nv50_display.c 56.0 KB
Newer Older
1
	/*
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 * Copyright 2011 Red Hat Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 * Authors: Ben Skeggs
 */

25
#include <linux/dma-mapping.h>
26

27 28
#include <drm/drmP.h>
#include <drm/drm_crtc_helper.h>
29

30 31 32
#include "nouveau_drm.h"
#include "nouveau_dma.h"
#include "nouveau_gem.h"
33 34 35
#include "nouveau_connector.h"
#include "nouveau_encoder.h"
#include "nouveau_crtc.h"
36
#include "nouveau_fence.h"
37
#include "nv50_display.h"
38

39
#include <core/client.h>
40
#include <core/gpuobj.h>
41
#include <core/class.h>
42 43 44 45 46

#include <subdev/timer.h>
#include <subdev/bar.h>
#include <subdev/fb.h>

47 48
#define EVO_DMA_NR 9

49
#define EVO_MASTER  (0x00)
50
#define EVO_FLIP(c) (0x01 + (c))
51 52
#define EVO_OVLY(c) (0x05 + (c))
#define EVO_OIMM(c) (0x09 + (c))
53 54
#define EVO_CURS(c) (0x0d + (c))

55 56 57 58 59 60
/* offsets in shared sync bo of various structures */
#define EVO_SYNC(c, o) ((c) * 0x0100 + (o))
#define EVO_MAST_NTFY     EVO_SYNC(  0, 0x00)
#define EVO_FLIP_SEM0(c)  EVO_SYNC((c), 0x00)
#define EVO_FLIP_SEM1(c)  EVO_SYNC((c), 0x10)

61 62 63 64 65 66 67 68 69 70
#define EVO_CORE_HANDLE      (0xd1500000)
#define EVO_CHAN_HANDLE(t,i) (0xd15c0000 | (((t) & 0x00ff) << 8) | (i))
#define EVO_CHAN_OCLASS(t,c) ((nv_hclass(c) & 0xff00) | ((t) & 0x00ff))
#define EVO_PUSH_HANDLE(t,i) (0xd15b0000 | (i) |                               \
			      (((NV50_DISP_##t##_CLASS) & 0x00ff) << 8))

/******************************************************************************
 * EVO channel
 *****************************************************************************/

71
struct nv50_chan {
72 73 74 75 76
	struct nouveau_object *user;
	u32 handle;
};

static int
77 78
nv50_chan_create(struct nouveau_object *core, u32 bclass, u8 head,
		 void *data, u32 size, struct nv50_chan *chan)
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
{
	struct nouveau_object *client = nv_pclass(core, NV_CLIENT_CLASS);
	const u32 oclass = EVO_CHAN_OCLASS(bclass, core);
	const u32 handle = EVO_CHAN_HANDLE(bclass, head);
	int ret;

	ret = nouveau_object_new(client, EVO_CORE_HANDLE, handle,
				 oclass, data, size, &chan->user);
	if (ret)
		return ret;

	chan->handle = handle;
	return 0;
}

static void
95
nv50_chan_destroy(struct nouveau_object *core, struct nv50_chan *chan)
96 97 98 99 100 101 102 103 104 105
{
	struct nouveau_object *client = nv_pclass(core, NV_CLIENT_CLASS);
	if (chan->handle)
		nouveau_object_del(client, EVO_CORE_HANDLE, chan->handle);
}

/******************************************************************************
 * PIO EVO channel
 *****************************************************************************/

106 107
struct nv50_pioc {
	struct nv50_chan base;
108 109 110
};

static void
111
nv50_pioc_destroy(struct nouveau_object *core, struct nv50_pioc *pioc)
112
{
113
	nv50_chan_destroy(core, &pioc->base);
114 115 116
}

static int
117 118
nv50_pioc_create(struct nouveau_object *core, u32 bclass, u8 head,
		 void *data, u32 size, struct nv50_pioc *pioc)
119
{
120
	return nv50_chan_create(core, bclass, head, data, size, &pioc->base);
121 122 123 124 125 126
}

/******************************************************************************
 * DMA EVO channel
 *****************************************************************************/

127 128
struct nv50_dmac {
	struct nv50_chan base;
129 130
	dma_addr_t handle;
	u32 *ptr;
131 132 133 134 135

	/* Protects against concurrent pushbuf access to this channel, lock is
	 * grabbed by evo_wait (if the pushbuf reservation is successful) and
	 * dropped again by evo_kick. */
	struct mutex lock;
136 137 138
};

static void
139
nv50_dmac_destroy(struct nouveau_object *core, struct nv50_dmac *dmac)
140 141 142 143 144 145
{
	if (dmac->ptr) {
		struct pci_dev *pdev = nv_device(core)->pdev;
		pci_free_consistent(pdev, PAGE_SIZE, dmac->ptr, dmac->handle);
	}

146
	nv50_chan_destroy(core, &dmac->base);
147 148 149
}

static int
150
nv50_dmac_create_fbdma(struct nouveau_object *core, u32 parent)
151 152 153 154
{
	struct nouveau_fb *pfb = nouveau_fb(core);
	struct nouveau_object *client = nv_pclass(core, NV_CLIENT_CLASS);
	struct nouveau_object *object;
155 156 157 158 159 160 161 162 163 164 165 166
	int ret = nouveau_object_new(client, parent, NvEvoVRAM_LP,
				     NV_DMA_IN_MEMORY_CLASS,
				     &(struct nv_dma_class) {
					.flags = NV_DMA_TARGET_VRAM |
						 NV_DMA_ACCESS_RDWR,
					.start = 0,
					.limit = pfb->ram.size - 1,
					.conf0 = NV50_DMA_CONF0_ENABLE |
					         NV50_DMA_CONF0_PART_256,
				     }, sizeof(struct nv_dma_class), &object);
	if (ret)
		return ret;
167

168 169
	ret = nouveau_object_new(client, parent, NvEvoFB16,
				 NV_DMA_IN_MEMORY_CLASS,
170
				 &(struct nv_dma_class) {
171 172 173 174 175 176
					.flags = NV_DMA_TARGET_VRAM |
						 NV_DMA_ACCESS_RDWR,
					.start = 0,
					.limit = pfb->ram.size - 1,
					.conf0 = NV50_DMA_CONF0_ENABLE | 0x70 |
					         NV50_DMA_CONF0_PART_256,
177 178 179 180
				 }, sizeof(struct nv_dma_class), &object);
	if (ret)
		return ret;

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
	ret = nouveau_object_new(client, parent, NvEvoFB32,
				 NV_DMA_IN_MEMORY_CLASS,
				 &(struct nv_dma_class) {
					.flags = NV_DMA_TARGET_VRAM |
						 NV_DMA_ACCESS_RDWR,
					.start = 0,
					.limit = pfb->ram.size - 1,
					.conf0 = NV50_DMA_CONF0_ENABLE | 0x7a |
					         NV50_DMA_CONF0_PART_256,
				 }, sizeof(struct nv_dma_class), &object);
	return ret;
}

static int
nvc0_dmac_create_fbdma(struct nouveau_object *core, u32 parent)
{
	struct nouveau_fb *pfb = nouveau_fb(core);
	struct nouveau_object *client = nv_pclass(core, NV_CLIENT_CLASS);
	struct nouveau_object *object;
	int ret = nouveau_object_new(client, parent, NvEvoVRAM_LP,
				     NV_DMA_IN_MEMORY_CLASS,
				     &(struct nv_dma_class) {
					.flags = NV_DMA_TARGET_VRAM |
						 NV_DMA_ACCESS_RDWR,
					.start = 0,
					.limit = pfb->ram.size - 1,
					.conf0 = NVC0_DMA_CONF0_ENABLE,
				     }, sizeof(struct nv_dma_class), &object);
209 210 211
	if (ret)
		return ret;

212
	ret = nouveau_object_new(client, parent, NvEvoFB16,
213 214 215 216
				 NV_DMA_IN_MEMORY_CLASS,
				 &(struct nv_dma_class) {
					.flags = NV_DMA_TARGET_VRAM |
						 NV_DMA_ACCESS_RDWR,
217 218 219
					.start = 0,
					.limit = pfb->ram.size - 1,
					.conf0 = NVC0_DMA_CONF0_ENABLE | 0xfe,
220 221
				 }, sizeof(struct nv_dma_class), &object);
	if (ret)
222
		return ret;
223

224
	ret = nouveau_object_new(client, parent, NvEvoFB32,
225 226 227 228 229 230
				 NV_DMA_IN_MEMORY_CLASS,
				 &(struct nv_dma_class) {
					.flags = NV_DMA_TARGET_VRAM |
						 NV_DMA_ACCESS_RDWR,
					.start = 0,
					.limit = pfb->ram.size - 1,
231
					.conf0 = NVC0_DMA_CONF0_ENABLE | 0xfe,
232
				 }, sizeof(struct nv_dma_class), &object);
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
	return ret;
}

static int
nvd0_dmac_create_fbdma(struct nouveau_object *core, u32 parent)
{
	struct nouveau_fb *pfb = nouveau_fb(core);
	struct nouveau_object *client = nv_pclass(core, NV_CLIENT_CLASS);
	struct nouveau_object *object;
	int ret = nouveau_object_new(client, parent, NvEvoVRAM_LP,
				     NV_DMA_IN_MEMORY_CLASS,
				     &(struct nv_dma_class) {
					.flags = NV_DMA_TARGET_VRAM |
						 NV_DMA_ACCESS_RDWR,
					.start = 0,
					.limit = pfb->ram.size - 1,
					.conf0 = NVD0_DMA_CONF0_ENABLE |
						 NVD0_DMA_CONF0_PAGE_LP,
				     }, sizeof(struct nv_dma_class), &object);
252
	if (ret)
253
		return ret;
254

255
	ret = nouveau_object_new(client, parent, NvEvoFB32,
256 257 258 259 260 261
				 NV_DMA_IN_MEMORY_CLASS,
				 &(struct nv_dma_class) {
					.flags = NV_DMA_TARGET_VRAM |
						 NV_DMA_ACCESS_RDWR,
					.start = 0,
					.limit = pfb->ram.size - 1,
262
					.conf0 = NVD0_DMA_CONF0_ENABLE | 0xfe |
263 264
						 NVD0_DMA_CONF0_PAGE_LP,
				 }, sizeof(struct nv_dma_class), &object);
265 266 267 268
	return ret;
}

static int
269
nv50_dmac_create(struct nouveau_object *core, u32 bclass, u8 head,
270
		 void *data, u32 size, u64 syncbuf,
271
		 struct nv50_dmac *dmac)
272 273 274 275 276 277 278
{
	struct nouveau_fb *pfb = nouveau_fb(core);
	struct nouveau_object *client = nv_pclass(core, NV_CLIENT_CLASS);
	struct nouveau_object *object;
	u32 pushbuf = *(u32 *)data;
	int ret;

