i915_gem_userptr.c 21.7 KB
Newer Older
1
/*
2
 * SPDX-License-Identifier: MIT
3
 *
4
 * Copyright © 2012-2014 Intel Corporation
5 6 7 8 9 10
 */

#include <linux/mmu_context.h>
#include <linux/mmu_notifier.h>
#include <linux/mempolicy.h>
#include <linux/swap.h>
11
#include <linux/sched/mm.h>
12

13 14
#include <drm/i915_drm.h>

15
#include "i915_drv.h"
16 17
#include "i915_gem_ioctls.h"
#include "i915_gem_object.h"
18
#include "i915_scatterlist.h"
19

20 21
struct i915_mm_struct {
	struct mm_struct *mm;
22
	struct drm_i915_private *i915;
23 24 25 26 27 28
	struct i915_mmu_notifier *mn;
	struct hlist_node node;
	struct kref kref;
	struct work_struct work;
};

29 30 31 32 33 34 35
#if defined(CONFIG_MMU_NOTIFIER)
#include <linux/interval_tree.h>

struct i915_mmu_notifier {
	spinlock_t lock;
	struct hlist_node node;
	struct mmu_notifier mn;
36
	struct rb_root_cached objects;
37
	struct i915_mm_struct *mm;
38 39 40
};

struct i915_mmu_object {
41
	struct i915_mmu_notifier *mn;
42
	struct drm_i915_gem_object *obj;
43 44 45
	struct interval_tree_node it;
};

46
static void add_object(struct i915_mmu_object *mo)
47
{
48 49
	GEM_BUG_ON(!RB_EMPTY_NODE(&mo->it.rb));
	interval_tree_insert(&mo->it, &mo->mn->objects);
50 51
}

52
static void del_object(struct i915_mmu_object *mo)
53
{
54
	if (RB_EMPTY_NODE(&mo->it.rb))
55
		return;
56

57 58
	interval_tree_remove(&mo->it, &mo->mn->objects);
	RB_CLEAR_NODE(&mo->it.rb);
59 60
}

61 62
static void
__i915_gem_userptr_set_active(struct drm_i915_gem_object *obj, bool value)
63
{
64 65 66 67 68 69 70 71 72 73 74 75 76 77
	struct i915_mmu_object *mo = obj->userptr.mmu_object;

	/*
	 * During mm_invalidate_range we need to cancel any userptr that
	 * overlaps the range being invalidated. Doing so requires the
	 * struct_mutex, and that risks recursion. In order to cause
	 * recursion, the user must alias the userptr address space with
	 * a GTT mmapping (possible with a MAP_FIXED) - then when we have
	 * to invalidate that mmaping, mm_invalidate_range is called with
	 * the userptr address *and* the struct_mutex held.  To prevent that
	 * we set a flag under the i915_mmu_notifier spinlock to indicate
	 * whether this object is valid.
	 */
	if (!mo)
78 79
		return;

80 81 82 83 84 85
	spin_lock(&mo->mn->lock);
	if (value)
		add_object(mo);
	else
		del_object(mo);
	spin_unlock(&mo->mn->lock);
86 87
}

88 89 90
static int
userptr_mn_invalidate_range_start(struct mmu_notifier *_mn,
				  const struct mmu_notifier_range *range)
91
{
92 93
	struct i915_mmu_notifier *mn =
		container_of(_mn, struct i915_mmu_notifier, mn);
94
	struct interval_tree_node *it;
95
	struct mutex *unlock = NULL;
96
	unsigned long end;
97
	int ret = 0;
98

99
	if (RB_EMPTY_ROOT(&mn->objects.rb_root))
100
		return 0;
101 102

	/* interval ranges are inclusive, but invalidate range is exclusive */
103
	end = range->end - 1;
104 105

	spin_lock(&mn->lock);
106
	it = interval_tree_iter_first(&mn->objects, range->start, end);
107
	while (it) {
108 109
		struct drm_i915_gem_object *obj;

110
		if (!mmu_notifier_range_blockable(range)) {
111 112
			ret = -EAGAIN;
			break;
113
		}
114 115 116

