clk-bcm2835.c 44.0 KB
Newer Older
1
/*
2
 * Copyright (C) 2010,2015 Broadcom
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 * Copyright (C) 2012 Stephen Warren
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
/**
 * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
 *
 * The clock tree on the 2835 has several levels.  There's a root
 * oscillator running at 19.2Mhz.  After the oscillator there are 5
 * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
 * and "HDMI displays".  Those 5 PLLs each can divide their output to
 * produce up to 4 channels.  Finally, there is the level of clocks to
 * be consumed by other hardware components (like "H264" or "HDMI
 * state machine"), which divide off of some subset of the PLL
 * channels.
 *
 * All of the clocks in the tree are exposed in the DT, because the DT
 * may want to make assignments of the final layer of clocks to the
 * PLL channels, and some components of the hardware will actually
 * skip layers of the tree (for example, the pixel clock comes
 * directly from the PLLH PIX channel without using a CM_*CTL clock
 * generator).
 */

40 41 42
#include <linux/clk-provider.h>
#include <linux/clkdev.h>
#include <linux/clk/bcm2835.h>
43
#include <linux/module.h>
44
#include <linux/of.h>
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <dt-bindings/clock/bcm2835.h>

#define CM_PASSWORD		0x5a000000

#define CM_GNRICCTL		0x000
#define CM_GNRICDIV		0x004
# define CM_DIV_FRAC_BITS	12

#define CM_VPUCTL		0x008
#define CM_VPUDIV		0x00c
#define CM_SYSCTL		0x010
#define CM_SYSDIV		0x014
#define CM_PERIACTL		0x018
#define CM_PERIADIV		0x01c
#define CM_PERIICTL		0x020
#define CM_PERIIDIV		0x024
#define CM_H264CTL		0x028
#define CM_H264DIV		0x02c
#define CM_ISPCTL		0x030
#define CM_ISPDIV		0x034
#define CM_V3DCTL		0x038
#define CM_V3DDIV		0x03c
#define CM_CAM0CTL		0x040
#define CM_CAM0DIV		0x044
#define CM_CAM1CTL		0x048
#define CM_CAM1DIV		0x04c
#define CM_CCP2CTL		0x050
#define CM_CCP2DIV		0x054
#define CM_DSI0ECTL		0x058
#define CM_DSI0EDIV		0x05c
#define CM_DSI0PCTL		0x060
#define CM_DSI0PDIV		0x064
#define CM_DPICTL		0x068
#define CM_DPIDIV		0x06c
#define CM_GP0CTL		0x070
#define CM_GP0DIV		0x074
#define CM_GP1CTL		0x078
#define CM_GP1DIV		0x07c
#define CM_GP2CTL		0x080
#define CM_GP2DIV		0x084
#define CM_HSMCTL		0x088
#define CM_HSMDIV		0x08c
#define CM_OTPCTL		0x090
#define CM_OTPDIV		0x094
91 92
#define CM_PCMCTL		0x098
#define CM_PCMDIV		0x09c
93 94
#define CM_PWMCTL		0x0a0
#define CM_PWMDIV		0x0a4
95 96
#define CM_SLIMCTL		0x0a8
#define CM_SLIMDIV		0x0ac
97 98
#define CM_SMICTL		0x0b0
#define CM_SMIDIV		0x0b4
99 100 101 102 103 104 105 106 107
/* no definition for 0x0b8  and 0x0bc */
#define CM_TCNTCTL		0x0c0
#define CM_TCNTDIV		0x0c4
#define CM_TECCTL		0x0c8
#define CM_TECDIV		0x0cc
#define CM_TD0CTL		0x0d0
#define CM_TD0DIV		0x0d4
#define CM_TD1CTL		0x0d8
#define CM_TD1DIV		0x0dc
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
#define CM_TSENSCTL		0x0e0
#define CM_TSENSDIV		0x0e4
#define CM_TIMERCTL		0x0e8
#define CM_TIMERDIV		0x0ec
#define CM_UARTCTL		0x0f0
#define CM_UARTDIV		0x0f4
#define CM_VECCTL		0x0f8
#define CM_VECDIV		0x0fc
#define CM_PULSECTL		0x190
#define CM_PULSEDIV		0x194
#define CM_SDCCTL		0x1a8
#define CM_SDCDIV		0x1ac
#define CM_ARMCTL		0x1b0
#define CM_EMMCCTL		0x1c0
#define CM_EMMCDIV		0x1c4

/* General bits for the CM_*CTL regs */
# define CM_ENABLE			BIT(4)
# define CM_KILL			BIT(5)
# define CM_GATE_BIT			6
# define CM_GATE			BIT(CM_GATE_BIT)
# define CM_BUSY			BIT(7)
# define CM_BUSYD			BIT(8)
# define CM_SRC_SHIFT			0
# define CM_SRC_BITS			4
# define CM_SRC_MASK			0xf
# define CM_SRC_GND			0
# define CM_SRC_OSC			1
# define CM_SRC_TESTDEBUG0		2
# define CM_SRC_TESTDEBUG1		3
# define CM_SRC_PLLA_CORE		4
# define CM_SRC_PLLA_PER		4
# define CM_SRC_PLLC_CORE0		5
# define CM_SRC_PLLC_PER		5
# define CM_SRC_PLLC_CORE1		8
# define CM_SRC_PLLD_CORE		6
# define CM_SRC_PLLD_PER		6
# define CM_SRC_PLLH_AUX		7
# define CM_SRC_PLLC_CORE1		8
# define CM_SRC_PLLC_CORE2		9

#define CM_OSCCOUNT		0x100

#define CM_PLLA			0x104
# define CM_PLL_ANARST			BIT(8)
# define CM_PLLA_HOLDPER		BIT(7)
# define CM_PLLA_LOADPER		BIT(6)
# define CM_PLLA_HOLDCORE		BIT(5)
# define CM_PLLA_LOADCORE		BIT(4)
# define CM_PLLA_HOLDCCP2		BIT(3)
# define CM_PLLA_LOADCCP2		BIT(2)
# define CM_PLLA_HOLDDSI0		BIT(1)
# define CM_PLLA_LOADDSI0		BIT(0)

#define CM_PLLC			0x108
# define CM_PLLC_HOLDPER		BIT(7)
# define CM_PLLC_LOADPER		BIT(6)
# define CM_PLLC_HOLDCORE2		BIT(5)
# define CM_PLLC_LOADCORE2		BIT(4)
# define CM_PLLC_HOLDCORE1		BIT(3)
# define CM_PLLC_LOADCORE1		BIT(2)
# define CM_PLLC_HOLDCORE0		BIT(1)
# define CM_PLLC_LOADCORE0		BIT(0)

#define CM_PLLD			0x10c
# define CM_PLLD_HOLDPER		BIT(7)
# define CM_PLLD_LOADPER		BIT(6)
# define CM_PLLD_HOLDCORE		BIT(5)
# define CM_PLLD_LOADCORE		BIT(4)
# define CM_PLLD_HOLDDSI1		BIT(3)
# define CM_PLLD_LOADDSI1		BIT(2)
# define CM_PLLD_HOLDDSI0		BIT(1)
# define CM_PLLD_LOADDSI0		BIT(0)

