property.c 41.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0+
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * drivers/of/property.c - Procedures for accessing and interpreting
 *			   Devicetree properties and graphs.
 *
 * Initially created by copying procedures from drivers/of/base.c. This
 * file contains the OF property as well as the OF graph interface
 * functions.
 *
 * Paul Mackerras	August 1996.
 * Copyright (C) 1996-2005 Paul Mackerras.
 *
 *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
 *    {engebret|bergner}@us.ibm.com
 *
 *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
 *
 *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
 *  Grant Likely.
 */

#define pr_fmt(fmt)	"OF: " fmt

#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_graph.h>
27
#include <linux/of_irq.h>
28
#include <linux/string.h>
29
#include <linux/moduleparam.h>
30 31 32

#include "of_private.h"

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
/**
 * of_graph_is_present() - check graph's presence
 * @node: pointer to device_node containing graph port
 *
 * Return: True if @node has a port or ports (with a port) sub-node,
 * false otherwise.
 */
bool of_graph_is_present(const struct device_node *node)
{
	struct device_node *ports, *port;

	ports = of_get_child_by_name(node, "ports");
	if (ports)
		node = ports;

	port = of_get_child_by_name(node, "port");
	of_node_put(ports);
	of_node_put(port);

	return !!port;
}
EXPORT_SYMBOL(of_graph_is_present);

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
/**
 * of_property_count_elems_of_size - Count the number of elements in a property
 *
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
 * @elem_size:	size of the individual element
 *
 * Search for a property in a device node and count the number of elements of
 * size elem_size in it. Returns number of elements on sucess, -EINVAL if the
 * property does not exist or its length does not match a multiple of elem_size
 * and -ENODATA if the property does not have a value.
 */
int of_property_count_elems_of_size(const struct device_node *np,
				const char *propname, int elem_size)
{
	struct property *prop = of_find_property(np, propname, NULL);

	if (!prop)
		return -EINVAL;
	if (!prop->value)
		return -ENODATA;

	if (prop->length % elem_size != 0) {
79 80
		pr_err("size of %s in node %pOF is not a multiple of %d\n",
		       propname, np, elem_size);
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
		return -EINVAL;
	}

	return prop->length / elem_size;
}
EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);

/**
 * of_find_property_value_of_size
 *
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
 * @min:	minimum allowed length of property value
 * @max:	maximum allowed length of property value (0 means unlimited)
 * @len:	if !=NULL, actual length is written to here
 *
 * Search for a property in a device node and valid the requested size.
 * Returns the property value on success, -EINVAL if the property does not
 *  exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
 * property data is too small or too large.
 *
 */
static void *of_find_property_value_of_size(const struct device_node *np,
			const char *propname, u32 min, u32 max, size_t *len)
{
	struct property *prop = of_find_property(np, propname, NULL);

	if (!prop)
		return ERR_PTR(-EINVAL);
	if (!prop->value)
		return ERR_PTR(-ENODATA);
	if (prop->length < min)
		return ERR_PTR(-EOVERFLOW);
	if (max && prop->length > max)
		return ERR_PTR(-EOVERFLOW);

	if (len)
		*len = prop->length;

	return prop->value;
}

/**
 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
 *
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
 * @index:	index of the u32 in the list of values
 * @out_value:	pointer to return value, modified only if no error.
 *
 * Search for a property in a device node and read nth 32-bit value from
 * it. Returns 0 on success, -EINVAL if the property does not exist,
 * -ENODATA if property does not have a value, and -EOVERFLOW if the
 * property data isn't large enough.
 *
 * The out_value is modified only if a valid u32 value can be decoded.
 */
int of_property_read_u32_index(const struct device_node *np,
				       const char *propname,
				       u32 index, u32 *out_value)
{
	const u32 *val = of_find_property_value_of_size(np, propname,
					((index + 1) * sizeof(*out_value)),
					0,
					NULL);

	if (IS_ERR(val))
		return PTR_ERR(val);

	*out_value = be32_to_cpup(((__be32 *)val) + index);
	return 0;
}
EXPORT_SYMBOL_GPL(of_property_read_u32_index);

/**
 * of_property_read_u64_index - Find and read a u64 from a multi-value property.
 *
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
 * @index:	index of the u64 in the list of values
 * @out_value:	pointer to return value, modified only if no error.
 *
 * Search for a property in a device node and read nth 64-bit value from
 * it. Returns 0 on success, -EINVAL if the property does not exist,
 * -ENODATA if property does not have a value, and -EOVERFLOW if the
 * property data isn't large enough.
 *
 * The out_value is modified only if a valid u64 value can be decoded.
 */
int of_property_read_u64_index(const struct device_node *np,
				       const char *propname,
				       u32 index, u64 *out_value)
{
	const u64 *val = of_find_property_value_of_size(np, propname,
					((index + 1) * sizeof(*out_value)),
					0, NULL);

	if (IS_ERR(val))
		return PTR_ERR(val);

	*out_value = be64_to_cpup(((__be64 *)val) + index);
	return 0;
}
EXPORT_SYMBOL_GPL(of_property_read_u64_index);

/**
 * of_property_read_variable_u8_array - Find and read an array of u8 from a
 * property, with bounds on the minimum and maximum array size.
 *
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
192
 * @out_values:	pointer to found values.
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
 * @sz_min:	minimum number of array elements to read
 * @sz_max:	maximum number of array elements to read, if zero there is no
 *		upper limit on the number of elements in the dts entry but only
 *		sz_min will be read.
 *
 * Search for a property in a device node and read 8-bit value(s) from
 * it. Returns number of elements read on success, -EINVAL if the property
 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
 * if the property data is smaller than sz_min or longer than sz_max.
 *
 * dts entry of array should be like:
 *	property = /bits/ 8 <0x50 0x60 0x70>;
 *
 * The out_values is modified only if a valid u8 value can be decoded.
 */
int of_property_read_variable_u8_array(const struct device_node *np,
					const char *propname, u8 *out_values,
					size_t sz_min, size_t sz_max)
{
	size_t sz, count;
	const u8 *val = of_find_property_value_of_size(np, propname,
						(sz_min * sizeof(*out_values)),
						(sz_max * sizeof(*out_values)),
						&sz);

	if (IS_ERR(val))
		return PTR_ERR(val);

	if (!sz_max)
		sz = sz_min;
	else
		sz /= sizeof(*out_values);

	count = sz;
	while (count--)
		*out_values++ = *val++;

	return sz;
}
EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array);

