mvpp2_cls.c 48.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11
/*
 * RSS and Classifier helpers for Marvell PPv2 Network Controller
 *
 * Copyright (C) 2014 Marvell
 *
 * Marcin Wojtas <mw@semihalf.com>
 */

#include "mvpp2.h"
#include "mvpp2_cls.h"
12
#include "mvpp2_prs.h"
13

14 15 16 17 18 19 20 21 22 23 24
#define MVPP2_DEF_FLOW(_type, _id, _opts, _ri, _ri_mask)	\
{								\
	.flow_type = _type,					\
	.flow_id = _id,						\
	.supported_hash_opts = _opts,				\
	.prs_ri = {						\
		.ri = _ri,					\
		.ri_mask = _ri_mask				\
	}							\
}

25
static const struct mvpp2_cls_flow cls_flows[MVPP2_N_PRS_FLOWS] = {
26
	/* TCP over IPv4 flows, Not fragmented, no vlan tag */
27
	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_UNTAG,
28 29 30 31 32
		       MVPP22_CLS_HEK_IP4_5T,
		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4 |
		       MVPP2_PRS_RI_L4_TCP,
		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),

33
	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_UNTAG,
34 35 36 37 38
		       MVPP22_CLS_HEK_IP4_5T,
		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OPT |
		       MVPP2_PRS_RI_L4_TCP,
		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),

39
	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_UNTAG,
40 41 42 43 44 45
		       MVPP22_CLS_HEK_IP4_5T,
		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OTHER |
		       MVPP2_PRS_RI_L4_TCP,
		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),

	/* TCP over IPv4 flows, Not fragmented, with vlan tag */
46
	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_TAG,
47
		       MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_TAGGED,
48 49 50
		       MVPP2_PRS_RI_L3_IP4 | MVPP2_PRS_RI_L4_TCP,
		       MVPP2_PRS_IP_MASK),

51
	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_TAG,
52
		       MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_TAGGED,
53 54 55
		       MVPP2_PRS_RI_L3_IP4_OPT | MVPP2_PRS_RI_L4_TCP,
		       MVPP2_PRS_IP_MASK),

56
	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_TAG,
57
		       MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_TAGGED,
58 59 60 61
		       MVPP2_PRS_RI_L3_IP4_OTHER | MVPP2_PRS_RI_L4_TCP,
		       MVPP2_PRS_IP_MASK),

	/* TCP over IPv4 flows, fragmented, no vlan tag */
62
	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_UNTAG,
63 64 65 66 67
		       MVPP22_CLS_HEK_IP4_2T,
		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4 |
		       MVPP2_PRS_RI_L4_TCP,
		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),

68
	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_UNTAG,
69 70 71 72 73
		       MVPP22_CLS_HEK_IP4_2T,
		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OPT |
		       MVPP2_PRS_RI_L4_TCP,
		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),

74
	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_UNTAG,
75 76 77 78 79 80
		       MVPP22_CLS_HEK_IP4_2T,
		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OTHER |
		       MVPP2_PRS_RI_L4_TCP,
		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),

	/* TCP over IPv4 flows, fragmented, with vlan tag */
81
	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_TAG,
82
		       MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
83 84 85
		       MVPP2_PRS_RI_L3_IP4 | MVPP2_PRS_RI_L4_TCP,
		       MVPP2_PRS_IP_MASK),

86
	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_TAG,
87
		       MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
88 89 90
		       MVPP2_PRS_RI_L3_IP4_OPT | MVPP2_PRS_RI_L4_TCP,
		       MVPP2_PRS_IP_MASK),

91
	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_TAG,
92
		       MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
93 94 95 96
		       MVPP2_PRS_RI_L3_IP4_OTHER | MVPP2_PRS_RI_L4_TCP,
		       MVPP2_PRS_IP_MASK),

	/* UDP over IPv4 flows, Not fragmented, no vlan tag */
97
	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_UNTAG,
98 99 100 101 102
		       MVPP22_CLS_HEK_IP4_5T,
		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4 |
		       MVPP2_PRS_RI_L4_UDP,
		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),

103
	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_UNTAG,
104 105 106 107 108
		       MVPP22_CLS_HEK_IP4_5T,
		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OPT |
		       MVPP2_PRS_RI_L4_UDP,
		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),

109
	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_UNTAG,
110 111 112 113 114 115
		       MVPP22_CLS_HEK_IP4_5T,
		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OTHER |
		       MVPP2_PRS_RI_L4_UDP,
		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),

	/* UDP over IPv4 flows, Not fragmented, with vlan tag */
116
	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_TAG,
117
		       MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_TAGGED,
118 119 120
		       MVPP2_PRS_RI_L3_IP4 | MVPP2_PRS_RI_L4_UDP,
		       MVPP2_PRS_IP_MASK),

121
	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_TAG,
122
		       MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_TAGGED,
123 124 125
		       MVPP2_PRS_RI_L3_IP4_OPT | MVPP2_PRS_RI_L4_UDP,
		       MVPP2_PRS_IP_MASK),

126
	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_TAG,
127
		       MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_TAGGED,
128 129 130 131
		       MVPP2_PRS_RI_L3_IP4_OTHER | MVPP2_PRS_RI_L4_UDP,
		       MVPP2_PRS_IP_MASK),

	/* UDP over IPv4 flows, fragmented, no vlan tag */
132
	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_UNTAG,
133 134 135 136 137
		       MVPP22_CLS_HEK_IP4_2T,
		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4 |
		       MVPP2_PRS_RI_L4_UDP,
		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),

138
	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_UNTAG,
139 140 141 142 143
		       MVPP22_CLS_HEK_IP4_2T,
		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OPT |
		       MVPP2_PRS_RI_L4_UDP,
		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),

144
	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_UNTAG,
145 146 147 148 149 150
		       MVPP22_CLS_HEK_IP4_2T,
		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OTHER |
		       MVPP2_PRS_RI_L4_UDP,
		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),

	/* UDP over IPv4 flows, fragmented, with vlan tag */
151
	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_TAG,
152
		       MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
153 154 155
		       MVPP2_PRS_RI_L3_IP4 | MVPP2_PRS_RI_L4_UDP,
		       MVPP2_PRS_IP_MASK),

156
	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_TAG,
157
		       MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
158 159 160
		       MVPP2_PRS_RI_L3_IP4_OPT | MVPP2_PRS_RI_L4_UDP,
		       MVPP2_PRS_IP_MASK),

161
	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_TAG,
162
		       MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
163 164 165 166
		       MVPP2_PRS_RI_L3_IP4_OTHER | MVPP2_PRS_RI_L4_UDP,
		       MVPP2_PRS_IP_MASK),

	/* TCP over IPv6 flows, not fragmented, no vlan tag */
167
	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_NF_UNTAG,
168 169 170 171 172
		       MVPP22_CLS_HEK_IP6_5T,
		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6 |
		       MVPP2_PRS_RI_L4_TCP,
		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),

173
	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_NF_UNTAG,
174 175 176 177 178 179
		       MVPP22_CLS_HEK_IP6_5T,
		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6_EXT |
		       MVPP2_PRS_RI_L4_TCP,
		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),

	/* TCP over IPv6 flows, not fragmented, with vlan tag */
180
	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_NF_TAG,
181
		       MVPP22_CLS_HEK_IP6_5T | MVPP22_CLS_HEK_TAGGED,
182 183 184
		       MVPP2_PRS_RI_L3_IP6 | MVPP2_PRS_RI_L4_TCP,
		       MVPP2_PRS_IP_MASK),

185
	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_NF_TAG,
186
		       MVPP22_CLS_HEK_IP6_5T | MVPP22_CLS_HEK_TAGGED,
187 188 189 190
		       MVPP2_PRS_RI_L3_IP6_EXT | MVPP2_PRS_RI_L4_TCP,
		       MVPP2_PRS_IP_MASK),

	/* TCP over IPv6 flows, fragmented, no vlan tag */
191
	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_FRAG_UNTAG,
192 193 194 195 196
		       MVPP22_CLS_HEK_IP6_2T,
		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6 |
		       MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_TCP,
		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),

197
	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_FRAG_UNTAG,
198 199 200 201 202 203
		       MVPP22_CLS_HEK_IP6_2T,
		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6_EXT |
		       MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_TCP,
		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),

	/* TCP over IPv6 flows, fragmented, with vlan tag */
204
	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_FRAG_TAG,
205
		       MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_TAGGED,
206 207 208 209
		       MVPP2_PRS_RI_L3_IP6 | MVPP2_PRS_RI_IP_FRAG_TRUE |
		       MVPP2_PRS_RI_L4_TCP,
		       MVPP2_PRS_IP_MASK),

210
	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_FRAG_TAG,
211
		       MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_TAGGED,
212 213 214 215 216
		       MVPP2_PRS_RI_L3_IP6_EXT | MVPP2_PRS_RI_IP_FRAG_TRUE |
		       MVPP2_PRS_RI_L4_TCP,
		       MVPP2_PRS_IP_MASK),

	/* UDP over IPv6 flows, not fragmented, no vlan tag */
217
	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_NF_UNTAG,
218 219 220 221 222
		       MVPP22_CLS_HEK_IP6_5T,
		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6 |
		       MVPP2_PRS_RI_L4_UDP,
		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),

