bpf_jit_comp_64.c 37.6 KB
Newer Older
D
David S. Miller 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#include <linux/moduleloader.h>
#include <linux/workqueue.h>
#include <linux/netdevice.h>
#include <linux/filter.h>
#include <linux/bpf.h>
#include <linux/cache.h>
#include <linux/if_vlan.h>

#include <asm/cacheflush.h>
#include <asm/ptrace.h>

#include "bpf_jit_64.h"

int bpf_jit_enable __read_mostly;

static inline bool is_simm13(unsigned int value)
{
	return value + 0x1000 < 0x2000;
}

21 22 23 24 25 26 27 28 29 30
static inline bool is_simm10(unsigned int value)
{
	return value + 0x200 < 0x400;
}

static inline bool is_simm5(unsigned int value)
{
	return value + 0x10 < 0x20;
}

31 32 33 34 35
static inline bool is_sethi(unsigned int value)
{
	return (value & ~0x3fffff) == 0;
}

D
David S. Miller 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
static void bpf_flush_icache(void *start_, void *end_)
{
	/* Cheetah's I-cache is fully coherent.  */
	if (tlb_type == spitfire) {
		unsigned long start = (unsigned long) start_;
		unsigned long end = (unsigned long) end_;

		start &= ~7UL;
		end = (end + 7UL) & ~7UL;
		while (start < end) {
			flushi(start);
			start += 32;
		}
	}
}

#define SEEN_DATAREF 1 /* might call external helpers */
#define SEEN_XREG    2 /* ebx is used */
#define SEEN_MEM     4 /* use mem[] for temporary storage */

#define S13(X)		((X) & 0x1fff)
57
#define S5(X)		((X) & 0x1f)
D
David S. Miller 已提交
58 59 60 61 62 63 64
#define IMMED		0x00002000
#define RD(X)		((X) << 25)
#define RS1(X)		((X) << 14)
#define RS2(X)		((X))
#define OP(X)		((X) << 30)
#define OP2(X)		((X) << 22)
#define OP3(X)		((X) << 19)
65 66
#define COND(X)		(((X) & 0xf) << 25)
#define CBCOND(X)	(((X) & 0x1f) << 25)
D
David S. Miller 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
#define F1(X)		OP(X)
#define F2(X, Y)	(OP(X) | OP2(Y))
#define F3(X, Y)	(OP(X) | OP3(Y))
#define ASI(X)		(((X) & 0xff) << 5)

#define CONDN		COND(0x0)
#define CONDE		COND(0x1)
#define CONDLE		COND(0x2)
#define CONDL		COND(0x3)
#define CONDLEU		COND(0x4)
#define CONDCS		COND(0x5)
#define CONDNEG		COND(0x6)
#define CONDVC		COND(0x7)
#define CONDA		COND(0x8)
#define CONDNE		COND(0x9)
#define CONDG		COND(0xa)
#define CONDGE		COND(0xb)
#define CONDGU		COND(0xc)
#define CONDCC		COND(0xd)
#define CONDPOS		COND(0xe)
#define CONDVS		COND(0xf)

#define CONDGEU		CONDCC
#define CONDLU		CONDCS

#define WDISP22(X)	(((X) >> 2) & 0x3fffff)
#define WDISP19(X)	(((X) >> 2) & 0x7ffff)

95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
/* The 10-bit branch displacement for CBCOND is split into two fields */
static u32 WDISP10(u32 off)
{
	u32 ret = ((off >> 2) & 0xff) << 5;

	ret |= ((off >> (2 + 8)) & 0x03) << 19;

	return ret;
}

#define CBCONDE		CBCOND(0x09)
#define CBCONDLE	CBCOND(0x0a)
#define CBCONDL		CBCOND(0x0b)
#define CBCONDLEU	CBCOND(0x0c)
#define CBCONDCS	CBCOND(0x0d)
#define CBCONDN		CBCOND(0x0e)
#define CBCONDVS	CBCOND(0x0f)
#define CBCONDNE	CBCOND(0x19)
#define CBCONDG		CBCOND(0x1a)
#define CBCONDGE	CBCOND(0x1b)
#define CBCONDGU	CBCOND(0x1c)
#define CBCONDCC	CBCOND(0x1d)
#define CBCONDPOS	CBCOND(0x1e)
#define CBCONDVC	CBCOND(0x1f)

#define CBCONDGEU	CBCONDCC
#define CBCONDLU	CBCONDCS

D
David S. Miller 已提交
123 124 125 126
#define ANNUL		(1 << 29)
#define XCC		(1 << 21)

#define BRANCH		(F2(0, 1) | XCC)
127
#define CBCOND_OP	(F2(0, 3) | XCC)
D
David S. Miller 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374

#define BA		(BRANCH | CONDA)
#define BG		(BRANCH | CONDG)
#define BGU		(BRANCH | CONDGU)
#define BLEU		(BRANCH | CONDLEU)
#define BGE		(BRANCH | CONDGE)
#define BGEU		(BRANCH | CONDGEU)
#define BLU		(BRANCH | CONDLU)
#define BE		(BRANCH | CONDE)
#define BNE		(BRANCH | CONDNE)

#define SETHI(K, REG)	\
	(F2(0, 0x4) | RD(REG) | (((K) >> 10) & 0x3fffff))
#define OR_LO(K, REG)	\
	(F3(2, 0x02) | IMMED | RS1(REG) | ((K) & 0x3ff) | RD(REG))

#define ADD		F3(2, 0x00)
#define AND		F3(2, 0x01)
#define ANDCC		F3(2, 0x11)
#define OR		F3(2, 0x02)
#define XOR		F3(2, 0x03)
#define SUB		F3(2, 0x04)
#define SUBCC		F3(2, 0x14)
#define MUL		F3(2, 0x0a)
#define MULX		F3(2, 0x09)
#define UDIVX		F3(2, 0x0d)
#define DIV		F3(2, 0x0e)
#define SLL		F3(2, 0x25)
#define SLLX		(F3(2, 0x25)|(1<<12))
#define SRA		F3(2, 0x27)
#define SRAX		(F3(2, 0x27)|(1<<12))
#define SRL		F3(2, 0x26)
#define SRLX		(F3(2, 0x26)|(1<<12))
#define JMPL		F3(2, 0x38)
#define SAVE		F3(2, 0x3c)
#define RESTORE		F3(2, 0x3d)
#define CALL		F1(1)
#define BR		F2(0, 0x01)
#define RD_Y		F3(2, 0x28)
#define WR_Y		F3(2, 0x30)

#define LD32		F3(3, 0x00)
#define LD8		F3(3, 0x01)
#define LD16		F3(3, 0x02)
#define LD64		F3(3, 0x0b)
#define LD64A		F3(3, 0x1b)
#define ST8		F3(3, 0x05)
#define ST16		F3(3, 0x06)
#define ST32		F3(3, 0x04)
#define ST64		F3(3, 0x0e)

#define CAS		F3(3, 0x3c)
#define CASX		F3(3, 0x3e)

#define LDPTR		LD64
#define BASE_STACKFRAME	176

#define LD32I		(LD32 | IMMED)
#define LD8I		(LD8 | IMMED)
#define LD16I		(LD16 | IMMED)
#define LD64I		(LD64 | IMMED)
#define LDPTRI		(LDPTR | IMMED)
#define ST32I		(ST32 | IMMED)

struct jit_ctx {
	struct bpf_prog		*prog;
	unsigned int		*offset;
	int			idx;
	int			epilogue_offset;
	bool 			tmp_1_used;
	bool 			tmp_2_used;
	bool 			tmp_3_used;
	bool			saw_ld_abs_ind;
	bool			saw_frame_pointer;
	bool			saw_call;
	bool			saw_tail_call;
	u32			*image;
};