		/*
		 * The mmu_object is released late when destroying the
117 118 119 120 121 122 123 124
		 * GEM object so it is entirely possible to gain a
		 * reference on an object in the process of being freed
		 * since our serialisation is via the spinlock and not
		 * the struct_mutex - and consequently use it after it
		 * is freed and then double free it. To prevent that
		 * use-after-free we only acquire a reference on the
		 * object if it is not in the process of being destroyed.
		 */
125 126 127 128 129 130 131 132 133 134 135 136 137
		obj = container_of(it, struct i915_mmu_object, it)->obj;
		if (!kref_get_unless_zero(&obj->base.refcount)) {
			it = interval_tree_iter_next(it, range->start, end);
			continue;
		}
		spin_unlock(&mn->lock);

		if (!unlock) {
			unlock = &mn->mm->i915->drm.struct_mutex;

			switch (mutex_trylock_recursive(unlock)) {
			default:
			case MUTEX_TRYLOCK_FAILED:
138
				if (mutex_lock_killable_nested(unlock, I915_MM_SHRINKER)) {
139 140 141 142 143 144 145 146 147 148 149 150 151
					i915_gem_object_put(obj);
					return -EINTR;
				}
				/* fall through */
			case MUTEX_TRYLOCK_SUCCESS:
				break;

			case MUTEX_TRYLOCK_RECURSIVE:
				unlock = ERR_PTR(-EEXIST);
				break;
			}
		}

152 153
		ret = i915_gem_object_unbind(obj,
					     I915_GEM_OBJECT_UNBIND_ACTIVE);
154 155 156 157 158
		if (ret == 0)
			ret = __i915_gem_object_put_pages(obj, I915_MM_SHRINKER);
		i915_gem_object_put(obj);
		if (ret)
			goto unlock;
159

160 161 162 163 164 165 166 167
		spin_lock(&mn->lock);

		/*
		 * As we do not (yet) protect the mmu from concurrent insertion
		 * over this range, there is no guarantee that this search will
		 * terminate given a pathologic workload.
		 */
		it = interval_tree_iter_first(&mn->objects, range->start, end);
168
	}
169
	spin_unlock(&mn->lock);
170

171 172 173 174 175
unlock:
	if (!IS_ERR_OR_NULL(unlock))
		mutex_unlock(unlock);

	return ret;
176

177 178 179
}

static const struct mmu_notifier_ops i915_gem_userptr_notifier = {
180
	.invalidate_range_start = userptr_mn_invalidate_range_start,
181 182 183
};

static struct i915_mmu_notifier *
184
i915_mmu_notifier_create(struct i915_mm_struct *mm)
185
{
186
	struct i915_mmu_notifier *mn;
187

188 189
	mn = kmalloc(sizeof(*mn), GFP_KERNEL);
	if (mn == NULL)
190 191
		return ERR_PTR(-ENOMEM);

192 193
	spin_lock_init(&mn->lock);
	mn->mn.ops = &i915_gem_userptr_notifier;
194
	mn->objects = RB_ROOT_CACHED;
195
	mn->mm = mm;
196 197

	return mn;
198 199 200 201 202
}

static void
i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
{
203
	struct i915_mmu_object *mo;
204

205 206
	mo = fetch_and_zero(&obj->userptr.mmu_object);
	if (!mo)
207 208
		return;

209 210 211
	spin_lock(&mo->mn->lock);
	del_object(mo);
	spin_unlock(&mo->mn->lock);
212 213 214 215 216 217
	kfree(mo);
}

static struct i915_mmu_notifier *
i915_mmu_notifier_find(struct i915_mm_struct *mm)
{
218 219
	struct i915_mmu_notifier *mn;
	int err = 0;
220 221 222 223 224

	mn = mm->mn;
	if (mn)
		return mn;

225
	mn = i915_mmu_notifier_create(mm);
226 227 228
	if (IS_ERR(mn))
		err = PTR_ERR(mn);

229
	down_write(&mm->mm->mmap_sem);
230
	mutex_lock(&mm->i915->mm_lock);
231 232 233 234 235 236 237
	if (mm->mn == NULL && !err) {
		/* Protected by mmap_sem (write-lock) */
		err = __mmu_notifier_register(&mn->mn, mm->mm);
		if (!err) {
			/* Protected by mm_lock */
			mm->mn = fetch_and_zero(&mn);
		}
238 239 240 241 242
	} else if (mm->mn) {
		/*
		 * Someone else raced and successfully installed the mmu
		 * notifier, we can cancel our own errors.
		 */
243
		err = 0;
244
	}
245
	mutex_unlock(&mm->i915->mm_lock);
246 247
	up_write(&mm->mm->mmap_sem);

