arm.c 31.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 */

19
#include <linux/cpu_pm.h>
20 21 22 23 24 25 26 27
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
28
#include <linux/kvm.h>
29
#include <trace/events/kvm.h>
30
#include <kvm/arm_pmu.h>
31 32 33 34 35 36 37

#define CREATE_TRACE_POINTS
#include "trace.h"

#include <asm/uaccess.h>
#include <asm/ptrace.h>
#include <asm/mman.h>
38
#include <asm/tlbflush.h>
39
#include <asm/cacheflush.h>
40 41 42 43
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
44
#include <asm/kvm_emulate.h>
45
#include <asm/kvm_coproc.h>
46
#include <asm/kvm_psci.h>
47
#include <asm/sections.h>
48 49 50 51 52

#ifdef REQUIRES_VIRT
__asm__(".arch_extension	virt");
#endif

53
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
54
static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
55 56
static unsigned long hyp_default_vectors;

57 58 59
/* Per-CPU variable containing the currently running vcpu. */
static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);

60 61
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
62 63
static u32 kvm_next_vmid;
static unsigned int kvm_vmid_bits __read_mostly;
64
static DEFINE_SPINLOCK(kvm_vmid_lock);
65

66 67
static bool vgic_present;

68 69
static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);

70 71 72
static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
{
	BUG_ON(preemptible());
73
	__this_cpu_write(kvm_arm_running_vcpu, vcpu);
74 75 76 77 78 79 80 81 82
}

/**
 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
 * Must be called from non-preemptible context
 */
struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
{
	BUG_ON(preemptible());
83
	return __this_cpu_read(kvm_arm_running_vcpu);
84 85 86 87 88
}

/**
 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
 */
89
struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
90 91 92 93
{
	return &kvm_arm_running_vcpu;
}

94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

int kvm_arch_hardware_setup(void)
{
	return 0;
}

void kvm_arch_check_processor_compat(void *rtn)
{
	*(int *)rtn = 0;
}


110 111 112 113
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
114 115
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
116 117
	int ret = 0;

118 119 120
	if (type)
		return -EINVAL;

121 122 123 124 125 126 127 128
	ret = kvm_alloc_stage2_pgd(kvm);
	if (ret)
		goto out_fail_alloc;

	ret = create_hyp_mappings(kvm, kvm + 1);
	if (ret)
		goto out_free_stage2_pgd;

129
	kvm_vgic_early_init(kvm);
130 131
	kvm_timer_init(kvm);

132 133 134
	/* Mark the initial VMID generation invalid */
	kvm->arch.vmid_gen = 0;

135
	/* The maximum number of VCPUs is limited by the host's GIC model */
136 137
	kvm->arch.max_vcpus = vgic_present ?
				kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
138

139 140 141 142 143
	return ret;
out_free_stage2_pgd:
	kvm_free_stage2_pgd(kvm);
out_fail_alloc:
	return ret;
144 145 146 147 148 149 150 151
}

int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
	return VM_FAULT_SIGBUS;
}


152 153 154 155
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
156 157 158 159
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	int i;

160 161
	kvm_free_stage2_pgd(kvm);

162 163 164 165 166 167
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
			kvm_arch_vcpu_free(kvm->vcpus[i]);
			kvm->vcpus[i] = NULL;
		}
	}
168 169

	kvm_vgic_destroy(kvm);
170 171
}

172
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
173 174 175
{
	int r;
	switch (ext) {
176
	case KVM_CAP_IRQCHIP:
177 178
		r = vgic_present;
		break;
179
	case KVM_CAP_IOEVENTFD:
180
	case KVM_CAP_DEVICE_CTRL:
181 182 183 184
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
185
	case KVM_CAP_ARM_PSCI:
186
	case KVM_CAP_ARM_PSCI_0_2:
187
	case KVM_CAP_READONLY_MEM:
188
	case KVM_CAP_MP_STATE:
189 190 191 192 193
		r = 1;
		break;
	case KVM_CAP_COALESCED_MMIO:
		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
		break;
194 195
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
196
		break;
197 198 199 200 201 202 203
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
	default:
204
		r = kvm_arch_dev_ioctl_check_extension(ext);
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
		break;
	}
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}


struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
	int err;
	struct kvm_vcpu *vcpu;