279 280
	mutex_init(&dmac->lock);

281 282 283 284 285 286 287 288 289 290 291 292 293
	dmac->ptr = pci_alloc_consistent(nv_device(core)->pdev, PAGE_SIZE,
					&dmac->handle);
	if (!dmac->ptr)
		return -ENOMEM;

	ret = nouveau_object_new(client, NVDRM_DEVICE, pushbuf,
				 NV_DMA_FROM_MEMORY_CLASS,
				 &(struct nv_dma_class) {
					.flags = NV_DMA_TARGET_PCI_US |
						 NV_DMA_ACCESS_RD,
					.start = dmac->handle + 0x0000,
					.limit = dmac->handle + 0x0fff,
				 }, sizeof(struct nv_dma_class), &object);
294
	if (ret)
295
		return ret;
296

297
	ret = nv50_chan_create(core, bclass, head, data, size, &dmac->base);
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
	if (ret)
		return ret;

	ret = nouveau_object_new(client, dmac->base.handle, NvEvoSync,
				 NV_DMA_IN_MEMORY_CLASS,
				 &(struct nv_dma_class) {
					.flags = NV_DMA_TARGET_VRAM |
						 NV_DMA_ACCESS_RDWR,
					.start = syncbuf + 0x0000,
					.limit = syncbuf + 0x0fff,
				 }, sizeof(struct nv_dma_class), &object);
	if (ret)
		return ret;

	ret = nouveau_object_new(client, dmac->base.handle, NvEvoVRAM,
313 314 315 316 317 318 319 320
				 NV_DMA_IN_MEMORY_CLASS,
				 &(struct nv_dma_class) {
					.flags = NV_DMA_TARGET_VRAM |
						 NV_DMA_ACCESS_RDWR,
					.start = 0,
					.limit = pfb->ram.size - 1,
				 }, sizeof(struct nv_dma_class), &object);
	if (ret)
321 322 323 324 325 326 327 328 329
		return ret;

	if (nv_device(core)->card_type < NV_C0)
		ret = nv50_dmac_create_fbdma(core, dmac->base.handle);
	else
	if (nv_device(core)->card_type < NV_D0)
		ret = nvc0_dmac_create_fbdma(core, dmac->base.handle);
	else
		ret = nvd0_dmac_create_fbdma(core, dmac->base.handle);
330 331 332
	return ret;
}

333 334
struct nv50_mast {
	struct nv50_dmac base;
335 336
};

337 338
struct nv50_curs {
	struct nv50_pioc base;
339 340
};

341 342
struct nv50_sync {
	struct nv50_dmac base;
343 344 345 346 347 348
	struct {
		u32 offset;
		u16 value;
	} sem;
};

349 350
struct nv50_ovly {
	struct nv50_dmac base;
351
};
352

353 354
struct nv50_oimm {
	struct nv50_pioc base;
355 356
};

357
struct nv50_head {
358
	struct nouveau_crtc base;
359 360 361 362
	struct nv50_curs curs;
	struct nv50_sync sync;
	struct nv50_ovly ovly;
	struct nv50_oimm oimm;
363 364
};

365 366 367 368 369 370 371
#define nv50_head(c) ((struct nv50_head *)nouveau_crtc(c))
#define nv50_curs(c) (&nv50_head(c)->curs)
#define nv50_sync(c) (&nv50_head(c)->sync)
#define nv50_ovly(c) (&nv50_head(c)->ovly)
#define nv50_oimm(c) (&nv50_head(c)->oimm)
#define nv50_chan(c) (&(c)->base.base)
#define nv50_vers(c) nv_mclass(nv50_chan(c)->user)
372

373
struct nv50_disp {
374
	struct nouveau_object *core;
375
	struct nv50_mast mast;
376 377 378 379

	u32 modeset;

	struct nouveau_bo *sync;
380 381
};

382 383
static struct nv50_disp *
nv50_disp(struct drm_device *dev)
384
{
385
	return nouveau_display(dev)->priv;
386 387
}

388
#define nv50_mast(d) (&nv50_disp(d)->mast)
389

390
static struct drm_crtc *
391
nv50_display_crtc_get(struct drm_encoder *encoder)
392 393 394 395 396 397 398
{
	return nouveau_encoder(encoder)->crtc;
}

/******************************************************************************
 * EVO channel helpers
 *****************************************************************************/
399
static u32 *
400
evo_wait(void *evoc, int nr)
401
{
402
	struct nv50_dmac *dmac = evoc;
403
	u32 put = nv_ro32(dmac->base.user, 0x0000) / 4;
404

405
	mutex_lock(&dmac->lock);
406
	if (put + nr >= (PAGE_SIZE / 4) - 8) {
407
		dmac->ptr[put] = 0x20000000;
408

409 410
		nv_wo32(dmac->base.user, 0x0000, 0x00000000);
		if (!nv_wait(dmac->base.user, 0x0004, ~0, 0x00000000)) {
411
			mutex_unlock(&dmac->lock);
412
			NV_ERROR(dmac->base.user, "channel stalled\n");
413 414 415 416 417 418
			return NULL;
		}

		put = 0;
	}

419
	return dmac->ptr + put;
420 421 422
}

static void
423
evo_kick(u32 *push, void *evoc)
424
{
425
	struct nv50_dmac *dmac = evoc;
426
	nv_wo32(dmac->base.user, 0x0000, (push - dmac->ptr) << 2);
427
	mutex_unlock(&dmac->lock);
428 429 430 431 432
}

#define evo_mthd(p,m,s) *((p)++) = (((s) << 18) | (m))
#define evo_data(p,d)   *((p)++) = (d)

433 434 435
static bool
evo_sync_wait(void *data)
{
436
	return nouveau_bo_rd32(data, EVO_MAST_NTFY) != 0x00000000;
437 438 439
}

static int
440
evo_sync(struct drm_device *dev)
441
{
442
	struct nouveau_device *device = nouveau_dev(dev);
443 444
	struct nv50_disp *disp = nv50_disp(dev);
	struct nv50_mast *mast = nv50_mast(dev);
445
	u32 *push = evo_wait(mast, 8);
446
	if (push) {
447
		nouveau_bo_wr32(disp->sync, EVO_MAST_NTFY, 0x00000000);
448
		evo_mthd(push, 0x0084, 1);
449
		evo_data(push, 0x80000000 | EVO_MAST_NTFY);
450 451 452
		evo_mthd(push, 0x0080, 2);
		evo_data(push, 0x00000000);
		evo_data(push, 0x00000000);
453
		evo_kick(push, mast);
454
		if (nv_wait_cb(device, evo_sync_wait, disp->sync))
455 456 457 458 459 460 461
			return 0;
	}

	return -EBUSY;
}

/******************************************************************************
462
 * Page flipping channel
463 464
 *****************************************************************************/
struct nouveau_bo *
465
nv50_display_crtc_sema(struct drm_device *dev, int crtc)
466
{
467
	return nv50_disp(dev)->sync;
468 469 470
}

void
471
nv50_display_flip_stop(struct drm_crtc *crtc)
472
{
473
	struct nv50_sync *sync = nv50_sync(crtc);
474 475
	u32 *push;

476
	push = evo_wait(sync, 8);
477 478 479 480 481 482 483 484 485
	if (push) {
		evo_mthd(push, 0x0084, 1);
		evo_data(push, 0x00000000);
		evo_mthd(push, 0x0094, 1);
		evo_data(push, 0x00000000);
		evo_mthd(push, 0x00c0, 1);
		evo_data(push, 0x00000000);
		evo_mthd(push, 0x0080, 1);
		evo_data(push, 0x00000000);
486
		evo_kick(push, sync);
487 488 489 490
	}
}

int
491
nv50_display_flip_next(struct drm_crtc *crtc, struct drm_framebuffer *fb,
492 493 494
		       struct nouveau_channel *chan, u32 swap_interval)
{
	struct nouveau_framebuffer *nv_fb = nouveau_framebuffer(fb);
495
	struct nv50_disp *disp = nv50_disp(crtc->dev);
496
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
497
	struct nv50_sync *sync = nv50_sync(crtc);
498 499 500 501 502 503 504
	u32 *push;
	int ret;

	swap_interval <<= 4;
	if (swap_interval == 0)
		swap_interval |= 0x100;

505
	push = evo_wait(sync, 128);
506 507 508 509 510 511 512 513 514
	if (unlikely(push == NULL))
		return -EBUSY;

	/* synchronise with the rendering channel, if necessary */
	if (likely(chan)) {
		ret = RING_SPACE(chan, 10);
		if (ret)
			return ret;

515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
		if (nv_mclass(chan->object) < NVC0_CHANNEL_IND_CLASS) {
			BEGIN_NV04(chan, 0, NV11_SUBCHAN_DMA_SEMAPHORE, 2);
			OUT_RING  (chan, NvEvoSema0 + nv_crtc->index);
			OUT_RING  (chan, sync->sem.offset);
			BEGIN_NV04(chan, 0, NV11_SUBCHAN_SEMAPHORE_RELEASE, 1);
			OUT_RING  (chan, 0xf00d0000 | sync->sem.value);
			BEGIN_NV04(chan, 0, NV11_SUBCHAN_SEMAPHORE_OFFSET, 2);
			OUT_RING  (chan, sync->sem.offset ^ 0x10);
			OUT_RING  (chan, 0x74b1e000);
			BEGIN_NV04(chan, 0, NV11_SUBCHAN_DMA_SEMAPHORE, 1);
			if (nv_mclass(chan->object) < NV84_CHANNEL_DMA_CLASS)
				OUT_RING  (chan, NvSema);
			else
				OUT_RING  (chan, chan->vram);
		} else {
			u64 offset = nvc0_fence_crtc(chan, nv_crtc->index);
			offset += sync->sem.offset;

			BEGIN_NVC0(chan, 0, NV84_SUBCHAN_SEMAPHORE_ADDRESS_HIGH, 4);
			OUT_RING  (chan, upper_32_bits(offset));
			OUT_RING  (chan, lower_32_bits(offset));
			OUT_RING  (chan, 0xf00d0000 | sync->sem.value);
			OUT_RING  (chan, 0x1002);
			BEGIN_NVC0(chan, 0, NV84_SUBCHAN_SEMAPHORE_ADDRESS_HIGH, 4);
			OUT_RING  (chan, upper_32_bits(offset));
			OUT_RING  (chan, lower_32_bits(offset ^ 0x10));
			OUT_RING  (chan, 0x74b1e000);
			OUT_RING  (chan, 0x1001);
		}
544