223
	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_NF_UNTAG,
224 225 226 227 228 229
		       MVPP22_CLS_HEK_IP6_5T,
		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6_EXT |
		       MVPP2_PRS_RI_L4_UDP,
		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),

	/* UDP over IPv6 flows, not fragmented, with vlan tag */
230
	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_NF_TAG,
231
		       MVPP22_CLS_HEK_IP6_5T | MVPP22_CLS_HEK_TAGGED,
232 233 234
		       MVPP2_PRS_RI_L3_IP6 | MVPP2_PRS_RI_L4_UDP,
		       MVPP2_PRS_IP_MASK),

235
	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_NF_TAG,
236
		       MVPP22_CLS_HEK_IP6_5T | MVPP22_CLS_HEK_TAGGED,
237 238 239 240
		       MVPP2_PRS_RI_L3_IP6_EXT | MVPP2_PRS_RI_L4_UDP,
		       MVPP2_PRS_IP_MASK),

	/* UDP over IPv6 flows, fragmented, no vlan tag */
241
	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_FRAG_UNTAG,
242 243 244 245 246
		       MVPP22_CLS_HEK_IP6_2T,
		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6 |
		       MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_UDP,
		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),

247
	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_FRAG_UNTAG,
248 249 250 251 252 253
		       MVPP22_CLS_HEK_IP6_2T,
		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6_EXT |
		       MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_UDP,
		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),

	/* UDP over IPv6 flows, fragmented, with vlan tag */
254
	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_FRAG_TAG,
255
		       MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_TAGGED,
256 257 258 259
		       MVPP2_PRS_RI_L3_IP6 | MVPP2_PRS_RI_IP_FRAG_TRUE |
		       MVPP2_PRS_RI_L4_UDP,
		       MVPP2_PRS_IP_MASK),

260
	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_FRAG_TAG,
261
		       MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_TAGGED,
262 263 264 265 266
		       MVPP2_PRS_RI_L3_IP6_EXT | MVPP2_PRS_RI_IP_FRAG_TRUE |
		       MVPP2_PRS_RI_L4_UDP,
		       MVPP2_PRS_IP_MASK),

	/* IPv4 flows, no vlan tag */
267
	MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_UNTAG,
268 269 270
		       MVPP22_CLS_HEK_IP4_2T,
		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4,
		       MVPP2_PRS_RI_VLAN_MASK | MVPP2_PRS_RI_L3_PROTO_MASK),
271
	MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_UNTAG,
272 273 274
		       MVPP22_CLS_HEK_IP4_2T,
		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OPT,
		       MVPP2_PRS_RI_VLAN_MASK | MVPP2_PRS_RI_L3_PROTO_MASK),
275
	MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_UNTAG,
276 277 278 279 280
		       MVPP22_CLS_HEK_IP4_2T,
		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OTHER,
		       MVPP2_PRS_RI_VLAN_MASK | MVPP2_PRS_RI_L3_PROTO_MASK),

	/* IPv4 flows, with vlan tag */
281
	MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_TAG,
282
		       MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
283 284
		       MVPP2_PRS_RI_L3_IP4,
		       MVPP2_PRS_RI_L3_PROTO_MASK),
285
	MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_TAG,
286
		       MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
287 288
		       MVPP2_PRS_RI_L3_IP4_OPT,
		       MVPP2_PRS_RI_L3_PROTO_MASK),
289
	MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_TAG,
290
		       MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
291 292 293 294
		       MVPP2_PRS_RI_L3_IP4_OTHER,
		       MVPP2_PRS_RI_L3_PROTO_MASK),

	/* IPv6 flows, no vlan tag */
295
	MVPP2_DEF_FLOW(MVPP22_FLOW_IP6, MVPP2_FL_IP6_UNTAG,
296 297 298
		       MVPP22_CLS_HEK_IP6_2T,
		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6,
		       MVPP2_PRS_RI_VLAN_MASK | MVPP2_PRS_RI_L3_PROTO_MASK),
299
	MVPP2_DEF_FLOW(MVPP22_FLOW_IP6, MVPP2_FL_IP6_UNTAG,
300 301 302 303 304
		       MVPP22_CLS_HEK_IP6_2T,
		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6,
		       MVPP2_PRS_RI_VLAN_MASK | MVPP2_PRS_RI_L3_PROTO_MASK),

	/* IPv6 flows, with vlan tag */
305
	MVPP2_DEF_FLOW(MVPP22_FLOW_IP6, MVPP2_FL_IP6_TAG,
306
		       MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_TAGGED,
307 308
		       MVPP2_PRS_RI_L3_IP6,
		       MVPP2_PRS_RI_L3_PROTO_MASK),
309
	MVPP2_DEF_FLOW(MVPP22_FLOW_IP6, MVPP2_FL_IP6_TAG,
310
		       MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_TAGGED,
311 312 313 314
		       MVPP2_PRS_RI_L3_IP6,
		       MVPP2_PRS_RI_L3_PROTO_MASK),

	/* Non IP flow, no vlan tag */
315
	MVPP2_DEF_FLOW(MVPP22_FLOW_ETHERNET, MVPP2_FL_NON_IP_UNTAG,
316 317 318 319
		       0,
		       MVPP2_PRS_RI_VLAN_NONE,
		       MVPP2_PRS_RI_VLAN_MASK),
	/* Non IP flow, with vlan tag */
320
	MVPP2_DEF_FLOW(MVPP22_FLOW_ETHERNET, MVPP2_FL_NON_IP_TAG,
321 322 323 324
		       MVPP22_CLS_HEK_OPT_VLAN,
		       0, 0),
};

325 326 327 328 329 330 331
u32 mvpp2_cls_flow_hits(struct mvpp2 *priv, int index)
{
	mvpp2_write(priv, MVPP2_CTRS_IDX, index);

	return mvpp2_read(priv, MVPP2_CLS_FLOW_TBL_HIT_CTR);
}

332 333
void mvpp2_cls_flow_read(struct mvpp2 *priv, int index,
			 struct mvpp2_cls_flow_entry *fe)
334 335 336 337 338 339 340 341
{
	fe->index = index;
	mvpp2_write(priv, MVPP2_CLS_FLOW_INDEX_REG, index);
	fe->data[0] = mvpp2_read(priv, MVPP2_CLS_FLOW_TBL0_REG);
	fe->data[1] = mvpp2_read(priv, MVPP2_CLS_FLOW_TBL1_REG);
	fe->data[2] = mvpp2_read(priv, MVPP2_CLS_FLOW_TBL2_REG);
}

342 343 344 345 346
/* Update classification flow table registers */
static void mvpp2_cls_flow_write(struct mvpp2 *priv,
				 struct mvpp2_cls_flow_entry *fe)
{
	mvpp2_write(priv, MVPP2_CLS_FLOW_INDEX_REG, fe->index);
347 348 349
	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL0_REG, fe->data[0]);
	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL1_REG, fe->data[1]);
	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL2_REG, fe->data[2]);
350 351
}

352 353 354 355 356 357 358
u32 mvpp2_cls_lookup_hits(struct mvpp2 *priv, int index)
{
	mvpp2_write(priv, MVPP2_CTRS_IDX, index);

	return mvpp2_read(priv, MVPP2_CLS_DEC_TBL_HIT_CTR);
}

359 360 361 362 363 364 365 366 367 368 369 370
void mvpp2_cls_lookup_read(struct mvpp2 *priv, int lkpid, int way,
			   struct mvpp2_cls_lookup_entry *le)
{
	u32 val;

	val = (way << MVPP2_CLS_LKP_INDEX_WAY_OFFS) | lkpid;
	mvpp2_write(priv, MVPP2_CLS_LKP_INDEX_REG, val);
	le->way = way;
	le->lkpid = lkpid;
	le->data = mvpp2_read(priv, MVPP2_CLS_LKP_TBL_REG);
}

371 372 373 374 375 376 377 378 379 380 381
/* Update classification lookup table register */
static void mvpp2_cls_lookup_write(struct mvpp2 *priv,
				   struct mvpp2_cls_lookup_entry *le)
{
	u32 val;

	val = (le->way << MVPP2_CLS_LKP_INDEX_WAY_OFFS) | le->lkpid;
	mvpp2_write(priv, MVPP2_CLS_LKP_INDEX_REG, val);
	mvpp2_write(priv, MVPP2_CLS_LKP_TBL_REG, le->data);
}

382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
/* Operations on flow entry */
static int mvpp2_cls_flow_hek_num_get(struct mvpp2_cls_flow_entry *fe)
{
	return fe->data[1] & MVPP2_CLS_FLOW_TBL1_N_FIELDS_MASK;
}

static void mvpp2_cls_flow_hek_num_set(struct mvpp2_cls_flow_entry *fe,
				       int num_of_fields)
{
	fe->data[1] &= ~MVPP2_CLS_FLOW_TBL1_N_FIELDS_MASK;
	fe->data[1] |= MVPP2_CLS_FLOW_TBL1_N_FIELDS(num_of_fields);
}

static int mvpp2_cls_flow_hek_get(struct mvpp2_cls_flow_entry *fe,
				  int field_index)
{
	return (fe->data[2] >> MVPP2_CLS_FLOW_TBL2_FLD_OFFS(field_index)) &
		MVPP2_CLS_FLOW_TBL2_FLD_MASK;
}

static void mvpp2_cls_flow_hek_set(struct mvpp2_cls_flow_entry *fe,
				   int field_index, int field_id)
{
	fe->data[2] &= ~MVPP2_CLS_FLOW_TBL2_FLD(field_index,
						MVPP2_CLS_FLOW_TBL2_FLD_MASK);
	fe->data[2] |= MVPP2_CLS_FLOW_TBL2_FLD(field_index, field_id);
}