222 223 224 225 226
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
		err = -EBUSY;
		goto out;
	}

227 228 229 230 231
	if (id >= kvm->arch.max_vcpus) {
		err = -EINVAL;
		goto out;
	}

232 233 234 235 236 237 238 239 240 241
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
	if (!vcpu) {
		err = -ENOMEM;
		goto out;
	}

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

242 243 244 245
	err = create_hyp_mappings(vcpu, vcpu + 1);
	if (err)
		goto vcpu_uninit;

246
	return vcpu;
247 248
vcpu_uninit:
	kvm_vcpu_uninit(vcpu);
249 250 251 252 253 254
free_vcpu:
	kmem_cache_free(kvm_vcpu_cache, vcpu);
out:
	return ERR_PTR(err);
}

255
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
256
{
257
	kvm_vgic_vcpu_early_init(vcpu);
258 259 260 261
}

void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
262
	kvm_mmu_free_memory_caches(vcpu);
263
	kvm_timer_vcpu_terminate(vcpu);
264
	kvm_vgic_vcpu_destroy(vcpu);
265
	kvm_pmu_vcpu_destroy(vcpu);
266
	kvm_vcpu_uninit(vcpu);
267
	kmem_cache_free(kvm_vcpu_cache, vcpu);
268 269 270 271 272 273 274 275 276
}

void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	kvm_arch_vcpu_free(vcpu);
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
277
	return kvm_timer_should_fire(vcpu);
278 279
}

280 281 282 283 284 285 286 287 288 289
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
	kvm_timer_schedule(vcpu);
}

void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
	kvm_timer_unschedule(vcpu);
}

290 291
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
292 293
	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
294
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
295

296 297 298
	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

299 300
	kvm_arm_reset_debug_ptr(vcpu);

301 302 303 304 305
	return 0;
}

void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
306
	vcpu->cpu = cpu;
307
	vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
308

309
	kvm_arm_set_running_vcpu(vcpu);
310 311 312 313
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
314 315 316 317 318 319 320
	/*
	 * The arch-generic KVM code expects the cpu field of a vcpu to be -1
	 * if the vcpu is no longer assigned to a cpu.  This is used for the
	 * optimized make_all_cpus_request path.
	 */
	vcpu->cpu = -1;

321
	kvm_arm_set_running_vcpu(NULL);
322
	kvm_timer_vcpu_put(vcpu);
323 324 325 326 327
}

int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
328
	if (vcpu->arch.power_off)
329 330 331 332 333
		mp_state->mp_state = KVM_MP_STATE_STOPPED;
	else
		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;

	return 0;
334 335 336 337 338
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
339 340
	switch (mp_state->mp_state) {
	case KVM_MP_STATE_RUNNABLE:
341
		vcpu->arch.power_off = false;
342 343
		break;
	case KVM_MP_STATE_STOPPED:
344
		vcpu->arch.power_off = true;
345 346 347 348 349 350
		break;
	default:
		return -EINVAL;
	}

	return 0;
351 352
}

353 354 355 356 357 358 359
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
360 361
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
362
	return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
363
		&& !v->arch.power_off && !v->arch.pause);
364 365
}

366 367 368 369 370 371 372
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
373
	preempt_disable();
374
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
375
	preempt_enable();
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
 * @kvm: The VM's VMID to checkt
 *
 * return true if there is a new generation of VMIDs being used
 *
 * The hardware supports only 256 values with the value zero reserved for the
 * host, so we check if an assigned value belongs to a previous generation,
 * which which requires us to assign a new value. If we're the first to use a
 * VMID for the new generation, we must flush necessary caches and TLBs on all
 * CPUs.
 */
static bool need_new_vmid_gen(struct kvm *kvm)
{
	return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
}