545 546
		FIRE_RING (chan);
	} else {
547 548 549
		nouveau_bo_wr32(disp->sync, sync->sem.offset / 4,
				0xf00d0000 | sync->sem.value);
		evo_sync(crtc->dev);
550 551 552 553 554 555 556 557 558 559 560 561
	}

	/* queue the flip */
	evo_mthd(push, 0x0100, 1);
	evo_data(push, 0xfffe0000);
	evo_mthd(push, 0x0084, 1);
	evo_data(push, swap_interval);
	if (!(swap_interval & 0x00000100)) {
		evo_mthd(push, 0x00e0, 1);
		evo_data(push, 0x40000000);
	}
	evo_mthd(push, 0x0088, 4);
562 563
	evo_data(push, sync->sem.offset);
	evo_data(push, 0xf00d0000 | sync->sem.value);
564 565 566 567 568 569 570 571 572 573
	evo_data(push, 0x74b1e000);
	evo_data(push, NvEvoSync);
	evo_mthd(push, 0x00a0, 2);
	evo_data(push, 0x00000000);
	evo_data(push, 0x00000000);
	evo_mthd(push, 0x00c0, 1);
	evo_data(push, nv_fb->r_dma);
	evo_mthd(push, 0x0110, 2);
	evo_data(push, 0x00000000);
	evo_data(push, 0x00000000);
574
	if (nv50_vers(sync) < NVD0_DISP_SYNC_CLASS) {
575 576 577 578 579 580 581 582 583 584 585 586 587 588
		evo_mthd(push, 0x0800, 5);
		evo_data(push, nv_fb->nvbo->bo.offset >> 8);
		evo_data(push, 0);
		evo_data(push, (fb->height << 16) | fb->width);
		evo_data(push, nv_fb->r_pitch);
		evo_data(push, nv_fb->r_format);
	} else {
		evo_mthd(push, 0x0400, 5);
		evo_data(push, nv_fb->nvbo->bo.offset >> 8);
		evo_data(push, 0);
		evo_data(push, (fb->height << 16) | fb->width);
		evo_data(push, nv_fb->r_pitch);
		evo_data(push, nv_fb->r_format);
	}
589 590
	evo_mthd(push, 0x0080, 1);
	evo_data(push, 0x00000000);
591
	evo_kick(push, sync);
592

593 594
	sync->sem.offset ^= 0x10;
	sync->sem.value++;
595 596 597
	return 0;
}

598 599 600 601
/******************************************************************************
 * CRTC
 *****************************************************************************/
static int
602
nv50_crtc_set_dither(struct nouveau_crtc *nv_crtc, bool update)
603
{
604
	struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
605 606 607
	struct nouveau_connector *nv_connector;
	struct drm_connector *connector;
	u32 *push, mode = 0x00;
608

609
	nv_connector = nouveau_crtc_connector_get(nv_crtc);
610 611 612 613 614 615 616 617 618 619 620 621 622
	connector = &nv_connector->base;
	if (nv_connector->dithering_mode == DITHERING_MODE_AUTO) {
		if (nv_crtc->base.fb->depth > connector->display_info.bpc * 3)
			mode = DITHERING_MODE_DYNAMIC2X2;
	} else {
		mode = nv_connector->dithering_mode;
	}

	if (nv_connector->dithering_depth == DITHERING_DEPTH_AUTO) {
		if (connector->display_info.bpc >= 8)
			mode |= DITHERING_DEPTH_8BPC;
	} else {
		mode |= nv_connector->dithering_depth;
623 624
	}

625
	push = evo_wait(mast, 4);
626
	if (push) {
627
		if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
628 629 630
			evo_mthd(push, 0x08a0 + (nv_crtc->index * 0x0400), 1);
			evo_data(push, mode);
		} else
631
		if (nv50_vers(mast) < NVE0_DISP_MAST_CLASS) {
632 633 634 635 636 637 638
			evo_mthd(push, 0x0490 + (nv_crtc->index * 0x0300), 1);
			evo_data(push, mode);
		} else {
			evo_mthd(push, 0x04a0 + (nv_crtc->index * 0x0300), 1);
			evo_data(push, mode);
		}

639 640 641 642
		if (update) {
			evo_mthd(push, 0x0080, 1);
			evo_data(push, 0x00000000);
		}
643
		evo_kick(push, mast);
644 645 646 647 648 649
	}

	return 0;
}

static int
650
nv50_crtc_set_scale(struct nouveau_crtc *nv_crtc, bool update)
651
{
652
	struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
653
	struct drm_display_mode *omode, *umode = &nv_crtc->base.mode;
654
	struct drm_crtc *crtc = &nv_crtc->base;
B
Ben Skeggs 已提交
655
	struct nouveau_connector *nv_connector;
656 657
	int mode = DRM_MODE_SCALE_NONE;
	u32 oX, oY, *push;
B
Ben Skeggs 已提交
658

659 660 661
	/* start off at the resolution we programmed the crtc for, this
	 * effectively handles NONE/FULL scaling
	 */
B
Ben Skeggs 已提交
662
	nv_connector = nouveau_crtc_connector_get(nv_crtc);
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
	if (nv_connector && nv_connector->native_mode)
		mode = nv_connector->scaling_mode;

	if (mode != DRM_MODE_SCALE_NONE)
		omode = nv_connector->native_mode;
	else
		omode = umode;

	oX = omode->hdisplay;
	oY = omode->vdisplay;
	if (omode->flags & DRM_MODE_FLAG_DBLSCAN)
		oY *= 2;

	/* add overscan compensation if necessary, will keep the aspect
	 * ratio the same as the backend mode unless overridden by the
	 * user setting both hborder and vborder properties.
	 */
	if (nv_connector && ( nv_connector->underscan == UNDERSCAN_ON ||
			     (nv_connector->underscan == UNDERSCAN_AUTO &&
			      nv_connector->edid &&
			      drm_detect_hdmi_monitor(nv_connector->edid)))) {
		u32 bX = nv_connector->underscan_hborder;
		u32 bY = nv_connector->underscan_vborder;
		u32 aspect = (oY << 19) / oX;

		if (bX) {
			oX -= (bX * 2);
			if (bY) oY -= (bY * 2);
			else    oY  = ((oX * aspect) + (aspect / 2)) >> 19;
		} else {
			oX -= (oX >> 4) + 32;
			if (bY) oY -= (bY * 2);
			else    oY  = ((oX * aspect) + (aspect / 2)) >> 19;
		}
	}

	/* handle CENTER/ASPECT scaling, taking into account the areas
	 * removed already for overscan compensation
	 */
	switch (mode) {
	case DRM_MODE_SCALE_CENTER:
		oX = min((u32)umode->hdisplay, oX);
		oY = min((u32)umode->vdisplay, oY);
		/* fall-through */
	case DRM_MODE_SCALE_ASPECT:
		if (oY < oX) {
			u32 aspect = (umode->hdisplay << 19) / umode->vdisplay;
			oX = ((oY * aspect) + (aspect / 2)) >> 19;
		} else {
			u32 aspect = (umode->vdisplay << 19) / umode->hdisplay;
			oY = ((oX * aspect) + (aspect / 2)) >> 19;
B
Ben Skeggs 已提交
714
		}
715 716 717
		break;
	default:
		break;
B
Ben Skeggs 已提交
718
	}
719

720
	push = evo_wait(mast, 8);
721
	if (push) {
722
		if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
			/*XXX: SCALE_CTRL_ACTIVE??? */
			evo_mthd(push, 0x08d8 + (nv_crtc->index * 0x400), 2);
			evo_data(push, (oY << 16) | oX);
			evo_data(push, (oY << 16) | oX);
			evo_mthd(push, 0x08a4 + (nv_crtc->index * 0x400), 1);
			evo_data(push, 0x00000000);
			evo_mthd(push, 0x08c8 + (nv_crtc->index * 0x400), 1);
			evo_data(push, umode->vdisplay << 16 | umode->hdisplay);
		} else {
			evo_mthd(push, 0x04c0 + (nv_crtc->index * 0x300), 3);
			evo_data(push, (oY << 16) | oX);
			evo_data(push, (oY << 16) | oX);
			evo_data(push, (oY << 16) | oX);
			evo_mthd(push, 0x0494 + (nv_crtc->index * 0x300), 1);
			evo_data(push, 0x00000000);
			evo_mthd(push, 0x04b8 + (nv_crtc->index * 0x300), 1);
			evo_data(push, umode->vdisplay << 16 | umode->hdisplay);
		}

		evo_kick(push, mast);

744
		if (update) {
745 746
			nv50_display_flip_stop(crtc);
			nv50_display_flip_next(crtc, crtc->fb, NULL, 1);
747 748 749 750 751 752
		}
	}

	return 0;
}

753
static int
754
nv50_crtc_set_color_vibrance(struct nouveau_crtc *nv_crtc, bool update)
755
{
756
	struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
757 758 759 760 761 762 763 764 765
	u32 *push, hue, vib;
	int adj;

	adj = (nv_crtc->color_vibrance > 0) ? 50 : 0;
	vib = ((nv_crtc->color_vibrance * 2047 + adj) / 100) & 0xfff;
	hue = ((nv_crtc->vibrant_hue * 2047) / 100) & 0xfff;

	push = evo_wait(mast, 16);
	if (push) {
766
		if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
			evo_mthd(push, 0x08a8 + (nv_crtc->index * 0x400), 1);
			evo_data(push, (hue << 20) | (vib << 8));
		} else {
			evo_mthd(push, 0x0498 + (nv_crtc->index * 0x300), 1);
			evo_data(push, (hue << 20) | (vib << 8));
		}

		if (update) {
			evo_mthd(push, 0x0080, 1);
			evo_data(push, 0x00000000);
		}
		evo_kick(push, mast);
	}

	return 0;
}

784
static int
785
nv50_crtc_set_image(struct nouveau_crtc *nv_crtc, struct drm_framebuffer *fb,
786 787 788
		    int x, int y, bool update)
{
	struct nouveau_framebuffer *nvfb = nouveau_framebuffer(fb);
789
	struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
790 791
	u32 *push;