248
	if (mn && !IS_ERR(mn))
249 250 251
		kfree(mn);

	return err ? ERR_PTR(err) : mm->mn;
252 253 254 255 256 257
}

static int
i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
				    unsigned flags)
{
258 259
	struct i915_mmu_notifier *mn;
	struct i915_mmu_object *mo;
260 261 262 263

	if (flags & I915_USERPTR_UNSYNCHRONIZED)
		return capable(CAP_SYS_ADMIN) ? 0 : -EPERM;

264 265
	if (WARN_ON(obj->userptr.mm == NULL))
		return -EINVAL;
266

267 268 269
	mn = i915_mmu_notifier_find(obj->userptr.mm);
	if (IS_ERR(mn))
		return PTR_ERR(mn);
270

271
	mo = kzalloc(sizeof(*mo), GFP_KERNEL);
272
	if (!mo)
273
		return -ENOMEM;
274

275 276
	mo->mn = mn;
	mo->obj = obj;
277 278
	mo->it.start = obj->userptr.ptr;
	mo->it.last = obj->userptr.ptr + obj->base.size - 1;
279
	RB_CLEAR_NODE(&mo->it.rb);
280 281

	obj->userptr.mmu_object = mo;
282
	return 0;
283 284 285 286 287 288 289 290
}

static void
i915_mmu_notifier_free(struct i915_mmu_notifier *mn,
		       struct mm_struct *mm)
{
	if (mn == NULL)
		return;
291

292
	mmu_notifier_unregister(&mn->mn, mm);
293 294 295 296 297
	kfree(mn);
}

#else

298 299 300 301 302
static void
__i915_gem_userptr_set_active(struct drm_i915_gem_object *obj, bool value)
{
}

303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
static void
i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
{
}

static int
i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
				    unsigned flags)
{
	if ((flags & I915_USERPTR_UNSYNCHRONIZED) == 0)
		return -ENODEV;

	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;

	return 0;
}
320 321 322 323 324 325 326

static void
i915_mmu_notifier_free(struct i915_mmu_notifier *mn,
		       struct mm_struct *mm)
{
}

327 328
#endif

329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
static struct i915_mm_struct *
__i915_mm_struct_find(struct drm_i915_private *dev_priv, struct mm_struct *real)
{
	struct i915_mm_struct *mm;

	/* Protected by dev_priv->mm_lock */
	hash_for_each_possible(dev_priv->mm_structs, mm, node, (unsigned long)real)
		if (mm->mm == real)
			return mm;

	return NULL;
}

static int
i915_gem_userptr_init__mm_struct(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_mm_struct *mm;
	int ret = 0;

	/* During release of the GEM object we hold the struct_mutex. This
	 * precludes us from calling mmput() at that time as that may be
	 * the last reference and so call exit_mmap(). exit_mmap() will
	 * attempt to reap the vma, and if we were holding a GTT mmap
	 * would then call drm_gem_vm_close() and attempt to reacquire
	 * the struct mutex. So in order to avoid that recursion, we have
	 * to defer releasing the mm reference until after we drop the
	 * struct_mutex, i.e. we need to schedule a worker to do the clean
	 * up.
	 */
	mutex_lock(&dev_priv->mm_lock);
	mm = __i915_mm_struct_find(dev_priv, current->mm);
	if (mm == NULL) {
		mm = kmalloc(sizeof(*mm), GFP_KERNEL);
		if (mm == NULL) {
			ret = -ENOMEM;
			goto out;
		}

		kref_init(&mm->kref);
369
		mm->i915 = to_i915(obj->base.dev);
370 371

		mm->mm = current->mm;
V
Vegard Nossum 已提交
372
		mmgrab(current->mm);
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403

		mm->mn = NULL;

		/* Protected by dev_priv->mm_lock */
		hash_add(dev_priv->mm_structs,
			 &mm->node, (unsigned long)mm->mm);
	} else
		kref_get(&mm->kref);

	obj->userptr.mm = mm;
out:
	mutex_unlock(&dev_priv->mm_lock);
	return ret;
}

static void
__i915_mm_struct_free__worker(struct work_struct *work)
{
	struct i915_mm_struct *mm = container_of(work, typeof(*mm), work);
	i915_mmu_notifier_free(mm->mn, mm->mm);
	mmdrop(mm->mm);
	kfree(mm);
}

static void
__i915_mm_struct_free(struct kref *kref)
{
	struct i915_mm_struct *mm = container_of(kref, typeof(*mm), kref);

