sha1_mb.c 25.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
/*
 * Multi buffer SHA1 algorithm Glue Code
 *
 * This file is provided under a dual BSD/GPLv2 license.  When using or
 * redistributing this file, you may do so under either license.
 *
 * GPL LICENSE SUMMARY
 *
 *  Copyright(c) 2014 Intel Corporation.
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of version 2 of the GNU General Public License as
 *  published by the Free Software Foundation.
 *
 *  This program is distributed in the hope that it will be useful, but
 *  WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *  General Public License for more details.
 *
 *  Contact Information:
 *	Tim Chen <tim.c.chen@linux.intel.com>
 *
 *  BSD LICENSE
 *
 *  Copyright(c) 2014 Intel Corporation.
 *
 *  Redistribution and use in source and binary forms, with or without
 *  modification, are permitted provided that the following conditions
 *  are met:
 *
 *    * Redistributions of source code must retain the above copyright
 *      notice, this list of conditions and the following disclaimer.
 *    * Redistributions in binary form must reproduce the above copyright
 *      notice, this list of conditions and the following disclaimer in
 *      the documentation and/or other materials provided with the
 *      distribution.
 *    * Neither the name of Intel Corporation nor the names of its
 *      contributors may be used to endorse or promote products derived
 *      from this software without specific prior written permission.
 *
 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 *  A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 *  OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 *  SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 *  LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 *  DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 *  THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt

#include <crypto/internal/hash.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/cryptohash.h>
#include <linux/types.h>
#include <linux/list.h>
#include <crypto/scatterwalk.h>
#include <crypto/sha.h>
#include <crypto/mcryptd.h>
#include <crypto/crypto_wq.h>
#include <asm/byteorder.h>
#include <asm/i387.h>
#include <asm/xcr.h>
#include <asm/xsave.h>
#include <linux/hardirq.h>
#include <asm/fpu-internal.h>
#include "sha_mb_ctx.h"

#define FLUSH_INTERVAL 1000 /* in usec */

77
static struct mcryptd_alg_state sha1_mb_alg_state;
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

struct sha1_mb_ctx {
	struct mcryptd_ahash *mcryptd_tfm;
};

static inline struct mcryptd_hash_request_ctx *cast_hash_to_mcryptd_ctx(struct sha1_hash_ctx *hash_ctx)
{
	struct shash_desc *desc;

	desc = container_of((void *) hash_ctx, struct shash_desc, __ctx);
	return container_of(desc, struct mcryptd_hash_request_ctx, desc);
}

static inline struct ahash_request *cast_mcryptd_ctx_to_req(struct mcryptd_hash_request_ctx *ctx)
{
	return container_of((void *) ctx, struct ahash_request, __ctx);
}

static void req_ctx_init(struct mcryptd_hash_request_ctx *rctx,
				struct shash_desc *desc)
{
	rctx->flag = HASH_UPDATE;
}

102 103
static asmlinkage void (*sha1_job_mgr_init)(struct sha1_mb_mgr *state);
static asmlinkage struct job_sha1* (*sha1_job_mgr_submit)(struct sha1_mb_mgr *state,
104
							  struct job_sha1 *job);
105 106
static asmlinkage struct job_sha1* (*sha1_job_mgr_flush)(struct sha1_mb_mgr *state);
static asmlinkage struct job_sha1* (*sha1_job_mgr_get_comp_job)(struct sha1_mb_mgr *state);
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206

inline void sha1_init_digest(uint32_t *digest)
{
	static const uint32_t initial_digest[SHA1_DIGEST_LENGTH] = {SHA1_H0,
					SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4 };
	memcpy(digest, initial_digest, sizeof(initial_digest));
}

inline uint32_t sha1_pad(uint8_t padblock[SHA1_BLOCK_SIZE * 2],
			 uint32_t total_len)
{
	uint32_t i = total_len & (SHA1_BLOCK_SIZE - 1);

	memset(&padblock[i], 0, SHA1_BLOCK_SIZE);
	padblock[i] = 0x80;

	i += ((SHA1_BLOCK_SIZE - 1) &
	      (0 - (total_len + SHA1_PADLENGTHFIELD_SIZE + 1)))
	     + 1 + SHA1_PADLENGTHFIELD_SIZE;