792
	push = evo_wait(mast, 16);
793
	if (push) {
794
		if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
795 796 797 798 799 800 801 802
			evo_mthd(push, 0x0860 + (nv_crtc->index * 0x400), 1);
			evo_data(push, nvfb->nvbo->bo.offset >> 8);
			evo_mthd(push, 0x0868 + (nv_crtc->index * 0x400), 3);
			evo_data(push, (fb->height << 16) | fb->width);
			evo_data(push, nvfb->r_pitch);
			evo_data(push, nvfb->r_format);
			evo_mthd(push, 0x08c0 + (nv_crtc->index * 0x400), 1);
			evo_data(push, (y << 16) | x);
803
			if (nv50_vers(mast) > NV50_DISP_MAST_CLASS) {
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
				evo_mthd(push, 0x0874 + (nv_crtc->index * 0x400), 1);
				evo_data(push, nvfb->r_dma);
			}
		} else {
			evo_mthd(push, 0x0460 + (nv_crtc->index * 0x300), 1);
			evo_data(push, nvfb->nvbo->bo.offset >> 8);
			evo_mthd(push, 0x0468 + (nv_crtc->index * 0x300), 4);
			evo_data(push, (fb->height << 16) | fb->width);
			evo_data(push, nvfb->r_pitch);
			evo_data(push, nvfb->r_format);
			evo_data(push, nvfb->r_dma);
			evo_mthd(push, 0x04b0 + (nv_crtc->index * 0x300), 1);
			evo_data(push, (y << 16) | x);
		}

819 820 821 822
		if (update) {
			evo_mthd(push, 0x0080, 1);
			evo_data(push, 0x00000000);
		}
823
		evo_kick(push, mast);
824 825
	}

826
	nv_crtc->fb.tile_flags = nvfb->r_dma;
827 828 829 830
	return 0;
}

static void
831
nv50_crtc_cursor_show(struct nouveau_crtc *nv_crtc)
832
{
833
	struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
834
	u32 *push = evo_wait(mast, 16);
835
	if (push) {
836
		if (nv50_vers(mast) < NV84_DISP_MAST_CLASS) {
837 838 839 840
			evo_mthd(push, 0x0880 + (nv_crtc->index * 0x400), 2);
			evo_data(push, 0x85000000);
			evo_data(push, nv_crtc->cursor.nvbo->bo.offset >> 8);
		} else
841
		if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
842 843 844 845 846 847
			evo_mthd(push, 0x0880 + (nv_crtc->index * 0x400), 2);
			evo_data(push, 0x85000000);
			evo_data(push, nv_crtc->cursor.nvbo->bo.offset >> 8);
			evo_mthd(push, 0x089c + (nv_crtc->index * 0x400), 1);
			evo_data(push, NvEvoVRAM);
		} else {
848 849 850 851
			evo_mthd(push, 0x0480 + (nv_crtc->index * 0x300), 2);
			evo_data(push, 0x85000000);
			evo_data(push, nv_crtc->cursor.nvbo->bo.offset >> 8);
			evo_mthd(push, 0x048c + (nv_crtc->index * 0x300), 1);
852
			evo_data(push, NvEvoVRAM);
853 854 855 856 857 858
		}
		evo_kick(push, mast);
	}
}

static void
859
nv50_crtc_cursor_hide(struct nouveau_crtc *nv_crtc)
860
{
861
	struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
862 863
	u32 *push = evo_wait(mast, 16);
	if (push) {
864
		if (nv50_vers(mast) < NV84_DISP_MAST_CLASS) {
865 866 867
			evo_mthd(push, 0x0880 + (nv_crtc->index * 0x400), 1);
			evo_data(push, 0x05000000);
		} else
868
		if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
869 870 871 872
			evo_mthd(push, 0x0880 + (nv_crtc->index * 0x400), 1);
			evo_data(push, 0x05000000);
			evo_mthd(push, 0x089c + (nv_crtc->index * 0x400), 1);
			evo_data(push, 0x00000000);
873 874 875 876 877 878
		} else {
			evo_mthd(push, 0x0480 + (nv_crtc->index * 0x300), 1);
			evo_data(push, 0x05000000);
			evo_mthd(push, 0x048c + (nv_crtc->index * 0x300), 1);
			evo_data(push, 0x00000000);
		}
879 880 881
		evo_kick(push, mast);
	}
}
882

883
static void
884
nv50_crtc_cursor_show_hide(struct nouveau_crtc *nv_crtc, bool show, bool update)
885
{
886
	struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
887 888

	if (show)
889
		nv50_crtc_cursor_show(nv_crtc);
890
	else
891
		nv50_crtc_cursor_hide(nv_crtc);
892 893 894 895

	if (update) {
		u32 *push = evo_wait(mast, 2);
		if (push) {
896 897
			evo_mthd(push, 0x0080, 1);
			evo_data(push, 0x00000000);
898
			evo_kick(push, mast);
899 900 901 902 903
		}
	}
}

static void
904
nv50_crtc_dpms(struct drm_crtc *crtc, int mode)
905 906 907 908
{
}

static void
909
nv50_crtc_prepare(struct drm_crtc *crtc)
910 911
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
912
	struct nv50_mast *mast = nv50_mast(crtc->dev);
913 914
	u32 *push;

915
	nv50_display_flip_stop(crtc);
916

917
	push = evo_wait(mast, 2);
918
	if (push) {
919
		if (nv50_vers(mast) < NV84_DISP_MAST_CLASS) {
920 921 922 923 924
			evo_mthd(push, 0x0874 + (nv_crtc->index * 0x400), 1);
			evo_data(push, 0x00000000);
			evo_mthd(push, 0x0840 + (nv_crtc->index * 0x400), 1);
			evo_data(push, 0x40000000);
		} else
925
		if (nv50_vers(mast) <  NVD0_DISP_MAST_CLASS) {
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
			evo_mthd(push, 0x0874 + (nv_crtc->index * 0x400), 1);
			evo_data(push, 0x00000000);
			evo_mthd(push, 0x0840 + (nv_crtc->index * 0x400), 1);
			evo_data(push, 0x40000000);
			evo_mthd(push, 0x085c + (nv_crtc->index * 0x400), 1);
			evo_data(push, 0x00000000);
		} else {
			evo_mthd(push, 0x0474 + (nv_crtc->index * 0x300), 1);
			evo_data(push, 0x00000000);
			evo_mthd(push, 0x0440 + (nv_crtc->index * 0x300), 1);
			evo_data(push, 0x03000000);
			evo_mthd(push, 0x045c + (nv_crtc->index * 0x300), 1);
			evo_data(push, 0x00000000);
		}

		evo_kick(push, mast);
942 943
	}

944
	nv50_crtc_cursor_show_hide(nv_crtc, false, false);
945 946 947
}

static void
948
nv50_crtc_commit(struct drm_crtc *crtc)
949 950
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
951
	struct nv50_mast *mast = nv50_mast(crtc->dev);
952 953
	u32 *push;

954
	push = evo_wait(mast, 32);
955
	if (push) {
956
		if (nv50_vers(mast) < NV84_DISP_MAST_CLASS) {
957 958 959 960 961 962
			evo_mthd(push, 0x0874 + (nv_crtc->index * 0x400), 1);
			evo_data(push, NvEvoVRAM_LP);
			evo_mthd(push, 0x0840 + (nv_crtc->index * 0x400), 2);
			evo_data(push, 0xc0000000);
			evo_data(push, nv_crtc->lut.nvbo->bo.offset >> 8);
		} else
963
		if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
			evo_mthd(push, 0x0874 + (nv_crtc->index * 0x400), 1);
			evo_data(push, nv_crtc->fb.tile_flags);
			evo_mthd(push, 0x0840 + (nv_crtc->index * 0x400), 2);
			evo_data(push, 0xc0000000);
			evo_data(push, nv_crtc->lut.nvbo->bo.offset >> 8);
			evo_mthd(push, 0x085c + (nv_crtc->index * 0x400), 1);
			evo_data(push, NvEvoVRAM);
		} else {
			evo_mthd(push, 0x0474 + (nv_crtc->index * 0x300), 1);
			evo_data(push, nv_crtc->fb.tile_flags);
			evo_mthd(push, 0x0440 + (nv_crtc->index * 0x300), 4);
			evo_data(push, 0x83000000);
			evo_data(push, nv_crtc->lut.nvbo->bo.offset >> 8);
			evo_data(push, 0x00000000);
			evo_data(push, 0x00000000);
			evo_mthd(push, 0x045c + (nv_crtc->index * 0x300), 1);
			evo_data(push, NvEvoVRAM);
			evo_mthd(push, 0x0430 + (nv_crtc->index * 0x300), 1);
			evo_data(push, 0xffffff00);
		}

		evo_kick(push, mast);
986 987
	}

988 989
	nv50_crtc_cursor_show_hide(nv_crtc, nv_crtc->cursor.visible, true);
	nv50_display_flip_next(crtc, crtc->fb, NULL, 1);
990 991 992
}

static bool
993
nv50_crtc_mode_fixup(struct drm_crtc *crtc, const struct drm_display_mode *mode,
994 995 996 997 998 999
		     struct drm_display_mode *adjusted_mode)
{
	return true;
}

static int
1000
nv50_crtc_swap_fbs(struct drm_crtc *crtc, struct drm_framebuffer *old_fb)
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
{
	struct nouveau_framebuffer *nvfb = nouveau_framebuffer(crtc->fb);
	int ret;

	ret = nouveau_bo_pin(nvfb->nvbo, TTM_PL_FLAG_VRAM);
	if (ret)
		return ret;

	if (old_fb) {
		nvfb = nouveau_framebuffer(old_fb);
		nouveau_bo_unpin(nvfb->nvbo);
	}

	return 0;
}

static int
1018
nv50_crtc_mode_set(struct drm_crtc *crtc, struct drm_display_mode *umode,
1019 1020 1021
		   struct drm_display_mode *mode, int x, int y,
		   struct drm_framebuffer *old_fb)
{
1022
	struct nv50_mast *mast = nv50_mast(crtc->dev);
1023 1024
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	struct nouveau_connector *nv_connector;
1025 1026 1027 1028 1029
	u32 ilace = (mode->flags & DRM_MODE_FLAG_INTERLACE) ? 2 : 1;
	u32 vscan = (mode->flags & DRM_MODE_FLAG_DBLSCAN) ? 2 : 1;
	u32 hactive, hsynce, hbackp, hfrontp, hblanke, hblanks;
	u32 vactive, vsynce, vbackp, vfrontp, vblanke, vblanks;
	u32 vblan2e = 0, vblan2s = 1;
1030
	u32 *push;
1031 1032
	int ret;