/**
 * of_property_read_variable_u16_array - Find and read an array of u16 from a
 * property, with bounds on the minimum and maximum array size.
 *
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
240
 * @out_values:	pointer to found values.
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
 * @sz_min:	minimum number of array elements to read
 * @sz_max:	maximum number of array elements to read, if zero there is no
 *		upper limit on the number of elements in the dts entry but only
 *		sz_min will be read.
 *
 * Search for a property in a device node and read 16-bit value(s) from
 * it. Returns number of elements read on success, -EINVAL if the property
 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
 * if the property data is smaller than sz_min or longer than sz_max.
 *
 * dts entry of array should be like:
 *	property = /bits/ 16 <0x5000 0x6000 0x7000>;
 *
 * The out_values is modified only if a valid u16 value can be decoded.
 */
int of_property_read_variable_u16_array(const struct device_node *np,
					const char *propname, u16 *out_values,
					size_t sz_min, size_t sz_max)
{
	size_t sz, count;
	const __be16 *val = of_find_property_value_of_size(np, propname,
						(sz_min * sizeof(*out_values)),
						(sz_max * sizeof(*out_values)),
						&sz);

	if (IS_ERR(val))
		return PTR_ERR(val);

	if (!sz_max)
		sz = sz_min;
	else
		sz /= sizeof(*out_values);

	count = sz;
	while (count--)
		*out_values++ = be16_to_cpup(val++);

	return sz;
}
EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array);

/**
 * of_property_read_variable_u32_array - Find and read an array of 32 bit
 * integers from a property, with bounds on the minimum and maximum array size.
 *
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
288
 * @out_values:	pointer to return found values.
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
 * @sz_min:	minimum number of array elements to read
 * @sz_max:	maximum number of array elements to read, if zero there is no
 *		upper limit on the number of elements in the dts entry but only
 *		sz_min will be read.
 *
 * Search for a property in a device node and read 32-bit value(s) from
 * it. Returns number of elements read on success, -EINVAL if the property
 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
 * if the property data is smaller than sz_min or longer than sz_max.
 *
 * The out_values is modified only if a valid u32 value can be decoded.
 */
int of_property_read_variable_u32_array(const struct device_node *np,
			       const char *propname, u32 *out_values,
			       size_t sz_min, size_t sz_max)
{
	size_t sz, count;
	const __be32 *val = of_find_property_value_of_size(np, propname,
						(sz_min * sizeof(*out_values)),
						(sz_max * sizeof(*out_values)),
						&sz);

	if (IS_ERR(val))
		return PTR_ERR(val);

	if (!sz_max)
		sz = sz_min;
	else
		sz /= sizeof(*out_values);

	count = sz;
	while (count--)
		*out_values++ = be32_to_cpup(val++);

	return sz;
}
EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array);

/**
 * of_property_read_u64 - Find and read a 64 bit integer from a property
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
 * @out_value:	pointer to return value, modified only if return value is 0.
 *
 * Search for a property in a device node and read a 64-bit value from
 * it. Returns 0 on success, -EINVAL if the property does not exist,
 * -ENODATA if property does not have a value, and -EOVERFLOW if the
 * property data isn't large enough.
 *
 * The out_value is modified only if a valid u64 value can be decoded.
 */
int of_property_read_u64(const struct device_node *np, const char *propname,
			 u64 *out_value)
{
	const __be32 *val = of_find_property_value_of_size(np, propname,
						sizeof(*out_value),
						0,
						NULL);

	if (IS_ERR(val))
		return PTR_ERR(val);

	*out_value = of_read_number(val, 2);
	return 0;
}
EXPORT_SYMBOL_GPL(of_property_read_u64);

/**
 * of_property_read_variable_u64_array - Find and read an array of 64 bit
 * integers from a property, with bounds on the minimum and maximum array size.
 *
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
362
 * @out_values:	pointer to found values.
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
 * @sz_min:	minimum number of array elements to read
 * @sz_max:	maximum number of array elements to read, if zero there is no
 *		upper limit on the number of elements in the dts entry but only
 *		sz_min will be read.
 *
 * Search for a property in a device node and read 64-bit value(s) from
 * it. Returns number of elements read on success, -EINVAL if the property
 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
 * if the property data is smaller than sz_min or longer than sz_max.
 *
 * The out_values is modified only if a valid u64 value can be decoded.
 */
int of_property_read_variable_u64_array(const struct device_node *np,
			       const char *propname, u64 *out_values,
			       size_t sz_min, size_t sz_max)
{
	size_t sz, count;
	const __be32 *val = of_find_property_value_of_size(np, propname,
						(sz_min * sizeof(*out_values)),
						(sz_max * sizeof(*out_values)),
						&sz);

	if (IS_ERR(val))
		return PTR_ERR(val);

	if (!sz_max)
		sz = sz_min;
	else
		sz /= sizeof(*out_values);

	count = sz;
	while (count--) {
		*out_values++ = of_read_number(val, 2);
		val += 2;
	}

	return sz;
}
EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array);