410 411 412 413 414 415 416
static void mvpp2_cls_flow_eng_set(struct mvpp2_cls_flow_entry *fe,
				   int engine)
{
	fe->data[0] &= ~MVPP2_CLS_FLOW_TBL0_ENG(MVPP2_CLS_FLOW_TBL0_ENG_MASK);
	fe->data[0] |= MVPP2_CLS_FLOW_TBL0_ENG(engine);
}

417 418 419 420 421 422
int mvpp2_cls_flow_eng_get(struct mvpp2_cls_flow_entry *fe)
{
	return (fe->data[0] >> MVPP2_CLS_FLOW_TBL0_OFFS) &
		MVPP2_CLS_FLOW_TBL0_ENG_MASK;
}

423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
static void mvpp2_cls_flow_port_id_sel(struct mvpp2_cls_flow_entry *fe,
				       bool from_packet)
{
	if (from_packet)
		fe->data[0] |= MVPP2_CLS_FLOW_TBL0_PORT_ID_SEL;
	else
		fe->data[0] &= ~MVPP2_CLS_FLOW_TBL0_PORT_ID_SEL;
}

static void mvpp2_cls_flow_last_set(struct mvpp2_cls_flow_entry *fe,
				    bool is_last)
{
	fe->data[0] &= ~MVPP2_CLS_FLOW_TBL0_LAST;
	fe->data[0] |= !!is_last;
}

static void mvpp2_cls_flow_pri_set(struct mvpp2_cls_flow_entry *fe, int prio)
{
	fe->data[1] &= ~MVPP2_CLS_FLOW_TBL1_PRIO(MVPP2_CLS_FLOW_TBL1_PRIO_MASK);
	fe->data[1] |= MVPP2_CLS_FLOW_TBL1_PRIO(prio);
}

static void mvpp2_cls_flow_port_add(struct mvpp2_cls_flow_entry *fe,
				    u32 port)
{
	fe->data[0] |= MVPP2_CLS_FLOW_TBL0_PORT_ID(port);
}

451 452 453 454 455 456
static void mvpp2_cls_flow_port_remove(struct mvpp2_cls_flow_entry *fe,
				       u32 port)
{
	fe->data[0] &= ~MVPP2_CLS_FLOW_TBL0_PORT_ID(port);
}

457 458 459 460 461 462 463
static void mvpp2_cls_flow_lu_type_set(struct mvpp2_cls_flow_entry *fe,
				       u8 lu_type)
{
	fe->data[1] &= ~MVPP2_CLS_FLOW_TBL1_LU_TYPE(MVPP2_CLS_LU_TYPE_MASK);
	fe->data[1] |= MVPP2_CLS_FLOW_TBL1_LU_TYPE(lu_type);
}

464 465
/* Initialize the parser entry for the given flow */
static void mvpp2_cls_flow_prs_init(struct mvpp2 *priv,
466
				    const struct mvpp2_cls_flow *flow)
467 468 469 470 471
{
	mvpp2_prs_add_flow(priv, flow->flow_id, flow->prs_ri.ri,
			   flow->prs_ri.ri_mask);
}

472
/* Initialize the Lookup Id table entry for the given flow */
473
static void mvpp2_cls_flow_lkp_init(struct mvpp2 *priv,
474
				    const struct mvpp2_cls_flow *flow)
475 476 477 478
{
	struct mvpp2_cls_lookup_entry le;

	le.way = 0;
479
	le.lkpid = flow->flow_id;
480 481 482 483

	/* The default RxQ for this port is set in the C2 lookup */
	le.data = 0;

484 485 486
	/* We point on the first lookup in the sequence for the flow, that is
	 * the C2 lookup.
	 */
487
	le.data |= MVPP2_CLS_LKP_FLOW_PTR(MVPP2_CLS_FLT_FIRST(flow->flow_id));
488 489

	/* CLS is always enabled, RSS is enabled/disabled in C2 lookup */
490 491 492 493 494
	le.data |= MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK;

	mvpp2_cls_lookup_write(priv, &le);
}

495 496 497
static void mvpp2_cls_c2_write(struct mvpp2 *priv,
			       struct mvpp2_cls_c2_entry *c2)
{
498
	u32 val;
499 500
	mvpp2_write(priv, MVPP22_CLS_C2_TCAM_IDX, c2->index);

501 502 503 504 505 506 507
	val = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_INV);
	if (c2->valid)
		val &= ~MVPP22_CLS_C2_TCAM_INV_BIT;
	else
		val |= MVPP22_CLS_C2_TCAM_INV_BIT;
	mvpp2_write(priv, MVPP22_CLS_C2_TCAM_INV, val);

508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
	mvpp2_write(priv, MVPP22_CLS_C2_ACT, c2->act);

	mvpp2_write(priv, MVPP22_CLS_C2_ATTR0, c2->attr[0]);
	mvpp2_write(priv, MVPP22_CLS_C2_ATTR1, c2->attr[1]);
	mvpp2_write(priv, MVPP22_CLS_C2_ATTR2, c2->attr[2]);
	mvpp2_write(priv, MVPP22_CLS_C2_ATTR3, c2->attr[3]);

	mvpp2_write(priv, MVPP22_CLS_C2_TCAM_DATA0, c2->tcam[0]);
	mvpp2_write(priv, MVPP22_CLS_C2_TCAM_DATA1, c2->tcam[1]);
	mvpp2_write(priv, MVPP22_CLS_C2_TCAM_DATA2, c2->tcam[2]);
	mvpp2_write(priv, MVPP22_CLS_C2_TCAM_DATA3, c2->tcam[3]);
	/* Writing TCAM_DATA4 flushes writes to TCAM_DATA0-4 and INV to HW */
	mvpp2_write(priv, MVPP22_CLS_C2_TCAM_DATA4, c2->tcam[4]);
}

void mvpp2_cls_c2_read(struct mvpp2 *priv, int index,
		       struct mvpp2_cls_c2_entry *c2)
{
526
	u32 val;
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
	mvpp2_write(priv, MVPP22_CLS_C2_TCAM_IDX, index);

	c2->index = index;

	c2->tcam[0] = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_DATA0);
	c2->tcam[1] = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_DATA1);
	c2->tcam[2] = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_DATA2);
	c2->tcam[3] = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_DATA3);
	c2->tcam[4] = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_DATA4);

	c2->act = mvpp2_read(priv, MVPP22_CLS_C2_ACT);

	c2->attr[0] = mvpp2_read(priv, MVPP22_CLS_C2_ATTR0);
	c2->attr[1] = mvpp2_read(priv, MVPP22_CLS_C2_ATTR1);
	c2->attr[2] = mvpp2_read(priv, MVPP22_CLS_C2_ATTR2);
	c2->attr[3] = mvpp2_read(priv, MVPP22_CLS_C2_ATTR3);
543 544 545

	val = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_INV);
	c2->valid = !(val & MVPP22_CLS_C2_TCAM_INV_BIT);
546 547
}

548 549 550
static int mvpp2_cls_ethtool_flow_to_type(int flow_type)
{
	switch (flow_type & ~(FLOW_EXT | FLOW_MAC_EXT | FLOW_RSS)) {
551 552
	case ETHER_FLOW:
		return MVPP22_FLOW_ETHERNET;
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
	case TCP_V4_FLOW:
		return MVPP22_FLOW_TCP4;
	case TCP_V6_FLOW:
		return MVPP22_FLOW_TCP6;
	case UDP_V4_FLOW:
		return MVPP22_FLOW_UDP4;
	case UDP_V6_FLOW:
		return MVPP22_FLOW_UDP6;
	case IPV4_FLOW:
		return MVPP22_FLOW_IP4;
	case IPV6_FLOW:
		return MVPP22_FLOW_IP6;
	default:
		return -EOPNOTSUPP;
	}
}

570 571 572 573 574
static int mvpp2_cls_c2_port_flow_index(struct mvpp2_port *port, int loc)
{
	return MVPP22_CLS_C2_RFS_LOC(port->id, loc);
}

575
/* Initialize the flow table entries for the given flow */
576 577
static void mvpp2_cls_flow_init(struct mvpp2 *priv,
				const struct mvpp2_cls_flow *flow)
578 579
{
	struct mvpp2_cls_flow_entry fe;
580
	int i, pri = 0;
581

582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
	/* Assign default values to all entries in the flow */
	for (i = MVPP2_CLS_FLT_FIRST(flow->flow_id);
	     i <= MVPP2_CLS_FLT_LAST(flow->flow_id); i++) {
		memset(&fe, 0, sizeof(fe));
		fe.index = i;
		mvpp2_cls_flow_pri_set(&fe, pri++);

		if (i == MVPP2_CLS_FLT_LAST(flow->flow_id))
			mvpp2_cls_flow_last_set(&fe, 1);

		mvpp2_cls_flow_write(priv, &fe);
	}

	/* RSS config C2 lookup */
	mvpp2_cls_flow_read(priv, MVPP2_CLS_FLT_C2_RSS_ENTRY(flow->flow_id),
			    &fe);
598 599 600

	mvpp2_cls_flow_eng_set(&fe, MVPP22_CLS_ENGINE_C2);
	mvpp2_cls_flow_port_id_sel(&fe, true);
601
	mvpp2_cls_flow_lu_type_set(&fe, MVPP22_CLS_LU_TYPE_ALL);
602 603 604 605 606 607

