direct-io.c 16.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (C) 2010 Red Hat, Inc.
 * Copyright (c) 2016-2018 Christoph Hellwig.
 */
#include <linux/module.h>
#include <linux/compiler.h>
#include <linux/fs.h>
#include <linux/iomap.h>
#include <linux/backing-dev.h>
#include <linux/uio.h>
#include <linux/task_io_accounting_ops.h>
13
#include "trace.h"
14 15 16 17 18 19 20 21 22 23 24 25 26 27

#include "../internal.h"

/*
 * Private flags for iomap_dio, must not overlap with the public ones in
 * iomap.h:
 */
#define IOMAP_DIO_WRITE_FUA	(1 << 28)
#define IOMAP_DIO_NEED_SYNC	(1 << 29)
#define IOMAP_DIO_WRITE		(1 << 30)
#define IOMAP_DIO_DIRTY		(1 << 31)

struct iomap_dio {
	struct kiocb		*iocb;
28
	const struct iomap_dio_ops *dops;
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
	loff_t			i_size;
	loff_t			size;
	atomic_t		ref;
	unsigned		flags;
	int			error;
	bool			wait_for_completion;

	union {
		/* used during submission and for synchronous completion: */
		struct {
			struct iov_iter		*iter;
			struct task_struct	*waiter;
			struct request_queue	*last_queue;
			blk_qc_t		cookie;
		} submit;

		/* used for aio completion: */
		struct {
			struct work_struct	work;
		} aio;
	};
};

int iomap_dio_iopoll(struct kiocb *kiocb, bool spin)
{
	struct request_queue *q = READ_ONCE(kiocb->private);

	if (!q)
		return 0;
	return blk_poll(q, READ_ONCE(kiocb->ki_cookie), spin);
}
EXPORT_SYMBOL_GPL(iomap_dio_iopoll);

static void iomap_dio_submit_bio(struct iomap_dio *dio, struct iomap *iomap,
63
		struct bio *bio, loff_t pos)
64 65 66 67 68 69 70
{
	atomic_inc(&dio->ref);

	if (dio->iocb->ki_flags & IOCB_HIPRI)
		bio_set_polled(bio, dio->iocb);

	dio->submit.last_queue = bdev_get_queue(iomap->bdev);
71 72 73 74 75 76
	if (dio->dops && dio->dops->submit_io)
		dio->submit.cookie = dio->dops->submit_io(
				file_inode(dio->iocb->ki_filp),
				iomap, bio, pos);
	else
		dio->submit.cookie = submit_bio(bio);
77 78
}

79
ssize_t iomap_dio_complete(struct iomap_dio *dio)
80
{
81
	const struct iomap_dio_ops *dops = dio->dops;
82 83 84
	struct kiocb *iocb = dio->iocb;
	struct inode *inode = file_inode(iocb->ki_filp);
	loff_t offset = iocb->ki_pos;
85
	ssize_t ret = dio->error;
86

87 88
	if (dops && dops->end_io)
		ret = dops->end_io(iocb, dio->size, ret, dio->flags);
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105

	if (likely(!ret)) {
		ret = dio->size;
		/* check for short read */
		if (offset + ret > dio->i_size &&
		    !(dio->flags & IOMAP_DIO_WRITE))
			ret = dio->i_size - offset;
		iocb->ki_pos += ret;
	}

	/*
	 * Try again to invalidate clean pages which might have been cached by
	 * non-direct readahead, or faulted in by get_user_pages() if the source
	 * of the write was an mmap'ed region of the file we're writing.  Either
	 * one is a pretty crazy thing to do, so we don't support it 100%.  If
	 * this invalidation fails, tough, the write still worked...
	 *
106 107 108
	 * And this page cache invalidation has to be after ->end_io(), as some
	 * filesystems convert unwritten extents to real allocations in
	 * ->end_io() when necessary, otherwise a racing buffer read would cache
109 110
	 * zeros from unwritten extents.
	 */
111
	if (!dio->error && dio->size &&
112 113 114 115 116 117 118 119 120
	    (dio->flags & IOMAP_DIO_WRITE) && inode->i_mapping->nrpages) {
		int err;
		err = invalidate_inode_pages2_range(inode->i_mapping,
				offset >> PAGE_SHIFT,
				(offset + dio->size - 1) >> PAGE_SHIFT);
		if (err)
			dio_warn_stale_pagecache(iocb->ki_filp);
	}