#if SHA1_PADLENGTHFIELD_SIZE == 16
	*((uint64_t *) &padblock[i - 16]) = 0;
#endif

	*((uint64_t *) &padblock[i - 8]) = cpu_to_be64(total_len << 3);

	/* Number of extra blocks to hash */
	return i >> SHA1_LOG2_BLOCK_SIZE;
}

static struct sha1_hash_ctx *sha1_ctx_mgr_resubmit(struct sha1_ctx_mgr *mgr, struct sha1_hash_ctx *ctx)
{
	while (ctx) {
		if (ctx->status & HASH_CTX_STS_COMPLETE) {
			/* Clear PROCESSING bit */
			ctx->status = HASH_CTX_STS_COMPLETE;
			return ctx;
		}

		/*
		 * If the extra blocks are empty, begin hashing what remains
		 * in the user's buffer.
		 */
		if (ctx->partial_block_buffer_length == 0 &&
		    ctx->incoming_buffer_length) {

			const void *buffer = ctx->incoming_buffer;
			uint32_t len = ctx->incoming_buffer_length;
			uint32_t copy_len;

			/*
			 * Only entire blocks can be hashed.
			 * Copy remainder to extra blocks buffer.
			 */
			copy_len = len & (SHA1_BLOCK_SIZE-1);

			if (copy_len) {
				len -= copy_len;
				memcpy(ctx->partial_block_buffer,
				       ((const char *) buffer + len),
				       copy_len);
				ctx->partial_block_buffer_length = copy_len;
			}

			ctx->incoming_buffer_length = 0;

			/* len should be a multiple of the block size now */
			assert((len % SHA1_BLOCK_SIZE) == 0);

			/* Set len to the number of blocks to be hashed */
			len >>= SHA1_LOG2_BLOCK_SIZE;

			if (len) {

				ctx->job.buffer = (uint8_t *) buffer;
				ctx->job.len = len;
				ctx = (struct sha1_hash_ctx *) sha1_job_mgr_submit(&mgr->mgr,
										  &ctx->job);
				continue;
			}
		}

		/*
		 * If the extra blocks are not empty, then we are
		 * either on the last block(s) or we need more
		 * user input before continuing.
		 */
		if (ctx->status & HASH_CTX_STS_LAST) {

			uint8_t *buf = ctx->partial_block_buffer;
			uint32_t n_extra_blocks = sha1_pad(buf, ctx->total_length);

			ctx->status = (HASH_CTX_STS_PROCESSING |
				       HASH_CTX_STS_COMPLETE);
			ctx->job.buffer = buf;
			ctx->job.len = (uint32_t) n_extra_blocks;
			ctx = (struct sha1_hash_ctx *) sha1_job_mgr_submit(&mgr->mgr, &ctx->job);
			continue;
		}

207
		ctx->status = HASH_CTX_STS_IDLE;
208 209 210 211 212 213
		return ctx;
	}

	return NULL;
}

214
static struct sha1_hash_ctx *sha1_ctx_mgr_get_comp_ctx(struct sha1_ctx_mgr *mgr)
215 216 217 218 219 220 221 222 223 224 225 226 227 228
{
	/*
	 * If get_comp_job returns NULL, there are no jobs complete.
	 * If get_comp_job returns a job, verify that it is safe to return to the user.
	 * If it is not ready, resubmit the job to finish processing.
	 * If sha1_ctx_mgr_resubmit returned a job, it is ready to be returned.
	 * Otherwise, all jobs currently being managed by the hash_ctx_mgr still need processing.
	 */
	struct sha1_hash_ctx *ctx;

	ctx = (struct sha1_hash_ctx *) sha1_job_mgr_get_comp_job(&mgr->mgr);
	return sha1_ctx_mgr_resubmit(mgr, ctx);
}

229
static void sha1_ctx_mgr_init(struct sha1_ctx_mgr *mgr)
230 231 232 233
{
	sha1_job_mgr_init(&mgr->mgr);
}