/**
 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
 * @kvm	The guest that we are about to run
 *
 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
 * caches and TLBs.
 */
static void update_vttbr(struct kvm *kvm)
{
	phys_addr_t pgd_phys;
	u64 vmid;

	if (!need_new_vmid_gen(kvm))
		return;

	spin_lock(&kvm_vmid_lock);

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
	if (!need_new_vmid_gen(kvm)) {
		spin_unlock(&kvm_vmid_lock);
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

	kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
	kvm->arch.vmid = kvm_next_vmid;
	kvm_next_vmid++;
445
	kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
446 447

	/* update vttbr to be used with the new vmid */
448
	pgd_phys = virt_to_phys(kvm->arch.pgd);
449
	BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
450
	vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
451
	kvm->arch.vttbr = pgd_phys | vmid;
452 453 454 455 456 457

	spin_unlock(&kvm_vmid_lock);
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
458
	struct kvm *kvm = vcpu->kvm;
459
	int ret = 0;
460

461 462 463 464
	if (likely(vcpu->arch.has_run_once))
		return 0;

	vcpu->arch.has_run_once = true;
465

466
	/*
467 468
	 * Map the VGIC hardware resources before running a vcpu the first
	 * time on this VM.
469
	 */
470
	if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
471
		ret = kvm_vgic_map_resources(kvm);
472 473 474 475
		if (ret)
			return ret;
	}

476 477 478 479 480 481
	/*
	 * Enable the arch timers only if we have an in-kernel VGIC
	 * and it has been properly initialized, since we cannot handle
	 * interrupts from the virtual timer with a userspace gic.
	 */
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
482
		ret = kvm_timer_enable(vcpu);
483

484
	return ret;
485 486
}

487 488 489 490 491
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
	return vgic_initialized(kvm);
}

492
void kvm_arm_halt_guest(struct kvm *kvm)
493 494 495 496 497 498
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.pause = true;
499
	kvm_make_all_cpus_request(kvm, KVM_REQ_VCPU_EXIT);
500 501
}

502 503 504 505 506 507 508
void kvm_arm_halt_vcpu(struct kvm_vcpu *vcpu)
{
	vcpu->arch.pause = true;
	kvm_vcpu_kick(vcpu);
}

void kvm_arm_resume_vcpu(struct kvm_vcpu *vcpu)
509 510 511 512 513 514 515 516
{
	struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);

	vcpu->arch.pause = false;
	swake_up(wq);
}

void kvm_arm_resume_guest(struct kvm *kvm)
517 518 519 520
{
	int i;
	struct kvm_vcpu *vcpu;

521 522
	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_arm_resume_vcpu(vcpu);
523 524
}

525
static void vcpu_sleep(struct kvm_vcpu *vcpu)
526
{
527
	struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
528

529
	swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
530
				       (!vcpu->arch.pause)));
531 532
}

533 534 535 536 537
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

538 539 540 541 542 543 544 545 546 547 548
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 * @run:	The kvm_run structure pointer used for userspace state exchange
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
549 550
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
551 552 553
	int ret;
	sigset_t sigsaved;

554
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
555 556 557 558 559 560
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
		return ret;

C
Christoffer Dall 已提交
561 562 563 564 565 566
	if (run->exit_reason == KVM_EXIT_MMIO) {
		ret = kvm_handle_mmio_return(vcpu, vcpu->run);
		if (ret)
			return ret;
	}

567 568 569 570 571 572 573 574 575 576 577 578 579
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
		cond_resched();

		update_vttbr(vcpu->kvm);

580
		if (vcpu->arch.power_off || vcpu->arch.pause)
581
			vcpu_sleep(vcpu);
582

583 584 585 586 587
		/*
		 * Preparing the interrupts to be injected also
		 * involves poking the GIC, which must be done in a
		 * non-preemptible context.
		 */
588
		preempt_disable();
589
		kvm_pmu_flush_hwstate(vcpu);
590
		kvm_timer_flush_hwstate(vcpu);
591 592
		kvm_vgic_flush_hwstate(vcpu);