#define TMP_REG_1	(MAX_BPF_JIT_REG + 0)
#define TMP_REG_2	(MAX_BPF_JIT_REG + 1)
#define SKB_HLEN_REG	(MAX_BPF_JIT_REG + 2)
#define SKB_DATA_REG	(MAX_BPF_JIT_REG + 3)
#define TMP_REG_3	(MAX_BPF_JIT_REG + 4)

/* Map BPF registers to SPARC registers */
static const int bpf2sparc[] = {
	/* return value from in-kernel function, and exit value from eBPF */
	[BPF_REG_0] = O5,

	/* arguments from eBPF program to in-kernel function */
	[BPF_REG_1] = O0,
	[BPF_REG_2] = O1,
	[BPF_REG_3] = O2,
	[BPF_REG_4] = O3,
	[BPF_REG_5] = O4,

	/* callee saved registers that in-kernel function will preserve */
	[BPF_REG_6] = L0,
	[BPF_REG_7] = L1,
	[BPF_REG_8] = L2,
	[BPF_REG_9] = L3,

	/* read-only frame pointer to access stack */
	[BPF_REG_FP] = L6,

	[BPF_REG_AX] = G7,

	/* temporary register for internal BPF JIT */
	[TMP_REG_1] = G1,
	[TMP_REG_2] = G2,
	[TMP_REG_3] = G3,

	[SKB_HLEN_REG] = L4,
	[SKB_DATA_REG] = L5,
};

static void emit(const u32 insn, struct jit_ctx *ctx)
{
	if (ctx->image != NULL)
		ctx->image[ctx->idx] = insn;

	ctx->idx++;
}

static void emit_call(u32 *func, struct jit_ctx *ctx)
{
	if (ctx->image != NULL) {
		void *here = &ctx->image[ctx->idx];
		unsigned int off;

		off = (void *)func - here;
		ctx->image[ctx->idx] = CALL | ((off >> 2) & 0x3fffffff);
	}
	ctx->idx++;
}

static void emit_nop(struct jit_ctx *ctx)
{
	emit(SETHI(0, G0), ctx);
}

static void emit_reg_move(u32 from, u32 to, struct jit_ctx *ctx)
{
	emit(OR | RS1(G0) | RS2(from) | RD(to), ctx);
}

/* Emit 32-bit constant, zero extended. */
static void emit_set_const(s32 K, u32 reg, struct jit_ctx *ctx)
{
	emit(SETHI(K, reg), ctx);
	emit(OR_LO(K, reg), ctx);
}

/* Emit 32-bit constant, sign extended. */
static void emit_set_const_sext(s32 K, u32 reg, struct jit_ctx *ctx)
{
	if (K >= 0) {
		emit(SETHI(K, reg), ctx);
		emit(OR_LO(K, reg), ctx);
	} else {
		u32 hbits = ~(u32) K;
		u32 lbits = -0x400 | (u32) K;

		emit(SETHI(hbits, reg), ctx);
		emit(XOR | IMMED | RS1(reg) | S13(lbits) | RD(reg), ctx);
	}
}

static void emit_alu(u32 opcode, u32 src, u32 dst, struct jit_ctx *ctx)
{
	emit(opcode | RS1(dst) | RS2(src) | RD(dst), ctx);
}

static void emit_alu3(u32 opcode, u32 a, u32 b, u32 c, struct jit_ctx *ctx)
{
	emit(opcode | RS1(a) | RS2(b) | RD(c), ctx);
}

static void emit_alu_K(unsigned int opcode, unsigned int dst, unsigned int imm,
		       struct jit_ctx *ctx)
{
	bool small_immed = is_simm13(imm);
	unsigned int insn = opcode;

	insn |= RS1(dst) | RD(dst);
	if (small_immed) {
		emit(insn | IMMED | S13(imm), ctx);
	} else {
		unsigned int tmp = bpf2sparc[TMP_REG_1];

		ctx->tmp_1_used = true;

		emit_set_const_sext(imm, tmp, ctx);
		emit(insn | RS2(tmp), ctx);
	}
}

static void emit_alu3_K(unsigned int opcode, unsigned int src, unsigned int imm,
			unsigned int dst, struct jit_ctx *ctx)
{
	bool small_immed = is_simm13(imm);
	unsigned int insn = opcode;

	insn |= RS1(src) | RD(dst);
	if (small_immed) {
		emit(insn | IMMED | S13(imm), ctx);
	} else {
		unsigned int tmp = bpf2sparc[TMP_REG_1];

		ctx->tmp_1_used = true;

		emit_set_const_sext(imm, tmp, ctx);
		emit(insn | RS2(tmp), ctx);
	}
}

static void emit_loadimm32(s32 K, unsigned int dest, struct jit_ctx *ctx)
{
	if (K >= 0 && is_simm13(K)) {
		/* or %g0, K, DEST */
		emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
	} else {
		emit_set_const(K, dest, ctx);
	}
}

static void emit_loadimm(s32 K, unsigned int dest, struct jit_ctx *ctx)
{
	if (is_simm13(K)) {
		/* or %g0, K, DEST */
		emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
	} else {
		emit_set_const(K, dest, ctx);
	}
}

static void emit_loadimm_sext(s32 K, unsigned int dest, struct jit_ctx *ctx)
{
	if (is_simm13(K)) {
		/* or %g0, K, DEST */
		emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
	} else {
		emit_set_const_sext(K, dest, ctx);
	}
}

375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
static void analyze_64bit_constant(u32 high_bits, u32 low_bits,
				   int *hbsp, int *lbsp, int *abbasp)
{
	int lowest_bit_set, highest_bit_set, all_bits_between_are_set;
	int i;

	lowest_bit_set = highest_bit_set = -1;
	i = 0;
	do {
		if ((lowest_bit_set == -1) && ((low_bits >> i) & 1))
			lowest_bit_set = i;
		if ((highest_bit_set == -1) && ((high_bits >> (32 - i - 1)) & 1))
			highest_bit_set = (64 - i - 1);
	}  while (++i < 32 && (highest_bit_set == -1 ||
			       lowest_bit_set == -1));
	if (i == 32) {
		i = 0;
		do {
			if (lowest_bit_set == -1 && ((high_bits >> i) & 1))
				lowest_bit_set = i + 32;
			if (highest_bit_set == -1 &&
			    ((low_bits >> (32 - i - 1)) & 1))
				highest_bit_set = 32 - i - 1;
		} while (++i < 32 && (highest_bit_set == -1 ||
				      lowest_bit_set == -1));
	}

	all_bits_between_are_set = 1;
	for (i = lowest_bit_set; i <= highest_bit_set; i++) {
		if (i < 32) {
			if ((low_bits & (1 << i)) != 0)
				continue;
		} else {
			if ((high_bits & (1 << (i - 32))) != 0)
				continue;
		}
		all_bits_between_are_set = 0;
		break;
	}
	*hbsp = highest_bit_set;
	*lbsp = lowest_bit_set;
	*abbasp = all_bits_between_are_set;
}