#define CM_PLLH			0x110
# define CM_PLLH_LOADRCAL		BIT(2)
# define CM_PLLH_LOADAUX		BIT(1)
# define CM_PLLH_LOADPIX		BIT(0)

#define CM_LOCK			0x114
# define CM_LOCK_FLOCKH			BIT(12)
# define CM_LOCK_FLOCKD			BIT(11)
# define CM_LOCK_FLOCKC			BIT(10)
# define CM_LOCK_FLOCKB			BIT(9)
# define CM_LOCK_FLOCKA			BIT(8)

#define CM_EVENT		0x118
#define CM_DSI1ECTL		0x158
#define CM_DSI1EDIV		0x15c
#define CM_DSI1PCTL		0x160
#define CM_DSI1PDIV		0x164
#define CM_DFTCTL		0x168
#define CM_DFTDIV		0x16c

#define CM_PLLB			0x170
# define CM_PLLB_HOLDARM		BIT(1)
# define CM_PLLB_LOADARM		BIT(0)

#define A2W_PLLA_CTRL		0x1100
#define A2W_PLLC_CTRL		0x1120
#define A2W_PLLD_CTRL		0x1140
#define A2W_PLLH_CTRL		0x1160
#define A2W_PLLB_CTRL		0x11e0
# define A2W_PLL_CTRL_PRST_DISABLE	BIT(17)
# define A2W_PLL_CTRL_PWRDN		BIT(16)
# define A2W_PLL_CTRL_PDIV_MASK		0x000007000
# define A2W_PLL_CTRL_PDIV_SHIFT	12
# define A2W_PLL_CTRL_NDIV_MASK		0x0000003ff
# define A2W_PLL_CTRL_NDIV_SHIFT	0

#define A2W_PLLA_ANA0		0x1010
#define A2W_PLLC_ANA0		0x1030
#define A2W_PLLD_ANA0		0x1050
#define A2W_PLLH_ANA0		0x1070
#define A2W_PLLB_ANA0		0x10f0

#define A2W_PLL_KA_SHIFT	7
#define A2W_PLL_KA_MASK		GENMASK(9, 7)
#define A2W_PLL_KI_SHIFT	19
#define A2W_PLL_KI_MASK		GENMASK(21, 19)
#define A2W_PLL_KP_SHIFT	15
#define A2W_PLL_KP_MASK		GENMASK(18, 15)

#define A2W_PLLH_KA_SHIFT	19
#define A2W_PLLH_KA_MASK	GENMASK(21, 19)
#define A2W_PLLH_KI_LOW_SHIFT	22
#define A2W_PLLH_KI_LOW_MASK	GENMASK(23, 22)
#define A2W_PLLH_KI_HIGH_SHIFT	0
#define A2W_PLLH_KI_HIGH_MASK	GENMASK(0, 0)
#define A2W_PLLH_KP_SHIFT	1
#define A2W_PLLH_KP_MASK	GENMASK(4, 1)

#define A2W_XOSC_CTRL		0x1190
# define A2W_XOSC_CTRL_PLLB_ENABLE	BIT(7)
# define A2W_XOSC_CTRL_PLLA_ENABLE	BIT(6)
# define A2W_XOSC_CTRL_PLLD_ENABLE	BIT(5)
# define A2W_XOSC_CTRL_DDR_ENABLE	BIT(4)
# define A2W_XOSC_CTRL_CPR1_ENABLE	BIT(3)
# define A2W_XOSC_CTRL_USB_ENABLE	BIT(2)
# define A2W_XOSC_CTRL_HDMI_ENABLE	BIT(1)
# define A2W_XOSC_CTRL_PLLC_ENABLE	BIT(0)

#define A2W_PLLA_FRAC		0x1200
#define A2W_PLLC_FRAC		0x1220
#define A2W_PLLD_FRAC		0x1240
#define A2W_PLLH_FRAC		0x1260
#define A2W_PLLB_FRAC		0x12e0
# define A2W_PLL_FRAC_MASK		((1 << A2W_PLL_FRAC_BITS) - 1)
# define A2W_PLL_FRAC_BITS		20

#define A2W_PLL_CHANNEL_DISABLE		BIT(8)
#define A2W_PLL_DIV_BITS		8
#define A2W_PLL_DIV_SHIFT		0

#define A2W_PLLA_DSI0		0x1300
#define A2W_PLLA_CORE		0x1400
#define A2W_PLLA_PER		0x1500
#define A2W_PLLA_CCP2		0x1600

#define A2W_PLLC_CORE2		0x1320
#define A2W_PLLC_CORE1		0x1420
#define A2W_PLLC_PER		0x1520
#define A2W_PLLC_CORE0		0x1620

#define A2W_PLLD_DSI0		0x1340
#define A2W_PLLD_CORE		0x1440
#define A2W_PLLD_PER		0x1540
#define A2W_PLLD_DSI1		0x1640

#define A2W_PLLH_AUX		0x1360
#define A2W_PLLH_RCAL		0x1460
#define A2W_PLLH_PIX		0x1560
#define A2W_PLLH_STS		0x1660

#define A2W_PLLH_CTRLR		0x1960
#define A2W_PLLH_FRACR		0x1a60
#define A2W_PLLH_AUXR		0x1b60
#define A2W_PLLH_RCALR		0x1c60
#define A2W_PLLH_PIXR		0x1d60
#define A2W_PLLH_STSR		0x1e60

#define A2W_PLLB_ARM		0x13e0
#define A2W_PLLB_SP0		0x14e0
#define A2W_PLLB_SP1		0x15e0
#define A2W_PLLB_SP2		0x16e0

#define LOCK_TIMEOUT_NS		100000000
#define BCM2835_MAX_FB_RATE	1750000000u

struct bcm2835_cprman {
	struct device *dev;
	void __iomem *regs;
	spinlock_t regs_lock;
	const char *osc_name;

	struct clk_onecell_data onecell;
	struct clk *clks[BCM2835_CLOCK_COUNT];
};

static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
{
	writel(CM_PASSWORD | val, cprman->regs + reg);
}

static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
{
	return readl(cprman->regs + reg);
}
316

317 318 319 320 321 322 323 324 325 326
/*
 * These are fixed clocks. They're probably not all root clocks and it may
 * be possible to turn them on and off but until this is mapped out better
 * it's the only way they can be used.
 */
void __init bcm2835_init_clocks(void)
{
	struct clk *clk;
	int ret;

S
Stephen Boyd 已提交
327
	clk = clk_register_fixed_rate(NULL, "apb_pclk", NULL, 0, 126000000);
328
	if (IS_ERR(clk))
329 330
		pr_err("apb_pclk not registered\n");

S
Stephen Boyd 已提交
331
	clk = clk_register_fixed_rate(NULL, "uart0_pclk", NULL, 0, 3000000);
332
	if (IS_ERR(clk))
333 334 335 336 337
		pr_err("uart0_pclk not registered\n");
	ret = clk_register_clkdev(clk, NULL, "20201000.uart");
	if (ret)
		pr_err("uart0_pclk alias not registered\n");