593 594 595 596 597 598 599 600 601 602
		local_irq_disable();

		/*
		 * Re-check atomic conditions
		 */
		if (signal_pending(current)) {
			ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
		}

603
		if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
604
			vcpu->arch.power_off || vcpu->arch.pause) {
605
			local_irq_enable();
606
			kvm_pmu_sync_hwstate(vcpu);
607
			kvm_timer_sync_hwstate(vcpu);
608
			kvm_vgic_sync_hwstate(vcpu);
609
			preempt_enable();
610 611 612
			continue;
		}

613 614
		kvm_arm_setup_debug(vcpu);

615 616 617 618
		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
619
		__kvm_guest_enter();
620 621 622 623 624
		vcpu->mode = IN_GUEST_MODE;

		ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);

		vcpu->mode = OUTSIDE_GUEST_MODE;
625
		vcpu->stat.exits++;
626 627 628 629
		/*
		 * Back from guest
		 *************************************************************/

630 631
		kvm_arm_clear_debug(vcpu);

632 633 634 635 636 637 638 639 640 641 642 643 644
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
645 646 647 648 649 650 651 652
		 * We do local_irq_enable() before calling kvm_guest_exit() so
		 * that if a timer interrupt hits while running the guest we
		 * account that tick as being spent in the guest.  We enable
		 * preemption after calling kvm_guest_exit() so that if we get
		 * preempted we make sure ticks after that is not counted as
		 * guest time.
		 */
		kvm_guest_exit();
653
		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
654

655
		/*
656 657
		 * We must sync the PMU and timer state before the vgic state so
		 * that the vgic can properly sample the updated state of the
658 659
		 * interrupt line.
		 */
660
		kvm_pmu_sync_hwstate(vcpu);
661 662
		kvm_timer_sync_hwstate(vcpu);

663
		kvm_vgic_sync_hwstate(vcpu);
664 665 666

		preempt_enable();

667 668 669 670 671 672
		ret = handle_exit(vcpu, run, ret);
	}

	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
	return ret;
673 674
}

675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
	unsigned long *ptr;

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

	ptr = (unsigned long *)&vcpu->arch.irq_lines;
	if (level)
		set = test_and_set_bit(bit_index, ptr);
	else
		set = test_and_clear_bit(bit_index, ptr);

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
	kvm_vcpu_kick(vcpu);

	return 0;
}

708 709
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
710 711 712 713 714 715 716 717 718 719 720 721 722
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

723 724 725 726
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
727

728 729
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
730

731 732 733
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
734

735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
752

753 754 755 756 757
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

758
		if (irq_num < VGIC_NR_PRIVATE_IRQS)
759 760 761 762 763 764
			return -EINVAL;

		return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
	}

	return -EINVAL;
765 766
}

767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
	unsigned int i;
	int phys_target = kvm_target_cpu();

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
	return kvm_reset_vcpu(vcpu);
}


809 810 811 812 813 814 815 816 817
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

818 819 820 821 822 823 824
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
	 */
	if (vcpu->arch.has_run_once)
		stage2_unmap_vm(vcpu->kvm);

825 826
	vcpu_reset_hcr(vcpu);

827
	/*
828
	 * Handle the "start in power-off" case.
829
	 */
830
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
831
		vcpu->arch.power_off = true;
832
	else
833
		vcpu->arch.power_off = false;
834 835 836 837

	return 0;
}

838 839 840 841 842 843 844
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
845
		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
846 847 848 849 850 851 852 853 854 855 856 857 858
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
859
		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
860 861 862 863 864 865 866 867 868 869 870 871 872
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
873
		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
874 875 876 877 878 879
		break;
	}

	return ret;
}

880 881 882 883 884
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
885
	struct kvm_device_attr attr;
886 887 888 889 890 891 892 893

	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

		if (copy_from_user(&init, argp, sizeof(init)))
			return -EFAULT;