	/* Add all ports */
	for (i = 0; i < MVPP2_MAX_PORTS; i++)
		mvpp2_cls_flow_port_add(&fe, BIT(i));

	mvpp2_cls_flow_write(priv, &fe);
608 609 610

	/* C3Hx lookups */
	for (i = 0; i < MVPP2_MAX_PORTS; i++) {
611 612 613 614 615 616 617 618
		mvpp2_cls_flow_read(priv,
				    MVPP2_CLS_FLT_HASH_ENTRY(i, flow->flow_id),
				    &fe);

		/* Set a default engine. Will be overwritten when setting the
		 * real HEK parameters
		 */
		mvpp2_cls_flow_eng_set(&fe, MVPP22_CLS_ENGINE_C3HA);
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
		mvpp2_cls_flow_port_id_sel(&fe, true);
		mvpp2_cls_flow_port_add(&fe, BIT(i));

		mvpp2_cls_flow_write(priv, &fe);
	}
}

/* Adds a field to the Header Extracted Key generation parameters*/
static int mvpp2_flow_add_hek_field(struct mvpp2_cls_flow_entry *fe,
				    u32 field_id)
{
	int nb_fields = mvpp2_cls_flow_hek_num_get(fe);

	if (nb_fields == MVPP2_FLOW_N_FIELDS)
		return -EINVAL;

	mvpp2_cls_flow_hek_set(fe, nb_fields, field_id);

	mvpp2_cls_flow_hek_num_set(fe, nb_fields + 1);

	return 0;
}

static int mvpp2_flow_set_hek_fields(struct mvpp2_cls_flow_entry *fe,
				     unsigned long hash_opts)
{
	u32 field_id;
	int i;

	/* Clear old fields */
	mvpp2_cls_flow_hek_num_set(fe, 0);
	fe->data[2] = 0;

	for_each_set_bit(i, &hash_opts, MVPP22_CLS_HEK_N_FIELDS) {
		switch (BIT(i)) {
654 655 656
		case MVPP22_CLS_HEK_OPT_MAC_DA:
			field_id = MVPP22_CLS_FIELD_MAC_DA;
			break;
657 658 659
		case MVPP22_CLS_HEK_OPT_VLAN:
			field_id = MVPP22_CLS_FIELD_VLAN;
			break;
660 661 662
		case MVPP22_CLS_HEK_OPT_VLAN_PRI:
			field_id = MVPP22_CLS_FIELD_VLAN_PRI;
			break;
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
		case MVPP22_CLS_HEK_OPT_IP4SA:
			field_id = MVPP22_CLS_FIELD_IP4SA;
			break;
		case MVPP22_CLS_HEK_OPT_IP4DA:
			field_id = MVPP22_CLS_FIELD_IP4DA;
			break;
		case MVPP22_CLS_HEK_OPT_IP6SA:
			field_id = MVPP22_CLS_FIELD_IP6SA;
			break;
		case MVPP22_CLS_HEK_OPT_IP6DA:
			field_id = MVPP22_CLS_FIELD_IP6DA;
			break;
		case MVPP22_CLS_HEK_OPT_L4SIP:
			field_id = MVPP22_CLS_FIELD_L4SIP;
			break;
		case MVPP22_CLS_HEK_OPT_L4DIP:
			field_id = MVPP22_CLS_FIELD_L4DIP;
			break;
		default:
			return -EINVAL;
		}
		if (mvpp2_flow_add_hek_field(fe, field_id))
			return -EINVAL;
	}

	return 0;
689 690
}

691 692 693 694 695 696
/* Returns the size, in bits, of the corresponding HEK field */
static int mvpp2_cls_hek_field_size(u32 field)
{
	switch (field) {
	case MVPP22_CLS_HEK_OPT_MAC_DA:
		return 48;
697 698 699 700
	case MVPP22_CLS_HEK_OPT_VLAN:
		return 12;
	case MVPP22_CLS_HEK_OPT_VLAN_PRI:
		return 3;
701 702 703 704 705 706 707 708 709 710 711 712 713 714
	case MVPP22_CLS_HEK_OPT_IP4SA:
	case MVPP22_CLS_HEK_OPT_IP4DA:
		return 32;
	case MVPP22_CLS_HEK_OPT_IP6SA:
	case MVPP22_CLS_HEK_OPT_IP6DA:
		return 128;
	case MVPP22_CLS_HEK_OPT_L4SIP:
	case MVPP22_CLS_HEK_OPT_L4DIP:
		return 16;
	default:
		return -1;
	}
}

715
const struct mvpp2_cls_flow *mvpp2_cls_flow_get(int flow)
716
{
717
	if (flow >= MVPP2_N_PRS_FLOWS)
718 719 720 721 722
		return NULL;

	return &cls_flows[flow];
}

723 724 725 726 727 728 729 730 731 732 733 734 735 736
/* Set the hash generation options for the given traffic flow.
 * One traffic flow (in the ethtool sense) has multiple classification flows,
 * to handle specific cases such as fragmentation, or the presence of a
 * VLAN / DSA Tag.
 *
 * Each of these individual flows has different constraints, for example we
 * can't hash fragmented packets on L4 data (else we would risk having packet
 * re-ordering), so each classification flows masks the options with their
 * supported ones.
 *
 */
static int mvpp2_port_rss_hash_opts_set(struct mvpp2_port *port, int flow_type,
					u16 requested_opts)
{
737
	const struct mvpp2_cls_flow *flow;
738 739 740 741
	struct mvpp2_cls_flow_entry fe;
	int i, engine, flow_index;
	u16 hash_opts;

742
	for_each_cls_flow_id_with_type(i, flow_type) {
743 744 745 746
		flow = mvpp2_cls_flow_get(i);
		if (!flow)
			return -EINVAL;

747
		flow_index = MVPP2_CLS_FLT_HASH_ENTRY(port->id, flow->flow_id);
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788

		mvpp2_cls_flow_read(port->priv, flow_index, &fe);

		hash_opts = flow->supported_hash_opts & requested_opts;

		/* Use C3HB engine to access L4 infos. This adds L4 infos to the
		 * hash parameters
		 */
		if (hash_opts & MVPP22_CLS_HEK_L4_OPTS)
			engine = MVPP22_CLS_ENGINE_C3HB;
		else
			engine = MVPP22_CLS_ENGINE_C3HA;

		if (mvpp2_flow_set_hek_fields(&fe, hash_opts))
			return -EINVAL;

		mvpp2_cls_flow_eng_set(&fe, engine);

		mvpp2_cls_flow_write(port->priv, &fe);
	}

	return 0;
}

u16 mvpp2_flow_get_hek_fields(struct mvpp2_cls_flow_entry *fe)
{
	u16 hash_opts = 0;
	int n_fields, i, field;

	n_fields = mvpp2_cls_flow_hek_num_get(fe);

	for (i = 0; i < n_fields; i++) {
		field = mvpp2_cls_flow_hek_get(fe, i);

		switch (field) {
		case MVPP22_CLS_FIELD_MAC_DA:
			hash_opts |= MVPP22_CLS_HEK_OPT_MAC_DA;
			break;
		case MVPP22_CLS_FIELD_VLAN:
			hash_opts |= MVPP22_CLS_HEK_OPT_VLAN;
			break;
789 790 791
		case MVPP22_CLS_FIELD_VLAN_PRI:
			hash_opts |= MVPP22_CLS_HEK_OPT_VLAN_PRI;
			break;
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
		case MVPP22_CLS_FIELD_L3_PROTO:
			hash_opts |= MVPP22_CLS_HEK_OPT_L3_PROTO;
			break;
		case MVPP22_CLS_FIELD_IP4SA:
			hash_opts |= MVPP22_CLS_HEK_OPT_IP4SA;
			break;
		case MVPP22_CLS_FIELD_IP4DA:
			hash_opts |= MVPP22_CLS_HEK_OPT_IP4DA;
			break;
		case MVPP22_CLS_FIELD_IP6SA:
			hash_opts |= MVPP22_CLS_HEK_OPT_IP6SA;
			break;
		case MVPP22_CLS_FIELD_IP6DA:
			hash_opts |= MVPP22_CLS_HEK_OPT_IP6DA;
			break;
		case MVPP22_CLS_FIELD_L4SIP:
			hash_opts |= MVPP22_CLS_HEK_OPT_L4SIP;
			break;
		case MVPP22_CLS_FIELD_L4DIP:
			hash_opts |= MVPP22_CLS_HEK_OPT_L4DIP;
			break;
		default:
			break;
		}
	}
	return hash_opts;
}

820 821 822 823 824
/* Returns the hash opts for this flow. There are several classifier flows
 * for one traffic flow, this returns an aggregation of all configurations.
 */
static u16 mvpp2_port_rss_hash_opts_get(struct mvpp2_port *port, int flow_type)
{
825
	const struct mvpp2_cls_flow *flow;
826 827 828 829
	struct mvpp2_cls_flow_entry fe;
	int i, flow_index;
	u16 hash_opts = 0;