S
Stephen Boyd 已提交
338
	clk = clk_register_fixed_rate(NULL, "uart1_pclk", NULL, 0, 125000000);
339
	if (IS_ERR(clk))
340 341 342
		pr_err("uart1_pclk not registered\n");
	ret = clk_register_clkdev(clk, NULL, "20215000.uart");
	if (ret)
343
		pr_err("uart1_pclk alias not registered\n");
344
}
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819

struct bcm2835_pll_data {
	const char *name;
	u32 cm_ctrl_reg;
	u32 a2w_ctrl_reg;
	u32 frac_reg;
	u32 ana_reg_base;
	u32 reference_enable_mask;
	/* Bit in CM_LOCK to indicate when the PLL has locked. */
	u32 lock_mask;

	const struct bcm2835_pll_ana_bits *ana;

	unsigned long min_rate;
	unsigned long max_rate;
	/*
	 * Highest rate for the VCO before we have to use the
	 * pre-divide-by-2.
	 */
	unsigned long max_fb_rate;
};

struct bcm2835_pll_ana_bits {
	u32 mask0;
	u32 set0;
	u32 mask1;
	u32 set1;
	u32 mask3;
	u32 set3;
	u32 fb_prediv_mask;
};

static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
	.mask0 = 0,
	.set0 = 0,
	.mask1 = ~(A2W_PLL_KI_MASK | A2W_PLL_KP_MASK),
	.set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
	.mask3 = ~A2W_PLL_KA_MASK,
	.set3 = (2 << A2W_PLL_KA_SHIFT),
	.fb_prediv_mask = BIT(14),
};

static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
	.mask0 = ~(A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK),
	.set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
	.mask1 = ~(A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK),
	.set1 = (6 << A2W_PLLH_KP_SHIFT),
	.mask3 = 0,
	.set3 = 0,
	.fb_prediv_mask = BIT(11),
};

/*
 * PLLA is the auxiliary PLL, used to drive the CCP2 (Compact Camera
 * Port 2) transmitter clock.
 *
 * It is in the PX LDO power domain, which is on when the AUDIO domain
 * is on.
 */
static const struct bcm2835_pll_data bcm2835_plla_data = {
	.name = "plla",
	.cm_ctrl_reg = CM_PLLA,
	.a2w_ctrl_reg = A2W_PLLA_CTRL,
	.frac_reg = A2W_PLLA_FRAC,
	.ana_reg_base = A2W_PLLA_ANA0,
	.reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
	.lock_mask = CM_LOCK_FLOCKA,

	.ana = &bcm2835_ana_default,

	.min_rate = 600000000u,
	.max_rate = 2400000000u,
	.max_fb_rate = BCM2835_MAX_FB_RATE,
};

/* PLLB is used for the ARM's clock. */
static const struct bcm2835_pll_data bcm2835_pllb_data = {
	.name = "pllb",
	.cm_ctrl_reg = CM_PLLB,
	.a2w_ctrl_reg = A2W_PLLB_CTRL,
	.frac_reg = A2W_PLLB_FRAC,
	.ana_reg_base = A2W_PLLB_ANA0,
	.reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE,
	.lock_mask = CM_LOCK_FLOCKB,

	.ana = &bcm2835_ana_default,

	.min_rate = 600000000u,
	.max_rate = 3000000000u,
	.max_fb_rate = BCM2835_MAX_FB_RATE,
};

/*
 * PLLC is the core PLL, used to drive the core VPU clock.
 *
 * It is in the PX LDO power domain, which is on when the AUDIO domain
 * is on.
*/
static const struct bcm2835_pll_data bcm2835_pllc_data = {
	.name = "pllc",
	.cm_ctrl_reg = CM_PLLC,
	.a2w_ctrl_reg = A2W_PLLC_CTRL,
	.frac_reg = A2W_PLLC_FRAC,
	.ana_reg_base = A2W_PLLC_ANA0,
	.reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
	.lock_mask = CM_LOCK_FLOCKC,

	.ana = &bcm2835_ana_default,

	.min_rate = 600000000u,
	.max_rate = 3000000000u,
	.max_fb_rate = BCM2835_MAX_FB_RATE,
};

/*
 * PLLD is the display PLL, used to drive DSI display panels.
 *
 * It is in the PX LDO power domain, which is on when the AUDIO domain
 * is on.
 */
static const struct bcm2835_pll_data bcm2835_plld_data = {
	.name = "plld",
	.cm_ctrl_reg = CM_PLLD,
	.a2w_ctrl_reg = A2W_PLLD_CTRL,
	.frac_reg = A2W_PLLD_FRAC,
	.ana_reg_base = A2W_PLLD_ANA0,
	.reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
	.lock_mask = CM_LOCK_FLOCKD,

	.ana = &bcm2835_ana_default,

	.min_rate = 600000000u,
	.max_rate = 2400000000u,
	.max_fb_rate = BCM2835_MAX_FB_RATE,
};

/*
 * PLLH is used to supply the pixel clock or the AUX clock for the TV
 * encoder.
 *
 * It is in the HDMI power domain.
 */
static const struct bcm2835_pll_data bcm2835_pllh_data = {
	"pllh",
	.cm_ctrl_reg = CM_PLLH,
	.a2w_ctrl_reg = A2W_PLLH_CTRL,
	.frac_reg = A2W_PLLH_FRAC,
	.ana_reg_base = A2W_PLLH_ANA0,
	.reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
	.lock_mask = CM_LOCK_FLOCKH,

	.ana = &bcm2835_ana_pllh,

	.min_rate = 600000000u,
	.max_rate = 3000000000u,
	.max_fb_rate = BCM2835_MAX_FB_RATE,
};

struct bcm2835_pll_divider_data {
	const char *name;
	const struct bcm2835_pll_data *source_pll;
	u32 cm_reg;
	u32 a2w_reg;

	u32 load_mask;
	u32 hold_mask;
	u32 fixed_divider;
};

static const struct bcm2835_pll_divider_data bcm2835_plla_core_data = {
	.name = "plla_core",
	.source_pll = &bcm2835_plla_data,
	.cm_reg = CM_PLLA,
	.a2w_reg = A2W_PLLA_CORE,
	.load_mask = CM_PLLA_LOADCORE,
	.hold_mask = CM_PLLA_HOLDCORE,
	.fixed_divider = 1,
};

static const struct bcm2835_pll_divider_data bcm2835_plla_per_data = {
	.name = "plla_per",
	.source_pll = &bcm2835_plla_data,
	.cm_reg = CM_PLLA,
	.a2w_reg = A2W_PLLA_PER,
	.load_mask = CM_PLLA_LOADPER,
	.hold_mask = CM_PLLA_HOLDPER,
	.fixed_divider = 1,
};

static const struct bcm2835_pll_divider_data bcm2835_pllb_arm_data = {
	.name = "pllb_arm",
	.source_pll = &bcm2835_pllb_data,
	.cm_reg = CM_PLLB,
	.a2w_reg = A2W_PLLB_ARM,
	.load_mask = CM_PLLB_LOADARM,
	.hold_mask = CM_PLLB_HOLDARM,
	.fixed_divider = 1,
};