static unsigned long create_simple_focus_bits(unsigned long high_bits,
					      unsigned long low_bits,
					      int lowest_bit_set, int shift)
{
	long hi, lo;

	if (lowest_bit_set < 32) {
		lo = (low_bits >> lowest_bit_set) << shift;
		hi = ((high_bits << (32 - lowest_bit_set)) << shift);
	} else {
		lo = 0;
		hi = ((high_bits >> (lowest_bit_set - 32)) << shift);
	}
	return hi | lo;
}

static bool const64_is_2insns(unsigned long high_bits,
			      unsigned long low_bits)
{
	int highest_bit_set, lowest_bit_set, all_bits_between_are_set;

	if (high_bits == 0 || high_bits == 0xffffffff)
		return true;

	analyze_64bit_constant(high_bits, low_bits,
			       &highest_bit_set, &lowest_bit_set,
			       &all_bits_between_are_set);

	if ((highest_bit_set == 63 || lowest_bit_set == 0) &&
	    all_bits_between_are_set != 0)
		return true;

	if (highest_bit_set - lowest_bit_set < 21)
		return true;

	return false;
}

static void sparc_emit_set_const64_quick2(unsigned long high_bits,
					  unsigned long low_imm,
					  unsigned int dest,
					  int shift_count, struct jit_ctx *ctx)
{
	emit_loadimm32(high_bits, dest, ctx);

	/* Now shift it up into place.  */
	emit_alu_K(SLLX, dest, shift_count, ctx);

	/* If there is a low immediate part piece, finish up by
	 * putting that in as well.
	 */
	if (low_imm != 0)
		emit(OR | IMMED | RS1(dest) | S13(low_imm) | RD(dest), ctx);
}

D
David S. Miller 已提交
474 475
static void emit_loadimm64(u64 K, unsigned int dest, struct jit_ctx *ctx)
{
476
	int all_bits_between_are_set, lowest_bit_set, highest_bit_set;
D
David S. Miller 已提交
477
	unsigned int tmp = bpf2sparc[TMP_REG_1];
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
	u32 low_bits = (K & 0xffffffff);
	u32 high_bits = (K >> 32);

	/* These two tests also take care of all of the one
	 * instruction cases.
	 */
	if (high_bits == 0xffffffff && (low_bits & 0x80000000))
		return emit_loadimm_sext(K, dest, ctx);
	if (high_bits == 0x00000000)
		return emit_loadimm32(K, dest, ctx);

	analyze_64bit_constant(high_bits, low_bits, &highest_bit_set,
			       &lowest_bit_set, &all_bits_between_are_set);

	/* 1) mov	-1, %reg
	 *    sllx	%reg, shift, %reg
	 * 2) mov	-1, %reg
	 *    srlx	%reg, shift, %reg
	 * 3) mov	some_small_const, %reg
	 *    sllx	%reg, shift, %reg
	 */
	if (((highest_bit_set == 63 || lowest_bit_set == 0) &&
	     all_bits_between_are_set != 0) ||
	    ((highest_bit_set - lowest_bit_set) < 12)) {
		int shift = lowest_bit_set;
		long the_const = -1;

		if ((highest_bit_set != 63 && lowest_bit_set != 0) ||
		    all_bits_between_are_set == 0) {
			the_const =
				create_simple_focus_bits(high_bits, low_bits,
							 lowest_bit_set, 0);
		} else if (lowest_bit_set == 0)
			shift = -(63 - highest_bit_set);

		emit(OR | IMMED | RS1(G0) | S13(the_const) | RD(dest), ctx);
		if (shift > 0)
			emit_alu_K(SLLX, dest, shift, ctx);
		else if (shift < 0)
			emit_alu_K(SRLX, dest, -shift, ctx);

		return;
	}

	/* Now a range of 22 or less bits set somewhere.
	 * 1) sethi	%hi(focus_bits), %reg
	 *    sllx	%reg, shift, %reg
	 * 2) sethi	%hi(focus_bits), %reg
	 *    srlx	%reg, shift, %reg
	 */
	if ((highest_bit_set - lowest_bit_set) < 21) {
		unsigned long focus_bits =
			create_simple_focus_bits(high_bits, low_bits,
						 lowest_bit_set, 10);

		emit(SETHI(focus_bits, dest), ctx);

		/* If lowest_bit_set == 10 then a sethi alone could
		 * have done it.
		 */
		if (lowest_bit_set < 10)
			emit_alu_K(SRLX, dest, 10 - lowest_bit_set, ctx);
		else if (lowest_bit_set > 10)
			emit_alu_K(SLLX, dest, lowest_bit_set - 10, ctx);
		return;
	}

	/* Ok, now 3 instruction sequences.  */
	if (low_bits == 0) {
		emit_loadimm32(high_bits, dest, ctx);
		emit_alu_K(SLLX, dest, 32, ctx);
		return;
	}

	/* We may be able to do something quick
	 * when the constant is negated, so try that.
	 */
	if (const64_is_2insns((~high_bits) & 0xffffffff,
			      (~low_bits) & 0xfffffc00)) {
		/* NOTE: The trailing bits get XOR'd so we need the
		 * non-negated bits, not the negated ones.
		 */
		unsigned long trailing_bits = low_bits & 0x3ff;

		if ((((~high_bits) & 0xffffffff) == 0 &&
		     ((~low_bits) & 0x80000000) == 0) ||
		    (((~high_bits) & 0xffffffff) == 0xffffffff &&
		     ((~low_bits) & 0x80000000) != 0)) {
			unsigned long fast_int = (~low_bits & 0xffffffff);

			if ((is_sethi(fast_int) &&
			     (~high_bits & 0xffffffff) == 0)) {
				emit(SETHI(fast_int, dest), ctx);
			} else if (is_simm13(fast_int)) {
				emit(OR | IMMED | RS1(G0) | S13(fast_int) | RD(dest), ctx);
			} else {
				emit_loadimm64(fast_int, dest, ctx);
			}
		} else {
			u64 n = ((~low_bits) & 0xfffffc00) |
				(((unsigned long)((~high_bits) & 0xffffffff))<<32);
			emit_loadimm64(n, dest, ctx);
		}

		low_bits = -0x400 | trailing_bits;

		emit(XOR | IMMED | RS1(dest) | S13(low_bits) | RD(dest), ctx);
		return;
	}

	/* 1) sethi	%hi(xxx), %reg
	 *    or	%reg, %lo(xxx), %reg
	 *    sllx	%reg, yyy, %reg
	 */
	if ((highest_bit_set - lowest_bit_set) < 32) {
		unsigned long focus_bits =
			create_simple_focus_bits(high_bits, low_bits,
						 lowest_bit_set, 0);

		/* So what we know is that the set bits straddle the
		 * middle of the 64-bit word.
		 */
		sparc_emit_set_const64_quick2(focus_bits, 0, dest,
					      lowest_bit_set, ctx);
		return;
	}

	/* 1) sethi	%hi(high_bits), %reg
	 *    or	%reg, %lo(high_bits), %reg
	 *    sllx	%reg, 32, %reg
	 *    or	%reg, low_bits, %reg
	 */
	if (is_simm13(low_bits) && ((int)low_bits > 0)) {
		sparc_emit_set_const64_quick2(high_bits, low_bits,
					      dest, 32, ctx);
		return;
	}
D
David S. Miller 已提交
615

616
	/* Oh well, we tried... Do a full 64-bit decomposition.  */
D
David S. Miller 已提交
617 618
	ctx->tmp_1_used = true;