894
		return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
895 896 897 898
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
899 900 901 902

		if (unlikely(!kvm_vcpu_initialized(vcpu)))
			return -ENOEXEC;

903 904 905 906 907 908 909 910 911 912 913 914
		if (copy_from_user(&reg, argp, sizeof(reg)))
			return -EFAULT;
		if (ioctl == KVM_SET_ONE_REG)
			return kvm_arm_set_reg(vcpu, &reg);
		else
			return kvm_arm_get_reg(vcpu, &reg);
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

915 916 917
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
			return -ENOEXEC;

918 919 920 921 922 923 924 925 926 927
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
			return -EFAULT;
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
			return -EFAULT;
		if (n < reg_list.n)
			return -E2BIG;
		return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
	}
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
	case KVM_SET_DEVICE_ATTR: {
		if (copy_from_user(&attr, argp, sizeof(attr)))
			return -EFAULT;
		return kvm_arm_vcpu_set_attr(vcpu, &attr);
	}
	case KVM_GET_DEVICE_ATTR: {
		if (copy_from_user(&attr, argp, sizeof(attr)))
			return -EFAULT;
		return kvm_arm_vcpu_get_attr(vcpu, &attr);
	}
	case KVM_HAS_DEVICE_ATTR: {
		if (copy_from_user(&attr, argp, sizeof(attr)))
			return -EFAULT;
		return kvm_arm_vcpu_has_attr(vcpu, &attr);
	}
943 944 945 946 947
	default:
		return -EINVAL;
	}
}

948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
/**
 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
 * @kvm: kvm instance
 * @log: slot id and address to which we copy the log
 *
 * Steps 1-4 below provide general overview of dirty page logging. See
 * kvm_get_dirty_log_protect() function description for additional details.
 *
 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
 * always flush the TLB (step 4) even if previous step failed  and the dirty
 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
 * writes will be marked dirty for next log read.
 *
 *   1. Take a snapshot of the bit and clear it if needed.
 *   2. Write protect the corresponding page.
 *   3. Copy the snapshot to the userspace.
 *   4. Flush TLB's if needed.
 */
967 968
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
969 970 971 972 973 974 975 976 977 978 979 980
	bool is_dirty = false;
	int r;

	mutex_lock(&kvm->slots_lock);

	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);

	if (is_dirty)
		kvm_flush_remote_tlbs(kvm);

	mutex_unlock(&kvm->slots_lock);
	return r;
981 982
}

983 984 985
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
986 987 988 989 990 991 992 993 994
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
995 996
		if (!vgic_present)
			return -ENXIO;
997
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
998 999 1000
	default:
		return -ENODEV;
	}
1001 1002
}

1003 1004 1005
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
1006 1007 1008 1009
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
1010
	case KVM_CREATE_IRQCHIP: {
1011 1012
		if (!vgic_present)
			return -ENXIO;
1013
		return kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1014
	}
1015 1016 1017 1018 1019 1020 1021
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
	case KVM_ARM_PREFERRED_TARGET: {
		int err;
		struct kvm_vcpu_init init;

		err = kvm_vcpu_preferred_target(&init);
		if (err)
			return err;

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
1035 1036 1037
	default:
		return -EINVAL;
	}
1038 1039
}

1040
static void cpu_init_hyp_mode(void *dummy)
1041
{
1042 1043
	phys_addr_t boot_pgd_ptr;
	phys_addr_t pgd_ptr;
1044 1045 1046 1047 1048
	unsigned long hyp_stack_ptr;
	unsigned long stack_page;
	unsigned long vector_ptr;

	/* Switch from the HYP stub to our own HYP init vector */
1049
	__hyp_set_vectors(kvm_get_idmap_vector());
1050

1051 1052
	boot_pgd_ptr = kvm_mmu_get_boot_httbr();
	pgd_ptr = kvm_mmu_get_httbr();
1053
	stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1054
	hyp_stack_ptr = stack_page + PAGE_SIZE;
1055
	vector_ptr = (unsigned long)kvm_ksym_ref(__kvm_hyp_vector);
1056