static const struct bcm2835_pll_divider_data bcm2835_pllc_core0_data = {
	.name = "pllc_core0",
	.source_pll = &bcm2835_pllc_data,
	.cm_reg = CM_PLLC,
	.a2w_reg = A2W_PLLC_CORE0,
	.load_mask = CM_PLLC_LOADCORE0,
	.hold_mask = CM_PLLC_HOLDCORE0,
	.fixed_divider = 1,
};

static const struct bcm2835_pll_divider_data bcm2835_pllc_core1_data = {
	.name = "pllc_core1", .source_pll = &bcm2835_pllc_data,
	.cm_reg = CM_PLLC, A2W_PLLC_CORE1,
	.load_mask = CM_PLLC_LOADCORE1,
	.hold_mask = CM_PLLC_HOLDCORE1,
	.fixed_divider = 1,
};

static const struct bcm2835_pll_divider_data bcm2835_pllc_core2_data = {
	.name = "pllc_core2",
	.source_pll = &bcm2835_pllc_data,
	.cm_reg = CM_PLLC,
	.a2w_reg = A2W_PLLC_CORE2,
	.load_mask = CM_PLLC_LOADCORE2,
	.hold_mask = CM_PLLC_HOLDCORE2,
	.fixed_divider = 1,
};

static const struct bcm2835_pll_divider_data bcm2835_pllc_per_data = {
	.name = "pllc_per",
	.source_pll = &bcm2835_pllc_data,
	.cm_reg = CM_PLLC,
	.a2w_reg = A2W_PLLC_PER,
	.load_mask = CM_PLLC_LOADPER,
	.hold_mask = CM_PLLC_HOLDPER,
	.fixed_divider = 1,
};

static const struct bcm2835_pll_divider_data bcm2835_plld_core_data = {
	.name = "plld_core",
	.source_pll = &bcm2835_plld_data,
	.cm_reg = CM_PLLD,
	.a2w_reg = A2W_PLLD_CORE,
	.load_mask = CM_PLLD_LOADCORE,
	.hold_mask = CM_PLLD_HOLDCORE,
	.fixed_divider = 1,
};

static const struct bcm2835_pll_divider_data bcm2835_plld_per_data = {
	.name = "plld_per",
	.source_pll = &bcm2835_plld_data,
	.cm_reg = CM_PLLD,
	.a2w_reg = A2W_PLLD_PER,
	.load_mask = CM_PLLD_LOADPER,
	.hold_mask = CM_PLLD_HOLDPER,
	.fixed_divider = 1,
};

static const struct bcm2835_pll_divider_data bcm2835_pllh_rcal_data = {
	.name = "pllh_rcal",
	.source_pll = &bcm2835_pllh_data,
	.cm_reg = CM_PLLH,
	.a2w_reg = A2W_PLLH_RCAL,
	.load_mask = CM_PLLH_LOADRCAL,
	.hold_mask = 0,
	.fixed_divider = 10,
};

static const struct bcm2835_pll_divider_data bcm2835_pllh_aux_data = {
	.name = "pllh_aux",
	.source_pll = &bcm2835_pllh_data,
	.cm_reg = CM_PLLH,
	.a2w_reg = A2W_PLLH_AUX,
	.load_mask = CM_PLLH_LOADAUX,
	.hold_mask = 0,
	.fixed_divider = 10,
};

static const struct bcm2835_pll_divider_data bcm2835_pllh_pix_data = {
	.name = "pllh_pix",
	.source_pll = &bcm2835_pllh_data,
	.cm_reg = CM_PLLH,
	.a2w_reg = A2W_PLLH_PIX,
	.load_mask = CM_PLLH_LOADPIX,
	.hold_mask = 0,
	.fixed_divider = 10,
};

struct bcm2835_clock_data {
	const char *name;

	const char *const *parents;
	int num_mux_parents;

	u32 ctl_reg;
	u32 div_reg;

	/* Number of integer bits in the divider */
	u32 int_bits;
	/* Number of fractional bits in the divider */
	u32 frac_bits;

	bool is_vpu_clock;
};

static const char *const bcm2835_clock_per_parents[] = {
	"gnd",
	"xosc",
	"testdebug0",
	"testdebug1",
	"plla_per",
	"pllc_per",
	"plld_per",
	"pllh_aux",
};

static const char *const bcm2835_clock_vpu_parents[] = {
	"gnd",
	"xosc",
	"testdebug0",
	"testdebug1",
	"plla_core",
	"pllc_core0",
	"plld_core",
	"pllh_aux",
	"pllc_core1",
	"pllc_core2",
};

static const char *const bcm2835_clock_osc_parents[] = {
	"gnd",
	"xosc",
	"testdebug0",
	"testdebug1"
};

/*
 * Used for a 1Mhz clock for the system clocksource, and also used by
 * the watchdog timer and the camera pulse generator.
 */
static const struct bcm2835_clock_data bcm2835_clock_timer_data = {
	.name = "timer",
	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents),
	.parents = bcm2835_clock_osc_parents,
	.ctl_reg = CM_TIMERCTL,
	.div_reg = CM_TIMERDIV,
	.int_bits = 6,
	.frac_bits = 12,
};

/* One Time Programmable Memory clock.  Maximum 10Mhz. */
static const struct bcm2835_clock_data bcm2835_clock_otp_data = {
	.name = "otp",
	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents),
	.parents = bcm2835_clock_osc_parents,
	.ctl_reg = CM_OTPCTL,
	.div_reg = CM_OTPDIV,
	.int_bits = 4,
	.frac_bits = 0,
};

/*
 * VPU clock.  This doesn't have an enable bit, since it drives the
 * bus for everything else, and is special so it doesn't need to be
 * gated for rate changes.  It is also known as "clk_audio" in various
 * hardware documentation.
 */
static const struct bcm2835_clock_data bcm2835_clock_vpu_data = {
	.name = "vpu",
	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),
	.parents = bcm2835_clock_vpu_parents,
	.ctl_reg = CM_VPUCTL,
	.div_reg = CM_VPUDIV,
	.int_bits = 12,
	.frac_bits = 8,
	.is_vpu_clock = true,
};

static const struct bcm2835_clock_data bcm2835_clock_v3d_data = {
	.name = "v3d",
	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),
	.parents = bcm2835_clock_vpu_parents,
	.ctl_reg = CM_V3DCTL,
	.div_reg = CM_V3DDIV,
	.int_bits = 4,
	.frac_bits = 8,
};

static const struct bcm2835_clock_data bcm2835_clock_isp_data = {
	.name = "isp",
	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),
	.parents = bcm2835_clock_vpu_parents,
	.ctl_reg = CM_ISPCTL,
	.div_reg = CM_ISPDIV,
	.int_bits = 4,
	.frac_bits = 8,
};

static const struct bcm2835_clock_data bcm2835_clock_h264_data = {
	.name = "h264",
	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),
	.parents = bcm2835_clock_vpu_parents,
	.ctl_reg = CM_H264CTL,
	.div_reg = CM_H264DIV,
	.int_bits = 4,
	.frac_bits = 8,
};