/**
 * of_property_read_string - Find and read a string from a property
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
 * @out_string:	pointer to null terminated return string, modified only if
 *		return value is 0.
 *
 * Search for a property in a device tree node and retrieve a null
 * terminated string value (pointer to data, not a copy). Returns 0 on
 * success, -EINVAL if the property does not exist, -ENODATA if property
 * does not have a value, and -EILSEQ if the string is not null-terminated
 * within the length of the property data.
 *
 * The out_string pointer is modified only if a valid string can be decoded.
 */
int of_property_read_string(const struct device_node *np, const char *propname,
				const char **out_string)
{
	const struct property *prop = of_find_property(np, propname, NULL);
	if (!prop)
		return -EINVAL;
	if (!prop->value)
		return -ENODATA;
	if (strnlen(prop->value, prop->length) >= prop->length)
		return -EILSEQ;
	*out_string = prop->value;
	return 0;
}
EXPORT_SYMBOL_GPL(of_property_read_string);

/**
 * of_property_match_string() - Find string in a list and return index
 * @np: pointer to node containing string list property
 * @propname: string list property name
 * @string: pointer to string to search for in string list
 *
 * This function searches a string list property and returns the index
 * of a specific string value.
 */
int of_property_match_string(const struct device_node *np, const char *propname,
			     const char *string)
{
	const struct property *prop = of_find_property(np, propname, NULL);
	size_t l;
	int i;
	const char *p, *end;

	if (!prop)
		return -EINVAL;
	if (!prop->value)
		return -ENODATA;

	p = prop->value;
	end = p + prop->length;

	for (i = 0; p < end; i++, p += l) {
		l = strnlen(p, end - p) + 1;
		if (p + l > end)
			return -EILSEQ;
		pr_debug("comparing %s with %s\n", string, p);
		if (strcmp(string, p) == 0)
			return i; /* Found it; return index */
	}
	return -ENODATA;
}
EXPORT_SYMBOL_GPL(of_property_match_string);

/**
 * of_property_read_string_helper() - Utility helper for parsing string properties
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
 * @out_strs:	output array of string pointers.
 * @sz:		number of array elements to read.
 * @skip:	Number of strings to skip over at beginning of list.
 *
 * Don't call this function directly. It is a utility helper for the
 * of_property_read_string*() family of functions.
 */
int of_property_read_string_helper(const struct device_node *np,
				   const char *propname, const char **out_strs,
				   size_t sz, int skip)
{
	const struct property *prop = of_find_property(np, propname, NULL);
	int l = 0, i = 0;
	const char *p, *end;

	if (!prop)
		return -EINVAL;
	if (!prop->value)
		return -ENODATA;
	p = prop->value;
	end = p + prop->length;

	for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
		l = strnlen(p, end - p) + 1;
		if (p + l > end)
			return -EILSEQ;
		if (out_strs && i >= skip)
			*out_strs++ = p;
	}
	i -= skip;
	return i <= 0 ? -ENODATA : i;
}
EXPORT_SYMBOL_GPL(of_property_read_string_helper);

const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
			       u32 *pu)
{
	const void *curv = cur;

	if (!prop)
		return NULL;

	if (!cur) {
		curv = prop->value;
		goto out_val;
	}

	curv += sizeof(*cur);
	if (curv >= prop->value + prop->length)
		return NULL;

out_val:
	*pu = be32_to_cpup(curv);
	return curv;
}
EXPORT_SYMBOL_GPL(of_prop_next_u32);

const char *of_prop_next_string(struct property *prop, const char *cur)
{
	const void *curv = cur;

	if (!prop)
		return NULL;

	if (!cur)
		return prop->value;

	curv += strlen(cur) + 1;
	if (curv >= prop->value + prop->length)
		return NULL;

	return curv;
}
EXPORT_SYMBOL_GPL(of_prop_next_string);

/**
 * of_graph_parse_endpoint() - parse common endpoint node properties
 * @node: pointer to endpoint device_node
 * @endpoint: pointer to the OF endpoint data structure
 *
 * The caller should hold a reference to @node.
 */
int of_graph_parse_endpoint(const struct device_node *node,
			    struct of_endpoint *endpoint)
{
	struct device_node *port_node = of_get_parent(node);

561 562
	WARN_ONCE(!port_node, "%s(): endpoint %pOF has no parent node\n",
		  __func__, node);
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598

	memset(endpoint, 0, sizeof(*endpoint));

	endpoint->local_node = node;
	/*
	 * It doesn't matter whether the two calls below succeed.
	 * If they don't then the default value 0 is used.
	 */
	of_property_read_u32(port_node, "reg", &endpoint->port);
	of_property_read_u32(node, "reg", &endpoint->id);

	of_node_put(port_node);

	return 0;
}
EXPORT_SYMBOL(of_graph_parse_endpoint);

/**
 * of_graph_get_port_by_id() - get the port matching a given id
 * @parent: pointer to the parent device node
 * @id: id of the port
 *
 * Return: A 'port' node pointer with refcount incremented. The caller
 * has to use of_node_put() on it when done.
 */
struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id)
{
	struct device_node *node, *port;

	node = of_get_child_by_name(parent, "ports");
	if (node)
		parent = node;

	for_each_child_of_node(parent, port) {
		u32 port_id = 0;

599
		if (!of_node_name_eq(port, "port"))
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
			continue;
		of_property_read_u32(port, "reg", &port_id);
		if (id == port_id)
			break;
	}

	of_node_put(node);

	return port;
}
EXPORT_SYMBOL(of_graph_get_port_by_id);

/**
 * of_graph_get_next_endpoint() - get next endpoint node
 * @parent: pointer to the parent device node
 * @prev: previous endpoint node, or NULL to get first
 *
 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
 * of the passed @prev node is decremented.
 */
struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
					struct device_node *prev)
{
	struct device_node *endpoint;
	struct device_node *port;

	if (!parent)
		return NULL;