121
	inode_dio_end(file_inode(iocb->ki_filp));
122 123 124 125 126 127 128 129 130 131 132
	/*
	 * If this is a DSYNC write, make sure we push it to stable storage now
	 * that we've written data.
	 */
	if (ret > 0 && (dio->flags & IOMAP_DIO_NEED_SYNC))
		ret = generic_write_sync(iocb, ret);

	kfree(dio);

	return ret;
}
133
EXPORT_SYMBOL_GPL(iomap_dio_complete);
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200

static void iomap_dio_complete_work(struct work_struct *work)
{
	struct iomap_dio *dio = container_of(work, struct iomap_dio, aio.work);
	struct kiocb *iocb = dio->iocb;

	iocb->ki_complete(iocb, iomap_dio_complete(dio), 0);
}

/*
 * Set an error in the dio if none is set yet.  We have to use cmpxchg
 * as the submission context and the completion context(s) can race to
 * update the error.
 */
static inline void iomap_dio_set_error(struct iomap_dio *dio, int ret)
{
	cmpxchg(&dio->error, 0, ret);
}

static void iomap_dio_bio_end_io(struct bio *bio)
{
	struct iomap_dio *dio = bio->bi_private;
	bool should_dirty = (dio->flags & IOMAP_DIO_DIRTY);

	if (bio->bi_status)
		iomap_dio_set_error(dio, blk_status_to_errno(bio->bi_status));

	if (atomic_dec_and_test(&dio->ref)) {
		if (dio->wait_for_completion) {
			struct task_struct *waiter = dio->submit.waiter;
			WRITE_ONCE(dio->submit.waiter, NULL);
			blk_wake_io_task(waiter);
		} else if (dio->flags & IOMAP_DIO_WRITE) {
			struct inode *inode = file_inode(dio->iocb->ki_filp);

			INIT_WORK(&dio->aio.work, iomap_dio_complete_work);
			queue_work(inode->i_sb->s_dio_done_wq, &dio->aio.work);
		} else {
			iomap_dio_complete_work(&dio->aio.work);
		}
	}

	if (should_dirty) {
		bio_check_pages_dirty(bio);
	} else {
		bio_release_pages(bio, false);
		bio_put(bio);
	}
}

static void
iomap_dio_zero(struct iomap_dio *dio, struct iomap *iomap, loff_t pos,
		unsigned len)
{
	struct page *page = ZERO_PAGE(0);
	int flags = REQ_SYNC | REQ_IDLE;
	struct bio *bio;

	bio = bio_alloc(GFP_KERNEL, 1);
	bio_set_dev(bio, iomap->bdev);
	bio->bi_iter.bi_sector = iomap_sector(iomap, pos);
	bio->bi_private = dio;
	bio->bi_end_io = iomap_dio_bio_end_io;

	get_page(page);
	__bio_add_page(bio, page, len, 0);
	bio_set_op_attrs(bio, REQ_OP_WRITE, flags);
201
	iomap_dio_submit_bio(dio, iomap, bio, pos);
202 203 204 205 206 207 208 209 210 211 212 213 214 215
}