/* TV encoder clock.  Only operating frequency is 108Mhz.  */
static const struct bcm2835_clock_data bcm2835_clock_vec_data = {
	.name = "vec",
	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),
	.parents = bcm2835_clock_per_parents,
	.ctl_reg = CM_VECCTL,
	.div_reg = CM_VECDIV,
	.int_bits = 4,
	.frac_bits = 0,
};

static const struct bcm2835_clock_data bcm2835_clock_uart_data = {
	.name = "uart",
	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),
	.parents = bcm2835_clock_per_parents,
	.ctl_reg = CM_UARTCTL,
	.div_reg = CM_UARTDIV,
	.int_bits = 10,
	.frac_bits = 12,
};

/* HDMI state machine */
static const struct bcm2835_clock_data bcm2835_clock_hsm_data = {
	.name = "hsm",
	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),
	.parents = bcm2835_clock_per_parents,
	.ctl_reg = CM_HSMCTL,
	.div_reg = CM_HSMDIV,
	.int_bits = 4,
	.frac_bits = 8,
};

/*
 * Secondary SDRAM clock.  Used for low-voltage modes when the PLL in
 * the SDRAM controller can't be used.
 */
static const struct bcm2835_clock_data bcm2835_clock_sdram_data = {
	.name = "sdram",
	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),
	.parents = bcm2835_clock_vpu_parents,
	.ctl_reg = CM_SDCCTL,
	.div_reg = CM_SDCDIV,
	.int_bits = 6,
	.frac_bits = 0,
};

/* Clock for the temperature sensor.  Generally run at 2Mhz, max 5Mhz. */
static const struct bcm2835_clock_data bcm2835_clock_tsens_data = {
	.name = "tsens",
	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents),
	.parents = bcm2835_clock_osc_parents,
	.ctl_reg = CM_TSENSCTL,
	.div_reg = CM_TSENSDIV,
	.int_bits = 5,
	.frac_bits = 0,
};

/* Arasan EMMC clock */
static const struct bcm2835_clock_data bcm2835_clock_emmc_data = {
	.name = "emmc",
	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),
	.parents = bcm2835_clock_per_parents,
	.ctl_reg = CM_EMMCCTL,
	.div_reg = CM_EMMCDIV,
	.int_bits = 4,
	.frac_bits = 8,
};

820 821 822 823 824 825 826 827 828 829
static const struct bcm2835_clock_data bcm2835_clock_pwm_data = {
	.name = "pwm",
	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),
	.parents = bcm2835_clock_per_parents,
	.ctl_reg = CM_PWMCTL,
	.div_reg = CM_PWMDIV,
	.int_bits = 12,
	.frac_bits = 12,
};

830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
struct bcm2835_pll {
	struct clk_hw hw;
	struct bcm2835_cprman *cprman;
	const struct bcm2835_pll_data *data;
};

static int bcm2835_pll_is_on(struct clk_hw *hw)
{
	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
	struct bcm2835_cprman *cprman = pll->cprman;
	const struct bcm2835_pll_data *data = pll->data;

	return cprman_read(cprman, data->a2w_ctrl_reg) &
		A2W_PLL_CTRL_PRST_DISABLE;
}

static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
					     unsigned long parent_rate,
					     u32 *ndiv, u32 *fdiv)
{
	u64 div;

	div = (u64)rate << A2W_PLL_FRAC_BITS;
	do_div(div, parent_rate);

	*ndiv = div >> A2W_PLL_FRAC_BITS;
	*fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
}

static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
					   u32 ndiv, u32 fdiv, u32 pdiv)
{
	u64 rate;

	if (pdiv == 0)
		return 0;

	rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
	do_div(rate, pdiv);
	return rate >> A2W_PLL_FRAC_BITS;
}

static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate,
				   unsigned long *parent_rate)
{
	u32 ndiv, fdiv;

	bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv);

	return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1);
}

static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
					  unsigned long parent_rate)
{
	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
	struct bcm2835_cprman *cprman = pll->cprman;
	const struct bcm2835_pll_data *data = pll->data;
	u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg);
	u32 ndiv, pdiv, fdiv;
	bool using_prediv;

	if (parent_rate == 0)
		return 0;

	fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK;
	ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
	pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
	using_prediv = cprman_read(cprman, data->ana_reg_base + 4) &
		data->ana->fb_prediv_mask;

	if (using_prediv)
		ndiv *= 2;

	return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
}

static void bcm2835_pll_off(struct clk_hw *hw)
{
	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
	struct bcm2835_cprman *cprman = pll->cprman;
	const struct bcm2835_pll_data *data = pll->data;

	cprman_write(cprman, data->cm_ctrl_reg, CM_PLL_ANARST);
	cprman_write(cprman, data->a2w_ctrl_reg, A2W_PLL_CTRL_PWRDN);
}

static int bcm2835_pll_on(struct clk_hw *hw)
{
	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
	struct bcm2835_cprman *cprman = pll->cprman;
	const struct bcm2835_pll_data *data = pll->data;
	ktime_t timeout;

	/* Take the PLL out of reset. */
	cprman_write(cprman, data->cm_ctrl_reg,
		     cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST);

	/* Wait for the PLL to lock. */
	timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
	while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
		if (ktime_after(ktime_get(), timeout)) {
			dev_err(cprman->dev, "%s: couldn't lock PLL\n",
				clk_hw_get_name(hw));
			return -ETIMEDOUT;
		}

		cpu_relax();
	}

	return 0;
}

static void
bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
{
	int i;

	/*
	 * ANA register setup is done as a series of writes to
	 * ANA3-ANA0, in that order.  This lets us write all 4
	 * registers as a single cycle of the serdes interface (taking
	 * 100 xosc clocks), whereas if we were to update ana0, 1, and
	 * 3 individually through their partial-write registers, each
	 * would be their own serdes cycle.
	 */
	for (i = 3; i >= 0; i--)
		cprman_write(cprman, ana_reg_base + i * 4, ana[i]);
}

static int bcm2835_pll_set_rate(struct clk_hw *hw,
				unsigned long rate, unsigned long parent_rate)
{
	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
	struct bcm2835_cprman *cprman = pll->cprman;
	const struct bcm2835_pll_data *data = pll->data;
	bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
	u32 ndiv, fdiv, a2w_ctl;
	u32 ana[4];
	int i;

	if (rate < data->min_rate || rate > data->max_rate) {
		dev_err(cprman->dev, "%s: rate out of spec: %lu vs (%lu, %lu)\n",
			clk_hw_get_name(hw), rate,
			data->min_rate, data->max_rate);
		return -EINVAL;
	}

	if (rate > data->max_fb_rate) {
		use_fb_prediv = true;
		rate /= 2;
	} else {
		use_fb_prediv = false;
	}

	bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv);

	for (i = 3; i >= 0; i--)
		ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4);

	was_using_prediv = ana[1] & data->ana->fb_prediv_mask;

	ana[0] &= ~data->ana->mask0;
	ana[0] |= data->ana->set0;
	ana[1] &= ~data->ana->mask1;
	ana[1] |= data->ana->set1;
	ana[3] &= ~data->ana->mask3;
	ana[3] |= data->ana->set3;

	if (was_using_prediv && !use_fb_prediv) {
		ana[1] &= ~data->ana->fb_prediv_mask;
		do_ana_setup_first = true;
	} else if (!was_using_prediv && use_fb_prediv) {
		ana[1] |= data->ana->fb_prediv_mask;
		do_ana_setup_first = false;
	} else {
		do_ana_setup_first = true;
	}