619 620
	emit_loadimm32(high_bits, tmp, ctx);
	emit_loadimm32(low_bits, dest, ctx);
D
David S. Miller 已提交
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
	emit_alu_K(SLLX, tmp, 32, ctx);
	emit(OR | RS1(dest) | RS2(tmp) | RD(dest), ctx);
}

static void emit_branch(unsigned int br_opc, unsigned int from_idx, unsigned int to_idx,
			struct jit_ctx *ctx)
{
	unsigned int off = to_idx - from_idx;

	if (br_opc & XCC)
		emit(br_opc | WDISP19(off << 2), ctx);
	else
		emit(br_opc | WDISP22(off << 2), ctx);
}

636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
static void emit_cbcond(unsigned int cb_opc, unsigned int from_idx, unsigned int to_idx,
			const u8 dst, const u8 src, struct jit_ctx *ctx)
{
	unsigned int off = to_idx - from_idx;

	emit(cb_opc | WDISP10(off << 2) | RS1(dst) | RS2(src), ctx);
}

static void emit_cbcondi(unsigned int cb_opc, unsigned int from_idx, unsigned int to_idx,
			 const u8 dst, s32 imm, struct jit_ctx *ctx)
{
	unsigned int off = to_idx - from_idx;

	emit(cb_opc | IMMED | WDISP10(off << 2) | RS1(dst) | S5(imm), ctx);
}

D
David S. Miller 已提交
652 653 654 655 656 657 658
#define emit_read_y(REG, CTX)	emit(RD_Y | RD(REG), CTX)
#define emit_write_y(REG, CTX)	emit(WR_Y | IMMED | RS1(REG) | S13(0), CTX)

#define emit_cmp(R1, R2, CTX)				\
	emit(SUBCC | RS1(R1) | RS2(R2) | RD(G0), CTX)

#define emit_cmpi(R1, IMM, CTX)				\
659
	emit(SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0), CTX)
D
David S. Miller 已提交
660 661 662 663 664 665 666

#define emit_btst(R1, R2, CTX)				\
	emit(ANDCC | RS1(R1) | RS2(R2) | RD(G0), CTX)

#define emit_btsti(R1, IMM, CTX)			\
	emit(ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0), CTX)

667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
static int emit_compare_and_branch(const u8 code, const u8 dst, u8 src,
				   const s32 imm, bool is_imm, int branch_dst,
				   struct jit_ctx *ctx)
{
	bool use_cbcond = (sparc64_elf_hwcap & AV_SPARC_CBCOND) != 0;
	const u8 tmp = bpf2sparc[TMP_REG_1];

	branch_dst = ctx->offset[branch_dst];

	if (!is_simm10(branch_dst - ctx->idx) ||
	    BPF_OP(code) == BPF_JSET)
		use_cbcond = false;

	if (is_imm) {
		bool fits = true;

		if (use_cbcond) {
			if (!is_simm5(imm))
				fits = false;
		} else if (!is_simm13(imm)) {
			fits = false;
		}
		if (!fits) {
			ctx->tmp_1_used = true;
			emit_loadimm_sext(imm, tmp, ctx);
			src = tmp;
			is_imm = false;
		}
	}

	if (!use_cbcond) {
		u32 br_opcode;

		if (BPF_OP(code) == BPF_JSET) {
			if (is_imm)
				emit_btsti(dst, imm, ctx);
			else
				emit_btst(dst, src, ctx);
		} else {
			if (is_imm)
				emit_cmpi(dst, imm, ctx);
			else
				emit_cmp(dst, src, ctx);
		}
		switch (BPF_OP(code)) {
		case BPF_JEQ:
			br_opcode = BE;
			break;
		case BPF_JGT:
			br_opcode = BGU;
			break;
		case BPF_JGE:
			br_opcode = BGEU;
			break;
		case BPF_JSET:
		case BPF_JNE:
			br_opcode = BNE;
			break;
		case BPF_JSGT:
			br_opcode = BG;
			break;
		case BPF_JSGE:
			br_opcode = BGE;
			break;
		default:
			/* Make sure we dont leak kernel information to the
			 * user.
			 */
			return -EFAULT;
		}
		emit_branch(br_opcode, ctx->idx, branch_dst, ctx);
		emit_nop(ctx);
	} else {
		u32 cbcond_opcode;

		switch (BPF_OP(code)) {
		case BPF_JEQ:
			cbcond_opcode = CBCONDE;
			break;
		case BPF_JGT:
			cbcond_opcode = CBCONDGU;
			break;
		case BPF_JGE:
			cbcond_opcode = CBCONDGEU;
			break;
		case BPF_JNE:
			cbcond_opcode = CBCONDNE;
			break;
		case BPF_JSGT:
			cbcond_opcode = CBCONDG;
			break;
		case BPF_JSGE:
			cbcond_opcode = CBCONDGE;
			break;
		default:
			/* Make sure we dont leak kernel information to the
			 * user.
			 */
			return -EFAULT;
		}
		cbcond_opcode |= CBCOND_OP;
		if (is_imm)
			emit_cbcondi(cbcond_opcode, ctx->idx, branch_dst,
				     dst, imm, ctx);
		else
			emit_cbcond(cbcond_opcode, ctx->idx, branch_dst,
				    dst, src, ctx);
	}
	return 0;
}

D
David S. Miller 已提交
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
static void load_skb_regs(struct jit_ctx *ctx, u8 r_skb)
{
	const u8 r_headlen = bpf2sparc[SKB_HLEN_REG];
	const u8 r_data = bpf2sparc[SKB_DATA_REG];
	const u8 r_tmp = bpf2sparc[TMP_REG_1];
	unsigned int off;

	off = offsetof(struct sk_buff, len);
	emit(LD32I | RS1(r_skb) | S13(off) | RD(r_headlen), ctx);

	off = offsetof(struct sk_buff, data_len);
	emit(LD32I | RS1(r_skb) | S13(off) | RD(r_tmp), ctx);

	emit(SUB | RS1(r_headlen) | RS2(r_tmp) | RD(r_headlen), ctx);

	off = offsetof(struct sk_buff, data);
	emit(LDPTRI | RS1(r_skb) | S13(off) | RD(r_data), ctx);
}

/* Just skip the save instruction and the ctx register move.  */
#define BPF_TAILCALL_PROLOGUE_SKIP	16
#define BPF_TAILCALL_CNT_SP_OFF		(STACK_BIAS + 128)

static void build_prologue(struct jit_ctx *ctx)
{
	s32 stack_needed = BASE_STACKFRAME;

	if (ctx->saw_frame_pointer || ctx->saw_tail_call)
		stack_needed += MAX_BPF_STACK;

	if (ctx->saw_tail_call)
		stack_needed += 8;

	/* save %sp, -176, %sp */
	emit(SAVE | IMMED | RS1(SP) | S13(-stack_needed) | RD(SP), ctx);