static loff_t
iomap_dio_bio_actor(struct inode *inode, loff_t pos, loff_t length,
		struct iomap_dio *dio, struct iomap *iomap)
{
	unsigned int blkbits = blksize_bits(bdev_logical_block_size(iomap->bdev));
	unsigned int fs_block_size = i_blocksize(inode), pad;
	unsigned int align = iov_iter_alignment(dio->submit.iter);
	struct bio *bio;
	bool need_zeroout = false;
	bool use_fua = false;
	int nr_pages, ret = 0;
	size_t copied = 0;
216
	size_t orig_count;
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245

	if ((pos | length | align) & ((1 << blkbits) - 1))
		return -EINVAL;

	if (iomap->type == IOMAP_UNWRITTEN) {
		dio->flags |= IOMAP_DIO_UNWRITTEN;
		need_zeroout = true;
	}

	if (iomap->flags & IOMAP_F_SHARED)
		dio->flags |= IOMAP_DIO_COW;

	if (iomap->flags & IOMAP_F_NEW) {
		need_zeroout = true;
	} else if (iomap->type == IOMAP_MAPPED) {
		/*
		 * Use a FUA write if we need datasync semantics, this is a pure
		 * data IO that doesn't require any metadata updates (including
		 * after IO completion such as unwritten extent conversion) and
		 * the underlying device supports FUA. This allows us to avoid
		 * cache flushes on IO completion.
		 */
		if (!(iomap->flags & (IOMAP_F_SHARED|IOMAP_F_DIRTY)) &&
		    (dio->flags & IOMAP_DIO_WRITE_FUA) &&
		    blk_queue_fua(bdev_get_queue(iomap->bdev)))
			use_fua = true;
	}

	/*
246 247 248
	 * Save the original count and trim the iter to just the extent we
	 * are operating on right now.  The iter will be re-expanded once
	 * we are done.
249
	 */
250 251
	orig_count = iov_iter_count(dio->submit.iter);
	iov_iter_truncate(dio->submit.iter, length);
252

253 254 255 256 257
	nr_pages = iov_iter_npages(dio->submit.iter, BIO_MAX_PAGES);
	if (nr_pages <= 0) {
		ret = nr_pages;
		goto out;
	}
258 259 260 261 262 263 264 265 266 267 268 269

	if (need_zeroout) {
		/* zero out from the start of the block to the write offset */
		pad = pos & (fs_block_size - 1);
		if (pad)
			iomap_dio_zero(dio, iomap, pos - pad, pad);
	}

	do {
		size_t n;
		if (dio->error) {
			iov_iter_revert(dio->submit.iter, copied);
270 271
			copied = ret = 0;
			goto out;
272 273 274 275 276 277 278 279 280 281
		}

		bio = bio_alloc(GFP_KERNEL, nr_pages);
		bio_set_dev(bio, iomap->bdev);
		bio->bi_iter.bi_sector = iomap_sector(iomap, pos);
		bio->bi_write_hint = dio->iocb->ki_hint;
		bio->bi_ioprio = dio->iocb->ki_ioprio;
		bio->bi_private = dio;
		bio->bi_end_io = iomap_dio_bio_end_io;

282
		ret = bio_iov_iter_get_pages(bio, dio->submit.iter);
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
		if (unlikely(ret)) {
			/*
			 * We have to stop part way through an IO. We must fall
			 * through to the sub-block tail zeroing here, otherwise
			 * this short IO may expose stale data in the tail of
			 * the block we haven't written data to.
			 */
			bio_put(bio);
			goto zero_tail;
		}

		n = bio->bi_iter.bi_size;
		if (dio->flags & IOMAP_DIO_WRITE) {
			bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
			if (use_fua)
				bio->bi_opf |= REQ_FUA;
			else
				dio->flags &= ~IOMAP_DIO_WRITE_FUA;
			task_io_account_write(n);
		} else {
			bio->bi_opf = REQ_OP_READ;
			if (dio->flags & IOMAP_DIO_DIRTY)
				bio_set_pages_dirty(bio);
		}

		dio->size += n;
		copied += n;