234
static struct sha1_hash_ctx *sha1_ctx_mgr_submit(struct sha1_ctx_mgr *mgr,
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
					  struct sha1_hash_ctx *ctx,
					  const void *buffer,
					  uint32_t len,
					  int flags)
{
	if (flags & (~HASH_ENTIRE)) {
		/* User should not pass anything other than FIRST, UPDATE, or LAST */
		ctx->error = HASH_CTX_ERROR_INVALID_FLAGS;
		return ctx;
	}

	if (ctx->status & HASH_CTX_STS_PROCESSING) {
		/* Cannot submit to a currently processing job. */
		ctx->error = HASH_CTX_ERROR_ALREADY_PROCESSING;
		return ctx;
	}

	if ((ctx->status & HASH_CTX_STS_COMPLETE) && !(flags & HASH_FIRST)) {
		/* Cannot update a finished job. */
		ctx->error = HASH_CTX_ERROR_ALREADY_COMPLETED;
		return ctx;
	}


	if (flags & HASH_FIRST) {
		/* Init digest */
		sha1_init_digest(ctx->job.result_digest);

		/* Reset byte counter */
		ctx->total_length = 0;

		/* Clear extra blocks */
		ctx->partial_block_buffer_length = 0;
	}

	/* If we made it here, there were no errors during this call to submit */
	ctx->error = HASH_CTX_ERROR_NONE;

	/* Store buffer ptr info from user */
	ctx->incoming_buffer = buffer;
	ctx->incoming_buffer_length = len;

	/* Store the user's request flags and mark this ctx as currently being processed. */
	ctx->status = (flags & HASH_LAST) ?
			(HASH_CTX_STS_PROCESSING | HASH_CTX_STS_LAST) :
			HASH_CTX_STS_PROCESSING;

	/* Advance byte counter */
	ctx->total_length += len;

	/*
	 * If there is anything currently buffered in the extra blocks,
	 * append to it until it contains a whole block.
	 * Or if the user's buffer contains less than a whole block,
	 * append as much as possible to the extra block.
	 */
	if ((ctx->partial_block_buffer_length) | (len < SHA1_BLOCK_SIZE)) {
		/* Compute how many bytes to copy from user buffer into extra block */
		uint32_t copy_len = SHA1_BLOCK_SIZE - ctx->partial_block_buffer_length;
		if (len < copy_len)
			copy_len = len;

		if (copy_len) {
			/* Copy and update relevant pointers and counters */
			memcpy(&ctx->partial_block_buffer[ctx->partial_block_buffer_length],
				buffer, copy_len);

			ctx->partial_block_buffer_length += copy_len;
			ctx->incoming_buffer = (const void *)((const char *)buffer + copy_len);
			ctx->incoming_buffer_length = len - copy_len;
		}

		/* The extra block should never contain more than 1 block here */
		assert(ctx->partial_block_buffer_length <= SHA1_BLOCK_SIZE);

		/* If the extra block buffer contains exactly 1 block, it can be hashed. */
		if (ctx->partial_block_buffer_length >= SHA1_BLOCK_SIZE) {
			ctx->partial_block_buffer_length = 0;

			ctx->job.buffer = ctx->partial_block_buffer;
			ctx->job.len = 1;
			ctx = (struct sha1_hash_ctx *) sha1_job_mgr_submit(&mgr->mgr, &ctx->job);
		}
	}

	return sha1_ctx_mgr_resubmit(mgr, ctx);
}

323
static struct sha1_hash_ctx *sha1_ctx_mgr_flush(struct sha1_ctx_mgr *mgr)
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
{
	struct sha1_hash_ctx *ctx;

	while (1) {
		ctx = (struct sha1_hash_ctx *) sha1_job_mgr_flush(&mgr->mgr);

		/* If flush returned 0, there are no more jobs in flight. */
		if (!ctx)
			return NULL;

		/*
		 * If flush returned a job, resubmit the job to finish processing.
		 */
		ctx = sha1_ctx_mgr_resubmit(mgr, ctx);