830
	for_each_cls_flow_id_with_type(i, flow_type) {
831 832 833 834
		flow = mvpp2_cls_flow_get(i);
		if (!flow)
			return 0;

835
		flow_index = MVPP2_CLS_FLT_HASH_ENTRY(port->id, flow->flow_id);
836 837 838 839 840 841 842 843 844

		mvpp2_cls_flow_read(port->priv, flow_index, &fe);

		hash_opts |= mvpp2_flow_get_hek_fields(&fe);
	}

	return hash_opts;
}

845 846
static void mvpp2_cls_port_init_flows(struct mvpp2 *priv)
{
847
	const struct mvpp2_cls_flow *flow;
848 849
	int i;

850
	for (i = 0; i < MVPP2_N_PRS_FLOWS; i++) {
851 852 853 854 855 856 857
		flow = mvpp2_cls_flow_get(i);
		if (!flow)
			break;

		mvpp2_cls_flow_prs_init(priv, flow);
		mvpp2_cls_flow_lkp_init(priv, flow);
		mvpp2_cls_flow_init(priv, flow);
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
	}
}

static void mvpp2_port_c2_cls_init(struct mvpp2_port *port)
{
	struct mvpp2_cls_c2_entry c2;
	u8 qh, ql, pmap;

	memset(&c2, 0, sizeof(c2));

	c2.index = MVPP22_CLS_C2_RSS_ENTRY(port->id);

	pmap = BIT(port->id);
	c2.tcam[4] = MVPP22_CLS_C2_PORT_ID(pmap);
	c2.tcam[4] |= MVPP22_CLS_C2_TCAM_EN(MVPP22_CLS_C2_PORT_ID(pmap));

874 875
	/* Match on Lookup Type */
	c2.tcam[4] |= MVPP22_CLS_C2_TCAM_EN(MVPP22_CLS_C2_LU_TYPE(MVPP2_CLS_LU_TYPE_MASK));
876
	c2.tcam[4] |= MVPP22_CLS_C2_LU_TYPE(MVPP22_CLS_LU_TYPE_ALL);
877

878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
	/* Update RSS status after matching this entry */
	c2.act = MVPP22_CLS_C2_ACT_RSS_EN(MVPP22_C2_UPD_LOCK);

	/* Mark packet as "forwarded to software", needed for RSS */
	c2.act |= MVPP22_CLS_C2_ACT_FWD(MVPP22_C2_FWD_SW_LOCK);

	/* Configure the default rx queue : Update Queue Low and Queue High, but
	 * don't lock, since the rx queue selection might be overridden by RSS
	 */
	c2.act |= MVPP22_CLS_C2_ACT_QHIGH(MVPP22_C2_UPD) |
		   MVPP22_CLS_C2_ACT_QLOW(MVPP22_C2_UPD);

	qh = (port->first_rxq >> 3) & MVPP22_CLS_C2_ATTR0_QHIGH_MASK;
	ql = port->first_rxq & MVPP22_CLS_C2_ATTR0_QLOW_MASK;

	c2.attr[0] = MVPP22_CLS_C2_ATTR0_QHIGH(qh) |
		      MVPP22_CLS_C2_ATTR0_QLOW(ql);

896 897
	c2.valid = true;

898 899 900
	mvpp2_cls_c2_write(port->priv, &c2);
}

901 902 903 904 905
/* Classifier default initialization */
void mvpp2_cls_init(struct mvpp2 *priv)
{
	struct mvpp2_cls_lookup_entry le;
	struct mvpp2_cls_flow_entry fe;
906
	struct mvpp2_cls_c2_entry c2;
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
	int index;

	/* Enable classifier */
	mvpp2_write(priv, MVPP2_CLS_MODE_REG, MVPP2_CLS_MODE_ACTIVE_MASK);

	/* Clear classifier flow table */
	memset(&fe.data, 0, sizeof(fe.data));
	for (index = 0; index < MVPP2_CLS_FLOWS_TBL_SIZE; index++) {
		fe.index = index;
		mvpp2_cls_flow_write(priv, &fe);
	}

	/* Clear classifier lookup table */
	le.data = 0;
	for (index = 0; index < MVPP2_CLS_LKP_TBL_SIZE; index++) {
		le.lkpid = index;
		le.way = 0;
		mvpp2_cls_lookup_write(priv, &le);

		le.way = 1;
		mvpp2_cls_lookup_write(priv, &le);
	}
929

930 931 932 933 934 935 936 937
	/* Clear C2 TCAM engine table */
	memset(&c2, 0, sizeof(c2));
	c2.valid = false;
	for (index = 0; index < MVPP22_CLS_C2_N_ENTRIES; index++) {
		c2.index = index;
		mvpp2_cls_c2_write(priv, &c2);
	}

938 939 940 941 942 943
	/* Disable the FIFO stages in C2 engine, which are only used in BIST
	 * mode
	 */
	mvpp2_write(priv, MVPP22_CLS_C2_TCAM_CTRL,
		    MVPP22_CLS_C2_TCAM_BYPASS_FIFO);

944
	mvpp2_cls_port_init_flows(priv);
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
}

void mvpp2_cls_port_config(struct mvpp2_port *port)
{
	struct mvpp2_cls_lookup_entry le;
	u32 val;

	/* Set way for the port */
	val = mvpp2_read(port->priv, MVPP2_CLS_PORT_WAY_REG);
	val &= ~MVPP2_CLS_PORT_WAY_MASK(port->id);
	mvpp2_write(port->priv, MVPP2_CLS_PORT_WAY_REG, val);

	/* Pick the entry to be accessed in lookup ID decoding table
	 * according to the way and lkpid.
	 */
	le.lkpid = port->id;
	le.way = 0;
	le.data = 0;

	/* Set initial CPU queue for receiving packets */
	le.data &= ~MVPP2_CLS_LKP_TBL_RXQ_MASK;
	le.data |= port->first_rxq;

	/* Disable classification engines */
	le.data &= ~MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK;

	/* Update lookup ID table entry */
	mvpp2_cls_lookup_write(port->priv, &le);
973 974

	mvpp2_port_c2_cls_init(port);
975 976
}

977 978 979 980 981 982 983
u32 mvpp2_cls_c2_hit_count(struct mvpp2 *priv, int c2_index)
{
	mvpp2_write(priv, MVPP22_CLS_C2_TCAM_IDX, c2_index);

	return mvpp2_read(priv, MVPP22_CLS_C2_HIT_CTR);
}

984
static void mvpp2_rss_port_c2_enable(struct mvpp2_port *port, u32 ctx)
985 986
{
	struct mvpp2_cls_c2_entry c2;
987
	u8 qh, ql;
988 989 990

	mvpp2_cls_c2_read(port->priv, MVPP22_CLS_C2_RSS_ENTRY(port->id), &c2);

991 992 993 994 995 996 997 998 999
	/* The RxQ number is used to select the RSS table. It that case, we set
	 * it to be the ctx number.
	 */
	qh = (ctx >> 3) & MVPP22_CLS_C2_ATTR0_QHIGH_MASK;
	ql = ctx & MVPP22_CLS_C2_ATTR0_QLOW_MASK;

	c2.attr[0] = MVPP22_CLS_C2_ATTR0_QHIGH(qh) |
		     MVPP22_CLS_C2_ATTR0_QLOW(ql);

1000 1001 1002 1003 1004 1005 1006 1007
	c2.attr[2] |= MVPP22_CLS_C2_ATTR2_RSS_EN;

	mvpp2_cls_c2_write(port->priv, &c2);
}

static void mvpp2_rss_port_c2_disable(struct mvpp2_port *port)
{
	struct mvpp2_cls_c2_entry c2;
1008
	u8 qh, ql;
1009 1010 1011

	mvpp2_cls_c2_read(port->priv, MVPP22_CLS_C2_RSS_ENTRY(port->id), &c2);

1012 1013 1014 1015 1016 1017 1018
	/* Reset the default destination RxQ to the port's first rx queue. */
	qh = (port->first_rxq >> 3) & MVPP22_CLS_C2_ATTR0_QHIGH_MASK;
	ql = port->first_rxq & MVPP22_CLS_C2_ATTR0_QLOW_MASK;

	c2.attr[0] = MVPP22_CLS_C2_ATTR0_QHIGH(qh) |
		      MVPP22_CLS_C2_ATTR0_QLOW(ql);

1019 1020 1021 1022 1023
	c2.attr[2] &= ~MVPP22_CLS_C2_ATTR2_RSS_EN;

	mvpp2_cls_c2_write(port->priv, &c2);
}

1024
static inline int mvpp22_rss_ctx(struct mvpp2_port *port, int port_rss_ctx)
1025
{
1026
	return port->rss_ctx[port_rss_ctx];
1027 1028
}

1029
int mvpp22_port_rss_enable(struct mvpp2_port *port)
1030
{
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
	if (mvpp22_rss_ctx(port, 0) < 0)
		return -EINVAL;

	mvpp2_rss_port_c2_enable(port, mvpp22_rss_ctx(port, 0));

	return 0;
}

int mvpp22_port_rss_disable(struct mvpp2_port *port)
{
	if (mvpp22_rss_ctx(port, 0) < 0)
		return -EINVAL;