	/* Protected by dev_priv->mm_lock */
	hash_del(&mm->node);
404
	mutex_unlock(&mm->i915->mm_lock);
405 406

	INIT_WORK(&mm->work, __i915_mm_struct_free__worker);
407
	queue_work(mm->i915->mm.userptr_wq, &mm->work);
408 409 410 411 412 413 414 415 416 417 418 419 420 421
}

static void
i915_gem_userptr_release__mm_struct(struct drm_i915_gem_object *obj)
{
	if (obj->userptr.mm == NULL)
		return;

	kref_put_mutex(&obj->userptr.mm->kref,
		       __i915_mm_struct_free,
		       &to_i915(obj->base.dev)->mm_lock);
	obj->userptr.mm = NULL;
}

422 423 424 425 426 427
struct get_pages_work {
	struct work_struct work;
	struct drm_i915_gem_object *obj;
	struct task_struct *task;
};

428
static struct sg_table *
429 430
__i915_gem_userptr_alloc_pages(struct drm_i915_gem_object *obj,
			       struct page **pvec, int num_pages)
I
Imre Deak 已提交
431
{
432 433
	unsigned int max_segment = i915_sg_segment_size();
	struct sg_table *st;
M
Matthew Auld 已提交
434
	unsigned int sg_page_sizes;
I
Imre Deak 已提交
435 436
	int ret;

437 438 439 440 441 442 443 444 445 446 447
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		return ERR_PTR(-ENOMEM);

alloc_table:
	ret = __sg_alloc_table_from_pages(st, pvec, num_pages,
					  0, num_pages << PAGE_SHIFT,
					  max_segment,
					  GFP_KERNEL);
	if (ret) {
		kfree(st);
448
		return ERR_PTR(ret);
449
	}
I
Imre Deak 已提交
450

451
	ret = i915_gem_gtt_prepare_pages(obj, st);
I
Imre Deak 已提交
452
	if (ret) {
453 454 455 456 457 458 459 460
		sg_free_table(st);

		if (max_segment > PAGE_SIZE) {
			max_segment = PAGE_SIZE;
			goto alloc_table;
		}

		kfree(st);
461
		return ERR_PTR(ret);
I
Imre Deak 已提交
462 463
	}

M
Matthew Auld 已提交
464
	sg_page_sizes = i915_sg_page_sizes(st->sgl);
465

M
Matthew Auld 已提交
466
	__i915_gem_object_set_pages(obj, st, sg_page_sizes);
467

468
	return st;
I
Imre Deak 已提交
469 470
}

471 472 473 474 475
static void
__i915_gem_userptr_get_pages_worker(struct work_struct *_work)
{
	struct get_pages_work *work = container_of(_work, typeof(*work), work);
	struct drm_i915_gem_object *obj = work->obj;
476
	const int npages = obj->base.size >> PAGE_SHIFT;
477 478 479 480 481 482
	struct page **pvec;
	int pinned, ret;

	ret = -ENOMEM;
	pinned = 0;

483
	pvec = kvmalloc_array(npages, sizeof(struct page *), GFP_KERNEL);
484
	if (pvec != NULL) {
485
		struct mm_struct *mm = obj->userptr.mm->mm;
486 487
		unsigned int flags = 0;

488
		if (!i915_gem_object_is_readonly(obj))
489
			flags |= FOLL_WRITE;
490

491
		ret = -EFAULT;
V
Vegard Nossum 已提交
492
		if (mmget_not_zero(mm)) {
493 494 495 496 497 498
			down_read(&mm->mmap_sem);
			while (pinned < npages) {
				ret = get_user_pages_remote
					(work->task, mm,
					 obj->userptr.ptr + pinned * PAGE_SIZE,
					 npages - pinned,
499
					 flags,
500
					 pvec + pinned, NULL, NULL);
501 502 503 504 505 506 507
				if (ret < 0)
					break;

				pinned += ret;
			}
			up_read(&mm->mmap_sem);
			mmput(mm);
508 509 510
		}
	}

511
	mutex_lock(&obj->mm.lock);
512
	if (obj->userptr.work == &work->work) {
513 514
		struct sg_table *pages = ERR_PTR(ret);