		/*
		 * If sha1_ctx_mgr_resubmit returned a job, it is ready to be returned.
		 * Otherwise, all jobs currently being managed by the sha1_ctx_mgr
		 * still need processing. Loop.
		 */
		if (ctx)
			return ctx;
	}
}

static int sha1_mb_init(struct shash_desc *desc)
{
	struct sha1_hash_ctx *sctx = shash_desc_ctx(desc);

	hash_ctx_init(sctx);
	sctx->job.result_digest[0] = SHA1_H0;
	sctx->job.result_digest[1] = SHA1_H1;
	sctx->job.result_digest[2] = SHA1_H2;
	sctx->job.result_digest[3] = SHA1_H3;
	sctx->job.result_digest[4] = SHA1_H4;
	sctx->total_length = 0;
	sctx->partial_block_buffer_length = 0;
	sctx->status = HASH_CTX_STS_IDLE;

	return 0;
}

static int sha1_mb_set_results(struct mcryptd_hash_request_ctx *rctx)
{
	int	i;
	struct	sha1_hash_ctx *sctx = shash_desc_ctx(&rctx->desc);
	__be32	*dst = (__be32 *) rctx->out;

	for (i = 0; i < 5; ++i)
		dst[i] = cpu_to_be32(sctx->job.result_digest[i]);

	return 0;
}

static int sha_finish_walk(struct mcryptd_hash_request_ctx **ret_rctx,
			struct mcryptd_alg_cstate *cstate, bool flush)
{
	int	flag = HASH_UPDATE;
	int	nbytes, err = 0;
	struct mcryptd_hash_request_ctx *rctx = *ret_rctx;
	struct sha1_hash_ctx *sha_ctx;

	/* more work ? */
	while (!(rctx->flag & HASH_DONE)) {
		nbytes = crypto_ahash_walk_done(&rctx->walk, 0);
		if (nbytes < 0) {
			err = nbytes;
			goto out;
		}
		/* check if the walk is done */
		if (crypto_ahash_walk_last(&rctx->walk)) {
			rctx->flag |= HASH_DONE;
			if (rctx->flag & HASH_FINAL)
				flag |= HASH_LAST;

		}
		sha_ctx = (struct sha1_hash_ctx *) shash_desc_ctx(&rctx->desc);
		kernel_fpu_begin();
		sha_ctx = sha1_ctx_mgr_submit(cstate->mgr, sha_ctx, rctx->walk.data, nbytes, flag);
		if (!sha_ctx) {
			if (flush)
				sha_ctx = sha1_ctx_mgr_flush(cstate->mgr);
		}
		kernel_fpu_end();
		if (sha_ctx)
			rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
		else {
			rctx = NULL;
			goto out;
		}
	}

	/* copy the results */
	if (rctx->flag & HASH_FINAL)
		sha1_mb_set_results(rctx);

out:
	*ret_rctx = rctx;
	return err;
}

static int sha_complete_job(struct mcryptd_hash_request_ctx *rctx,
			    struct mcryptd_alg_cstate *cstate,
			    int err)
{
	struct ahash_request *req = cast_mcryptd_ctx_to_req(rctx);
	struct sha1_hash_ctx *sha_ctx;
	struct mcryptd_hash_request_ctx *req_ctx;
	int ret;

	/* remove from work list */
	spin_lock(&cstate->work_lock);
	list_del(&rctx->waiter);
	spin_unlock(&cstate->work_lock);

	if (irqs_disabled())
		rctx->complete(&req->base, err);
	else {
		local_bh_disable();
		rctx->complete(&req->base, err);
		local_bh_enable();
	}

	/* check to see if there are other jobs that are done */
	sha_ctx = sha1_ctx_mgr_get_comp_ctx(cstate->mgr);
	while (sha_ctx) {
		req_ctx = cast_hash_to_mcryptd_ctx(sha_ctx);
		ret = sha_finish_walk(&req_ctx, cstate, false);
		if (req_ctx) {
			spin_lock(&cstate->work_lock);
			list_del(&req_ctx->waiter);
			spin_unlock(&cstate->work_lock);

			req = cast_mcryptd_ctx_to_req(req_ctx);
			if (irqs_disabled())
				rctx->complete(&req->base, ret);
			else {
				local_bh_disable();
				rctx->complete(&req->base, ret);
				local_bh_enable();
			}
		}
		sha_ctx = sha1_ctx_mgr_get_comp_ctx(cstate->mgr);
	}

	return 0;
}

static void sha1_mb_add_list(struct mcryptd_hash_request_ctx *rctx,
			     struct mcryptd_alg_cstate *cstate)
{
	unsigned long next_flush;
	unsigned long delay = usecs_to_jiffies(FLUSH_INTERVAL);