1044
	mvpp2_rss_port_c2_disable(port);
1045 1046

	return 0;
1047 1048
}

1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
static void mvpp22_port_c2_lookup_disable(struct mvpp2_port *port, int entry)
{
	struct mvpp2_cls_c2_entry c2;

	mvpp2_cls_c2_read(port->priv, entry, &c2);

	/* Clear the port map so that the entry doesn't match anymore */
	c2.tcam[4] &= ~(MVPP22_CLS_C2_PORT_ID(BIT(port->id)));

	mvpp2_cls_c2_write(port->priv, &c2);
}

1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
/* Set CPU queue number for oversize packets */
void mvpp2_cls_oversize_rxq_set(struct mvpp2_port *port)
{
	u32 val;

	mvpp2_write(port->priv, MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port->id),
		    port->first_rxq & MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK);

	mvpp2_write(port->priv, MVPP2_CLS_SWFWD_P2HQ_REG(port->id),
		    (port->first_rxq >> MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS));

	val = mvpp2_read(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG);
	val |= MVPP2_CLS_SWFWD_PCTRL_MASK(port->id);
	mvpp2_write(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG, val);
}

1077 1078 1079 1080 1081 1082
static int mvpp2_port_c2_tcam_rule_add(struct mvpp2_port *port,
				       struct mvpp2_rfs_rule *rule)
{
	struct flow_action_entry *act;
	struct mvpp2_cls_c2_entry c2;
	u8 qh, ql, pmap;
1083
	int index, ctx;
1084

1085
	if (!flow_action_basic_hw_stats_check(&rule->flow->action, NULL))
1086 1087
		return -EOPNOTSUPP;

1088 1089
	memset(&c2, 0, sizeof(c2));

1090 1091
	index = mvpp2_cls_c2_port_flow_index(port, rule->loc);
	if (index < 0)
1092
		return -EINVAL;
1093
	c2.index = index;
1094 1095 1096 1097 1098

	act = &rule->flow->action.entries[0];

	rule->c2_index = c2.index;

1099
	c2.tcam[3] = (rule->c2_tcam & 0xffff) |
1100
		     ((rule->c2_tcam_mask & 0xffff) << 16);
1101
	c2.tcam[2] = ((rule->c2_tcam >> 16) & 0xffff) |
1102
		     (((rule->c2_tcam_mask >> 16) & 0xffff) << 16);
1103
	c2.tcam[1] = ((rule->c2_tcam >> 32) & 0xffff) |
1104
		     (((rule->c2_tcam_mask >> 32) & 0xffff) << 16);
1105
	c2.tcam[0] = ((rule->c2_tcam >> 48) & 0xffff) |
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
		     (((rule->c2_tcam_mask >> 48) & 0xffff) << 16);

	pmap = BIT(port->id);
	c2.tcam[4] = MVPP22_CLS_C2_PORT_ID(pmap);
	c2.tcam[4] |= MVPP22_CLS_C2_TCAM_EN(MVPP22_CLS_C2_PORT_ID(pmap));

	/* Match on Lookup Type */
	c2.tcam[4] |= MVPP22_CLS_C2_TCAM_EN(MVPP22_CLS_C2_LU_TYPE(MVPP2_CLS_LU_TYPE_MASK));
	c2.tcam[4] |= MVPP22_CLS_C2_LU_TYPE(rule->loc);

1116 1117 1118 1119 1120 1121 1122 1123 1124
	if (act->id == FLOW_ACTION_DROP) {
		c2.act = MVPP22_CLS_C2_ACT_COLOR(MVPP22_C2_COL_RED_LOCK);
	} else {
		/* We want to keep the default color derived from the Header
		 * Parser drop entries, for VLAN and MAC filtering. This will
		 * assign a default color of Green or Red, and we want matches
		 * with a non-drop action to keep that color.
		 */
		c2.act = MVPP22_CLS_C2_ACT_COLOR(MVPP22_C2_COL_NO_UPD_LOCK);
1125

1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
		/* Update RSS status after matching this entry */
		if (act->queue.ctx)
			c2.attr[2] |= MVPP22_CLS_C2_ATTR2_RSS_EN;

		/* Always lock the RSS_EN decision. We might have high prio
		 * rules steering to an RXQ, and a lower one steering to RSS,
		 * we don't want the low prio RSS rule overwriting this flag.
		 */
		c2.act = MVPP22_CLS_C2_ACT_RSS_EN(MVPP22_C2_UPD_LOCK);

1136 1137
		/* Mark packet as "forwarded to software", needed for RSS */
		c2.act |= MVPP22_CLS_C2_ACT_FWD(MVPP22_C2_FWD_SW_LOCK);
1138

1139 1140
		c2.act |= MVPP22_CLS_C2_ACT_QHIGH(MVPP22_C2_UPD_LOCK) |
			   MVPP22_CLS_C2_ACT_QLOW(MVPP22_C2_UPD_LOCK);
1141

1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
		if (act->queue.ctx) {
			/* Get the global ctx number */
			ctx = mvpp22_rss_ctx(port, act->queue.ctx);
			if (ctx < 0)
				return -EINVAL;

			qh = (ctx >> 3) & MVPP22_CLS_C2_ATTR0_QHIGH_MASK;
			ql = ctx & MVPP22_CLS_C2_ATTR0_QLOW_MASK;
		} else {
			qh = ((act->queue.index + port->first_rxq) >> 3) &
			      MVPP22_CLS_C2_ATTR0_QHIGH_MASK;
			ql = (act->queue.index + port->first_rxq) &
			      MVPP22_CLS_C2_ATTR0_QLOW_MASK;
		}
1156 1157 1158 1159

		c2.attr[0] = MVPP22_CLS_C2_ATTR0_QHIGH(qh) |
			      MVPP22_CLS_C2_ATTR0_QLOW(ql);
	}
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218

	c2.valid = true;

	mvpp2_cls_c2_write(port->priv, &c2);

	return 0;
}

static int mvpp2_port_c2_rfs_rule_insert(struct mvpp2_port *port,
					 struct mvpp2_rfs_rule *rule)
{
	return mvpp2_port_c2_tcam_rule_add(port, rule);
}

static int mvpp2_port_cls_rfs_rule_remove(struct mvpp2_port *port,
					  struct mvpp2_rfs_rule *rule)
{
	const struct mvpp2_cls_flow *flow;
	struct mvpp2_cls_flow_entry fe;
	int index, i;

	for_each_cls_flow_id_containing_type(i, rule->flow_type) {
		flow = mvpp2_cls_flow_get(i);
		if (!flow)
			return 0;

		index = MVPP2_CLS_FLT_C2_RFS(port->id, flow->flow_id, rule->loc);

		mvpp2_cls_flow_read(port->priv, index, &fe);
		mvpp2_cls_flow_port_remove(&fe, BIT(port->id));
		mvpp2_cls_flow_write(port->priv, &fe);
	}

	if (rule->c2_index >= 0)
		mvpp22_port_c2_lookup_disable(port, rule->c2_index);

	return 0;
}

static int mvpp2_port_flt_rfs_rule_insert(struct mvpp2_port *port,
					  struct mvpp2_rfs_rule *rule)
{
	const struct mvpp2_cls_flow *flow;
	struct mvpp2 *priv = port->priv;
	struct mvpp2_cls_flow_entry fe;
	int index, ret, i;

	if (rule->engine != MVPP22_CLS_ENGINE_C2)
		return -EOPNOTSUPP;

	ret = mvpp2_port_c2_rfs_rule_insert(port, rule);
	if (ret)
		return ret;

	for_each_cls_flow_id_containing_type(i, rule->flow_type) {
		flow = mvpp2_cls_flow_get(i);
		if (!flow)
			return 0;

1219 1220 1221
		if ((rule->hek_fields & flow->supported_hash_opts) != rule->hek_fields)
			continue;

1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
		index = MVPP2_CLS_FLT_C2_RFS(port->id, flow->flow_id, rule->loc);

		mvpp2_cls_flow_read(priv, index, &fe);
		mvpp2_cls_flow_eng_set(&fe, rule->engine);
		mvpp2_cls_flow_port_id_sel(&fe, true);
		mvpp2_flow_set_hek_fields(&fe, rule->hek_fields);
		mvpp2_cls_flow_lu_type_set(&fe, rule->loc);
		mvpp2_cls_flow_port_add(&fe, 0xf);

		mvpp2_cls_flow_write(priv, &fe);
	}

	return 0;
}

static int mvpp2_cls_c2_build_match(struct mvpp2_rfs_rule *rule)
{
	struct flow_rule *flow = rule->flow;
1240
	int offs = 0;
1241

1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
	/* The order of insertion in C2 tcam must match the order in which
	 * the fields are found in the header
	 */
	if (flow_rule_match_key(flow, FLOW_DISSECTOR_KEY_VLAN)) {
		struct flow_match_vlan match;

		flow_rule_match_vlan(flow, &match);
		if (match.mask->vlan_id) {
			rule->hek_fields |= MVPP22_CLS_HEK_OPT_VLAN;

			rule->c2_tcam |= ((u64)match.key->vlan_id) << offs;
			rule->c2_tcam_mask |= ((u64)match.mask->vlan_id) << offs;