1057
	__cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
1058
	__cpu_init_stage2();
1059 1060

	kvm_arm_init_debug();
1061 1062
}

1063 1064 1065 1066
static void cpu_hyp_reinit(void)
{
	if (is_kernel_in_hyp_mode()) {
		/*
1067
		 * __cpu_init_stage2() is safe to call even if the PM
1068 1069
		 * event was cancelled before the CPU was reset.
		 */
1070
		__cpu_init_stage2();
1071 1072 1073 1074 1075 1076
	} else {
		if (__hyp_get_vectors() == hyp_default_vectors)
			cpu_init_hyp_mode(NULL);
	}
}

1077
static void cpu_hyp_reset(void)
1078
{
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
	phys_addr_t boot_pgd_ptr;
	phys_addr_t phys_idmap_start;

	if (!is_kernel_in_hyp_mode()) {
		boot_pgd_ptr = kvm_mmu_get_boot_httbr();
		phys_idmap_start = kvm_get_idmap_start();

		__cpu_reset_hyp_mode(boot_pgd_ptr, phys_idmap_start);
	}
}

static void _kvm_arch_hardware_enable(void *discard)
{
	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1093
		cpu_hyp_reinit();
1094
		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1095
	}
1096
}
1097

1098 1099 1100 1101
int kvm_arch_hardware_enable(void)
{
	_kvm_arch_hardware_enable(NULL);
	return 0;
1102 1103
}

1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
static void _kvm_arch_hardware_disable(void *discard)
{
	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
		cpu_hyp_reset();
		__this_cpu_write(kvm_arm_hardware_enabled, 0);
	}
}

void kvm_arch_hardware_disable(void)
{
	_kvm_arch_hardware_disable(NULL);
}
1116

1117 1118 1119 1120 1121
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
	/*
	 * kvm_arm_hardware_enabled is left with its old value over
	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
	 * re-enable hyp.
	 */
	switch (cmd) {
	case CPU_PM_ENTER:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/*
			 * don't update kvm_arm_hardware_enabled here
			 * so that the hardware will be re-enabled
			 * when we resume. See below.
			 */
			cpu_hyp_reset();

1137
		return NOTIFY_OK;
1138 1139 1140 1141
	case CPU_PM_EXIT:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/* The hardware was enabled before suspend. */
			cpu_hyp_reinit();
1142

1143 1144 1145 1146 1147
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

static void __init hyp_cpu_pm_init(void)
{
	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
}
1158 1159 1160 1161
static void __init hyp_cpu_pm_exit(void)
{
	cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
}
1162 1163 1164 1165
#else
static inline void hyp_cpu_pm_init(void)
{
}
1166 1167 1168
static inline void hyp_cpu_pm_exit(void)
{
}
1169 1170
#endif

1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
static void teardown_common_resources(void)
{
	free_percpu(kvm_host_cpu_state);
}

static int init_common_resources(void)
{
	kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
	if (!kvm_host_cpu_state) {
		kvm_err("Cannot allocate host CPU state\n");
		return -ENOMEM;
	}

	return 0;
}

static int init_subsystems(void)
{
1189
	int err = 0;
1190

1191
	/*
1192
	 * Enable hardware so that subsystem initialisation can access EL2.
1193
	 */
1194
	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1195 1196 1197 1198 1199 1200

	/*
	 * Register CPU lower-power notifier
	 */
	hyp_cpu_pm_init();

1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	switch (err) {
	case 0:
		vgic_present = true;
		break;
	case -ENODEV:
	case -ENXIO:
		vgic_present = false;
1212
		err = 0;
1213 1214
		break;
	default:
1215
		goto out;
1216 1217 1218 1219 1220 1221 1222
	}

	/*
	 * Init HYP architected timer support
	 */
	err = kvm_timer_hyp_init();
	if (err)
1223
		goto out;
1224 1225 1226 1227

	kvm_perf_init();
	kvm_coproc_table_init();