	/* initialize tag */
	rctx->tag.arrival = jiffies;    /* tag the arrival time */
	rctx->tag.seq_num = cstate->next_seq_num++;
	next_flush = rctx->tag.arrival + delay;
	rctx->tag.expire = next_flush;

	spin_lock(&cstate->work_lock);
	list_add_tail(&rctx->waiter, &cstate->work_list);
	spin_unlock(&cstate->work_lock);

	mcryptd_arm_flusher(cstate, delay);
}

static int sha1_mb_update(struct shash_desc *desc, const u8 *data,
			  unsigned int len)
{
	struct mcryptd_hash_request_ctx *rctx =
			container_of(desc, struct mcryptd_hash_request_ctx, desc);
	struct mcryptd_alg_cstate *cstate =
				this_cpu_ptr(sha1_mb_alg_state.alg_cstate);

	struct ahash_request *req = cast_mcryptd_ctx_to_req(rctx);
	struct sha1_hash_ctx *sha_ctx;
	int ret = 0, nbytes;


	/* sanity check */
	if (rctx->tag.cpu != smp_processor_id()) {
		pr_err("mcryptd error: cpu clash\n");
		goto done;
	}

	/* need to init context */
	req_ctx_init(rctx, desc);

	nbytes = crypto_ahash_walk_first(req, &rctx->walk);

	if (nbytes < 0) {
		ret = nbytes;
		goto done;
	}

	if (crypto_ahash_walk_last(&rctx->walk))
		rctx->flag |= HASH_DONE;

	/* submit */
	sha_ctx = (struct sha1_hash_ctx *) shash_desc_ctx(desc);
	sha1_mb_add_list(rctx, cstate);
	kernel_fpu_begin();
	sha_ctx = sha1_ctx_mgr_submit(cstate->mgr, sha_ctx, rctx->walk.data, nbytes, HASH_UPDATE);
	kernel_fpu_end();

	/* check if anything is returned */
	if (!sha_ctx)
		return -EINPROGRESS;

	if (sha_ctx->error) {
		ret = sha_ctx->error;
		rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
		goto done;
	}

	rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
	ret = sha_finish_walk(&rctx, cstate, false);

	if (!rctx)
		return -EINPROGRESS;
done:
	sha_complete_job(rctx, cstate, ret);
	return ret;
}

static int sha1_mb_finup(struct shash_desc *desc, const u8 *data,
			     unsigned int len, u8 *out)
{
	struct mcryptd_hash_request_ctx *rctx =
			container_of(desc, struct mcryptd_hash_request_ctx, desc);
	struct mcryptd_alg_cstate *cstate =
				this_cpu_ptr(sha1_mb_alg_state.alg_cstate);

	struct ahash_request *req = cast_mcryptd_ctx_to_req(rctx);
	struct sha1_hash_ctx *sha_ctx;
	int ret = 0, flag = HASH_UPDATE, nbytes;

	/* sanity check */
	if (rctx->tag.cpu != smp_processor_id()) {
		pr_err("mcryptd error: cpu clash\n");
		goto done;
	}

	/* need to init context */
	req_ctx_init(rctx, desc);

	nbytes = crypto_ahash_walk_first(req, &rctx->walk);

	if (nbytes < 0) {
		ret = nbytes;
		goto done;
	}

	if (crypto_ahash_walk_last(&rctx->walk)) {
		rctx->flag |= HASH_DONE;
		flag = HASH_LAST;
	}
	rctx->out = out;

	/* submit */
	rctx->flag |= HASH_FINAL;
	sha_ctx = (struct sha1_hash_ctx *) shash_desc_ctx(desc);
	sha1_mb_add_list(rctx, cstate);

	kernel_fpu_begin();
	sha_ctx = sha1_ctx_mgr_submit(cstate->mgr, sha_ctx, rctx->walk.data, nbytes, flag);
	kernel_fpu_end();