	/* Unmask the reference clock from the oscillator. */
	cprman_write(cprman, A2W_XOSC_CTRL,
		     cprman_read(cprman, A2W_XOSC_CTRL) |
		     data->reference_enable_mask);

	if (do_ana_setup_first)
		bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);

	/* Set the PLL multiplier from the oscillator. */
	cprman_write(cprman, data->frac_reg, fdiv);

	a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg);
	a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
	a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
	a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
	a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
	cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl);

	if (!do_ana_setup_first)
		bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);

	return 0;
}

static const struct clk_ops bcm2835_pll_clk_ops = {
	.is_prepared = bcm2835_pll_is_on,
	.prepare = bcm2835_pll_on,
	.unprepare = bcm2835_pll_off,
	.recalc_rate = bcm2835_pll_get_rate,
	.set_rate = bcm2835_pll_set_rate,
	.round_rate = bcm2835_pll_round_rate,
};

struct bcm2835_pll_divider {
	struct clk_divider div;
	struct bcm2835_cprman *cprman;
	const struct bcm2835_pll_divider_data *data;
};

static struct bcm2835_pll_divider *
bcm2835_pll_divider_from_hw(struct clk_hw *hw)
{
	return container_of(hw, struct bcm2835_pll_divider, div.hw);
}

static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
{
	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
	struct bcm2835_cprman *cprman = divider->cprman;
	const struct bcm2835_pll_divider_data *data = divider->data;

	return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
}

static long bcm2835_pll_divider_round_rate(struct clk_hw *hw,
					   unsigned long rate,
					   unsigned long *parent_rate)
{
	return clk_divider_ops.round_rate(hw, rate, parent_rate);
}

static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
						  unsigned long parent_rate)
{
1073
	return clk_divider_ops.recalc_rate(hw, parent_rate);
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
}

static void bcm2835_pll_divider_off(struct clk_hw *hw)
{
	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
	struct bcm2835_cprman *cprman = divider->cprman;
	const struct bcm2835_pll_divider_data *data = divider->data;

	cprman_write(cprman, data->cm_reg,
		     (cprman_read(cprman, data->cm_reg) &
		      ~data->load_mask) | data->hold_mask);
	cprman_write(cprman, data->a2w_reg, A2W_PLL_CHANNEL_DISABLE);
}

static int bcm2835_pll_divider_on(struct clk_hw *hw)
{
	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
	struct bcm2835_cprman *cprman = divider->cprman;
	const struct bcm2835_pll_divider_data *data = divider->data;

	cprman_write(cprman, data->a2w_reg,
		     cprman_read(cprman, data->a2w_reg) &
		     ~A2W_PLL_CHANNEL_DISABLE);

	cprman_write(cprman, data->cm_reg,
		     cprman_read(cprman, data->cm_reg) & ~data->hold_mask);

	return 0;
}

static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
					unsigned long rate,
					unsigned long parent_rate)
{
	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
	struct bcm2835_cprman *cprman = divider->cprman;
	const struct bcm2835_pll_divider_data *data = divider->data;
1111
	u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS;
1112

1113 1114 1115 1116 1117
	div = DIV_ROUND_UP_ULL(parent_rate, rate);

	div = min(div, max_div);
	if (div == max_div)
		div = 0;
1118

1119
	cprman_write(cprman, data->a2w_reg, div);
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
	cm = cprman_read(cprman, data->cm_reg);
	cprman_write(cprman, data->cm_reg, cm | data->load_mask);
	cprman_write(cprman, data->cm_reg, cm & ~data->load_mask);

	return 0;
}

static const struct clk_ops bcm2835_pll_divider_clk_ops = {
	.is_prepared = bcm2835_pll_divider_is_on,
	.prepare = bcm2835_pll_divider_on,
	.unprepare = bcm2835_pll_divider_off,
	.recalc_rate = bcm2835_pll_divider_get_rate,
	.set_rate = bcm2835_pll_divider_set_rate,
	.round_rate = bcm2835_pll_divider_round_rate,
};

/*
 * The CM dividers do fixed-point division, so we can't use the
 * generic integer divider code like the PLL dividers do (and we can't
 * fake it by having some fixed shifts preceding it in the clock tree,
 * because we'd run out of bits in a 32-bit unsigned long).
 */
struct bcm2835_clock {
	struct clk_hw hw;
	struct bcm2835_cprman *cprman;
	const struct bcm2835_clock_data *data;
};

static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
{
	return container_of(hw, struct bcm2835_clock, hw);
}

static int bcm2835_clock_is_on(struct clk_hw *hw)
{
	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
	struct bcm2835_cprman *cprman = clock->cprman;
	const struct bcm2835_clock_data *data = clock->data;

	return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0;
}

static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
				    unsigned long rate,
1164 1165
				    unsigned long parent_rate,
				    bool round_up)
1166 1167 1168
{
	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
	const struct bcm2835_clock_data *data = clock->data;
1169 1170
	u32 unused_frac_mask =
		GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1;
1171
	u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
1172
	u64 rem;
1173 1174
	u32 div;

1175
	rem = do_div(temp, rate);
1176 1177
	div = temp;

1178 1179 1180 1181
	/* Round up and mask off the unused bits */
	if (round_up && ((div & unused_frac_mask) != 0 || rem != 0))
		div += unused_frac_mask + 1;
	div &= ~unused_frac_mask;
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278

	/* Clamp to the limits. */
	div = max(div, unused_frac_mask + 1);
	div = min_t(u32, div, GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
				      CM_DIV_FRAC_BITS - data->frac_bits));

	return div;
}

static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
					    unsigned long parent_rate,
					    u32 div)
{
	const struct bcm2835_clock_data *data = clock->data;
	u64 temp;

	/*
	 * The divisor is a 12.12 fixed point field, but only some of
	 * the bits are populated in any given clock.
	 */
	div >>= CM_DIV_FRAC_BITS - data->frac_bits;
	div &= (1 << (data->int_bits + data->frac_bits)) - 1;

	if (div == 0)
		return 0;

	temp = (u64)parent_rate << data->frac_bits;

	do_div(temp, div);

	return temp;
}

static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
					    unsigned long parent_rate)
{
	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
	struct bcm2835_cprman *cprman = clock->cprman;
	const struct bcm2835_clock_data *data = clock->data;
	u32 div = cprman_read(cprman, data->div_reg);

	return bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
}

static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
{
	struct bcm2835_cprman *cprman = clock->cprman;
	const struct bcm2835_clock_data *data = clock->data;
	ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);

	while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) {
		if (ktime_after(ktime_get(), timeout)) {
			dev_err(cprman->dev, "%s: couldn't lock PLL\n",
				clk_hw_get_name(&clock->hw));
			return;
		}
		cpu_relax();
	}
}

static void bcm2835_clock_off(struct clk_hw *hw)
{
	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
	struct bcm2835_cprman *cprman = clock->cprman;
	const struct bcm2835_clock_data *data = clock->data;

	spin_lock(&cprman->regs_lock);
	cprman_write(cprman, data->ctl_reg,
		     cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE);
	spin_unlock(&cprman->regs_lock);

