);
741
		return NVME_SC_INVALID_NS | NVME_SC_DNR;
742
	}
743 744 745 746 747 748 749 750 751 752 753
	mutex_lock(&subsys->lock);
	if (req->ns->readonly == true)
		result = NVME_NS_WRITE_PROTECT;
	else
		result = NVME_NS_NO_WRITE_PROTECT;
	nvmet_set_result(req, result);
	mutex_unlock(&subsys->lock);

	return 0;
}

754 755 756 757 758 759 760 761 762 763
void nvmet_get_feat_kato(struct nvmet_req *req)
{
	nvmet_set_result(req, req->sq->ctrl->kato * 1000);
}

void nvmet_get_feat_async_event(struct nvmet_req *req)
{
	nvmet_set_result(req, READ_ONCE(req->sq->ctrl->aen_enabled));
}

764 765 766
static void nvmet_execute_get_features(struct nvmet_req *req)
{
	struct nvmet_subsys *subsys = req->sq->ctrl->subsys;
767
	u32 cdw10 = le32_to_cpu(req->cmd->common.cdw10);
768 769
	u16 status = 0;

770
	switch (cdw10 & 0xff) {
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
	/*
	 * These features are mandatory in the spec, but we don't
	 * have a useful way to implement them.  We'll eventually
	 * need to come up with some fake values for these.
	 */
#if 0
	case NVME_FEAT_ARBITRATION:
		break;
	case NVME_FEAT_POWER_MGMT:
		break;
	case NVME_FEAT_TEMP_THRESH:
		break;
	case NVME_FEAT_ERR_RECOVERY:
		break;
	case NVME_FEAT_IRQ_COALESCE:
		break;
	case NVME_FEAT_IRQ_CONFIG:
		break;
	case NVME_FEAT_WRITE_ATOMIC:
		break;
791
#endif
792
	case NVME_FEAT_ASYNC_EVENT:
793
		nvmet_get_feat_async_event(req);
794 795 796 797 798 799 800 801 802
		break;
	case NVME_FEAT_VOLATILE_WC:
		nvmet_set_result(req, 1);
		break;
	case NVME_FEAT_NUM_QUEUES:
		nvmet_set_result(req,
			(subsys->max_qid-1) | ((subsys->max_qid-1) << 16));
		break;
	case NVME_FEAT_KATO:
803
		nvmet_get_feat_kato(req);
804
		break;
805 806
	case NVME_FEAT_HOST_ID:
		/* need 128-bit host identifier flag */
807
		if (!(req->cmd->common.cdw11 & cpu_to_le32(1 << 0))) {
808 809
			req->error_loc =
				offsetof(struct nvme_common_command, cdw11);
810 811 812 813 814 815 816
			status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
			break;
		}

		status = nvmet_copy_to_sgl(req, 0, &req->sq->ctrl->hostid,
				sizeof(req->sq->ctrl->hostid));
		break;
817 818 819
	case NVME_FEAT_WRITE_PROTECT:
		status = nvmet_get_feat_write_protect(req);
		break;
820
	default:
821 822
		req->error_loc =
			offsetof(struct nvme_common_command, cdw10);
823 824 825 826 827 828 829
		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
		break;
	}

	nvmet_req_complete(req, status);
}

830
void nvmet_execute_async_event(struct nvmet_req *req)
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
{
	struct nvmet_ctrl *ctrl = req->sq->ctrl;

	mutex_lock(&ctrl->lock);
	if (ctrl->nr_async_event_cmds >= NVMET_ASYNC_EVENTS) {
		mutex_unlock(&ctrl->lock);
		nvmet_req_complete(req, NVME_SC_ASYNC_LIMIT | NVME_SC_DNR);
		return;
	}
	ctrl->async_event_cmds[ctrl->nr_async_event_cmds++] = req;
	mutex_unlock(&ctrl->lock);

	schedule_work(&ctrl->async_event_work);
}

846
void nvmet_execute_keep_alive(struct nvmet_req *req)
847 848 849 850 851 852 853 854 855 856
{
	struct nvmet_ctrl *ctrl = req->sq->ctrl;

	pr_debug("ctrl %d update keep-alive timer for %d secs\n",
		ctrl->cntlid, ctrl->kato);

	mod_delayed_work(system_wq, &ctrl->ka_work, ctrl->kato * HZ);
	nvmet_req_complete(req, 0);
}

857
u16 nvmet_parse_admin_cmd(struct nvmet_req *req)
858 859
{
	struct nvme_command *cmd = req->cmd;
860
	u16 ret;
861

862 863 864
	ret = nvmet_check_ctrl_status(req, cmd);
	if (unlikely(ret))
		return ret;
865 866 867

	switch (cmd->common.opcode) {
	case nvme_admin_get_log_page:
868
		req->execute = nvmet_execute_get_log_page;
869
		req->data_len = nvmet_get_log_page_len(cmd);
870
		return 0;
871
	case nvme_admin_identify:
872
		req->execute = nvmet_execute_identify;
873
		req->data_len = NVME_IDENTIFY_DATA_SIZE;
874
		return 0;
875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
	case nvme_admin_abort_cmd:
		req->execute = nvmet_execute_abort;
		req->data_len = 0;
		return 0;
	case nvme_admin_set_features:
		req->execute = nvmet_execute_set_features;
		req->data_len = 0;
		return 0;
	case nvme_admin_get_features:
		req->execute = nvmet_execute_get_features;
		req->data_len = 0;
		return 0;
	case nvme_admin_async_event:
		req->execute = nvmet_execute_async_event;
		req->data_len = 0;
		return 0;
	case nvme_admin_keep_alive:
		req->execute = nvmet_execute_keep_alive;
		req->data_len = 0;
		return 0;
	}

897 898
	pr_err("unhandled cmd %d on qid %d\n", cmd->common.opcode,
	       req->sq->qid);
899
	req->error_loc = offsetof(struct nvme_common_command, opcode);
900 901
	return NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
}