	/* tail_call_cnt = 0 */
	if (ctx->saw_tail_call) {
		u32 off = BPF_TAILCALL_CNT_SP_OFF;

		emit(ST32 | IMMED | RS1(SP) | S13(off) | RD(G0), ctx);
	} else {
		emit_nop(ctx);
	}
	if (ctx->saw_frame_pointer) {
		const u8 vfp = bpf2sparc[BPF_REG_FP];

		emit(ADD | IMMED | RS1(FP) | S13(STACK_BIAS) | RD(vfp), ctx);
	}

	emit_reg_move(I0, O0, ctx);
	/* If you add anything here, adjust BPF_TAILCALL_PROLOGUE_SKIP above. */

	if (ctx->saw_ld_abs_ind)
		load_skb_regs(ctx, bpf2sparc[BPF_REG_1]);
}

static void build_epilogue(struct jit_ctx *ctx)
{
	ctx->epilogue_offset = ctx->idx;

	/* ret (jmpl %i7 + 8, %g0) */
	emit(JMPL | IMMED | RS1(I7) | S13(8) | RD(G0), ctx);

	/* restore %i5, %g0, %o0 */
	emit(RESTORE | RS1(bpf2sparc[BPF_REG_0]) | RS2(G0) | RD(O0), ctx);
}

static void emit_tail_call(struct jit_ctx *ctx)
{
	const u8 bpf_array = bpf2sparc[BPF_REG_2];
	const u8 bpf_index = bpf2sparc[BPF_REG_3];
	const u8 tmp = bpf2sparc[TMP_REG_1];
	u32 off;

	ctx->saw_tail_call = true;

	off = offsetof(struct bpf_array, map.max_entries);
	emit(LD32 | IMMED | RS1(bpf_array) | S13(off) | RD(tmp), ctx);
	emit_cmp(bpf_index, tmp, ctx);
#define OFFSET1 17
	emit_branch(BGEU, ctx->idx, ctx->idx + OFFSET1, ctx);
	emit_nop(ctx);

	off = BPF_TAILCALL_CNT_SP_OFF;
	emit(LD32 | IMMED | RS1(SP) | S13(off) | RD(tmp), ctx);
	emit_cmpi(tmp, MAX_TAIL_CALL_CNT, ctx);
#define OFFSET2 13
	emit_branch(BGU, ctx->idx, ctx->idx + OFFSET2, ctx);
	emit_nop(ctx);

	emit_alu_K(ADD, tmp, 1, ctx);
	off = BPF_TAILCALL_CNT_SP_OFF;
	emit(ST32 | IMMED | RS1(SP) | S13(off) | RD(tmp), ctx);

	emit_alu3_K(SLL, bpf_index, 3, tmp, ctx);
	emit_alu(ADD, bpf_array, tmp, ctx);
	off = offsetof(struct bpf_array, ptrs);
	emit(LD64 | IMMED | RS1(tmp) | S13(off) | RD(tmp), ctx);

	emit_cmpi(tmp, 0, ctx);
#define OFFSET3 5
	emit_branch(BE, ctx->idx, ctx->idx + OFFSET3, ctx);
	emit_nop(ctx);

	off = offsetof(struct bpf_prog, bpf_func);
	emit(LD64 | IMMED | RS1(tmp) | S13(off) | RD(tmp), ctx);

	off = BPF_TAILCALL_PROLOGUE_SKIP;
	emit(JMPL | IMMED | RS1(tmp) | S13(off) | RD(G0), ctx);
	emit_nop(ctx);
}

static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
{
	const u8 code = insn->code;
	const u8 dst = bpf2sparc[insn->dst_reg];
	const u8 src = bpf2sparc[insn->src_reg];
	const int i = insn - ctx->prog->insnsi;
	const s16 off = insn->off;
	const s32 imm = insn->imm;
	u32 *func;

	if (insn->src_reg == BPF_REG_FP)
		ctx->saw_frame_pointer = true;

	switch (code) {
	/* dst = src */
	case BPF_ALU | BPF_MOV | BPF_X:
		emit_alu3_K(SRL, src, 0, dst, ctx);
		break;
	case BPF_ALU64 | BPF_MOV | BPF_X:
		emit_reg_move(src, dst, ctx);
		break;
	/* dst = dst OP src */
	case BPF_ALU | BPF_ADD | BPF_X:
	case BPF_ALU64 | BPF_ADD | BPF_X:
		emit_alu(ADD, src, dst, ctx);
		goto do_alu32_trunc;
	case BPF_ALU | BPF_SUB | BPF_X:
	case BPF_ALU64 | BPF_SUB | BPF_X:
		emit_alu(SUB, src, dst, ctx);
		goto do_alu32_trunc;
	case BPF_ALU | BPF_AND | BPF_X:
	case BPF_ALU64 | BPF_AND | BPF_X:
		emit_alu(AND, src, dst, ctx);
		goto do_alu32_trunc;
	case BPF_ALU | BPF_OR | BPF_X:
	case BPF_ALU64 | BPF_OR | BPF_X:
		emit_alu(OR, src, dst, ctx);
		goto do_alu32_trunc;
	case BPF_ALU | BPF_XOR | BPF_X:
	case BPF_ALU64 | BPF_XOR | BPF_X:
		emit_alu(XOR, src, dst, ctx);
		goto do_alu32_trunc;
	case BPF_ALU | BPF_MUL | BPF_X:
		emit_alu(MUL, src, dst, ctx);
		goto do_alu32_trunc;
	case BPF_ALU64 | BPF_MUL | BPF_X:
		emit_alu(MULX, src, dst, ctx);
		break;
	case BPF_ALU | BPF_DIV | BPF_X:
		emit_cmp(src, G0, ctx);
		emit_branch(BE|ANNUL, ctx->idx, ctx->epilogue_offset, ctx);
		emit_loadimm(0, bpf2sparc[BPF_REG_0], ctx);

		emit_write_y(G0, ctx);
		emit_alu(DIV, src, dst, ctx);
		break;

	case BPF_ALU64 | BPF_DIV | BPF_X:
		emit_cmp(src, G0, ctx);
		emit_branch(BE|ANNUL, ctx->idx, ctx->epilogue_offset, ctx);
		emit_loadimm(0, bpf2sparc[BPF_REG_0], ctx);

		emit_alu(UDIVX, src, dst, ctx);
		break;

	case BPF_ALU | BPF_MOD | BPF_X: {
		const u8 tmp = bpf2sparc[TMP_REG_1];

		ctx->tmp_1_used = true;

		emit_cmp(src, G0, ctx);
		emit_branch(BE|ANNUL, ctx->idx, ctx->epilogue_offset, ctx);
		emit_loadimm(0, bpf2sparc[BPF_REG_0], ctx);

		emit_write_y(G0, ctx);
		emit_alu3(DIV, dst, src, tmp, ctx);
		emit_alu3(MULX, tmp, src, tmp, ctx);
		emit_alu3(SUB, dst, tmp, dst, ctx);
		goto do_alu32_trunc;
	}
	case BPF_ALU64 | BPF_MOD | BPF_X: {
		const u8 tmp = bpf2sparc[TMP_REG_1];

		ctx->tmp_1_used = true;

		emit_cmp(src, G0, ctx);
		emit_branch(BE|ANNUL, ctx->idx, ctx->epilogue_offset, ctx);
		emit_loadimm(0, bpf2sparc[BPF_REG_0], ctx);

		emit_alu3(UDIVX, dst, src, tmp, ctx);
		emit_alu3(MULX, tmp, src, tmp, ctx);
		emit_alu3(SUB, dst, tmp, dst, ctx);
		break;
	}
	case BPF_ALU | BPF_LSH | BPF_X:
		emit_alu(SLL, src, dst, ctx);
		goto do_alu32_trunc;
	case BPF_ALU64 | BPF_LSH | BPF_X:
		emit_alu(SLLX, src, dst, ctx);
		break;
	case BPF_ALU | BPF_RSH | BPF_X:
		emit_alu(SRL, src, dst, ctx);
		break;
	case BPF_ALU64 | BPF_RSH | BPF_X:
		emit_alu(SRLX, src, dst, ctx);
		break;
	case BPF_ALU | BPF_ARSH | BPF_X:
		emit_alu(SRA, src, dst, ctx);
		goto do_alu32_trunc;
	case BPF_ALU64 | BPF_ARSH | BPF_X:
		emit_alu(SRAX, src, dst, ctx);
		break;