	/*
	 * Start by locating the port node. If no previous endpoint is specified
	 * search for the first port node, otherwise get the previous endpoint
	 * parent port node.
	 */
	if (!prev) {
		struct device_node *node;

		node = of_get_child_by_name(parent, "ports");
		if (node)
			parent = node;

		port = of_get_child_by_name(parent, "port");
		of_node_put(node);

		if (!port) {
645
			pr_err("graph: no port node found in %pOF\n", parent);
646 647 648 649
			return NULL;
		}
	} else {
		port = of_get_parent(prev);
650 651
		if (WARN_ONCE(!port, "%s(): endpoint %pOF has no parent node\n",
			      __func__, prev))
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
			return NULL;
	}

	while (1) {
		/*
		 * Now that we have a port node, get the next endpoint by
		 * getting the next child. If the previous endpoint is NULL this
		 * will return the first child.
		 */
		endpoint = of_get_next_child(port, prev);
		if (endpoint) {
			of_node_put(port);
			return endpoint;
		}

		/* No more endpoints under this port, try the next one. */
		prev = NULL;

		do {
			port = of_get_next_child(parent, port);
			if (!port)
				return NULL;
674
		} while (!of_node_name_eq(port, "port"));
675 676 677 678 679 680 681 682 683 684 685 686
	}
}
EXPORT_SYMBOL(of_graph_get_next_endpoint);

/**
 * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers
 * @parent: pointer to the parent device node
 * @port_reg: identifier (value of reg property) of the parent port node
 * @reg: identifier (value of reg property) of the endpoint node
 *
 * Return: An 'endpoint' node pointer which is identified by reg and at the same
 * is the child of a port node identified by port_reg. reg and port_reg are
687
 * ignored when they are -1. Use of_node_put() on the pointer when done.
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
 */
struct device_node *of_graph_get_endpoint_by_regs(
	const struct device_node *parent, int port_reg, int reg)
{
	struct of_endpoint endpoint;
	struct device_node *node = NULL;

	for_each_endpoint_of_node(parent, node) {
		of_graph_parse_endpoint(node, &endpoint);
		if (((port_reg == -1) || (endpoint.port == port_reg)) &&
			((reg == -1) || (endpoint.id == reg)))
			return node;
	}

	return NULL;
}
EXPORT_SYMBOL(of_graph_get_endpoint_by_regs);

706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
/**
 * of_graph_get_remote_endpoint() - get remote endpoint node
 * @node: pointer to a local endpoint device_node
 *
 * Return: Remote endpoint node associated with remote endpoint node linked
 *	   to @node. Use of_node_put() on it when done.
 */
struct device_node *of_graph_get_remote_endpoint(const struct device_node *node)
{
	/* Get remote endpoint node. */
	return of_parse_phandle(node, "remote-endpoint", 0);
}
EXPORT_SYMBOL(of_graph_get_remote_endpoint);

/**
 * of_graph_get_port_parent() - get port's parent node
 * @node: pointer to a local endpoint device_node
 *
 * Return: device node associated with endpoint node linked
 *	   to @node. Use of_node_put() on it when done.
 */
struct device_node *of_graph_get_port_parent(struct device_node *node)
{
	unsigned int depth;

731 732 733 734 735 736 737 738 739
	if (!node)
		return NULL;

	/*
	 * Preserve usecount for passed in node as of_get_next_parent()
	 * will do of_node_put() on it.
	 */
	of_node_get(node);

740 741 742
	/* Walk 3 levels up only if there is 'ports' node. */
	for (depth = 3; depth && node; depth--) {
		node = of_get_next_parent(node);
743
		if (depth == 2 && !of_node_name_eq(node, "ports"))
744 745 746 747 748 749
			break;
	}
	return node;
}
EXPORT_SYMBOL(of_graph_get_port_parent);

750 751 752 753 754 755 756 757 758 759
/**
 * of_graph_get_remote_port_parent() - get remote port's parent node
 * @node: pointer to a local endpoint device_node
 *
 * Return: Remote device node associated with remote endpoint node linked
 *	   to @node. Use of_node_put() on it when done.
 */
struct device_node *of_graph_get_remote_port_parent(
			       const struct device_node *node)
{
760
	struct device_node *np, *pp;
761 762

	/* Get remote endpoint node. */
763
	np = of_graph_get_remote_endpoint(node);
764

765 766 767 768 769
	pp = of_graph_get_port_parent(np);

	of_node_put(np);

	return pp;
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
}
EXPORT_SYMBOL(of_graph_get_remote_port_parent);

/**
 * of_graph_get_remote_port() - get remote port node
 * @node: pointer to a local endpoint device_node
 *
 * Return: Remote port node associated with remote endpoint node linked
 *	   to @node. Use of_node_put() on it when done.
 */
struct device_node *of_graph_get_remote_port(const struct device_node *node)
{
	struct device_node *np;

	/* Get remote endpoint node. */
785
	np = of_graph_get_remote_endpoint(node);
786 787 788 789 790 791
	if (!np)
		return NULL;
	return of_get_next_parent(np);
}
EXPORT_SYMBOL(of_graph_get_remote_port);

792 793 794 795 796 797 798 799 800 801 802 803
int of_graph_get_endpoint_count(const struct device_node *np)
{
	struct device_node *endpoint;
	int num = 0;

	for_each_endpoint_of_node(np, endpoint)
		num++;

	return num;
}
EXPORT_SYMBOL(of_graph_get_endpoint_count);