311
		nr_pages = iov_iter_npages(dio->submit.iter, BIO_MAX_PAGES);
312 313
		iomap_dio_submit_bio(dio, iomap, bio, pos);
		pos += n;
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
	} while (nr_pages);

	/*
	 * We need to zeroout the tail of a sub-block write if the extent type
	 * requires zeroing or the write extends beyond EOF. If we don't zero
	 * the block tail in the latter case, we can expose stale data via mmap
	 * reads of the EOF block.
	 */
zero_tail:
	if (need_zeroout ||
	    ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode))) {
		/* zero out from the end of the write to the end of the block */
		pad = pos & (fs_block_size - 1);
		if (pad)
			iomap_dio_zero(dio, iomap, pos, fs_block_size - pad);
	}
330 331 332
out:
	/* Undo iter limitation to current extent */
	iov_iter_reexpand(dio->submit.iter, orig_count - copied);
333 334 335
	if (copied)
		return copied;
	return ret;
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
}

static loff_t
iomap_dio_hole_actor(loff_t length, struct iomap_dio *dio)
{
	length = iov_iter_zero(length, dio->submit.iter);
	dio->size += length;
	return length;
}

static loff_t
iomap_dio_inline_actor(struct inode *inode, loff_t pos, loff_t length,
		struct iomap_dio *dio, struct iomap *iomap)
{
	struct iov_iter *iter = dio->submit.iter;
	size_t copied;

	BUG_ON(pos + length > PAGE_SIZE - offset_in_page(iomap->inline_data));

	if (dio->flags & IOMAP_DIO_WRITE) {
		loff_t size = inode->i_size;

		if (pos > size)
			memset(iomap->inline_data + size, 0, pos - size);
		copied = copy_from_iter(iomap->inline_data + pos, length, iter);
		if (copied) {
			if (pos + copied > size)
				i_size_write(inode, pos + copied);
			mark_inode_dirty(inode);
		}
	} else {
		copied = copy_to_iter(iomap->inline_data + pos, length, iter);
	}
	dio->size += copied;
	return copied;
}

static loff_t
iomap_dio_actor(struct inode *inode, loff_t pos, loff_t length,
375
		void *data, struct iomap *iomap, struct iomap *srcmap)
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
{
	struct iomap_dio *dio = data;

	switch (iomap->type) {
	case IOMAP_HOLE:
		if (WARN_ON_ONCE(dio->flags & IOMAP_DIO_WRITE))
			return -EIO;
		return iomap_dio_hole_actor(length, dio);
	case IOMAP_UNWRITTEN:
		if (!(dio->flags & IOMAP_DIO_WRITE))
			return iomap_dio_hole_actor(length, dio);
		return iomap_dio_bio_actor(inode, pos, length, dio, iomap);
	case IOMAP_MAPPED:
		return iomap_dio_bio_actor(inode, pos, length, dio, iomap);
	case IOMAP_INLINE:
		return iomap_dio_inline_actor(inode, pos, length, dio, iomap);
392 393 394 395 396 397 398 399 400 401
	case IOMAP_DELALLOC:
		/*
		 * DIO is not serialised against mmap() access at all, and so
		 * if the page_mkwrite occurs between the writeback and the
		 * iomap_apply() call in the DIO path, then it will see the
		 * DELALLOC block that the page-mkwrite allocated.
		 */
		pr_warn_ratelimited("Direct I/O collision with buffered writes! File: %pD4 Comm: %.20s\n",
				    dio->iocb->ki_filp, current->comm);
		return -EIO;
402 403 404 405 406 407 408 409 410 411 412 413 414 415
	default:
		WARN_ON_ONCE(1);
		return -EIO;
	}
}