515
		if (pinned == npages) {
516 517
			pages = __i915_gem_userptr_alloc_pages(obj, pvec,
							       npages);
518
			if (!IS_ERR(pages)) {
519
				pinned = 0;
520
				pages = NULL;
521
			}
522
		}
523 524

		obj->userptr.work = ERR_CAST(pages);
525 526
		if (IS_ERR(pages))
			__i915_gem_userptr_set_active(obj, false);
527
	}
528
	mutex_unlock(&obj->mm.lock);
529

530
	release_pages(pvec, pinned);
M
Michal Hocko 已提交
531
	kvfree(pvec);
532

C
Chris Wilson 已提交
533
	i915_gem_object_put(obj);
534 535 536 537
	put_task_struct(work->task);
	kfree(work);
}

538
static struct sg_table *
539
__i915_gem_userptr_get_pages_schedule(struct drm_i915_gem_object *obj)
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
{
	struct get_pages_work *work;

	/* Spawn a worker so that we can acquire the
	 * user pages without holding our mutex. Access
	 * to the user pages requires mmap_sem, and we have
	 * a strict lock ordering of mmap_sem, struct_mutex -
	 * we already hold struct_mutex here and so cannot
	 * call gup without encountering a lock inversion.
	 *
	 * Userspace will keep on repeating the operation
	 * (thanks to EAGAIN) until either we hit the fast
	 * path or the worker completes. If the worker is
	 * cancelled or superseded, the task is still run
	 * but the results ignored. (This leads to
	 * complications that we may have a stray object
	 * refcount that we need to be wary of when
	 * checking for existing objects during creation.)
	 * If the worker encounters an error, it reports
	 * that error back to this function through
	 * obj->userptr.work = ERR_PTR.
	 */
	work = kmalloc(sizeof(*work), GFP_KERNEL);
	if (work == NULL)
564
		return ERR_PTR(-ENOMEM);
565 566 567

	obj->userptr.work = &work->work;

568
	work->obj = i915_gem_object_get(obj);
569 570 571 572 573

	work->task = current;
	get_task_struct(work->task);

	INIT_WORK(&work->work, __i915_gem_userptr_get_pages_worker);
574
	queue_work(to_i915(obj->base.dev)->mm.userptr_wq, &work->work);
575

576
	return ERR_PTR(-EAGAIN);
577 578
}

579
static int i915_gem_userptr_get_pages(struct drm_i915_gem_object *obj)
580 581
{
	const int num_pages = obj->base.size >> PAGE_SHIFT;
582
	struct mm_struct *mm = obj->userptr.mm->mm;
583
	struct page **pvec;
584
	struct sg_table *pages;
585
	bool active;
586
	int pinned;
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603

	/* If userspace should engineer that these pages are replaced in
	 * the vma between us binding this page into the GTT and completion
	 * of rendering... Their loss. If they change the mapping of their
	 * pages they need to create a new bo to point to the new vma.
	 *
	 * However, that still leaves open the possibility of the vma
	 * being copied upon fork. Which falls under the same userspace
	 * synchronisation issue as a regular bo, except that this time
	 * the process may not be expecting that a particular piece of
	 * memory is tied to the GPU.
	 *
	 * Fortunately, we can hook into the mmu_notifier in order to
	 * discard the page references prior to anything nasty happening
	 * to the vma (discard or cloning) which should prevent the more
	 * egregious cases from causing harm.
	 */
604 605

	if (obj->userptr.work) {
606
		/* active flag should still be held for the pending work */
607
		if (IS_ERR(obj->userptr.work))
608
			return PTR_ERR(obj->userptr.work);
609
		else
610
			return -EAGAIN;
611
	}
612

613 614 615
	pvec = NULL;
	pinned = 0;

616
	if (mm == current->mm) {
M
Michal Hocko 已提交
617
		pvec = kvmalloc_array(num_pages, sizeof(struct page *),
618
				      GFP_KERNEL |
619 620 621 622 623
				      __GFP_NORETRY |
				      __GFP_NOWARN);
		if (pvec) /* defer to worker if malloc fails */
			pinned = __get_user_pages_fast(obj->userptr.ptr,
						       num_pages,
624
						       !i915_gem_object_is_readonly(obj),
625
						       pvec);
626
	}
627 628

	active = false;
629 630 631 632 633 634 635
	if (pinned < 0) {
		pages = ERR_PTR(pinned);
		pinned = 0;
	} else if (pinned < num_pages) {
		pages = __i915_gem_userptr_get_pages_schedule(obj);
		active = pages == ERR_PTR(-EAGAIN);
	} else {
636
		pages = __i915_gem_userptr_alloc_pages(obj, pvec, num_pages);
637
		active = !IS_ERR(pages);
638
	}
639 640 641 642
	if (active)
		__i915_gem_userptr_set_active(obj, true);

	if (IS_ERR(pages))
643
		release_pages(pvec, pinned);
M
Michal Hocko 已提交
644
	kvfree(pvec);
645