	/* check if anything is returned */
	if (!sha_ctx)
		return -EINPROGRESS;

	if (sha_ctx->error) {
		ret = sha_ctx->error;
		goto done;
	}

	rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
	ret = sha_finish_walk(&rctx, cstate, false);
	if (!rctx)
		return -EINPROGRESS;
done:
	sha_complete_job(rctx, cstate, ret);
	return ret;
}

static int sha1_mb_final(struct shash_desc *desc, u8 *out)
{
	struct mcryptd_hash_request_ctx *rctx =
			container_of(desc, struct mcryptd_hash_request_ctx, desc);
	struct mcryptd_alg_cstate *cstate =
				this_cpu_ptr(sha1_mb_alg_state.alg_cstate);

	struct sha1_hash_ctx *sha_ctx;
	int ret = 0;
	u8 data;

	/* sanity check */
	if (rctx->tag.cpu != smp_processor_id()) {
		pr_err("mcryptd error: cpu clash\n");
		goto done;
	}

	/* need to init context */
	req_ctx_init(rctx, desc);

	rctx->out = out;
	rctx->flag |= HASH_DONE | HASH_FINAL;

	sha_ctx = (struct sha1_hash_ctx *) shash_desc_ctx(desc);
	/* flag HASH_FINAL and 0 data size */
	sha1_mb_add_list(rctx, cstate);
	kernel_fpu_begin();
	sha_ctx = sha1_ctx_mgr_submit(cstate->mgr, sha_ctx, &data, 0, HASH_LAST);
	kernel_fpu_end();

	/* check if anything is returned */
	if (!sha_ctx)
		return -EINPROGRESS;

	if (sha_ctx->error) {
		ret = sha_ctx->error;
		rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
		goto done;
	}

	rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
	ret = sha_finish_walk(&rctx, cstate, false);
	if (!rctx)
		return -EINPROGRESS;
done:
	sha_complete_job(rctx, cstate, ret);
	return ret;
}

static int sha1_mb_export(struct shash_desc *desc, void *out)
{
	struct sha1_hash_ctx *sctx = shash_desc_ctx(desc);

	memcpy(out, sctx, sizeof(*sctx));

	return 0;
}

static int sha1_mb_import(struct shash_desc *desc, const void *in)
{
	struct sha1_hash_ctx *sctx = shash_desc_ctx(desc);

	memcpy(sctx, in, sizeof(*sctx));

	return 0;
}


static struct shash_alg sha1_mb_shash_alg = {
	.digestsize	=	SHA1_DIGEST_SIZE,
	.init		=	sha1_mb_init,
	.update		=	sha1_mb_update,
	.final		=	sha1_mb_final,
	.finup		=	sha1_mb_finup,
	.export		=	sha1_mb_export,
	.import		=	sha1_mb_import,
	.descsize	=	sizeof(struct sha1_hash_ctx),
	.statesize	=	sizeof(struct sha1_hash_ctx),
	.base		=	{
		.cra_name	 = "__sha1-mb",
		.cra_driver_name = "__intel_sha1-mb",
		.cra_priority	 = 100,
		/*
		 * use ASYNC flag as some buffers in multi-buffer
		 * algo may not have completed before hashing thread sleep
		 */
697 698
		.cra_flags	 = CRYPTO_ALG_TYPE_SHASH | CRYPTO_ALG_ASYNC |
				   CRYPTO_ALG_INTERNAL,
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
		.cra_blocksize	 = SHA1_BLOCK_SIZE,
		.cra_module	 = THIS_MODULE,
		.cra_list	 = LIST_HEAD_INIT(sha1_mb_shash_alg.base.cra_list),
	}
};

static int sha1_mb_async_init(struct ahash_request *req)
{
	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
	struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm);
	struct ahash_request *mcryptd_req = ahash_request_ctx(req);
	struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;

	memcpy(mcryptd_req, req, sizeof(*req));
	ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
	return crypto_ahash_init(mcryptd_req);
}

static int sha1_mb_async_update(struct ahash_request *req)
{
	struct ahash_request *mcryptd_req = ahash_request_ctx(req);