804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
/**
 * of_graph_get_remote_node() - get remote parent device_node for given port/endpoint
 * @node: pointer to parent device_node containing graph port/endpoint
 * @port: identifier (value of reg property) of the parent port node
 * @endpoint: identifier (value of reg property) of the endpoint node
 *
 * Return: Remote device node associated with remote endpoint node linked
 *	   to @node. Use of_node_put() on it when done.
 */
struct device_node *of_graph_get_remote_node(const struct device_node *node,
					     u32 port, u32 endpoint)
{
	struct device_node *endpoint_node, *remote;

	endpoint_node = of_graph_get_endpoint_by_regs(node, port, endpoint);
	if (!endpoint_node) {
820 821
		pr_debug("no valid endpoint (%d, %d) for node %pOF\n",
			 port, endpoint, node);
822 823 824 825 826 827 828 829 830 831 832 833
		return NULL;
	}

	remote = of_graph_get_remote_port_parent(endpoint_node);
	of_node_put(endpoint_node);
	if (!remote) {
		pr_debug("no valid remote node\n");
		return NULL;
	}

	if (!of_device_is_available(remote)) {
		pr_debug("not available for remote node\n");
834
		of_node_put(remote);
835 836 837 838 839 840
		return NULL;
	}

	return remote;
}
EXPORT_SYMBOL(of_graph_get_remote_node);
841

842
static struct fwnode_handle *of_fwnode_get(struct fwnode_handle *fwnode)
843
{
844
	return of_fwnode_handle(of_node_get(to_of_node(fwnode)));
845 846 847 848 849 850 851
}

static void of_fwnode_put(struct fwnode_handle *fwnode)
{
	of_node_put(to_of_node(fwnode));
}

852
static bool of_fwnode_device_is_available(const struct fwnode_handle *fwnode)
853 854 855 856
{
	return of_device_is_available(to_of_node(fwnode));
}

857
static bool of_fwnode_property_present(const struct fwnode_handle *fwnode,
858 859 860 861 862
				       const char *propname)
{
	return of_property_read_bool(to_of_node(fwnode), propname);
}

863
static int of_fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
864 865 866 867
					     const char *propname,
					     unsigned int elem_size, void *val,
					     size_t nval)
{
868
	const struct device_node *node = to_of_node(fwnode);
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887

	if (!val)
		return of_property_count_elems_of_size(node, propname,
						       elem_size);

	switch (elem_size) {
	case sizeof(u8):
		return of_property_read_u8_array(node, propname, val, nval);
	case sizeof(u16):
		return of_property_read_u16_array(node, propname, val, nval);
	case sizeof(u32):
		return of_property_read_u32_array(node, propname, val, nval);
	case sizeof(u64):
		return of_property_read_u64_array(node, propname, val, nval);
	}

	return -ENXIO;
}

888 889 890 891
static int
of_fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
				     const char *propname, const char **val,
				     size_t nval)
892
{
893
	const struct device_node *node = to_of_node(fwnode);
894 895 896 897 898 899

	return val ?
		of_property_read_string_array(node, propname, val, nval) :
		of_property_count_strings(node, propname);
}

900 901 902 903 904
static const char *of_fwnode_get_name(const struct fwnode_handle *fwnode)
{
	return kbasename(to_of_node(fwnode)->full_name);
}

905 906 907 908 909 910 911 912 913
static const char *of_fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
{
	/* Root needs no prefix here (its name is "/"). */
	if (!to_of_node(fwnode)->parent)
		return "";

	return "/";
}

914 915
static struct fwnode_handle *
of_fwnode_get_parent(const struct fwnode_handle *fwnode)
916 917 918 919 920
{
	return of_fwnode_handle(of_get_parent(to_of_node(fwnode)));
}

static struct fwnode_handle *
921
of_fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
922 923 924 925 926 927 928
			      struct fwnode_handle *child)
{
	return of_fwnode_handle(of_get_next_available_child(to_of_node(fwnode),
							    to_of_node(child)));
}

static struct fwnode_handle *
929
of_fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
930 931
			       const char *childname)
{
932
	const struct device_node *node = to_of_node(fwnode);
933 934 935
	struct device_node *child;

	for_each_available_child_of_node(node, child)
936
		if (of_node_name_eq(child, childname))
937 938 939 940 941
			return of_fwnode_handle(child);

	return NULL;
}

942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
static int
of_fwnode_get_reference_args(const struct fwnode_handle *fwnode,
			     const char *prop, const char *nargs_prop,
			     unsigned int nargs, unsigned int index,
			     struct fwnode_reference_args *args)
{
	struct of_phandle_args of_args;
	unsigned int i;
	int ret;

	if (nargs_prop)
		ret = of_parse_phandle_with_args(to_of_node(fwnode), prop,
						 nargs_prop, index, &of_args);
	else
		ret = of_parse_phandle_with_fixed_args(to_of_node(fwnode), prop,
						       nargs, index, &of_args);
	if (ret < 0)
		return ret;
	if (!args)
		return 0;

	args->nargs = of_args.args_count;
	args->fwnode = of_fwnode_handle(of_args.np);

	for (i = 0; i < NR_FWNODE_REFERENCE_ARGS; i++)
		args->args[i] = i < of_args.args_count ? of_args.args[i] : 0;

	return 0;
}

972
static struct fwnode_handle *
973
of_fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
974 975 976 977 978 979 980
				  struct fwnode_handle *prev)
{
	return of_fwnode_handle(of_graph_get_next_endpoint(to_of_node(fwnode),
							   to_of_node(prev)));
}

static struct fwnode_handle *
981
of_fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
982
{
983 984
	return of_fwnode_handle(
		of_graph_get_remote_endpoint(to_of_node(fwnode)));
985 986 987 988 989 990 991 992
}

static struct fwnode_handle *
of_fwnode_graph_get_port_parent(struct fwnode_handle *fwnode)
{
	struct device_node *np;

	/* Get the parent of the port */
993
	np = of_get_parent(to_of_node(fwnode));
994 995 996 997
	if (!np)
		return NULL;