1228 1229 1230 1231
out:
	on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);

	return err;
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
}

static void teardown_hyp_mode(void)
{
	int cpu;

	if (is_kernel_in_hyp_mode())
		return;

	free_hyp_pgds();
	for_each_possible_cpu(cpu)
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1244
	hyp_cpu_pm_exit();
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
}

static int init_vhe_mode(void)
{
	/* set size of VMID supported by CPU */
	kvm_vmid_bits = kvm_get_vmid_bits();
	kvm_info("%d-bit VMID\n", kvm_vmid_bits);

	kvm_info("VHE mode initialized successfully\n");
	return 0;
}

1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
	int cpu;
	int err = 0;

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
	err = kvm_mmu_init();
	if (err)
		goto out_err;

	/*
	 * It is probably enough to obtain the default on one
	 * CPU. It's unlikely to be different on the others.
	 */
	hyp_default_vectors = __hyp_get_vectors();

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
1287
			goto out_err;
1288 1289 1290 1291 1292 1293 1294 1295
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

	/*
	 * Map the Hyp-code called directly from the host
	 */
1296 1297
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
				  kvm_ksym_ref(__hyp_text_end));
1298 1299
	if (err) {
		kvm_err("Cannot map world-switch code\n");
1300
		goto out_err;
1301 1302
	}

1303 1304
	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
				  kvm_ksym_ref(__end_rodata));
1305 1306
	if (err) {
		kvm_err("Cannot map rodata section\n");
1307
		goto out_err;
1308 1309
	}

1310 1311 1312 1313 1314 1315 1316 1317 1318
	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);

		if (err) {
			kvm_err("Cannot map hyp stack\n");
1319
			goto out_err;
1320 1321 1322 1323
		}
	}

	for_each_possible_cpu(cpu) {
1324
		kvm_cpu_context_t *cpu_ctxt;
1325

1326 1327
		cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
		err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
1328 1329

		if (err) {
1330
			kvm_err("Cannot map host CPU state: %d\n", err);
1331
			goto out_err;
1332 1333 1334
		}
	}

1335 1336 1337 1338
#ifndef CONFIG_HOTPLUG_CPU
	free_boot_hyp_pgd();
#endif

1339 1340 1341 1342
	/* set size of VMID supported by CPU */
	kvm_vmid_bits = kvm_get_vmid_bits();
	kvm_info("%d-bit VMID\n", kvm_vmid_bits);

1343
	kvm_info("Hyp mode initialized successfully\n");
1344

1345
	return 0;
1346

1347
out_err:
1348
	teardown_hyp_mode();
1349 1350 1351 1352
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

1353 1354 1355 1356 1357
static void check_kvm_target_cpu(void *ret)
{
	*(int *)ret = kvm_target_cpu();
}

1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
	int i;

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

1371 1372 1373
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
1374 1375
int kvm_arch_init(void *opaque)
{
1376
	int err;
1377
	int ret, cpu;
1378 1379 1380 1381 1382 1383

	if (!is_hyp_mode_available()) {
		kvm_err("HYP mode not available\n");
		return -ENODEV;
	}

1384 1385 1386 1387 1388 1389
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
		if (ret < 0) {
			kvm_err("Error, CPU %d not supported!\n", cpu);
			return -ENODEV;
		}
1390 1391
	}

1392
	err = init_common_resources();
1393
	if (err)
1394
		return err;
1395

1396 1397 1398 1399 1400
	if (is_kernel_in_hyp_mode())
		err = init_vhe_mode();
	else
		err = init_hyp_mode();
	if (err)
1401
		goto out_err;
1402

1403 1404 1405
	err = init_subsystems();
	if (err)
		goto out_hyp;
1406

1407
	return 0;
1408 1409 1410

out_hyp:
	teardown_hyp_mode();
1411
out_err:
1412
	teardown_common_resources();
1413
	return err;
1414 1415 1416 1417 1418
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
1419
	kvm_perf_teardown();
1420 1421 1422 1423 1424 1425 1426 1427 1428
}

static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);