646
	return PTR_ERR_OR_ZERO(pages);
647 648 649
}

static void
650 651
i915_gem_userptr_put_pages(struct drm_i915_gem_object *obj,
			   struct sg_table *pages)
652
{
653 654
	struct sgt_iter sgt_iter;
	struct page *page;
655

656 657
	/* Cancel any inflight work and force them to restart their gup */
	obj->userptr.work = NULL;
658
	__i915_gem_userptr_set_active(obj, false);
659 660
	if (!pages)
		return;
661

662
	__i915_gem_object_release_shmem(obj, pages, true);
663
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
664

665 666 667 668 669 670 671 672
	/*
	 * We always mark objects as dirty when they are used by the GPU,
	 * just in case. However, if we set the vma as being read-only we know
	 * that the object will never have been written to.
	 */
	if (i915_gem_object_is_readonly(obj))
		obj->mm.dirty = false;

673
	for_each_sgt_page(page, sgt_iter, pages) {
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
		if (obj->mm.dirty && trylock_page(page)) {
			/*
			 * As this may not be anonymous memory (e.g. shmem)
			 * but exist on a real mapping, we have to lock
			 * the page in order to dirty it -- holding
			 * the page reference is not sufficient to
			 * prevent the inode from being truncated.
			 * Play safe and take the lock.
			 *
			 * However...!
			 *
			 * The mmu-notifier can be invalidated for a
			 * migrate_page, that is alreadying holding the lock
			 * on the page. Such a try_to_unmap() will result
			 * in us calling put_pages() and so recursively try
			 * to lock the page. We avoid that deadlock with
			 * a trylock_page() and in exchange we risk missing
			 * some page dirtying.
			 */
693
			set_page_dirty(page);
694 695
			unlock_page(page);
		}
696 697

		mark_page_accessed(page);
698
		put_page(page);
699
	}
C
Chris Wilson 已提交
700
	obj->mm.dirty = false;
701

702 703
	sg_free_table(pages);
	kfree(pages);
704 705 706 707 708 709
}

static void
i915_gem_userptr_release(struct drm_i915_gem_object *obj)
{
	i915_gem_userptr_release__mmu_notifier(obj);
710
	i915_gem_userptr_release__mm_struct(obj);
711 712 713 714 715
}

static int
i915_gem_userptr_dmabuf_export(struct drm_i915_gem_object *obj)
{
716
	if (obj->userptr.mmu_object)
717 718 719 720 721 722
		return 0;

	return i915_gem_userptr_init__mmu_notifier(obj, 0);
}

static const struct drm_i915_gem_object_ops i915_gem_userptr_ops = {
723
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
724
		 I915_GEM_OBJECT_IS_SHRINKABLE |
725
		 I915_GEM_OBJECT_NO_GGTT |
726
		 I915_GEM_OBJECT_ASYNC_CANCEL,
727 728
	.get_pages = i915_gem_userptr_get_pages,
	.put_pages = i915_gem_userptr_put_pages,
729
	.dmabuf_export = i915_gem_userptr_dmabuf_export,
730 731 732
	.release = i915_gem_userptr_release,
};