	/* Is this the "ports" node? If not, it's the port parent. */
998
	if (!of_node_name_eq(np, "ports"))
999 1000 1001 1002 1003
		return of_fwnode_handle(np);

	return of_fwnode_handle(of_get_next_parent(np));
}

1004
static int of_fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1005 1006
					  struct fwnode_endpoint *endpoint)
{
1007
	const struct device_node *node = to_of_node(fwnode);
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
	struct device_node *port_node = of_get_parent(node);

	endpoint->local_fwnode = fwnode;

	of_property_read_u32(port_node, "reg", &endpoint->port);
	of_property_read_u32(node, "reg", &endpoint->id);

	of_node_put(port_node);

	return 0;
}

1020
static const void *
1021 1022 1023
of_fwnode_device_get_match_data(const struct fwnode_handle *fwnode,
				const struct device *dev)
{
1024
	return of_device_get_match_data(dev);
1025 1026
}

1027 1028 1029 1030 1031 1032 1033
static bool of_is_ancestor_of(struct device_node *test_ancestor,
			      struct device_node *child)
{
	of_node_get(child);
	while (child) {
		if (child == test_ancestor) {
			of_node_put(child);
1034
			return true;
1035 1036 1037
		}
		child = of_get_next_parent(child);
	}
1038
	return false;
1039 1040
}

1041
/**
1042 1043 1044
 * of_link_to_phandle - Add fwnode link to supplier from supplier phandle
 * @con_np: consumer device tree node
 * @sup_np: supplier device tree node
1045 1046 1047 1048 1049 1050 1051 1052 1053
 *
 * Given a phandle to a supplier device tree node (@sup_np), this function
 * finds the device that owns the supplier device tree node and creates a
 * device link from @dev consumer device to the supplier device. This function
 * doesn't create device links for invalid scenarios such as trying to create a
 * link with a parent device as the consumer of its child device. In such
 * cases, it returns an error.
 *
 * Returns:
1054
 * - 0 if fwnode link successfully created to supplier
1055
 * - -EINVAL if the supplier link is invalid and should not be created
1056
 * - -ENODEV if struct device will never be create for supplier
1057
 */
1058 1059
static int of_link_to_phandle(struct device_node *con_np,
			      struct device_node *sup_np)
1060
{
1061
	struct device *sup_dev;
1062 1063 1064 1065 1066 1067 1068
	struct device_node *tmp_np = sup_np;

	of_node_get(sup_np);
	/*
	 * Find the device node that contains the supplier phandle.  It may be
	 * @sup_np or it may be an ancestor of @sup_np.
	 */
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
	while (sup_np) {

		/* Don't allow linking to a disabled supplier */
		if (!of_device_is_available(sup_np)) {
			of_node_put(sup_np);
			sup_np = NULL;
		}

		if (of_find_property(sup_np, "compatible", NULL))
			break;

1080
		sup_np = of_get_next_parent(sup_np);
1081 1082
	}

1083
	if (!sup_np) {
1084 1085
		pr_debug("Not linking %pOFP to %pOFP - No device\n",
			 con_np, tmp_np);
1086 1087 1088 1089 1090 1091 1092 1093
		return -ENODEV;
	}

	/*
	 * Don't allow linking a device node as a consumer of one of its
	 * descendant nodes. By definition, a child node can't be a functional
	 * dependency for the parent node.
	 */
1094 1095 1096
	if (of_is_ancestor_of(con_np, sup_np)) {
		pr_debug("Not linking %pOFP to %pOFP - is descendant\n",
			 con_np, sup_np);
1097 1098 1099
		of_node_put(sup_np);
		return -EINVAL;
	}
1100 1101 1102 1103 1104

	/*
	 * Don't create links to "early devices" that won't have struct devices
	 * created for them.
	 */
1105
	sup_dev = get_dev_from_fwnode(&sup_np->fwnode);
1106 1107 1108
	if (!sup_dev &&
	    (of_node_check_flag(sup_np, OF_POPULATED) ||
	     sup_np->fwnode.flags & FWNODE_FLAG_NOT_DEVICE)) {
1109 1110
		pr_debug("Not linking %pOFP to %pOFP - No struct device\n",
			 con_np, sup_np);
1111
		of_node_put(sup_np);
1112 1113
		return -ENODEV;
	}
1114
	put_device(sup_dev);
1115 1116 1117 1118 1119

	fwnode_link_add(of_fwnode_handle(con_np), of_fwnode_handle(sup_np));
	of_node_put(sup_np);

	return 0;
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
}

/**
 * parse_prop_cells - Property parsing function for suppliers
 *
 * @np:		Pointer to device tree node containing a list
 * @prop_name:	Name of property to be parsed. Expected to hold phandle values
 * @index:	For properties holding a list of phandles, this is the index
 *		into the list.
 * @list_name:	Property name that is known to contain list of phandle(s) to
 *		supplier(s)
 * @cells_name:	property name that specifies phandles' arguments count
 *
 * This is a helper function to parse properties that have a known fixed name
 * and are a list of phandles and phandle arguments.
 *
 * Returns:
 * - phandle node pointer with refcount incremented. Caller must of_node_put()
 *   on it when done.
 * - NULL if no phandle found at index
 */
static struct device_node *parse_prop_cells(struct device_node *np,
					    const char *prop_name, int index,
					    const char *list_name,
					    const char *cells_name)
{
	struct of_phandle_args sup_args;

	if (strcmp(prop_name, list_name))
		return NULL;

	if (of_parse_phandle_with_args(np, list_name, cells_name, index,
				       &sup_args))
		return NULL;

	return sup_args.np;
}

1158 1159 1160 1161 1162
#define DEFINE_SIMPLE_PROP(fname, name, cells)				  \
static struct device_node *parse_##fname(struct device_node *np,	  \
					const char *prop_name, int index) \
{									  \
	return parse_prop_cells(np, prop_name, index, name, cells);	  \
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
}

static int strcmp_suffix(const char *str, const char *suffix)
{
	unsigned int len, suffix_len;

	len = strlen(str);
	suffix_len = strlen(suffix);
	if (len <= suffix_len)
		return -1;
	return strcmp(str + len - suffix_len, suffix);
}