	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
	struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm);
	struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;

	memcpy(mcryptd_req, req, sizeof(*req));
	ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
	return crypto_ahash_update(mcryptd_req);
}

static int sha1_mb_async_finup(struct ahash_request *req)
{
	struct ahash_request *mcryptd_req = ahash_request_ctx(req);

	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
	struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm);
	struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;

	memcpy(mcryptd_req, req, sizeof(*req));
	ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
	return crypto_ahash_finup(mcryptd_req);
}

static int sha1_mb_async_final(struct ahash_request *req)
{
	struct ahash_request *mcryptd_req = ahash_request_ctx(req);

	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
	struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm);
	struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;

	memcpy(mcryptd_req, req, sizeof(*req));
	ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
	return crypto_ahash_final(mcryptd_req);
}

756
static int sha1_mb_async_digest(struct ahash_request *req)
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
{
	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
	struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm);
	struct ahash_request *mcryptd_req = ahash_request_ctx(req);
	struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;

	memcpy(mcryptd_req, req, sizeof(*req));
	ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
	return crypto_ahash_digest(mcryptd_req);
}

static int sha1_mb_async_init_tfm(struct crypto_tfm *tfm)
{
	struct mcryptd_ahash *mcryptd_tfm;
	struct sha1_mb_ctx *ctx = crypto_tfm_ctx(tfm);
	struct mcryptd_hash_ctx *mctx;

774 775 776
	mcryptd_tfm = mcryptd_alloc_ahash("__intel_sha1-mb",
					  CRYPTO_ALG_INTERNAL,
					  CRYPTO_ALG_INTERNAL);
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
	if (IS_ERR(mcryptd_tfm))
		return PTR_ERR(mcryptd_tfm);
	mctx = crypto_ahash_ctx(&mcryptd_tfm->base);
	mctx->alg_state = &sha1_mb_alg_state;
	ctx->mcryptd_tfm = mcryptd_tfm;
	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
				 sizeof(struct ahash_request) +
				 crypto_ahash_reqsize(&mcryptd_tfm->base));

	return 0;
}

static void sha1_mb_async_exit_tfm(struct crypto_tfm *tfm)
{
	struct sha1_mb_ctx *ctx = crypto_tfm_ctx(tfm);

	mcryptd_free_ahash(ctx->mcryptd_tfm);
}

static struct ahash_alg sha1_mb_async_alg = {
	.init           = sha1_mb_async_init,
	.update         = sha1_mb_async_update,
	.final          = sha1_mb_async_final,
	.finup          = sha1_mb_async_finup,
	.digest         = sha1_mb_async_digest,
	.halg = {
		.digestsize     = SHA1_DIGEST_SIZE,
		.base = {
			.cra_name               = "sha1",
			.cra_driver_name        = "sha1_mb",
			.cra_priority           = 200,
			.cra_flags              = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC,
			.cra_blocksize          = SHA1_BLOCK_SIZE,
			.cra_type               = &crypto_ahash_type,
			.cra_module             = THIS_MODULE,
			.cra_list               = LIST_HEAD_INIT(sha1_mb_async_alg.halg.base.cra_list),
			.cra_init               = sha1_mb_async_init_tfm,
			.cra_exit               = sha1_mb_async_exit_tfm,
			.cra_ctxsize		= sizeof(struct sha1_mb_ctx),
			.cra_alignmask		= 0,
		},
	},
};