/*
 * iomap_dio_rw() always completes O_[D]SYNC writes regardless of whether the IO
 * is being issued as AIO or not.  This allows us to optimise pure data writes
 * to use REQ_FUA rather than requiring generic_write_sync() to issue a
 * REQ_FLUSH post write. This is slightly tricky because a single request here
 * can be mapped into multiple disjoint IOs and only a subset of the IOs issued
 * may be pure data writes. In that case, we still need to do a full data sync
 * completion.
416 417 418
 *
 * Returns -ENOTBLK In case of a page invalidation invalidation failure for
 * writes.  The callers needs to fall back to buffered I/O in this case.
419
 */
420 421
struct iomap_dio *
__iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter,
422 423
		const struct iomap_ops *ops, const struct iomap_dio_ops *dops,
		bool wait_for_completion)
424 425 426 427
{
	struct address_space *mapping = iocb->ki_filp->f_mapping;
	struct inode *inode = file_inode(iocb->ki_filp);
	size_t count = iov_iter_count(iter);
428
	loff_t pos = iocb->ki_pos;
429
	loff_t end = iocb->ki_pos + count - 1, ret = 0;
430
	unsigned int iomap_flags = IOMAP_DIRECT;
431 432 433 434
	struct blk_plug plug;
	struct iomap_dio *dio;

	if (!count)
435
		return NULL;
436

437
	if (WARN_ON(is_sync_kiocb(iocb) && !wait_for_completion))
438
		return ERR_PTR(-EIO);
439

440 441
	dio = kmalloc(sizeof(*dio), GFP_KERNEL);
	if (!dio)
442
		return ERR_PTR(-ENOMEM);
443 444 445 446 447

	dio->iocb = iocb;
	atomic_set(&dio->ref, 1);
	dio->size = 0;
	dio->i_size = i_size_read(inode);
448
	dio->dops = dops;
449 450 451 452 453 454 455 456 457 458 459 460
	dio->error = 0;
	dio->flags = 0;

	dio->submit.iter = iter;
	dio->submit.waiter = current;
	dio->submit.cookie = BLK_QC_T_NONE;
	dio->submit.last_queue = NULL;

	if (iov_iter_rw(iter) == READ) {
		if (pos >= dio->i_size)
			goto out_free_dio;

461
		if (iter_is_iovec(iter))
462 463
			dio->flags |= IOMAP_DIO_DIRTY;
	} else {
464
		iomap_flags |= IOMAP_WRITE;
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
		dio->flags |= IOMAP_DIO_WRITE;

		/* for data sync or sync, we need sync completion processing */
		if (iocb->ki_flags & IOCB_DSYNC)
			dio->flags |= IOMAP_DIO_NEED_SYNC;

		/*
		 * For datasync only writes, we optimistically try using FUA for
		 * this IO.  Any non-FUA write that occurs will clear this flag,
		 * hence we know before completion whether a cache flush is
		 * necessary.
		 */
		if ((iocb->ki_flags & (IOCB_DSYNC | IOCB_SYNC)) == IOCB_DSYNC)
			dio->flags |= IOMAP_DIO_WRITE_FUA;
	}

	if (iocb->ki_flags & IOCB_NOWAIT) {
482
		if (filemap_range_has_page(mapping, pos, end)) {
483 484 485
			ret = -EAGAIN;
			goto out_free_dio;
		}
486
		iomap_flags |= IOMAP_NOWAIT;
487 488
	}

489
	ret = filemap_write_and_wait_range(mapping, pos, end);
490 491 492
	if (ret)
		goto out_free_dio;

493 494 495
	if (iov_iter_rw(iter) == WRITE) {
		/*
		 * Try to invalidate cache pages for the range we are writing.
496 497
		 * If this invalidation fails, let the caller fall back to
		 * buffered I/O.
498 499
		 */
		if (invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT,
500 501 502 503 504
				end >> PAGE_SHIFT)) {
			trace_iomap_dio_invalidate_fail(inode, pos, count);
			ret = -ENOTBLK;
			goto out_free_dio;
		}
505