1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
/**
 * parse_suffix_prop_cells - Suffix property parsing function for suppliers
 *
 * @np:		Pointer to device tree node containing a list
 * @prop_name:	Name of property to be parsed. Expected to hold phandle values
 * @index:	For properties holding a list of phandles, this is the index
 *		into the list.
 * @suffix:	Property suffix that is known to contain list of phandle(s) to
 *		supplier(s)
 * @cells_name:	property name that specifies phandles' arguments count
 *
 * This is a helper function to parse properties that have a known fixed suffix
 * and are a list of phandles and phandle arguments.
 *
 * Returns:
 * - phandle node pointer with refcount incremented. Caller must of_node_put()
 *   on it when done.
 * - NULL if no phandle found at index
 */
static struct device_node *parse_suffix_prop_cells(struct device_node *np,
					    const char *prop_name, int index,
					    const char *suffix,
					    const char *cells_name)
1199
{
1200 1201 1202
	struct of_phandle_args sup_args;

	if (strcmp_suffix(prop_name, suffix))
1203 1204
		return NULL;

1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
	if (of_parse_phandle_with_args(np, prop_name, cells_name, index,
				       &sup_args))
		return NULL;

	return sup_args.np;
}

#define DEFINE_SUFFIX_PROP(fname, suffix, cells)			     \
static struct device_node *parse_##fname(struct device_node *np,	     \
					const char *prop_name, int index)    \
{									     \
	return parse_suffix_prop_cells(np, prop_name, index, suffix, cells); \
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
}

/**
 * struct supplier_bindings - Property parsing functions for suppliers
 *
 * @parse_prop: function name
 *	parse_prop() finds the node corresponding to a supplier phandle
 * @parse_prop.np: Pointer to device node holding supplier phandle property
 * @parse_prop.prop_name: Name of property holding a phandle value
 * @parse_prop.index: For properties holding a list of phandles, this is the
 *		      index into the list
 *
 * Returns:
 * parse_prop() return values are
 * - phandle node pointer with refcount incremented. Caller must of_node_put()
 *   on it when done.
 * - NULL if no phandle found at index
 */
struct supplier_bindings {
	struct device_node *(*parse_prop)(struct device_node *np,
					  const char *prop_name, int index);
1238
	bool optional;
1239 1240
};

1241 1242
DEFINE_SIMPLE_PROP(clocks, "clocks", "#clock-cells")
DEFINE_SIMPLE_PROP(interconnects, "interconnects", "#interconnect-cells")
1243 1244 1245
DEFINE_SIMPLE_PROP(iommus, "iommus", "#iommu-cells")
DEFINE_SIMPLE_PROP(mboxes, "mboxes", "#mbox-cells")
DEFINE_SIMPLE_PROP(io_channels, "io-channel", "#io-channel-cells")
1246 1247
DEFINE_SIMPLE_PROP(interrupt_parent, "interrupt-parent", NULL)
DEFINE_SIMPLE_PROP(dmas, "dmas", "#dma-cells")
1248 1249
DEFINE_SIMPLE_PROP(power_domains, "power-domains", "#power-domain-cells")
DEFINE_SIMPLE_PROP(hwlocks, "hwlocks", "#hwlock-cells")
1250
DEFINE_SIMPLE_PROP(extcon, "extcon", NULL)
1251 1252 1253
DEFINE_SIMPLE_PROP(nvmem_cells, "nvmem-cells", NULL)
DEFINE_SIMPLE_PROP(phys, "phys", "#phy-cells")
DEFINE_SIMPLE_PROP(wakeup_parent, "wakeup-parent", NULL)
1254 1255 1256 1257 1258 1259 1260 1261 1262
DEFINE_SIMPLE_PROP(pinctrl0, "pinctrl-0", NULL)
DEFINE_SIMPLE_PROP(pinctrl1, "pinctrl-1", NULL)
DEFINE_SIMPLE_PROP(pinctrl2, "pinctrl-2", NULL)
DEFINE_SIMPLE_PROP(pinctrl3, "pinctrl-3", NULL)
DEFINE_SIMPLE_PROP(pinctrl4, "pinctrl-4", NULL)
DEFINE_SIMPLE_PROP(pinctrl5, "pinctrl-5", NULL)
DEFINE_SIMPLE_PROP(pinctrl6, "pinctrl-6", NULL)
DEFINE_SIMPLE_PROP(pinctrl7, "pinctrl-7", NULL)
DEFINE_SIMPLE_PROP(pinctrl8, "pinctrl-8", NULL)
1263
DEFINE_SUFFIX_PROP(regulators, "-supply", NULL)
1264 1265
DEFINE_SUFFIX_PROP(gpio, "-gpio", "#gpio-cells")
DEFINE_SUFFIX_PROP(gpios, "-gpios", "#gpio-cells")
1266

1267 1268 1269 1270 1271 1272 1273 1274 1275
static struct device_node *parse_iommu_maps(struct device_node *np,
					    const char *prop_name, int index)
{
	if (strcmp(prop_name, "iommu-map"))
		return NULL;

	return of_parse_phandle(np, prop_name, (index * 4) + 1);
}

1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
static struct device_node *parse_gpio_compat(struct device_node *np,
					     const char *prop_name, int index)
{
	struct of_phandle_args sup_args;

	if (strcmp(prop_name, "gpio") && strcmp(prop_name, "gpios"))
		return NULL;