	/* dst = -dst */
	case BPF_ALU | BPF_NEG:
	case BPF_ALU64 | BPF_NEG:
		emit(SUB | RS1(0) | RS2(dst) | RD(dst), ctx);
		goto do_alu32_trunc;

	case BPF_ALU | BPF_END | BPF_FROM_BE:
		switch (imm) {
		case 16:
			emit_alu_K(SLL, dst, 16, ctx);
			emit_alu_K(SRL, dst, 16, ctx);
			break;
		case 32:
			emit_alu_K(SRL, dst, 0, ctx);
			break;
		case 64:
			/* nop */
			break;

		}
		break;

	/* dst = BSWAP##imm(dst) */
	case BPF_ALU | BPF_END | BPF_FROM_LE: {
		const u8 tmp = bpf2sparc[TMP_REG_1];
		const u8 tmp2 = bpf2sparc[TMP_REG_2];

		ctx->tmp_1_used = true;
		switch (imm) {
		case 16:
			emit_alu3_K(AND, dst, 0xff, tmp, ctx);
			emit_alu3_K(SRL, dst, 8, dst, ctx);
			emit_alu3_K(AND, dst, 0xff, dst, ctx);
			emit_alu3_K(SLL, tmp, 8, tmp, ctx);
			emit_alu(OR, tmp, dst, ctx);
			break;

		case 32:
			ctx->tmp_2_used = true;
			emit_alu3_K(SRL, dst, 24, tmp, ctx);	/* tmp  = dst >> 24 */
			emit_alu3_K(SRL, dst, 16, tmp2, ctx);	/* tmp2 = dst >> 16 */
			emit_alu3_K(AND, tmp2, 0xff, tmp2, ctx);/* tmp2 = tmp2 & 0xff */
			emit_alu3_K(SLL, tmp2, 8, tmp2, ctx);	/* tmp2 = tmp2 << 8 */
			emit_alu(OR, tmp2, tmp, ctx);		/* tmp  = tmp | tmp2 */
			emit_alu3_K(SRL, dst, 8, tmp2, ctx);	/* tmp2 = dst >> 8 */
			emit_alu3_K(AND, tmp2, 0xff, tmp2, ctx);/* tmp2 = tmp2 & 0xff */
			emit_alu3_K(SLL, tmp2, 16, tmp2, ctx);	/* tmp2 = tmp2 << 16 */
			emit_alu(OR, tmp2, tmp, ctx);		/* tmp  = tmp | tmp2 */
			emit_alu3_K(AND, dst, 0xff, dst, ctx);	/* dst	= dst & 0xff */
			emit_alu3_K(SLL, dst, 24, dst, ctx);	/* dst  = dst << 24 */
			emit_alu(OR, tmp, dst, ctx);		/* dst  = dst | tmp */
			break;

		case 64:
			emit_alu3_K(ADD, SP, STACK_BIAS + 128, tmp, ctx);
			emit(ST64 | RS1(tmp) | RS2(G0) | RD(dst), ctx);
			emit(LD64A | ASI(ASI_PL) | RS1(tmp) | RS2(G0) | RD(dst), ctx);
			break;
		}
		break;
	}
	/* dst = imm */
	case BPF_ALU | BPF_MOV | BPF_K:
		emit_loadimm32(imm, dst, ctx);
		break;
	case BPF_ALU64 | BPF_MOV | BPF_K:
		emit_loadimm_sext(imm, dst, ctx);
		break;
	/* dst = dst OP imm */
	case BPF_ALU | BPF_ADD | BPF_K:
	case BPF_ALU64 | BPF_ADD | BPF_K:
		emit_alu_K(ADD, dst, imm, ctx);
		goto do_alu32_trunc;
	case BPF_ALU | BPF_SUB | BPF_K:
	case BPF_ALU64 | BPF_SUB | BPF_K:
		emit_alu_K(SUB, dst, imm, ctx);
		goto do_alu32_trunc;
	case BPF_ALU | BPF_AND | BPF_K:
	case BPF_ALU64 | BPF_AND | BPF_K:
		emit_alu_K(AND, dst, imm, ctx);
		goto do_alu32_trunc;
	case BPF_ALU | BPF_OR | BPF_K:
	case BPF_ALU64 | BPF_OR | BPF_K:
		emit_alu_K(OR, dst, imm, ctx);
		goto do_alu32_trunc;
	case BPF_ALU | BPF_XOR | BPF_K:
	case BPF_ALU64 | BPF_XOR | BPF_K:
		emit_alu_K(XOR, dst, imm, ctx);
		goto do_alu32_trunc;
	case BPF_ALU | BPF_MUL | BPF_K:
		emit_alu_K(MUL, dst, imm, ctx);
		goto do_alu32_trunc;
	case BPF_ALU64 | BPF_MUL | BPF_K:
		emit_alu_K(MULX, dst, imm, ctx);
		break;
	case BPF_ALU | BPF_DIV | BPF_K:
		if (imm == 0)
			return -EINVAL;

		emit_write_y(G0, ctx);
		emit_alu_K(DIV, dst, imm, ctx);
		goto do_alu32_trunc;
	case BPF_ALU64 | BPF_DIV | BPF_K:
		if (imm == 0)
			return -EINVAL;

		emit_alu_K(UDIVX, dst, imm, ctx);
		break;
	case BPF_ALU64 | BPF_MOD | BPF_K:
	case BPF_ALU | BPF_MOD | BPF_K: {
		const u8 tmp = bpf2sparc[TMP_REG_2];
		unsigned int div;

		if (imm == 0)
			return -EINVAL;

		div = (BPF_CLASS(code) == BPF_ALU64) ? UDIVX : DIV;

		ctx->tmp_2_used = true;

		if (BPF_CLASS(code) != BPF_ALU64)
			emit_write_y(G0, ctx);
		if (is_simm13(imm)) {
			emit(div | IMMED | RS1(dst) | S13(imm) | RD(tmp), ctx);
			emit(MULX | IMMED | RS1(tmp) | S13(imm) | RD(tmp), ctx);
			emit(SUB | RS1(dst) | RS2(tmp) | RD(dst), ctx);
		} else {
			const u8 tmp1 = bpf2sparc[TMP_REG_1];

			ctx->tmp_1_used = true;

			emit_set_const_sext(imm, tmp1, ctx);
			emit(div | RS1(dst) | RS2(tmp1) | RD(tmp), ctx);
			emit(MULX | RS1(tmp) | RS2(tmp1) | RD(tmp), ctx);
			emit(SUB | RS1(dst) | RS2(tmp) | RD(dst), ctx);
		}
		goto do_alu32_trunc;
	}
	case BPF_ALU | BPF_LSH | BPF_K:
		emit_alu_K(SLL, dst, imm, ctx);
		goto do_alu32_trunc;
	case BPF_ALU64 | BPF_LSH | BPF_K:
		emit_alu_K(SLLX, dst, imm, ctx);
		break;
	case BPF_ALU | BPF_RSH | BPF_K:
		emit_alu_K(SRL, dst, imm, ctx);
		break;
	case BPF_ALU64 | BPF_RSH | BPF_K:
		emit_alu_K(SRLX, dst, imm, ctx);
		break;
	case BPF_ALU | BPF_ARSH | BPF_K:
		emit_alu_K(SRA, dst, imm, ctx);
		goto do_alu32_trunc;
	case BPF_ALU64 | BPF_ARSH | BPF_K:
		emit_alu_K(SRAX, dst, imm, ctx);
		break;

	do_alu32_trunc:
		if (BPF_CLASS(code) == BPF_ALU)
			emit_alu_K(SRL, dst, 0, ctx);
		break;