506 507 508 509 510
		if (!wait_for_completion && !inode->i_sb->s_dio_done_wq) {
			ret = sb_init_dio_done_wq(inode->i_sb);
			if (ret < 0)
				goto out_free_dio;
		}
511 512 513 514 515 516
	}

	inode_dio_begin(inode);

	blk_start_plug(&plug);
	do {
517
		ret = iomap_apply(inode, pos, count, iomap_flags, ops, dio,
518 519 520 521 522 523 524 525 526 527 528
				iomap_dio_actor);
		if (ret <= 0) {
			/* magic error code to fall back to buffered I/O */
			if (ret == -ENOTBLK) {
				wait_for_completion = true;
				ret = 0;
			}
			break;
		}
		pos += ret;

529 530 531 532 533 534 535
		if (iov_iter_rw(iter) == READ && pos >= dio->i_size) {
			/*
			 * We only report that we've read data up to i_size.
			 * Revert iter to a state corresponding to that as
			 * some callers (such as splice code) rely on it.
			 */
			iov_iter_revert(iter, pos - dio->i_size);
536
			break;
537
		}
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
	} while ((count = iov_iter_count(iter)) > 0);
	blk_finish_plug(&plug);

	if (ret < 0)
		iomap_dio_set_error(dio, ret);

	/*
	 * If all the writes we issued were FUA, we don't need to flush the
	 * cache on IO completion. Clear the sync flag for this case.
	 */
	if (dio->flags & IOMAP_DIO_WRITE_FUA)
		dio->flags &= ~IOMAP_DIO_NEED_SYNC;

	WRITE_ONCE(iocb->ki_cookie, dio->submit.cookie);
	WRITE_ONCE(iocb->private, dio->submit.last_queue);

	/*
	 * We are about to drop our additional submission reference, which
Y
yangerkun 已提交
556 557
	 * might be the last reference to the dio.  There are three different
	 * ways we can progress here:
558 559 560 561 562 563 564 565 566 567 568 569 570 571
	 *
	 *  (a) If this is the last reference we will always complete and free
	 *	the dio ourselves.
	 *  (b) If this is not the last reference, and we serve an asynchronous
	 *	iocb, we must never touch the dio after the decrement, the
	 *	I/O completion handler will complete and free it.
	 *  (c) If this is not the last reference, but we serve a synchronous
	 *	iocb, the I/O completion handler will wake us up on the drop
	 *	of the final reference, and we will complete and free it here
	 *	after we got woken by the I/O completion handler.
	 */
	dio->wait_for_completion = wait_for_completion;
	if (!atomic_dec_and_test(&dio->ref)) {
		if (!wait_for_completion)
572
			return ERR_PTR(-EIOCBQUEUED);
573 574 575 576 577 578 579 580 581 582

		for (;;) {
			set_current_state(TASK_UNINTERRUPTIBLE);
			if (!READ_ONCE(dio->submit.waiter))
				break;

			if (!(iocb->ki_flags & IOCB_HIPRI) ||
			    !dio->submit.last_queue ||
			    !blk_poll(dio->submit.last_queue,
					 dio->submit.cookie, true))
583
				blk_io_schedule();
584 585 586 587
		}
		__set_current_state(TASK_RUNNING);
	}

588
	return dio;
589 590 591

out_free_dio:
	kfree(dio);
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
	if (ret)
		return ERR_PTR(ret);
	return NULL;
}
EXPORT_SYMBOL_GPL(__iomap_dio_rw);

ssize_t
iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter,
		const struct iomap_ops *ops, const struct iomap_dio_ops *dops,
		bool wait_for_completion)
{
	struct iomap_dio *dio;

	dio = __iomap_dio_rw(iocb, iter, ops, dops, wait_for_completion);
	if (IS_ERR_OR_NULL(dio))
		return PTR_ERR_OR_ZERO(dio);
	return iomap_dio_complete(dio);
609 610
}
EXPORT_SYMBOL_GPL(iomap_dio_rw);