			/* Don't update the offset yet */
		}

		if (match.mask->vlan_priority) {
			rule->hek_fields |= MVPP22_CLS_HEK_OPT_VLAN_PRI;

			/* VLAN pri is always at offset 13 relative to the
			 * current offset
			 */
			rule->c2_tcam |= ((u64)match.key->vlan_priority) <<
				(offs + 13);
			rule->c2_tcam_mask |= ((u64)match.mask->vlan_priority) <<
				(offs + 13);
		}

		if (match.mask->vlan_dei)
			return -EOPNOTSUPP;

		/* vlan id and prio always seem to take a full 16-bit slot in
		 * the Header Extracted Key.
		 */
		offs += 16;
	}

1279 1280 1281 1282 1283 1284 1285 1286 1287
	if (flow_rule_match_key(flow, FLOW_DISSECTOR_KEY_PORTS)) {
		struct flow_match_ports match;

		flow_rule_match_ports(flow, &match);
		if (match.mask->src) {
			rule->hek_fields |= MVPP22_CLS_HEK_OPT_L4SIP;

			rule->c2_tcam |= ((u64)ntohs(match.key->src)) << offs;
			rule->c2_tcam_mask |= ((u64)ntohs(match.mask->src)) << offs;
1288
			offs += mvpp2_cls_hek_field_size(MVPP22_CLS_HEK_OPT_L4SIP);
1289 1290 1291 1292 1293 1294 1295
		}

		if (match.mask->dst) {
			rule->hek_fields |= MVPP22_CLS_HEK_OPT_L4DIP;

			rule->c2_tcam |= ((u64)ntohs(match.key->dst)) << offs;
			rule->c2_tcam_mask |= ((u64)ntohs(match.mask->dst)) << offs;
1296
			offs += mvpp2_cls_hek_field_size(MVPP22_CLS_HEK_OPT_L4DIP);
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
		}
	}

	if (hweight16(rule->hek_fields) > MVPP2_FLOW_N_FIELDS)
		return -EOPNOTSUPP;

	return 0;
}

static int mvpp2_cls_rfs_parse_rule(struct mvpp2_rfs_rule *rule)
{
	struct flow_rule *flow = rule->flow;
	struct flow_action_entry *act;

1311
	if (!flow_action_basic_hw_stats_check(&rule->flow->action, NULL))
1312 1313
		return -EOPNOTSUPP;

1314
	act = &flow->action.entries[0];
1315
	if (act->id != FLOW_ACTION_QUEUE && act->id != FLOW_ACTION_DROP)
1316 1317
		return -EOPNOTSUPP;

1318 1319 1320 1321 1322 1323 1324
	/* When both an RSS context and an queue index are set, the index
	 * is considered as an offset to be added to the indirection table
	 * entries. We don't support this, so reject this rule.
	 */
	if (act->queue.ctx && act->queue.index)
		return -EOPNOTSUPP;

1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
	/* For now, only use the C2 engine which has a HEK size limited to 64
	 * bits for TCAM matching.
	 */
	rule->engine = MVPP22_CLS_ENGINE_C2;

	if (mvpp2_cls_c2_build_match(rule))
		return -EINVAL;

	return 0;
}

int mvpp2_ethtool_cls_rule_get(struct mvpp2_port *port,
			       struct ethtool_rxnfc *rxnfc)
{
	struct mvpp2_ethtool_fs *efs;

1341
	if (rxnfc->fs.location >= MVPP2_N_RFS_ENTRIES_PER_FLOW)
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
		return -EINVAL;

	efs = port->rfs_rules[rxnfc->fs.location];
	if (!efs)
		return -ENOENT;

	memcpy(rxnfc, &efs->rxnfc, sizeof(efs->rxnfc));

	return 0;
}

int mvpp2_ethtool_cls_rule_ins(struct mvpp2_port *port,
			       struct ethtool_rxnfc *info)
{
	struct ethtool_rx_flow_spec_input input = {};
	struct ethtool_rx_flow_rule *ethtool_rule;
	struct mvpp2_ethtool_fs *efs, *old_efs;
	int ret = 0;

1361
	if (info->fs.location >= MVPP2_N_RFS_ENTRIES_PER_FLOW)
1362 1363 1364 1365 1366 1367 1368 1369
		return -EINVAL;

	efs = kzalloc(sizeof(*efs), GFP_KERNEL);
	if (!efs)
		return -ENOMEM;

	input.fs = &info->fs;

1370 1371 1372 1373 1374 1375
	/* We need to manually set the rss_ctx, since this info isn't present
	 * in info->fs
	 */
	if (info->fs.flow_type & FLOW_RSS)
		input.rss_ctx = info->rss_context;

1376 1377 1378 1379 1380 1381 1382 1383
	ethtool_rule = ethtool_rx_flow_rule_create(&input);
	if (IS_ERR(ethtool_rule)) {
		ret = PTR_ERR(ethtool_rule);
		goto clean_rule;
	}

	efs->rule.flow = ethtool_rule->rule;
	efs->rule.flow_type = mvpp2_cls_ethtool_flow_to_type(info->fs.flow_type);
1384 1385 1386 1387
	if (efs->rule.flow_type < 0) {
		ret = efs->rule.flow_type;
		goto clean_rule;
	}
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408

	ret = mvpp2_cls_rfs_parse_rule(&efs->rule);
	if (ret)
		goto clean_eth_rule;

	efs->rule.loc = info->fs.location;

	/* Replace an already existing rule */
	if (port->rfs_rules[efs->rule.loc]) {
		old_efs = port->rfs_rules[efs->rule.loc];
		ret = mvpp2_port_cls_rfs_rule_remove(port, &old_efs->rule);
		if (ret)
			goto clean_eth_rule;
		kfree(old_efs);
		port->n_rfs_rules--;
	}

	ret = mvpp2_port_flt_rfs_rule_insert(port, &efs->rule);
	if (ret)
		goto clean_eth_rule;

1409 1410 1411
	ethtool_rx_flow_rule_destroy(ethtool_rule);
	efs->rule.flow = NULL;

1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
	memcpy(&efs->rxnfc, info, sizeof(*info));
	port->rfs_rules[efs->rule.loc] = efs;
	port->n_rfs_rules++;

	return ret;

clean_eth_rule:
	ethtool_rx_flow_rule_destroy(ethtool_rule);
clean_rule:
	kfree(efs);
	return ret;
}

int mvpp2_ethtool_cls_rule_del(struct mvpp2_port *port,
			       struct ethtool_rxnfc *info)
{
	struct mvpp2_ethtool_fs *efs;
	int ret;

	efs = port->rfs_rules[info->fs.location];
	if (!efs)
		return -EINVAL;

	/* Remove the rule from the engines. */
	ret = mvpp2_port_cls_rfs_rule_remove(port, &efs->rule);
	if (ret)
		return ret;

	port->n_rfs_rules--;
	port->rfs_rules[info->fs.location] = NULL;
	kfree(efs);

	return 0;
}

1447 1448
static inline u32 mvpp22_rxfh_indir(struct mvpp2_port *port, u32 rxq)
{
1449
	int nrxqs, cpu, cpus = num_possible_cpus();
1450 1451 1452 1453

	/* Number of RXQs per CPU */
	nrxqs = port->nrxqs / cpus;

1454 1455 1456 1457 1458 1459
	/* CPU that will handle this rx queue */
	cpu = rxq / nrxqs;

	if (!cpu_online(cpu))
		return port->first_rxq;

1460 1461 1462 1463 1464 1465
	/* Indirection to better distribute the paquets on the CPUs when
	 * configuring the RSS queues.
	 */
	return port->first_rxq + ((rxq * nrxqs + rxq / cpus) % port->nrxqs);
}

1466 1467 1468
static void mvpp22_rss_fill_table(struct mvpp2_port *port,
				  struct mvpp2_rss_table *table,
				  u32 rss_ctx)
1469 1470 1471 1472 1473
{
	struct mvpp2 *priv = port->priv;
	int i;

	for (i = 0; i < MVPP22_RSS_TABLE_ENTRIES; i++) {
1474
		u32 sel = MVPP22_RSS_INDEX_TABLE(rss_ctx) |
1475 1476 1477
			  MVPP22_RSS_INDEX_TABLE_ENTRY(i);
		mvpp2_write(priv, MVPP22_RSS_INDEX, sel);

1478
		mvpp2_write(priv, MVPP22_RSS_TABLE_ENTRY,
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
			    mvpp22_rxfh_indir(port, table->indir[i]));
	}
}

static int mvpp22_rss_context_create(struct mvpp2_port *port, u32 *rss_ctx)
{
	struct mvpp2 *priv = port->priv;
	u32 ctx;

	/* Find the first free RSS table */
	for (ctx = 0; ctx < MVPP22_N_RSS_TABLES; ctx++) {
		if (!priv->rss_tables[ctx])
			break;
	}

	if (ctx == MVPP22_N_RSS_TABLES)
		return -EINVAL;

	priv->rss_tables[ctx] = kzalloc(sizeof(*priv->rss_tables[ctx]),
					GFP_KERNEL);
	if (!priv->rss_tables[ctx])
		return -ENOMEM;

	*rss_ctx = ctx;