1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
	hactive = mode->htotal;
	hsynce  = mode->hsync_end - mode->hsync_start - 1;
	hbackp  = mode->htotal - mode->hsync_end;
	hblanke = hsynce + hbackp;
	hfrontp = mode->hsync_start - mode->hdisplay;
	hblanks = mode->htotal - hfrontp - 1;

	vactive = mode->vtotal * vscan / ilace;
	vsynce  = ((mode->vsync_end - mode->vsync_start) * vscan / ilace) - 1;
	vbackp  = (mode->vtotal - mode->vsync_end) * vscan / ilace;
	vblanke = vsynce + vbackp;
	vfrontp = (mode->vsync_start - mode->vdisplay) * vscan / ilace;
	vblanks = vactive - vfrontp - 1;
	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
		vblan2e = vactive + vsynce + vbackp;
		vblan2s = vblan2e + (mode->vdisplay * vscan / ilace);
		vactive = (vactive * 2) + 1;
	}

1052
	ret = nv50_crtc_swap_fbs(crtc, old_fb);
1053 1054 1055
	if (ret)
		return ret;

1056
	push = evo_wait(mast, 64);
1057
	if (push) {
1058
		if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
			evo_mthd(push, 0x0804 + (nv_crtc->index * 0x400), 2);
			evo_data(push, 0x00800000 | mode->clock);
			evo_data(push, (ilace == 2) ? 2 : 0);
			evo_mthd(push, 0x0810 + (nv_crtc->index * 0x400), 6);
			evo_data(push, 0x00000000);
			evo_data(push, (vactive << 16) | hactive);
			evo_data(push, ( vsynce << 16) | hsynce);
			evo_data(push, (vblanke << 16) | hblanke);
			evo_data(push, (vblanks << 16) | hblanks);
			evo_data(push, (vblan2e << 16) | vblan2s);
			evo_mthd(push, 0x082c + (nv_crtc->index * 0x400), 1);
			evo_data(push, 0x00000000);
			evo_mthd(push, 0x0900 + (nv_crtc->index * 0x400), 2);
			evo_data(push, 0x00000311);
			evo_data(push, 0x00000100);
		} else {
			evo_mthd(push, 0x0410 + (nv_crtc->index * 0x300), 6);
			evo_data(push, 0x00000000);
			evo_data(push, (vactive << 16) | hactive);
			evo_data(push, ( vsynce << 16) | hsynce);
			evo_data(push, (vblanke << 16) | hblanke);
			evo_data(push, (vblanks << 16) | hblanks);
			evo_data(push, (vblan2e << 16) | vblan2s);
			evo_mthd(push, 0x042c + (nv_crtc->index * 0x300), 1);
			evo_data(push, 0x00000000); /* ??? */
			evo_mthd(push, 0x0450 + (nv_crtc->index * 0x300), 3);
			evo_data(push, mode->clock * 1000);
			evo_data(push, 0x00200000); /* ??? */
			evo_data(push, mode->clock * 1000);
			evo_mthd(push, 0x04d0 + (nv_crtc->index * 0x300), 2);
			evo_data(push, 0x00000311);
			evo_data(push, 0x00000100);
		}

		evo_kick(push, mast);
1094 1095 1096
	}

	nv_connector = nouveau_crtc_connector_get(nv_crtc);
1097 1098 1099 1100
	nv50_crtc_set_dither(nv_crtc, false);
	nv50_crtc_set_scale(nv_crtc, false);
	nv50_crtc_set_color_vibrance(nv_crtc, false);
	nv50_crtc_set_image(nv_crtc, crtc->fb, x, y, false);
1101 1102 1103 1104
	return 0;
}

static int
1105
nv50_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
1106 1107
			struct drm_framebuffer *old_fb)
{
1108
	struct nouveau_drm *drm = nouveau_drm(crtc->dev);
1109 1110 1111
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	int ret;

1112
	if (!crtc->fb) {
1113
		NV_DEBUG(drm, "No FB bound\n");
1114 1115 1116
		return 0;
	}

1117
	ret = nv50_crtc_swap_fbs(crtc, old_fb);
1118 1119 1120
	if (ret)
		return ret;

1121 1122 1123
	nv50_display_flip_stop(crtc);
	nv50_crtc_set_image(nv_crtc, crtc->fb, x, y, true);
	nv50_display_flip_next(crtc, crtc->fb, NULL, 1);
1124 1125 1126 1127
	return 0;
}

static int
1128
nv50_crtc_mode_set_base_atomic(struct drm_crtc *crtc,
1129 1130 1131 1132
			       struct drm_framebuffer *fb, int x, int y,
			       enum mode_set_atomic state)
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
1133 1134
	nv50_display_flip_stop(crtc);
	nv50_crtc_set_image(nv_crtc, fb, x, y, true);
1135 1136 1137 1138
	return 0;
}

static void
1139
nv50_crtc_lut_load(struct drm_crtc *crtc)
1140
{
1141
	struct nv50_disp *disp = nv50_disp(crtc->dev);
1142 1143 1144 1145 1146
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	void __iomem *lut = nvbo_kmap_obj_iovirtual(nv_crtc->lut.nvbo);
	int i;

	for (i = 0; i < 256; i++) {
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
		u16 r = nv_crtc->lut.r[i] >> 2;
		u16 g = nv_crtc->lut.g[i] >> 2;
		u16 b = nv_crtc->lut.b[i] >> 2;

		if (nv_mclass(disp->core) < NVD0_DISP_CLASS) {
			writew(r + 0x0000, lut + (i * 0x08) + 0);
			writew(g + 0x0000, lut + (i * 0x08) + 2);
			writew(b + 0x0000, lut + (i * 0x08) + 4);
		} else {
			writew(r + 0x6000, lut + (i * 0x20) + 0);
			writew(g + 0x6000, lut + (i * 0x20) + 2);
			writew(b + 0x6000, lut + (i * 0x20) + 4);
		}
1160 1161 1162 1163
	}
}

static int
1164
nv50_crtc_cursor_set(struct drm_crtc *crtc, struct drm_file *file_priv,
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
		     uint32_t handle, uint32_t width, uint32_t height)
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	struct drm_device *dev = crtc->dev;
	struct drm_gem_object *gem;
	struct nouveau_bo *nvbo;
	bool visible = (handle != 0);
	int i, ret = 0;

	if (visible) {
		if (width != 64 || height != 64)
			return -EINVAL;

		gem = drm_gem_object_lookup(dev, file_priv, handle);
		if (unlikely(!gem))
			return -ENOENT;
		nvbo = nouveau_gem_object(gem);

		ret = nouveau_bo_map(nvbo);
		if (ret == 0) {
			for (i = 0; i < 64 * 64; i++) {
				u32 v = nouveau_bo_rd32(nvbo, i);
				nouveau_bo_wr32(nv_crtc->cursor.nvbo, i, v);
			}
			nouveau_bo_unmap(nvbo);
		}

		drm_gem_object_unreference_unlocked(gem);
	}

	if (visible != nv_crtc->cursor.visible) {
1196
		nv50_crtc_cursor_show_hide(nv_crtc, visible, true);
1197 1198 1199 1200 1201 1202 1203
		nv_crtc->cursor.visible = visible;
	}

	return ret;
}

static int
1204
nv50_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
1205
{
1206 1207
	struct nv50_curs *curs = nv50_curs(crtc);
	struct nv50_chan *chan = nv50_chan(curs);
1208 1209
	nv_wo32(chan->user, 0x0084, (y << 16) | (x & 0xffff));
	nv_wo32(chan->user, 0x0080, 0x00000000);
1210 1211 1212 1213
	return 0;
}

static void
1214
nv50_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
		    uint32_t start, uint32_t size)
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	u32 end = max(start + size, (u32)256);
	u32 i;

	for (i = start; i < end; i++) {
		nv_crtc->lut.r[i] = r[i];
		nv_crtc->lut.g[i] = g[i];
		nv_crtc->lut.b[i] = b[i];
	}

1227
	nv50_crtc_lut_load(crtc);
1228 1229 1230
}

static void
1231
nv50_crtc_destroy(struct drm_crtc *crtc)
1232 1233
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
1234 1235 1236 1237 1238 1239
	struct nv50_disp *disp = nv50_disp(crtc->dev);
	struct nv50_head *head = nv50_head(crtc);
	nv50_dmac_destroy(disp->core, &head->ovly.base);
	nv50_pioc_destroy(disp->core, &head->oimm.base);
	nv50_dmac_destroy(disp->core, &head->sync.base);
	nv50_pioc_destroy(disp->core, &head->curs.base);
1240
	nouveau_bo_unmap(nv_crtc->cursor.nvbo);
1241 1242
	if (nv_crtc->cursor.nvbo)
		nouveau_bo_unpin(nv_crtc->cursor.nvbo);
1243 1244
	nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo);
	nouveau_bo_unmap(nv_crtc->lut.nvbo);
1245 1246
	if (nv_crtc->lut.nvbo)
		nouveau_bo_unpin(nv_crtc->lut.nvbo);
1247 1248 1249 1250 1251
	nouveau_bo_ref(NULL, &nv_crtc->lut.nvbo);
	drm_crtc_cleanup(crtc);
	kfree(crtc);
}

1252 1253 1254 1255 1256 1257 1258 1259 1260
static const struct drm_crtc_helper_funcs nv50_crtc_hfunc = {
	.dpms = nv50_crtc_dpms,
	.prepare = nv50_crtc_prepare,
	.commit = nv50_crtc_commit,
	.mode_fixup = nv50_crtc_mode_fixup,
	.mode_set = nv50_crtc_mode_set,
	.mode_set_base = nv50_crtc_mode_set_base,
	.mode_set_base_atomic = nv50_crtc_mode_set_base_atomic,
	.load_lut = nv50_crtc_lut_load,
1261 1262
};

1263 1264 1265 1266
static const struct drm_crtc_funcs nv50_crtc_func = {
	.cursor_set = nv50_crtc_cursor_set,
	.cursor_move = nv50_crtc_cursor_move,
	.gamma_set = nv50_crtc_gamma_set,
1267
	.set_config = drm_crtc_helper_set_config,
1268
	.destroy = nv50_crtc_destroy,
1269
	.page_flip = nouveau_crtc_page_flip,
1270 1271
};

1272
static void
1273
nv50_cursor_set_pos(struct nouveau_crtc *nv_crtc, int x, int y)
1274 1275 1276 1277
{
}

static void
1278
nv50_cursor_set_offset(struct nouveau_crtc *nv_crtc, uint32_t offset)
1279 1280 1281
{
}