	/* BUSY will remain high until the divider completes its cycle. */
	bcm2835_clock_wait_busy(clock);
}

static int bcm2835_clock_on(struct clk_hw *hw)
{
	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
	struct bcm2835_cprman *cprman = clock->cprman;
	const struct bcm2835_clock_data *data = clock->data;

	spin_lock(&cprman->regs_lock);
	cprman_write(cprman, data->ctl_reg,
		     cprman_read(cprman, data->ctl_reg) |
		     CM_ENABLE |
		     CM_GATE);
	spin_unlock(&cprman->regs_lock);

	return 0;
}

static int bcm2835_clock_set_rate(struct clk_hw *hw,
				  unsigned long rate, unsigned long parent_rate)
{
	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
	struct bcm2835_cprman *cprman = clock->cprman;
	const struct bcm2835_clock_data *data = clock->data;
1279
	u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate, false);
1280 1281 1282 1283 1284 1285

	cprman_write(cprman, data->div_reg, div);

	return 0;
}

1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
static int bcm2835_clock_determine_rate(struct clk_hw *hw,
		struct clk_rate_request *req)
{
	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
	struct clk_hw *parent, *best_parent = NULL;
	unsigned long rate, best_rate = 0;
	unsigned long prate, best_prate = 0;
	size_t i;
	u32 div;

	/*
	 * Select parent clock that results in the closest but lower rate
	 */
	for (i = 0; i < clk_hw_get_num_parents(hw); ++i) {
		parent = clk_hw_get_parent_by_index(hw, i);
		if (!parent)
			continue;
		prate = clk_hw_get_rate(parent);
		div = bcm2835_clock_choose_div(hw, req->rate, prate, true);
		rate = bcm2835_clock_rate_from_divisor(clock, prate, div);
		if (rate > best_rate && rate <= req->rate) {
			best_parent = parent;
			best_prate = prate;
			best_rate = rate;
		}
	}

	if (!best_parent)
		return -EINVAL;

	req->best_parent_hw = best_parent;
	req->best_parent_rate = best_prate;

	req->rate = best_rate;

	return 0;
}

static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index)
{
	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
	struct bcm2835_cprman *cprman = clock->cprman;
	const struct bcm2835_clock_data *data = clock->data;
	u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK;

	cprman_write(cprman, data->ctl_reg, src);
	return 0;
}

static u8 bcm2835_clock_get_parent(struct clk_hw *hw)
{
	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
	struct bcm2835_cprman *cprman = clock->cprman;
	const struct bcm2835_clock_data *data = clock->data;
	u32 src = cprman_read(cprman, data->ctl_reg);

	return (src & CM_SRC_MASK) >> CM_SRC_SHIFT;
}


1346 1347 1348 1349 1350 1351
static const struct clk_ops bcm2835_clock_clk_ops = {
	.is_prepared = bcm2835_clock_is_on,
	.prepare = bcm2835_clock_on,
	.unprepare = bcm2835_clock_off,
	.recalc_rate = bcm2835_clock_get_rate,
	.set_rate = bcm2835_clock_set_rate,
1352 1353 1354
	.determine_rate = bcm2835_clock_determine_rate,
	.set_parent = bcm2835_clock_set_parent,
	.get_parent = bcm2835_clock_get_parent,
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
};

static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
{
	return true;
}

/*
 * The VPU clock can never be disabled (it doesn't have an ENABLE
 * bit), so it gets its own set of clock ops.
 */
static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
	.is_prepared = bcm2835_vpu_clock_is_on,
	.recalc_rate = bcm2835_clock_get_rate,
	.set_rate = bcm2835_clock_set_rate,
1370 1371 1372
	.determine_rate = bcm2835_clock_determine_rate,
	.set_parent = bcm2835_clock_set_parent,
	.get_parent = bcm2835_clock_get_parent,
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
};

static struct clk *bcm2835_register_pll(struct bcm2835_cprman *cprman,
					const struct bcm2835_pll_data *data)
{
	struct bcm2835_pll *pll;
	struct clk_init_data init;

	memset(&init, 0, sizeof(init));

	/* All of the PLLs derive from the external oscillator. */
	init.parent_names = &cprman->osc_name;
	init.num_parents = 1;
	init.name = data->name;
	init.ops = &bcm2835_pll_clk_ops;
	init.flags = CLK_IGNORE_UNUSED;

	pll = kzalloc(sizeof(*pll), GFP_KERNEL);
	if (!pll)
		return NULL;

	pll->cprman = cprman;
	pll->data = data;
	pll->hw.init = &init;

	return devm_clk_register(cprman->dev, &pll->hw);
}

static struct clk *
bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
			     const struct bcm2835_pll_divider_data *data)
{
	struct bcm2835_pll_divider *divider;
	struct clk_init_data init;
	struct clk *clk;
	const char *divider_name;

	if (data->fixed_divider != 1) {
		divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL,
					      "%s_prediv", data->name);
		if (!divider_name)
			return NULL;
	} else {
		divider_name = data->name;
	}

	memset(&init, 0, sizeof(init));

	init.parent_names = &data->source_pll->name;
	init.num_parents = 1;
	init.name = divider_name;
	init.ops = &bcm2835_pll_divider_clk_ops;
	init.flags = CLK_SET_RATE_PARENT | CLK_IGNORE_UNUSED;

	divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL);
	if (!divider)
		return NULL;

	divider->div.reg = cprman->regs + data->a2w_reg;
	divider->div.shift = A2W_PLL_DIV_SHIFT;
	divider->div.width = A2W_PLL_DIV_BITS;
1434
	divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO;
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
	divider->div.lock = &cprman->regs_lock;
	divider->div.hw.init = &init;
	divider->div.table = NULL;

	divider->cprman = cprman;
	divider->data = data;

	clk = devm_clk_register(cprman->dev, &divider->div.hw);
	if (IS_ERR(clk))
		return clk;

	/*
	 * PLLH's channels have a fixed divide by 10 afterwards, which
	 * is what our consumers are actually using.
	 */
	if (data->fixed_divider != 1) {
		return clk_register_fixed_factor(cprman->dev, data->name,
						 divider_name,
						 CLK_SET_RATE_PARENT,
						 1,
						 data->fixed_divider);
	}

	return clk;
}

static struct clk *bcm2835_register_clock(struct bcm2835_cprman *cprman,
					  const struct bcm2835_clock_data *data)
{
	struct bcm2835_clock *clock;
	struct clk_init_data init;
1466 1467
	const char *parents[1 << CM_SRC_BITS];
	size_t i;
1468 1469