821
static unsigned long sha1_mb_flusher(struct mcryptd_alg_cstate *cstate)
822 823 824 825 826 827 828 829 830 831 832 833
{
	struct mcryptd_hash_request_ctx *rctx;
	unsigned long cur_time;
	unsigned long next_flush = 0;
	struct sha1_hash_ctx *sha_ctx;


	cur_time = jiffies;

	while (!list_empty(&cstate->work_list)) {
		rctx = list_entry(cstate->work_list.next,
				struct mcryptd_hash_request_ctx, waiter);
A
Ameen Ali 已提交
834
		if (time_before(cur_time, rctx->tag.expire))
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
			break;
		kernel_fpu_begin();
		sha_ctx = (struct sha1_hash_ctx *) sha1_ctx_mgr_flush(cstate->mgr);
		kernel_fpu_end();
		if (!sha_ctx) {
			pr_err("sha1_mb error: nothing got flushed for non-empty list\n");
			break;
		}
		rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
		sha_finish_walk(&rctx, cstate, true);
		sha_complete_job(rctx, cstate, 0);
	}

	if (!list_empty(&cstate->work_list)) {
		rctx = list_entry(cstate->work_list.next,
				struct mcryptd_hash_request_ctx, waiter);
		/* get the hash context and then flush time */
		next_flush = rctx->tag.expire;
		mcryptd_arm_flusher(cstate, get_delay(next_flush));
	}
	return next_flush;
}

static int __init sha1_mb_mod_init(void)
{

	int cpu;
	int err;
	struct mcryptd_alg_cstate *cpu_state;

	/* check for dependent cpu features */
	if (!boot_cpu_has(X86_FEATURE_AVX2) ||
	    !boot_cpu_has(X86_FEATURE_BMI2))
		return -ENODEV;

	/* initialize multibuffer structures */
	sha1_mb_alg_state.alg_cstate = alloc_percpu(struct mcryptd_alg_cstate);

	sha1_job_mgr_init = sha1_mb_mgr_init_avx2;
	sha1_job_mgr_submit = sha1_mb_mgr_submit_avx2;
	sha1_job_mgr_flush = sha1_mb_mgr_flush_avx2;
	sha1_job_mgr_get_comp_job = sha1_mb_mgr_get_comp_job_avx2;

	if (!sha1_mb_alg_state.alg_cstate)
		return -ENOMEM;
	for_each_possible_cpu(cpu) {
		cpu_state = per_cpu_ptr(sha1_mb_alg_state.alg_cstate, cpu);
		cpu_state->next_flush = 0;
		cpu_state->next_seq_num = 0;
		cpu_state->flusher_engaged = false;
		INIT_DELAYED_WORK(&cpu_state->flush, mcryptd_flusher);
		cpu_state->cpu = cpu;
		cpu_state->alg_state = &sha1_mb_alg_state;
		cpu_state->mgr = (struct sha1_ctx_mgr *) kzalloc(sizeof(struct sha1_ctx_mgr), GFP_KERNEL);
		if (!cpu_state->mgr)
			goto err2;
		sha1_ctx_mgr_init(cpu_state->mgr);
		INIT_LIST_HEAD(&cpu_state->work_list);
		spin_lock_init(&cpu_state->work_lock);
	}
	sha1_mb_alg_state.flusher = &sha1_mb_flusher;

	err = crypto_register_shash(&sha1_mb_shash_alg);
	if (err)
		goto err2;
	err = crypto_register_ahash(&sha1_mb_async_alg);
	if (err)
		goto err1;


	return 0;
err1:
	crypto_unregister_shash(&sha1_mb_shash_alg);
err2:
	for_each_possible_cpu(cpu) {
		cpu_state = per_cpu_ptr(sha1_mb_alg_state.alg_cstate, cpu);
		kfree(cpu_state->mgr);
	}
	free_percpu(sha1_mb_alg_state.alg_cstate);
	return -ENODEV;
}

static void __exit sha1_mb_mod_fini(void)
{
	int cpu;
	struct mcryptd_alg_cstate *cpu_state;

	crypto_unregister_ahash(&sha1_mb_async_alg);
	crypto_unregister_shash(&sha1_mb_shash_alg);
	for_each_possible_cpu(cpu) {
		cpu_state = per_cpu_ptr(sha1_mb_alg_state.alg_cstate, cpu);
		kfree(cpu_state->mgr);
	}
	free_percpu(sha1_mb_alg_state.alg_cstate);
}

module_init(sha1_mb_mod_init);
module_exit(sha1_mb_mod_fini);

MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("SHA1 Secure Hash Algorithm, multi buffer accelerated");

937
MODULE_ALIAS_CRYPTO("sha1");