	/*
	 * Ignore node with gpio-hog property since its gpios are all provided
	 * by its parent.
	 */
	if (of_find_property(np, "gpio-hog", NULL))
		return NULL;

	if (of_parse_phandle_with_args(np, prop_name, "#gpio-cells", index,
				       &sup_args))
		return NULL;

	return sup_args.np;
}

1298 1299 1300
static struct device_node *parse_interrupts(struct device_node *np,
					    const char *prop_name, int index)
{
1301 1302 1303 1304
	struct of_phandle_args sup_args;

	if (strcmp(prop_name, "interrupts") &&
	    strcmp(prop_name, "interrupts-extended"))
1305 1306
		return NULL;

1307
	return of_irq_parse_one(np, index, &sup_args) ? NULL : sup_args.np;
1308 1309
}

1310
static const struct supplier_bindings of_supplier_bindings[] = {
1311 1312
	{ .parse_prop = parse_clocks, },
	{ .parse_prop = parse_interconnects, },
1313 1314
	{ .parse_prop = parse_iommus, .optional = true, },
	{ .parse_prop = parse_iommu_maps, .optional = true, },
1315 1316
	{ .parse_prop = parse_mboxes, },
	{ .parse_prop = parse_io_channels, },
1317
	{ .parse_prop = parse_interrupt_parent, },
1318
	{ .parse_prop = parse_dmas, .optional = true, },
1319 1320
	{ .parse_prop = parse_power_domains, },
	{ .parse_prop = parse_hwlocks, },
1321
	{ .parse_prop = parse_extcon, },
1322 1323 1324
	{ .parse_prop = parse_nvmem_cells, },
	{ .parse_prop = parse_phys, },
	{ .parse_prop = parse_wakeup_parent, },
1325 1326 1327 1328 1329 1330 1331 1332 1333
	{ .parse_prop = parse_pinctrl0, },
	{ .parse_prop = parse_pinctrl1, },
	{ .parse_prop = parse_pinctrl2, },
	{ .parse_prop = parse_pinctrl3, },
	{ .parse_prop = parse_pinctrl4, },
	{ .parse_prop = parse_pinctrl5, },
	{ .parse_prop = parse_pinctrl6, },
	{ .parse_prop = parse_pinctrl7, },
	{ .parse_prop = parse_pinctrl8, },
1334
	{ .parse_prop = parse_gpio_compat, },
1335
	{ .parse_prop = parse_interrupts, },
1336
	{ .parse_prop = parse_regulators, },
1337 1338
	{ .parse_prop = parse_gpio, },
	{ .parse_prop = parse_gpios, },
1339
	{}
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
};

/**
 * of_link_property - Create device links to suppliers listed in a property
 * @dev: Consumer device
 * @con_np: The consumer device tree node which contains the property
 * @prop_name: Name of property to be parsed
 *
 * This function checks if the property @prop_name that is present in the
 * @con_np device tree node is one of the known common device tree bindings
 * that list phandles to suppliers. If @prop_name isn't one, this function
 * doesn't do anything.
 *
1353 1354 1355
 * If @prop_name is one, this function attempts to create fwnode links from the
 * consumer device tree node @con_np to all the suppliers device tree nodes
 * listed in @prop_name.
1356
 *
1357
 * Any failed attempt to create a fwnode link will NOT result in an immediate
1358
 * return.  of_link_property() must create links to all the available supplier
1359 1360
 * device tree nodes even when attempts to create a link to one or more
 * suppliers fail.
1361
 */
1362
static int of_link_property(struct device_node *con_np, const char *prop_name)
1363 1364
{
	struct device_node *phandle;
1365
	const struct supplier_bindings *s = of_supplier_bindings;
1366 1367 1368 1369 1370 1371
	unsigned int i = 0;
	bool matched = false;
	int ret = 0;

	/* Do not stop at first failed link, link all available suppliers. */
	while (!matched && s->parse_prop) {
1372 1373 1374 1375 1376
		if (s->optional && !fw_devlink_is_strict()) {
			s++;
			continue;
		}

1377 1378 1379
		while ((phandle = s->parse_prop(con_np, prop_name, i))) {
			matched = true;
			i++;
1380
			of_link_to_phandle(con_np, phandle);
1381 1382 1383 1384 1385 1386 1387
			of_node_put(phandle);
		}
		s++;
	}
	return ret;
}

1388
static int of_fwnode_add_links(struct fwnode_handle *fwnode)
1389 1390
{
	struct property *p;
1391
	struct device_node *con_np = to_of_node(fwnode);
1392

1393 1394
	if (!con_np)
		return -EINVAL;
1395

1396 1397
	for_each_property_of_node(con_np, p)
		of_link_property(con_np, p->name);
1398

1399
	return 0;
1400 1401
}

1402 1403 1404
const struct fwnode_operations of_fwnode_ops = {
	.get = of_fwnode_get,
	.put = of_fwnode_put,
1405
	.device_is_available = of_fwnode_device_is_available,
1406
	.device_get_match_data = of_fwnode_device_get_match_data,
1407 1408 1409
	.property_present = of_fwnode_property_present,
	.property_read_int_array = of_fwnode_property_read_int_array,
	.property_read_string_array = of_fwnode_property_read_string_array,
1410
	.get_name = of_fwnode_get_name,
1411
	.get_name_prefix = of_fwnode_get_name_prefix,
1412 1413 1414
	.get_parent = of_fwnode_get_parent,
	.get_next_child_node = of_fwnode_get_next_child_node,
	.get_named_child_node = of_fwnode_get_named_child_node,
1415
	.get_reference_args = of_fwnode_get_reference_args,
1416 1417 1418 1419
	.graph_get_next_endpoint = of_fwnode_graph_get_next_endpoint,
	.graph_get_remote_endpoint = of_fwnode_graph_get_remote_endpoint,
	.graph_get_port_parent = of_fwnode_graph_get_port_parent,
	.graph_parse_endpoint = of_fwnode_graph_parse_endpoint,
1420
	.add_links = of_fwnode_add_links,
1421
};
1422
EXPORT_SYMBOL_GPL(of_fwnode_ops);