	/*
1470 1471
	 * Replace our "xosc" references with the oscillator's
	 * actual name.
1472
	 */
1473 1474 1475 1476 1477
	for (i = 0; i < data->num_mux_parents; i++) {
		if (strcmp(data->parents[i], "xosc") == 0)
			parents[i] = cprman->osc_name;
		else
			parents[i] = data->parents[i];
1478 1479 1480
	}

	memset(&init, 0, sizeof(init));
1481 1482
	init.parent_names = parents;
	init.num_parents = data->num_mux_parents;
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
	init.name = data->name;
	init.flags = CLK_IGNORE_UNUSED;

	if (data->is_vpu_clock) {
		init.ops = &bcm2835_vpu_clock_clk_ops;
	} else {
		init.ops = &bcm2835_clock_clk_ops;
		init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
	}

	clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL);
	if (!clock)
		return NULL;

	clock->cprman = cprman;
	clock->data = data;
	clock->hw.init = &init;

	return devm_clk_register(cprman->dev, &clock->hw);
}

static int bcm2835_clk_probe(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct clk **clks;
	struct bcm2835_cprman *cprman;
	struct resource *res;

	cprman = devm_kzalloc(dev, sizeof(*cprman), GFP_KERNEL);
	if (!cprman)
		return -ENOMEM;

	spin_lock_init(&cprman->regs_lock);
	cprman->dev = dev;
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	cprman->regs = devm_ioremap_resource(dev, res);
	if (IS_ERR(cprman->regs))
		return PTR_ERR(cprman->regs);

	cprman->osc_name = of_clk_get_parent_name(dev->of_node, 0);
	if (!cprman->osc_name)
		return -ENODEV;

	platform_set_drvdata(pdev, cprman);

	cprman->onecell.clk_num = BCM2835_CLOCK_COUNT;
	cprman->onecell.clks = cprman->clks;
	clks = cprman->clks;

	clks[BCM2835_PLLA] = bcm2835_register_pll(cprman, &bcm2835_plla_data);
	clks[BCM2835_PLLB] = bcm2835_register_pll(cprman, &bcm2835_pllb_data);
	clks[BCM2835_PLLC] = bcm2835_register_pll(cprman, &bcm2835_pllc_data);
	clks[BCM2835_PLLD] = bcm2835_register_pll(cprman, &bcm2835_plld_data);
	clks[BCM2835_PLLH] = bcm2835_register_pll(cprman, &bcm2835_pllh_data);

	clks[BCM2835_PLLA_CORE] =
		bcm2835_register_pll_divider(cprman, &bcm2835_plla_core_data);
	clks[BCM2835_PLLA_PER] =
		bcm2835_register_pll_divider(cprman, &bcm2835_plla_per_data);
	clks[BCM2835_PLLC_CORE0] =
		bcm2835_register_pll_divider(cprman, &bcm2835_pllc_core0_data);
	clks[BCM2835_PLLC_CORE1] =
		bcm2835_register_pll_divider(cprman, &bcm2835_pllc_core1_data);
	clks[BCM2835_PLLC_CORE2] =
		bcm2835_register_pll_divider(cprman, &bcm2835_pllc_core2_data);
	clks[BCM2835_PLLC_PER] =
		bcm2835_register_pll_divider(cprman, &bcm2835_pllc_per_data);
	clks[BCM2835_PLLD_CORE] =
		bcm2835_register_pll_divider(cprman, &bcm2835_plld_core_data);
	clks[BCM2835_PLLD_PER] =
		bcm2835_register_pll_divider(cprman, &bcm2835_plld_per_data);
	clks[BCM2835_PLLH_RCAL] =
		bcm2835_register_pll_divider(cprman, &bcm2835_pllh_rcal_data);
	clks[BCM2835_PLLH_AUX] =
		bcm2835_register_pll_divider(cprman, &bcm2835_pllh_aux_data);
	clks[BCM2835_PLLH_PIX] =
		bcm2835_register_pll_divider(cprman, &bcm2835_pllh_pix_data);

	clks[BCM2835_CLOCK_TIMER] =
		bcm2835_register_clock(cprman, &bcm2835_clock_timer_data);
	clks[BCM2835_CLOCK_OTP] =
		bcm2835_register_clock(cprman, &bcm2835_clock_otp_data);
	clks[BCM2835_CLOCK_TSENS] =
		bcm2835_register_clock(cprman, &bcm2835_clock_tsens_data);
	clks[BCM2835_CLOCK_VPU] =
		bcm2835_register_clock(cprman, &bcm2835_clock_vpu_data);
	clks[BCM2835_CLOCK_V3D] =
		bcm2835_register_clock(cprman, &bcm2835_clock_v3d_data);
	clks[BCM2835_CLOCK_ISP] =
		bcm2835_register_clock(cprman, &bcm2835_clock_isp_data);
	clks[BCM2835_CLOCK_H264] =
		bcm2835_register_clock(cprman, &bcm2835_clock_h264_data);
	clks[BCM2835_CLOCK_V3D] =
		bcm2835_register_clock(cprman, &bcm2835_clock_v3d_data);
	clks[BCM2835_CLOCK_SDRAM] =
		bcm2835_register_clock(cprman, &bcm2835_clock_sdram_data);
	clks[BCM2835_CLOCK_UART] =
		bcm2835_register_clock(cprman, &bcm2835_clock_uart_data);
	clks[BCM2835_CLOCK_VEC] =
		bcm2835_register_clock(cprman, &bcm2835_clock_vec_data);
	clks[BCM2835_CLOCK_HSM] =
		bcm2835_register_clock(cprman, &bcm2835_clock_hsm_data);
	clks[BCM2835_CLOCK_EMMC] =
		bcm2835_register_clock(cprman, &bcm2835_clock_emmc_data);

	/*
	 * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
	 * you have the debug bit set in the power manager, which we
	 * don't bother exposing) are individual gates off of the
	 * non-stop vpu clock.
	 */
	clks[BCM2835_CLOCK_PERI_IMAGE] =
		clk_register_gate(dev, "peri_image", "vpu",
				  CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
				  cprman->regs + CM_PERIICTL, CM_GATE_BIT,
				  0, &cprman->regs_lock);

1600 1601 1602
	clks[BCM2835_CLOCK_PWM] =
		bcm2835_register_clock(cprman, &bcm2835_clock_pwm_data);

1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
	return of_clk_add_provider(dev->of_node, of_clk_src_onecell_get,
				   &cprman->onecell);
}

static const struct of_device_id bcm2835_clk_of_match[] = {
	{ .compatible = "brcm,bcm2835-cprman", },
	{}
};
MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);

static struct platform_driver bcm2835_clk_driver = {
	.driver = {
		.name = "bcm2835-clk",
		.of_match_table = bcm2835_clk_of_match,
	},
	.probe          = bcm2835_clk_probe,
};

builtin_platform_driver(bcm2835_clk_driver);

MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
MODULE_DESCRIPTION("BCM2835 clock driver");
MODULE_LICENSE("GPL v2");