1282
static int
1283
nv50_crtc_create(struct drm_device *dev, struct nouveau_object *core, int index)
1284
{
1285 1286
	struct nv50_disp *disp = nv50_disp(dev);
	struct nv50_head *head;
1287 1288 1289
	struct drm_crtc *crtc;
	int ret, i;

1290 1291
	head = kzalloc(sizeof(*head), GFP_KERNEL);
	if (!head)
1292 1293
		return -ENOMEM;

1294
	head->base.index = index;
1295 1296 1297
	head->base.set_dither = nv50_crtc_set_dither;
	head->base.set_scale = nv50_crtc_set_scale;
	head->base.set_color_vibrance = nv50_crtc_set_color_vibrance;
1298 1299
	head->base.color_vibrance = 50;
	head->base.vibrant_hue = 0;
1300 1301
	head->base.cursor.set_offset = nv50_cursor_set_offset;
	head->base.cursor.set_pos = nv50_cursor_set_pos;
1302
	for (i = 0; i < 256; i++) {
1303 1304 1305
		head->base.lut.r[i] = i << 8;
		head->base.lut.g[i] = i << 8;
		head->base.lut.b[i] = i << 8;
1306 1307
	}

1308
	crtc = &head->base.base;
1309 1310
	drm_crtc_init(dev, crtc, &nv50_crtc_func);
	drm_crtc_helper_add(crtc, &nv50_crtc_hfunc);
1311 1312
	drm_mode_crtc_set_gamma_size(crtc, 256);

1313 1314 1315 1316
	ret = nouveau_bo_new(dev, 8192, 0x100, TTM_PL_FLAG_VRAM,
			     0, 0x0000, NULL, &head->base.lut.nvbo);
	if (!ret) {
		ret = nouveau_bo_pin(head->base.lut.nvbo, TTM_PL_FLAG_VRAM);
1317
		if (!ret) {
1318
			ret = nouveau_bo_map(head->base.lut.nvbo);
1319 1320 1321
			if (ret)
				nouveau_bo_unpin(head->base.lut.nvbo);
		}
1322 1323 1324 1325 1326 1327 1328
		if (ret)
			nouveau_bo_ref(NULL, &head->base.lut.nvbo);
	}

	if (ret)
		goto out;

1329
	nv50_crtc_lut_load(crtc);
1330 1331

	/* allocate cursor resources */
1332
	ret = nv50_pioc_create(disp->core, NV50_DISP_CURS_CLASS, index,
1333 1334 1335 1336 1337 1338 1339
			      &(struct nv50_display_curs_class) {
					.head = index,
			      }, sizeof(struct nv50_display_curs_class),
			      &head->curs.base);
	if (ret)
		goto out;

1340
	ret = nouveau_bo_new(dev, 64 * 64 * 4, 0x100, TTM_PL_FLAG_VRAM,
1341
			     0, 0x0000, NULL, &head->base.cursor.nvbo);
1342
	if (!ret) {
1343
		ret = nouveau_bo_pin(head->base.cursor.nvbo, TTM_PL_FLAG_VRAM);
1344
		if (!ret) {
1345
			ret = nouveau_bo_map(head->base.cursor.nvbo);
1346 1347 1348
			if (ret)
				nouveau_bo_unpin(head->base.lut.nvbo);
		}
1349
		if (ret)
1350
			nouveau_bo_ref(NULL, &head->base.cursor.nvbo);
1351 1352 1353 1354 1355
	}

	if (ret)
		goto out;

1356
	/* allocate page flip / sync resources */
1357
	ret = nv50_dmac_create(disp->core, NV50_DISP_SYNC_CLASS, index,
1358 1359 1360 1361 1362 1363 1364 1365 1366
			      &(struct nv50_display_sync_class) {
					.pushbuf = EVO_PUSH_HANDLE(SYNC, index),
					.head = index,
			      }, sizeof(struct nv50_display_sync_class),
			      disp->sync->bo.offset, &head->sync.base);
	if (ret)
		goto out;

	head->sync.sem.offset = EVO_SYNC(1 + index, 0x00);
1367

1368
	/* allocate overlay resources */
1369
	ret = nv50_pioc_create(disp->core, NV50_DISP_OIMM_CLASS, index,
1370 1371 1372 1373
			      &(struct nv50_display_oimm_class) {
					.head = index,
			      }, sizeof(struct nv50_display_oimm_class),
			      &head->oimm.base);
1374 1375 1376
	if (ret)
		goto out;

1377
	ret = nv50_dmac_create(disp->core, NV50_DISP_OVLY_CLASS, index,
1378 1379 1380 1381 1382 1383 1384
			      &(struct nv50_display_ovly_class) {
					.pushbuf = EVO_PUSH_HANDLE(OVLY, index),
					.head = index,
			      }, sizeof(struct nv50_display_ovly_class),
			      disp->sync->bo.offset, &head->ovly.base);
	if (ret)
		goto out;
1385 1386 1387

out:
	if (ret)
1388
		nv50_crtc_destroy(crtc);
1389 1390 1391
	return ret;
}

1392 1393 1394
/******************************************************************************
 * DAC
 *****************************************************************************/
B
Ben Skeggs 已提交
1395
static void
1396
nv50_dac_dpms(struct drm_encoder *encoder, int mode)
B
Ben Skeggs 已提交
1397 1398
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1399
	struct nv50_disp *disp = nv50_disp(encoder->dev);
B
Ben Skeggs 已提交
1400 1401 1402
	int or = nv_encoder->or;
	u32 dpms_ctrl;

1403
	dpms_ctrl = 0x00000000;
B
Ben Skeggs 已提交
1404 1405 1406 1407 1408
	if (mode == DRM_MODE_DPMS_STANDBY || mode == DRM_MODE_DPMS_OFF)
		dpms_ctrl |= 0x00000001;
	if (mode == DRM_MODE_DPMS_SUSPEND || mode == DRM_MODE_DPMS_OFF)
		dpms_ctrl |= 0x00000004;

1409
	nv_call(disp->core, NV50_DISP_DAC_PWR + or, dpms_ctrl);
B
Ben Skeggs 已提交
1410 1411 1412
}

static bool
1413
nv50_dac_mode_fixup(struct drm_encoder *encoder,
1414
		    const struct drm_display_mode *mode,
B
Ben Skeggs 已提交
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
		    struct drm_display_mode *adjusted_mode)
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct nouveau_connector *nv_connector;

	nv_connector = nouveau_encoder_connector_get(nv_encoder);
	if (nv_connector && nv_connector->native_mode) {
		if (nv_connector->scaling_mode != DRM_MODE_SCALE_NONE) {
			int id = adjusted_mode->base.id;
			*adjusted_mode = *nv_connector->native_mode;
			adjusted_mode->base.id = id;
		}
	}

	return true;
}

static void
1433
nv50_dac_commit(struct drm_encoder *encoder)
B
Ben Skeggs 已提交
1434 1435 1436 1437
{
}

static void
1438
nv50_dac_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
B
Ben Skeggs 已提交
1439 1440
		  struct drm_display_mode *adjusted_mode)
{
1441
	struct nv50_mast *mast = nv50_mast(encoder->dev);
B
Ben Skeggs 已提交
1442 1443
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
1444
	u32 *push;
B
Ben Skeggs 已提交
1445

1446
	nv50_dac_dpms(encoder, DRM_MODE_DPMS_ON);
B
Ben Skeggs 已提交
1447

1448
	push = evo_wait(mast, 8);
B
Ben Skeggs 已提交
1449
	if (push) {
1450
		if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
			u32 syncs = 0x00000000;

			if (mode->flags & DRM_MODE_FLAG_NHSYNC)
				syncs |= 0x00000001;
			if (mode->flags & DRM_MODE_FLAG_NVSYNC)
				syncs |= 0x00000002;

			evo_mthd(push, 0x0400 + (nv_encoder->or * 0x080), 2);
			evo_data(push, 1 << nv_crtc->index);
			evo_data(push, syncs);
		} else {
			u32 magic = 0x31ec6000 | (nv_crtc->index << 25);
			u32 syncs = 0x00000001;

			if (mode->flags & DRM_MODE_FLAG_NHSYNC)
				syncs |= 0x00000008;
			if (mode->flags & DRM_MODE_FLAG_NVSYNC)
				syncs |= 0x00000010;

			if (mode->flags & DRM_MODE_FLAG_INTERLACE)
				magic |= 0x00000001;

			evo_mthd(push, 0x0404 + (nv_crtc->index * 0x300), 2);
			evo_data(push, syncs);
			evo_data(push, magic);
			evo_mthd(push, 0x0180 + (nv_encoder->or * 0x020), 1);
			evo_data(push, 1 << nv_crtc->index);
		}

		evo_kick(push, mast);
B
Ben Skeggs 已提交
1481 1482 1483 1484 1485 1486
	}

	nv_encoder->crtc = encoder->crtc;
}

static void
1487
nv50_dac_disconnect(struct drm_encoder *encoder)
B
Ben Skeggs 已提交
1488 1489
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1490
	struct nv50_mast *mast = nv50_mast(encoder->dev);
1491
	const int or = nv_encoder->or;
B
Ben Skeggs 已提交
1492 1493 1494
	u32 *push;

	if (nv_encoder->crtc) {
1495
		nv50_crtc_prepare(nv_encoder->crtc);
B
Ben Skeggs 已提交
1496

1497
		push = evo_wait(mast, 4);
B
Ben Skeggs 已提交
1498
		if (push) {
1499
			if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
1500 1501 1502 1503 1504 1505 1506
				evo_mthd(push, 0x0400 + (or * 0x080), 1);
				evo_data(push, 0x00000000);
			} else {
				evo_mthd(push, 0x0180 + (or * 0x020), 1);
				evo_data(push, 0x00000000);
			}

B
Ben Skeggs 已提交
1507 1508
			evo_mthd(push, 0x0080, 1);
			evo_data(push, 0x00000000);
1509
			evo_kick(push, mast);
B
Ben Skeggs 已提交
1510 1511
		}
	}
1512 1513

	nv_encoder->crtc = NULL;
B
Ben Skeggs 已提交
1514 1515
}

1516
static enum drm_connector_status
1517
nv50_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector)
1518
{
1519
	struct nv50_disp *disp = nv50_disp(encoder->dev);
1520
	int ret, or = nouveau_encoder(encoder)->or;
1521
	u32 load = 0;
B
Ben Skeggs 已提交
1522

1523 1524 1525
	ret = nv_exec(disp->core, NV50_DISP_DAC_LOAD + or, &load, sizeof(load));
	if (ret || load != 7)
		return connector_status_disconnected;
B
Ben Skeggs 已提交
1526