733
/*
734 735 736 737 738 739
 * Creates a new mm object that wraps some normal memory from the process
 * context - user memory.
 *
 * We impose several restrictions upon the memory being mapped
 * into the GPU.
 * 1. It must be page aligned (both start/end addresses, i.e ptr and size).
740
 * 2. It must be normal system memory, not a pointer into another map of IO
741
 *    space (e.g. it must not be a GTT mmapping of another object).
742
 * 3. We only allow a bo as large as we could in theory map into the GTT,
743
 *    that is we limit the size to the total size of the GTT.
744
 * 4. The bo is marked as being snoopable. The backing pages are left
745 746 747 748 749 750 751 752 753 754 755 756 757 758
 *    accessible directly by the CPU, but reads and writes by the GPU may
 *    incur the cost of a snoop (unless you have an LLC architecture).
 *
 * Synchronisation between multiple users and the GPU is left to userspace
 * through the normal set-domain-ioctl. The kernel will enforce that the
 * GPU relinquishes the VMA before it is returned back to the system
 * i.e. upon free(), munmap() or process termination. However, the userspace
 * malloc() library may not immediately relinquish the VMA after free() and
 * instead reuse it whilst the GPU is still reading and writing to the VMA.
 * Caveat emptor.
 *
 * Also note, that the object created here is not currently a "first class"
 * object, in that several ioctls are banned. These are the CPU access
 * ioctls: mmap(), pwrite and pread. In practice, you are expected to use
759 760 761 762
 * direct access via your pointer rather than use those ioctls. Another
 * restriction is that we do not allow userptr surfaces to be pinned to the
 * hardware and so we reject any attempt to create a framebuffer out of a
 * userptr.
763 764 765 766 767 768
 *
 * If you think this is a good interface to use to pass GPU memory between
 * drivers, please use dma-buf instead. In fact, wherever possible use
 * dma-buf instead.
 */
int
769 770 771
i915_gem_userptr_ioctl(struct drm_device *dev,
		       void *data,
		       struct drm_file *file)
772
{
773
	struct drm_i915_private *dev_priv = to_i915(dev);
774 775 776 777 778
	struct drm_i915_gem_userptr *args = data;
	struct drm_i915_gem_object *obj;
	int ret;
	u32 handle;

779
	if (!HAS_LLC(dev_priv) && !HAS_SNOOP(dev_priv)) {
780 781 782 783 784 785
		/* We cannot support coherent userptr objects on hw without
		 * LLC and broken snooping.
		 */
		return -ENODEV;
	}

786 787 788 789
	if (args->flags & ~(I915_USERPTR_READ_ONLY |
			    I915_USERPTR_UNSYNCHRONIZED))
		return -EINVAL;

790 791 792
	if (!args->user_size)
		return -EINVAL;

793 794 795
	if (offset_in_page(args->user_ptr | args->user_size))
		return -EINVAL;

796
	if (!access_ok((char __user *)(unsigned long)args->user_ptr, args->user_size))
797 798 799
		return -EFAULT;

	if (args->flags & I915_USERPTR_READ_ONLY) {
800
		struct i915_address_space *vm;
801 802 803 804

		/*
		 * On almost all of the older hw, we cannot tell the GPU that
		 * a page is readonly.
805
		 */
806 807
		vm = dev_priv->kernel_context->vm;
		if (!vm || !vm->has_read_only)
808
			return -ENODEV;
809 810
	}

811
	obj = i915_gem_object_alloc();
812 813 814 815 816
	if (obj == NULL)
		return -ENOMEM;

	drm_gem_private_object_init(dev, &obj->base, args->user_size);
	i915_gem_object_init(obj, &i915_gem_userptr_ops);
817 818
	obj->read_domains = I915_GEM_DOMAIN_CPU;
	obj->write_domain = I915_GEM_DOMAIN_CPU;
819
	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
820 821

	obj->userptr.ptr = args->user_ptr;
822 823
	if (args->flags & I915_USERPTR_READ_ONLY)
		i915_gem_object_set_readonly(obj);
824 825 826 827 828

	/* And keep a pointer to the current->mm for resolving the user pages
	 * at binding. This means that we need to hook into the mmu_notifier
	 * in order to detect if the mmu is destroyed.
	 */
829 830
	ret = i915_gem_userptr_init__mm_struct(obj);
	if (ret == 0)
831 832 833 834 835
		ret = i915_gem_userptr_init__mmu_notifier(obj, args->flags);
	if (ret == 0)
		ret = drm_gem_handle_create(file, &obj->base, &handle);

	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
836
	i915_gem_object_put(obj);
837 838 839 840 841 842 843
	if (ret)
		return ret;

	args->handle = handle;
	return 0;
}

844
int i915_gem_init_userptr(struct drm_i915_private *dev_priv)
845
{
846 847
	mutex_init(&dev_priv->mm_lock);
	hash_init(dev_priv->mm_structs);
848 849

	dev_priv->mm.userptr_wq =
850
		alloc_workqueue("i915-userptr-acquire",
851
				WQ_HIGHPRI | WQ_UNBOUND,
852
				0);
853 854 855 856 857 858 859 860 861
	if (!dev_priv->mm.userptr_wq)
		return -ENOMEM;

	return 0;
}

void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv)
{
	destroy_workqueue(dev_priv->mm.userptr_wq);
862
}