	/* JUMP off */
	case BPF_JMP | BPF_JA:
		emit_branch(BA, ctx->idx, ctx->offset[i + off], ctx);
		emit_nop(ctx);
		break;
	/* IF (dst COND src) JUMP off */
	case BPF_JMP | BPF_JEQ | BPF_X:
	case BPF_JMP | BPF_JGT | BPF_X:
	case BPF_JMP | BPF_JGE | BPF_X:
	case BPF_JMP | BPF_JNE | BPF_X:
	case BPF_JMP | BPF_JSGT | BPF_X:
1177 1178 1179
	case BPF_JMP | BPF_JSGE | BPF_X:
	case BPF_JMP | BPF_JSET | BPF_X: {
		int err;
D
David S. Miller 已提交
1180

1181 1182 1183
		err = emit_compare_and_branch(code, dst, src, 0, false, i + off, ctx);
		if (err)
			return err;
D
David S. Miller 已提交
1184 1185 1186 1187 1188 1189 1190 1191 1192
		break;
	}
	/* IF (dst COND imm) JUMP off */
	case BPF_JMP | BPF_JEQ | BPF_K:
	case BPF_JMP | BPF_JGT | BPF_K:
	case BPF_JMP | BPF_JGE | BPF_K:
	case BPF_JMP | BPF_JNE | BPF_K:
	case BPF_JMP | BPF_JSGT | BPF_K:
	case BPF_JMP | BPF_JSGE | BPF_K:
1193 1194 1195 1196 1197 1198 1199 1200
	case BPF_JMP | BPF_JSET | BPF_K: {
		int err;

		err = emit_compare_and_branch(code, dst, 0, imm, true, i + off, ctx);
		if (err)
			return err;
		break;
	}
D
David S. Miller 已提交
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219

	/* function call */
	case BPF_JMP | BPF_CALL:
	{
		u8 *func = ((u8 *)__bpf_call_base) + imm;

		ctx->saw_call = true;

		emit_call((u32 *)func, ctx);
		emit_nop(ctx);

		emit_reg_move(O0, bpf2sparc[BPF_REG_0], ctx);

		if (bpf_helper_changes_pkt_data(func) && ctx->saw_ld_abs_ind)
			load_skb_regs(ctx, bpf2sparc[BPF_REG_6]);
		break;
	}

	/* tail call */
1220
	case BPF_JMP | BPF_TAIL_CALL:
D
David S. Miller 已提交
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
		emit_tail_call(ctx);
		break;

	/* function return */
	case BPF_JMP | BPF_EXIT:
		/* Optimization: when last instruction is EXIT,
		   simply fallthrough to epilogue. */
		if (i == ctx->prog->len - 1)
			break;
		emit_branch(BA, ctx->idx, ctx->epilogue_offset, ctx);
		emit_nop(ctx);
		break;

	/* dst = imm64 */
	case BPF_LD | BPF_IMM | BPF_DW:
	{
		const struct bpf_insn insn1 = insn[1];
		u64 imm64;

		imm64 = (u64)insn1.imm << 32 | (u32)imm;
		emit_loadimm64(imm64, dst, ctx);

		return 1;
	}

	/* LDX: dst = *(size *)(src + off) */
	case BPF_LDX | BPF_MEM | BPF_W:
	case BPF_LDX | BPF_MEM | BPF_H:
	case BPF_LDX | BPF_MEM | BPF_B:
	case BPF_LDX | BPF_MEM | BPF_DW: {
		const u8 tmp = bpf2sparc[TMP_REG_1];
		u32 opcode = 0, rs2;

		ctx->tmp_1_used = true;
		switch (BPF_SIZE(code)) {
		case BPF_W:
			opcode = LD32;
			break;
		case BPF_H:
			opcode = LD16;
			break;
		case BPF_B:
			opcode = LD8;
			break;
		case BPF_DW:
			opcode = LD64;
			break;
		}

		if (is_simm13(off)) {
			opcode |= IMMED;
			rs2 = S13(off);
		} else {
			emit_loadimm(off, tmp, ctx);
			rs2 = RS2(tmp);
		}
		emit(opcode | RS1(src) | rs2 | RD(dst), ctx);
		break;
	}
	/* ST: *(size *)(dst + off) = imm */
	case BPF_ST | BPF_MEM | BPF_W:
	case BPF_ST | BPF_MEM | BPF_H:
	case BPF_ST | BPF_MEM | BPF_B:
	case BPF_ST | BPF_MEM | BPF_DW: {
		const u8 tmp = bpf2sparc[TMP_REG_1];
		const u8 tmp2 = bpf2sparc[TMP_REG_2];
		u32 opcode = 0, rs2;

		ctx->tmp_2_used = true;
		emit_loadimm(imm, tmp2, ctx);

		switch (BPF_SIZE(code)) {
		case BPF_W:
			opcode = ST32;
			break;
		case BPF_H:
			opcode = ST16;
			break;
		case BPF_B:
			opcode = ST8;
			break;
		case BPF_DW:
			opcode = ST64;
			break;
		}

		if (is_simm13(off)) {
			opcode |= IMMED;
			rs2 = S13(off);
		} else {
			ctx->tmp_1_used = true;
			emit_loadimm(off, tmp, ctx);
			rs2 = RS2(tmp);
		}
		emit(opcode | RS1(dst) | rs2 | RD(tmp2), ctx);
		break;
	}

	/* STX: *(size *)(dst + off) = src */
	case BPF_STX | BPF_MEM | BPF_W:
	case BPF_STX | BPF_MEM | BPF_H:
	case BPF_STX | BPF_MEM | BPF_B:
	case BPF_STX | BPF_MEM | BPF_DW: {
		const u8 tmp = bpf2sparc[TMP_REG_1];
		u32 opcode = 0, rs2;

		switch (BPF_SIZE(code)) {
		case BPF_W:
			opcode = ST32;
			break;
		case BPF_H:
			opcode = ST16;
			break;
		case BPF_B:
			opcode = ST8;
			break;
		case BPF_DW:
			opcode = ST64;
			break;
		}
		if (is_simm13(off)) {
			opcode |= IMMED;
			rs2 = S13(off);
		} else {
			ctx->tmp_1_used = true;
			emit_loadimm(off, tmp, ctx);
			rs2 = RS2(tmp);
		}
		emit(opcode | RS1(dst) | rs2 | RD(src), ctx);
		break;
	}