1527
	return connector_status_connected;
1528 1529
}

B
Ben Skeggs 已提交
1530
static void
1531
nv50_dac_destroy(struct drm_encoder *encoder)
B
Ben Skeggs 已提交
1532 1533 1534 1535 1536
{
	drm_encoder_cleanup(encoder);
	kfree(encoder);
}

1537 1538 1539 1540 1541 1542 1543 1544 1545
static const struct drm_encoder_helper_funcs nv50_dac_hfunc = {
	.dpms = nv50_dac_dpms,
	.mode_fixup = nv50_dac_mode_fixup,
	.prepare = nv50_dac_disconnect,
	.commit = nv50_dac_commit,
	.mode_set = nv50_dac_mode_set,
	.disable = nv50_dac_disconnect,
	.get_crtc = nv50_display_crtc_get,
	.detect = nv50_dac_detect
B
Ben Skeggs 已提交
1546 1547
};

1548 1549
static const struct drm_encoder_funcs nv50_dac_func = {
	.destroy = nv50_dac_destroy,
B
Ben Skeggs 已提交
1550 1551 1552
};

static int
1553
nv50_dac_create(struct drm_connector *connector, struct dcb_output *dcbe)
B
Ben Skeggs 已提交
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
{
	struct drm_device *dev = connector->dev;
	struct nouveau_encoder *nv_encoder;
	struct drm_encoder *encoder;

	nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
	if (!nv_encoder)
		return -ENOMEM;
	nv_encoder->dcb = dcbe;
	nv_encoder->or = ffs(dcbe->or) - 1;

	encoder = to_drm_encoder(nv_encoder);
	encoder->possible_crtcs = dcbe->heads;
	encoder->possible_clones = 0;
1568 1569
	drm_encoder_init(dev, encoder, &nv50_dac_func, DRM_MODE_ENCODER_DAC);
	drm_encoder_helper_add(encoder, &nv50_dac_hfunc);
B
Ben Skeggs 已提交
1570 1571 1572 1573

	drm_mode_connector_attach_encoder(connector, encoder);
	return 0;
}
1574

1575 1576 1577 1578
/******************************************************************************
 * Audio
 *****************************************************************************/
static void
1579
nv50_audio_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode)
1580 1581 1582
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct nouveau_connector *nv_connector;
1583
	struct nv50_disp *disp = nv50_disp(encoder->dev);
1584 1585 1586 1587 1588 1589 1590

	nv_connector = nouveau_encoder_connector_get(nv_encoder);
	if (!drm_detect_monitor_audio(nv_connector->edid))
		return;

	drm_edid_to_eld(&nv_connector->base, nv_connector->edid);

1591 1592 1593
	nv_exec(disp->core, NVA3_DISP_SOR_HDA_ELD + nv_encoder->or,
			    nv_connector->base.eld,
			    nv_connector->base.eld[2] * 4);
1594 1595 1596
}

static void
1597
nv50_audio_disconnect(struct drm_encoder *encoder)
1598 1599
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1600
	struct nv50_disp *disp = nv50_disp(encoder->dev);
1601

1602
	nv_exec(disp->core, NVA3_DISP_SOR_HDA_ELD + nv_encoder->or, NULL, 0);
1603 1604 1605 1606 1607 1608
}

/******************************************************************************
 * HDMI
 *****************************************************************************/
static void
1609
nv50_hdmi_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode)
1610
{
1611 1612 1613
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
	struct nouveau_connector *nv_connector;
1614
	struct nv50_disp *disp = nv50_disp(encoder->dev);
1615
	const u32 moff = (nv_crtc->index << 3) | nv_encoder->or;
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
	u32 rekey = 56; /* binary driver, and tegra constant */
	u32 max_ac_packet;

	nv_connector = nouveau_encoder_connector_get(nv_encoder);
	if (!drm_detect_hdmi_monitor(nv_connector->edid))
		return;

	max_ac_packet  = mode->htotal - mode->hdisplay;
	max_ac_packet -= rekey;
	max_ac_packet -= 18; /* constant from tegra */
	max_ac_packet /= 32;

1628 1629 1630
	nv_call(disp->core, NV84_DISP_SOR_HDMI_PWR + moff,
			    NV84_DISP_SOR_HDMI_PWR_STATE_ON |
			    (max_ac_packet << 16) | rekey);
B
Ben Skeggs 已提交
1631

1632
	nv50_audio_mode_set(encoder, mode);
1633 1634 1635
}

static void
1636
nv50_hdmi_disconnect(struct drm_encoder *encoder)
1637
{
1638 1639
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct nouveau_crtc *nv_crtc = nouveau_crtc(nv_encoder->crtc);
1640
	struct nv50_disp *disp = nv50_disp(encoder->dev);
1641
	const u32 moff = (nv_crtc->index << 3) | nv_encoder->or;
1642

1643
	nv50_audio_disconnect(encoder);
1644

1645
	nv_call(disp->core, NV84_DISP_SOR_HDMI_PWR + moff, 0x00000000);
1646 1647
}

1648 1649 1650
/******************************************************************************
 * SOR
 *****************************************************************************/
1651
static void
1652
nv50_sor_dpms(struct drm_encoder *encoder, int mode)
1653 1654 1655
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct drm_device *dev = encoder->dev;
1656
	struct nv50_disp *disp = nv50_disp(dev);
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
	struct drm_encoder *partner;
	int or = nv_encoder->or;

	nv_encoder->last_dpms = mode;

	list_for_each_entry(partner, &dev->mode_config.encoder_list, head) {
		struct nouveau_encoder *nv_partner = nouveau_encoder(partner);

		if (partner->encoder_type != DRM_MODE_ENCODER_TMDS)
			continue;

		if (nv_partner != nv_encoder &&
1669
		    nv_partner->dcb->or == nv_encoder->dcb->or) {
1670 1671 1672 1673 1674 1675
			if (nv_partner->last_dpms == DRM_MODE_DPMS_ON)
				return;
			break;
		}
	}

1676
	nv_call(disp->core, NV50_DISP_SOR_PWR + or, (mode == DRM_MODE_DPMS_ON));
1677

1678 1679
	if (nv_encoder->dcb->type == DCB_OUTPUT_DP)
		nouveau_dp_dpms(encoder, mode, nv_encoder->dp.datarate, disp->core);
1680 1681 1682
}

static bool
1683
nv50_sor_mode_fixup(struct drm_encoder *encoder,
1684
		    const struct drm_display_mode *mode,
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
		    struct drm_display_mode *adjusted_mode)
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct nouveau_connector *nv_connector;

	nv_connector = nouveau_encoder_connector_get(nv_encoder);
	if (nv_connector && nv_connector->native_mode) {
		if (nv_connector->scaling_mode != DRM_MODE_SCALE_NONE) {
			int id = adjusted_mode->base.id;
			*adjusted_mode = *nv_connector->native_mode;
			adjusted_mode->base.id = id;
		}
	}

	return true;
}

1702
static void
1703
nv50_sor_disconnect(struct drm_encoder *encoder)
1704 1705
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1706
	struct nv50_mast *mast = nv50_mast(encoder->dev);
1707
	const int or = nv_encoder->or;
1708 1709 1710
	u32 *push;

	if (nv_encoder->crtc) {
1711
		nv50_crtc_prepare(nv_encoder->crtc);
1712

1713
		push = evo_wait(mast, 4);
1714
		if (push) {
1715
			if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
1716 1717 1718 1719 1720 1721 1722
				evo_mthd(push, 0x0600 + (or * 0x40), 1);
				evo_data(push, 0x00000000);
			} else {
				evo_mthd(push, 0x0200 + (or * 0x20), 1);
				evo_data(push, 0x00000000);
			}

1723 1724
			evo_mthd(push, 0x0080, 1);
			evo_data(push, 0x00000000);
1725
			evo_kick(push, mast);
1726 1727
		}

1728
		nv50_hdmi_disconnect(encoder);
1729
	}
1730 1731 1732

	nv_encoder->last_dpms = DRM_MODE_DPMS_OFF;
	nv_encoder->crtc = NULL;
1733 1734
}

1735
static void
1736
nv50_sor_prepare(struct drm_encoder *encoder)
1737
{
1738
	nv50_sor_disconnect(encoder);
1739
	if (nouveau_encoder(encoder)->dcb->type == DCB_OUTPUT_DP)
1740
		evo_sync(encoder->dev);
1741 1742 1743
}

static void
1744
nv50_sor_commit(struct drm_encoder *encoder)
1745 1746 1747 1748
{
}

static void
1749
nv50_sor_mode_set(struct drm_encoder *encoder, struct drm_display_mode *umode,
1750
		  struct drm_display_mode *mode)
1751
{
1752 1753
	struct nv50_disp *disp = nv50_disp(encoder->dev);
	struct nv50_mast *mast = nv50_mast(encoder->dev);
1754
	struct drm_device *dev = encoder->dev;
1755
	struct nouveau_drm *drm = nouveau_drm(dev);
1756 1757
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
1758
	struct nouveau_connector *nv_connector;
1759
	struct nvbios *bios = &drm->vbios;
1760 1761 1762 1763
	u32 *push, lvds = 0;
	u8 owner = 1 << nv_crtc->index;
	u8 proto = 0xf;
	u8 depth = 0x0;
1764

1765 1766
	nv_connector = nouveau_encoder_connector_get(nv_encoder);
	switch (nv_encoder->dcb->type) {
1767
	case DCB_OUTPUT_TMDS:
1768 1769
		if (nv_encoder->dcb->sorconf.link & 1) {
			if (mode->clock < 165000)
1770
				proto = 0x1;
1771
			else
1772
				proto = 0x5;
1773
		} else {
1774
			proto = 0x2;
1775 1776
		}

1777
		nv50_hdmi_mode_set(encoder, mode);
1778
		break;
1779
	case DCB_OUTPUT_LVDS:
1780 1781
		proto = 0x0;

1782 1783
		if (bios->fp_no_ddc) {
			if (bios->fp.dual_link)
1784
				lvds |= 0x0100;
1785
			if (bios->fp.if_is_24bit)
1786
				lvds |= 0x0200;
1787
		} else {
1788
			if (nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) {
1789
				if (((u8 *)nv_connector->edid)[121] == 2)
1790
					lvds |= 0x0100;
1791 1792
			} else
			if (mode->clock >= bios->fp.duallink_transition_clk) {
1793
				lvds |= 0x0100;
1794
			}
1795