	/* Set the table width: replace the whole classifier Rx queue number
	 * with the ones configured in RSS table entries.
	 */
	mvpp2_write(priv, MVPP22_RSS_INDEX, MVPP22_RSS_INDEX_TABLE(ctx));
	mvpp2_write(priv, MVPP22_RSS_WIDTH, 8);

	mvpp2_write(priv, MVPP22_RSS_INDEX, MVPP22_RSS_INDEX_QUEUE(ctx));
	mvpp2_write(priv, MVPP22_RXQ2RSS_TABLE, MVPP22_RSS_TABLE_POINTER(ctx));

	return 0;
}

int mvpp22_port_rss_ctx_create(struct mvpp2_port *port, u32 *port_ctx)
{
	u32 rss_ctx;
	int ret, i;

	ret = mvpp22_rss_context_create(port, &rss_ctx);
	if (ret)
		return ret;

	/* Find the first available context number in the port, starting from 1.
	 * Context 0 on each port is reserved for the default context.
	 */
	for (i = 1; i < MVPP22_N_RSS_TABLES; i++) {
		if (port->rss_ctx[i] < 0)
			break;
1531
	}
1532

1533 1534 1535
	if (i == MVPP22_N_RSS_TABLES)
		return -EINVAL;

1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
	port->rss_ctx[i] = rss_ctx;
	*port_ctx = i;

	return 0;
}

static struct mvpp2_rss_table *mvpp22_rss_table_get(struct mvpp2 *priv,
						    int rss_ctx)
{
	if (rss_ctx < 0 || rss_ctx >= MVPP22_N_RSS_TABLES)
		return NULL;

	return priv->rss_tables[rss_ctx];
}

int mvpp22_port_rss_ctx_delete(struct mvpp2_port *port, u32 port_ctx)
{
	struct mvpp2 *priv = port->priv;
1554 1555 1556 1557
	struct ethtool_rxnfc *rxnfc;
	int i, rss_ctx, ret;

	rss_ctx = mvpp22_rss_ctx(port, port_ctx);
1558 1559 1560 1561

	if (rss_ctx < 0 || rss_ctx >= MVPP22_N_RSS_TABLES)
		return -EINVAL;

1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
	/* Invalidate any active classification rule that use this context */
	for (i = 0; i < MVPP2_N_RFS_ENTRIES_PER_FLOW; i++) {
		if (!port->rfs_rules[i])
			continue;

		rxnfc = &port->rfs_rules[i]->rxnfc;
		if (!(rxnfc->fs.flow_type & FLOW_RSS) ||
		    rxnfc->rss_context != port_ctx)
			continue;

		ret = mvpp2_ethtool_cls_rule_del(port, rxnfc);
		if (ret) {
			netdev_warn(port->dev,
				    "couldn't remove classification rule %d associated to this context",
				    rxnfc->fs.location);
		}
	}

1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
	kfree(priv->rss_tables[rss_ctx]);

	priv->rss_tables[rss_ctx] = NULL;
	port->rss_ctx[port_ctx] = -1;

	return 0;
}

int mvpp22_port_rss_ctx_indir_set(struct mvpp2_port *port, u32 port_ctx,
				  const u32 *indir)
{
	int rss_ctx = mvpp22_rss_ctx(port, port_ctx);
	struct mvpp2_rss_table *rss_table = mvpp22_rss_table_get(port->priv,
								 rss_ctx);

	if (!rss_table)
		return -EINVAL;

	memcpy(rss_table->indir, indir,
	       MVPP22_RSS_TABLE_ENTRIES * sizeof(rss_table->indir[0]));

	mvpp22_rss_fill_table(port, rss_table, rss_ctx);

	return 0;
}

int mvpp22_port_rss_ctx_indir_get(struct mvpp2_port *port, u32 port_ctx,
				  u32 *indir)
{
	int rss_ctx =  mvpp22_rss_ctx(port, port_ctx);
	struct mvpp2_rss_table *rss_table = mvpp22_rss_table_get(port->priv,
								 rss_ctx);

	if (!rss_table)
		return -EINVAL;

	memcpy(indir, rss_table->indir,
	       MVPP22_RSS_TABLE_ENTRIES * sizeof(rss_table->indir[0]));

	return 0;
1620 1621
}

1622 1623 1624
int mvpp2_ethtool_rxfh_set(struct mvpp2_port *port, struct ethtool_rxnfc *info)
{
	u16 hash_opts = 0;
1625
	u32 flow_type;
1626

1627 1628 1629 1630 1631 1632 1633
	flow_type = mvpp2_cls_ethtool_flow_to_type(info->flow_type);

	switch (flow_type) {
	case MVPP22_FLOW_TCP4:
	case MVPP22_FLOW_UDP4:
	case MVPP22_FLOW_TCP6:
	case MVPP22_FLOW_UDP6:
1634 1635 1636 1637 1638
		if (info->data & RXH_L4_B_0_1)
			hash_opts |= MVPP22_CLS_HEK_OPT_L4SIP;
		if (info->data & RXH_L4_B_2_3)
			hash_opts |= MVPP22_CLS_HEK_OPT_L4DIP;
		/* Fallthrough */
1639 1640
	case MVPP22_FLOW_IP4:
	case MVPP22_FLOW_IP6:
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
		if (info->data & RXH_L2DA)
			hash_opts |= MVPP22_CLS_HEK_OPT_MAC_DA;
		if (info->data & RXH_VLAN)
			hash_opts |= MVPP22_CLS_HEK_OPT_VLAN;
		if (info->data & RXH_L3_PROTO)
			hash_opts |= MVPP22_CLS_HEK_OPT_L3_PROTO;
		if (info->data & RXH_IP_SRC)
			hash_opts |= (MVPP22_CLS_HEK_OPT_IP4SA |
				     MVPP22_CLS_HEK_OPT_IP6SA);
		if (info->data & RXH_IP_DST)
			hash_opts |= (MVPP22_CLS_HEK_OPT_IP4DA |
				     MVPP22_CLS_HEK_OPT_IP6DA);
		break;
	default: return -EOPNOTSUPP;
	}

1657
	return mvpp2_port_rss_hash_opts_set(port, flow_type, hash_opts);
1658 1659 1660 1661 1662
}

int mvpp2_ethtool_rxfh_get(struct mvpp2_port *port, struct ethtool_rxnfc *info)
{
	unsigned long hash_opts;
1663
	u32 flow_type;
1664 1665
	int i;

1666 1667 1668
	flow_type = mvpp2_cls_ethtool_flow_to_type(info->flow_type);

	hash_opts = mvpp2_port_rss_hash_opts_get(port, flow_type);
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
	info->data = 0;

	for_each_set_bit(i, &hash_opts, MVPP22_CLS_HEK_N_FIELDS) {
		switch (BIT(i)) {
		case MVPP22_CLS_HEK_OPT_MAC_DA:
			info->data |= RXH_L2DA;
			break;
		case MVPP22_CLS_HEK_OPT_VLAN:
			info->data |= RXH_VLAN;
			break;
		case MVPP22_CLS_HEK_OPT_L3_PROTO:
			info->data |= RXH_L3_PROTO;
			break;
		case MVPP22_CLS_HEK_OPT_IP4SA:
		case MVPP22_CLS_HEK_OPT_IP6SA:
			info->data |= RXH_IP_SRC;
			break;
		case MVPP22_CLS_HEK_OPT_IP4DA:
		case MVPP22_CLS_HEK_OPT_IP6DA:
			info->data |= RXH_IP_DST;
			break;
		case MVPP22_CLS_HEK_OPT_L4SIP:
			info->data |= RXH_L4_B_0_1;
			break;
		case MVPP22_CLS_HEK_OPT_L4DIP:
			info->data |= RXH_L4_B_2_3;
			break;
		default:
			return -EINVAL;
		}
	}
	return 0;
}

1703
int mvpp22_port_rss_init(struct mvpp2_port *port)
1704
{
1705 1706 1707
	struct mvpp2_rss_table *table;
	u32 context = 0;
	int i, ret;
1708

1709 1710
	for (i = 0; i < MVPP22_N_RSS_TABLES; i++)
		port->rss_ctx[i] = -1;
1711

1712 1713 1714 1715 1716 1717 1718 1719 1720
	ret = mvpp22_rss_context_create(port, &context);
	if (ret)
		return ret;

	table = mvpp22_rss_table_get(port->priv, context);
	if (!table)
		return -EINVAL;

	port->rss_ctx[0] = context;
1721 1722

	/* Configure the first table to evenly distribute the packets across
1723
	 * real Rx Queues. The table entries map a hash to a port Rx Queue.
1724
	 */
1725
	for (i = 0; i < MVPP22_RSS_TABLE_ENTRIES; i++)
1726
		table->indir[i] = ethtool_rxfh_indir_default(i, port->nrxqs);
1727

1728
	mvpp22_rss_fill_table(port, table, mvpp22_rss_ctx(port, 0));
1729 1730

	/* Configure default flows */
1731 1732 1733 1734 1735 1736
	mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_IP4, MVPP22_CLS_HEK_IP4_2T);
	mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_IP6, MVPP22_CLS_HEK_IP6_2T);
	mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_TCP4, MVPP22_CLS_HEK_IP4_5T);
	mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_TCP6, MVPP22_CLS_HEK_IP6_5T);
	mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_UDP4, MVPP22_CLS_HEK_IP4_5T);
	mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_UDP6, MVPP22_CLS_HEK_IP6_5T);
1737 1738

	return 0;
1739
}