	/* STX XADD: lock *(u32 *)(dst + off) += src */
	case BPF_STX | BPF_XADD | BPF_W: {
		const u8 tmp = bpf2sparc[TMP_REG_1];
		const u8 tmp2 = bpf2sparc[TMP_REG_2];
		const u8 tmp3 = bpf2sparc[TMP_REG_3];

		ctx->tmp_1_used = true;
		ctx->tmp_2_used = true;
		ctx->tmp_3_used = true;
		emit_loadimm(off, tmp, ctx);
		emit_alu3(ADD, dst, tmp, tmp, ctx);

		emit(LD32 | RS1(tmp) | RS2(G0) | RD(tmp2), ctx);
		emit_alu3(ADD, tmp2, src, tmp3, ctx);
		emit(CAS | ASI(ASI_P) | RS1(tmp) | RS2(tmp2) | RD(tmp3), ctx);
		emit_cmp(tmp2, tmp3, ctx);
		emit_branch(BNE, 4, 0, ctx);
		emit_nop(ctx);
		break;
	}
	/* STX XADD: lock *(u64 *)(dst + off) += src */
	case BPF_STX | BPF_XADD | BPF_DW: {
		const u8 tmp = bpf2sparc[TMP_REG_1];
		const u8 tmp2 = bpf2sparc[TMP_REG_2];
		const u8 tmp3 = bpf2sparc[TMP_REG_3];

		ctx->tmp_1_used = true;
		ctx->tmp_2_used = true;
		ctx->tmp_3_used = true;
		emit_loadimm(off, tmp, ctx);
		emit_alu3(ADD, dst, tmp, tmp, ctx);

		emit(LD64 | RS1(tmp) | RS2(G0) | RD(tmp2), ctx);
		emit_alu3(ADD, tmp2, src, tmp3, ctx);
		emit(CASX | ASI(ASI_P) | RS1(tmp) | RS2(tmp2) | RD(tmp3), ctx);
		emit_cmp(tmp2, tmp3, ctx);
		emit_branch(BNE, 4, 0, ctx);
		emit_nop(ctx);
		break;
	}
#define CHOOSE_LOAD_FUNC(K, func) \
		((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)

	/* R0 = ntohx(*(size *)(((struct sk_buff *)R6)->data + imm)) */
	case BPF_LD | BPF_ABS | BPF_W:
		func = CHOOSE_LOAD_FUNC(imm, bpf_jit_load_word);
		goto common_load;
	case BPF_LD | BPF_ABS | BPF_H:
		func = CHOOSE_LOAD_FUNC(imm, bpf_jit_load_half);
		goto common_load;
	case BPF_LD | BPF_ABS | BPF_B:
		func = CHOOSE_LOAD_FUNC(imm, bpf_jit_load_byte);
		goto common_load;
	/* R0 = ntohx(*(size *)(((struct sk_buff *)R6)->data + src + imm)) */
	case BPF_LD | BPF_IND | BPF_W:
		func = bpf_jit_load_word;
		goto common_load;
	case BPF_LD | BPF_IND | BPF_H:
		func = bpf_jit_load_half;
		goto common_load;

	case BPF_LD | BPF_IND | BPF_B:
		func = bpf_jit_load_byte;
	common_load:
		ctx->saw_ld_abs_ind = true;

		emit_reg_move(bpf2sparc[BPF_REG_6], O0, ctx);
		emit_loadimm(imm, O1, ctx);

		if (BPF_MODE(code) == BPF_IND)
			emit_alu(ADD, src, O1, ctx);

		emit_call(func, ctx);
		emit_alu_K(SRA, O1, 0, ctx);

		emit_reg_move(O0, bpf2sparc[BPF_REG_0], ctx);
		break;

	default:
		pr_err_once("unknown opcode %02x\n", code);
		return -EINVAL;
	}

	return 0;
}

static int build_body(struct jit_ctx *ctx)
{
	const struct bpf_prog *prog = ctx->prog;
	int i;

	for (i = 0; i < prog->len; i++) {
		const struct bpf_insn *insn = &prog->insnsi[i];
		int ret;

		ret = build_insn(insn, ctx);

		if (ret > 0) {
			i++;
1452
			ctx->offset[i] = ctx->idx;
D
David S. Miller 已提交
1453 1454
			continue;
		}
1455
		ctx->offset[i] = ctx->idx;
D
David S. Miller 已提交
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
		if (ret)
			return ret;
	}
	return 0;
}

static void jit_fill_hole(void *area, unsigned int size)
{
	u32 *ptr;
	/* We are guaranteed to have aligned memory. */
	for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
		*ptr++ = 0x91d02005; /* ta 5 */
}

struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
{
	struct bpf_prog *tmp, *orig_prog = prog;
	struct bpf_binary_header *header;
	bool tmp_blinded = false;
	struct jit_ctx ctx;
	u32 image_size;
	u8 *image_ptr;
	int pass;

	if (!bpf_jit_enable)
		return orig_prog;

	tmp = bpf_jit_blind_constants(prog);
	/* If blinding was requested and we failed during blinding,
	 * we must fall back to the interpreter.
	 */
	if (IS_ERR(tmp))
		return orig_prog;
	if (tmp != prog) {
		tmp_blinded = true;
		prog = tmp;
	}

	memset(&ctx, 0, sizeof(ctx));
	ctx.prog = prog;

	ctx.offset = kcalloc(prog->len, sizeof(unsigned int), GFP_KERNEL);
	if (ctx.offset == NULL) {
		prog = orig_prog;
		goto out;
	}

	/* Fake pass to detect features used, and get an accurate assessment
	 * of what the final image size will be.
	 */
	if (build_body(&ctx)) {
		prog = orig_prog;
		goto out_off;
	}
	build_prologue(&ctx);
	build_epilogue(&ctx);

	/* Now we know the actual image size. */
	image_size = sizeof(u32) * ctx.idx;
	header = bpf_jit_binary_alloc(image_size, &image_ptr,
				      sizeof(u32), jit_fill_hole);
	if (header == NULL) {
		prog = orig_prog;
		goto out_off;
	}

	ctx.image = (u32 *)image_ptr;

	for (pass = 1; pass < 3; pass++) {
		ctx.idx = 0;

		build_prologue(&ctx);

		if (build_body(&ctx)) {
			bpf_jit_binary_free(header);
			prog = orig_prog;
			goto out_off;
		}

		build_epilogue(&ctx);

		if (bpf_jit_enable > 1)
			pr_info("Pass %d: shrink = %d, seen = [%c%c%c%c%c%c%c]\n", pass,
				image_size - (ctx.idx * 4),
				ctx.tmp_1_used ? '1' : ' ',
				ctx.tmp_2_used ? '2' : ' ',
				ctx.tmp_3_used ? '3' : ' ',
				ctx.saw_ld_abs_ind ? 'L' : ' ',
				ctx.saw_frame_pointer ? 'F' : ' ',
				ctx.saw_call ? 'C' : ' ',
				ctx.saw_tail_call ? 'T' : ' ');
	}

	if (bpf_jit_enable > 1)
		bpf_jit_dump(prog->len, image_size, pass, ctx.image);

	bpf_flush_icache(header, (u8 *)header + (header->pages * PAGE_SIZE));

	bpf_jit_binary_lock_ro(header);

	prog->bpf_func = (void *)ctx.image;
	prog->jited = 1;

out_off:
	kfree(ctx.offset);
out:
	if (tmp_blinded)
		bpf_jit_prog_release_other(prog, prog == orig_prog ?
					   tmp : orig_prog);
	return prog;
}