1796
			if (lvds & 0x0100) {
1797
				if (bios->fp.strapless_is_24bit & 2)
1798
					lvds |= 0x0200;
1799 1800
			} else {
				if (bios->fp.strapless_is_24bit & 1)
1801
					lvds |= 0x0200;
1802 1803 1804
			}

			if (nv_connector->base.display_info.bpc == 8)
1805
				lvds |= 0x0200;
1806
		}
1807

1808
		nv_call(disp->core, NV50_DISP_SOR_LVDS_SCRIPT + nv_encoder->or, lvds);
1809
		break;
1810
	case DCB_OUTPUT_DP:
1811
		if (nv_connector->base.display_info.bpc == 6) {
1812
			nv_encoder->dp.datarate = mode->clock * 18 / 8;
1813
			depth = 0x2;
1814 1815
		} else
		if (nv_connector->base.display_info.bpc == 8) {
1816
			nv_encoder->dp.datarate = mode->clock * 24 / 8;
1817
			depth = 0x5;
1818 1819 1820
		} else {
			nv_encoder->dp.datarate = mode->clock * 30 / 8;
			depth = 0x6;
1821
		}
1822 1823

		if (nv_encoder->dcb->sorconf.link & 1)
1824
			proto = 0x8;
1825
		else
1826
			proto = 0x9;
1827
		break;
1828 1829 1830 1831
	default:
		BUG_ON(1);
		break;
	}
1832

1833
	nv50_sor_dpms(encoder, DRM_MODE_DPMS_ON);
1834

1835
	push = evo_wait(nv50_mast(dev), 8);
1836
	if (push) {
1837
		if (nv50_vers(mast) < NVD0_DISP_CLASS) {
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
			evo_mthd(push, 0x0600 + (nv_encoder->or * 0x040), 1);
			evo_data(push, (depth << 16) | (proto << 8) | owner);
		} else {
			u32 magic = 0x31ec6000 | (nv_crtc->index << 25);
			u32 syncs = 0x00000001;

			if (mode->flags & DRM_MODE_FLAG_NHSYNC)
				syncs |= 0x00000008;
			if (mode->flags & DRM_MODE_FLAG_NVSYNC)
				syncs |= 0x00000010;

			if (mode->flags & DRM_MODE_FLAG_INTERLACE)
				magic |= 0x00000001;

			evo_mthd(push, 0x0404 + (nv_crtc->index * 0x300), 2);
			evo_data(push, syncs | (depth << 6));
			evo_data(push, magic);
			evo_mthd(push, 0x0200 + (nv_encoder->or * 0x020), 1);
			evo_data(push, owner | (proto << 8));
		}

		evo_kick(push, mast);
1860 1861 1862 1863 1864 1865
	}

	nv_encoder->crtc = encoder->crtc;
}

static void
1866
nv50_sor_destroy(struct drm_encoder *encoder)
1867 1868 1869 1870 1871
{
	drm_encoder_cleanup(encoder);
	kfree(encoder);
}

1872 1873 1874 1875 1876 1877 1878 1879
static const struct drm_encoder_helper_funcs nv50_sor_hfunc = {
	.dpms = nv50_sor_dpms,
	.mode_fixup = nv50_sor_mode_fixup,
	.prepare = nv50_sor_prepare,
	.commit = nv50_sor_commit,
	.mode_set = nv50_sor_mode_set,
	.disable = nv50_sor_disconnect,
	.get_crtc = nv50_display_crtc_get,
1880 1881
};

1882 1883
static const struct drm_encoder_funcs nv50_sor_func = {
	.destroy = nv50_sor_destroy,
1884 1885 1886
};

static int
1887
nv50_sor_create(struct drm_connector *connector, struct dcb_output *dcbe)
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
{
	struct drm_device *dev = connector->dev;
	struct nouveau_encoder *nv_encoder;
	struct drm_encoder *encoder;

	nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
	if (!nv_encoder)
		return -ENOMEM;
	nv_encoder->dcb = dcbe;
	nv_encoder->or = ffs(dcbe->or) - 1;
	nv_encoder->last_dpms = DRM_MODE_DPMS_OFF;

	encoder = to_drm_encoder(nv_encoder);
	encoder->possible_crtcs = dcbe->heads;
	encoder->possible_clones = 0;
1903 1904
	drm_encoder_init(dev, encoder, &nv50_sor_func, DRM_MODE_ENCODER_TMDS);
	drm_encoder_helper_add(encoder, &nv50_sor_hfunc);
1905 1906 1907 1908

	drm_mode_connector_attach_encoder(connector, encoder);
	return 0;
}
1909 1910 1911 1912

/******************************************************************************
 * Init
 *****************************************************************************/
1913
void
1914
nv50_display_fini(struct drm_device *dev)
1915 1916 1917 1918
{
}

int
1919
nv50_display_init(struct drm_device *dev)
1920
{
1921
	u32 *push = evo_wait(nv50_mast(dev), 32);
1922 1923 1924
	if (push) {
		evo_mthd(push, 0x0088, 1);
		evo_data(push, NvEvoSync);
1925
		evo_kick(push, nv50_mast(dev));
1926
		return evo_sync(dev);
1927
	}
1928

1929
	return -EBUSY;
1930 1931 1932
}

void
1933
nv50_display_destroy(struct drm_device *dev)
1934
{
1935
	struct nv50_disp *disp = nv50_disp(dev);
1936

1937
	nv50_dmac_destroy(disp->core, &disp->mast.base);
1938

1939
	nouveau_bo_unmap(disp->sync);
1940 1941
	if (disp->sync)
		nouveau_bo_unpin(disp->sync);
1942
	nouveau_bo_ref(NULL, &disp->sync);
1943

1944
	nouveau_display(dev)->priv = NULL;
1945 1946 1947 1948
	kfree(disp);
}

int
1949
nv50_display_create(struct drm_device *dev)
1950
{
1951 1952 1953
	static const u16 oclass[] = {
		NVE0_DISP_CLASS,
		NVD0_DISP_CLASS,
1954 1955 1956 1957 1958
		NVA3_DISP_CLASS,
		NV94_DISP_CLASS,
		NVA0_DISP_CLASS,
		NV84_DISP_CLASS,
		NV50_DISP_CLASS,
1959
	};
1960 1961 1962
	struct nouveau_device *device = nouveau_dev(dev);
	struct nouveau_drm *drm = nouveau_drm(dev);
	struct dcb_table *dcb = &drm->vbios.dcb;
1963
	struct drm_connector *connector, *tmp;
1964
	struct nv50_disp *disp;
1965
	struct dcb_output *dcbe;
1966
	int crtcs, ret, i;
1967 1968 1969 1970

	disp = kzalloc(sizeof(*disp), GFP_KERNEL);
	if (!disp)
		return -ENOMEM;
1971 1972

	nouveau_display(dev)->priv = disp;
1973 1974 1975
	nouveau_display(dev)->dtor = nv50_display_destroy;
	nouveau_display(dev)->init = nv50_display_init;
	nouveau_display(dev)->fini = nv50_display_fini;
1976

1977 1978 1979 1980 1981
	/* small shared memory area we use for notifiers and semaphores */
	ret = nouveau_bo_new(dev, 4096, 0x1000, TTM_PL_FLAG_VRAM,
			     0, 0x0000, NULL, &disp->sync);
	if (!ret) {
		ret = nouveau_bo_pin(disp->sync, TTM_PL_FLAG_VRAM);
1982
		if (!ret) {
1983
			ret = nouveau_bo_map(disp->sync);
1984 1985 1986
			if (ret)
				nouveau_bo_unpin(disp->sync);
		}
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
		if (ret)
			nouveau_bo_ref(NULL, &disp->sync);
	}

	if (ret)
		goto out;

	/* attempt to allocate a supported evo display class */
	ret = -ENODEV;
	for (i = 0; ret && i < ARRAY_SIZE(oclass); i++) {
		ret = nouveau_object_new(nv_object(drm), NVDRM_DEVICE,
					 0xd1500000, oclass[i], NULL, 0,
					 &disp->core);
	}

	if (ret)
		goto out;

	/* allocate master evo channel */
2006
	ret = nv50_dmac_create(disp->core, NV50_DISP_MAST_CLASS, 0,
2007 2008 2009 2010 2011 2012 2013
			      &(struct nv50_display_mast_class) {
					.pushbuf = EVO_PUSH_HANDLE(MAST, 0),
			      }, sizeof(struct nv50_display_mast_class),
			      disp->sync->bo.offset, &disp->mast.base);
	if (ret)
		goto out;

2014
	/* create crtc objects to represent the hw heads */
2015 2016 2017 2018 2019
	if (nv_mclass(disp->core) >= NVD0_DISP_CLASS)
		crtcs = nv_rd32(device, 0x022448);
	else
		crtcs = 2;

2020
	for (i = 0; i < crtcs; i++) {
2021
		ret = nv50_crtc_create(dev, disp->core, i);
2022 2023 2024 2025
		if (ret)
			goto out;
	}

2026 2027 2028 2029 2030 2031 2032
	/* create encoder/connector objects based on VBIOS DCB table */
	for (i = 0, dcbe = &dcb->entry[0]; i < dcb->entries; i++, dcbe++) {
		connector = nouveau_connector_create(dev, dcbe->connector);
		if (IS_ERR(connector))
			continue;

		if (dcbe->location != DCB_LOC_ON_CHIP) {
2033
			NV_WARN(drm, "skipping off-chip encoder %d/%d\n",
2034 2035 2036 2037 2038
				dcbe->type, ffs(dcbe->or) - 1);
			continue;
		}

		switch (dcbe->type) {
2039 2040 2041
		case DCB_OUTPUT_TMDS:
		case DCB_OUTPUT_LVDS:
		case DCB_OUTPUT_DP:
2042
			nv50_sor_create(connector, dcbe);
2043
			break;
2044
		case DCB_OUTPUT_ANALOG:
2045
			nv50_dac_create(connector, dcbe);
B
Ben Skeggs 已提交
2046
			break;
2047
		default:
2048
			NV_WARN(drm, "skipping unsupported encoder %d/%d\n",
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
				dcbe->type, ffs(dcbe->or) - 1);
			continue;
		}
	}

	/* cull any connectors we created that don't have an encoder */
	list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) {
		if (connector->encoder_ids[0])
			continue;

2059
		NV_WARN(drm, "%s has no encoders, removing\n",
2060 2061 2062 2063
			drm_get_connector_name(connector));
		connector->funcs->destroy(connector);
	}

2064 2065
out:
	if (ret)
2066
		nv50_display_destroy(dev);
2067 2068
	return ret;
}