auxtrace.c 47.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 * auxtrace.c: AUX area trace support
 * Copyright (c) 2013-2015, Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 */

16
#include <inttypes.h>
17 18 19
#include <sys/types.h>
#include <sys/mman.h>
#include <stdbool.h>
20 21 22
#include <string.h>
#include <limits.h>
#include <errno.h>
23 24 25 26 27 28

#include <linux/kernel.h>
#include <linux/perf_event.h>
#include <linux/types.h>
#include <linux/bitops.h>
#include <linux/log2.h>
29
#include <linux/string.h>
30

31
#include <sys/param.h>
32
#include <stdlib.h>
33
#include <stdio.h>
34
#include <linux/list.h>
35

36 37 38
#include "../perf.h"
#include "util.h"
#include "evlist.h"
39 40 41 42
#include "dso.h"
#include "map.h"
#include "pmu.h"
#include "evsel.h"
43 44 45 46 47
#include "cpumap.h"
#include "thread_map.h"
#include "asm/bug.h"
#include "auxtrace.h"

48 49
#include <linux/hash.h>

50
#include "event.h"
51
#include "session.h"
52
#include "debug.h"
53
#include <subcmd/parse-options.h>
54

55
#include "cs-etm.h"
56
#include "intel-pt.h"
57
#include "intel-bts.h"
58
#include "arm-spe.h"
59

60 61 62
#include "sane_ctype.h"
#include "symbol/kallsyms.h"

63 64 65 66 67 68
static bool auxtrace__dont_decode(struct perf_session *session)
{
	return !session->itrace_synth_opts ||
	       session->itrace_synth_opts->dont_decode;
}

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
int auxtrace_mmap__mmap(struct auxtrace_mmap *mm,
			struct auxtrace_mmap_params *mp,
			void *userpg, int fd)
{
	struct perf_event_mmap_page *pc = userpg;

	WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n");

	mm->userpg = userpg;
	mm->mask = mp->mask;
	mm->len = mp->len;
	mm->prev = 0;
	mm->idx = mp->idx;
	mm->tid = mp->tid;
	mm->cpu = mp->cpu;

	if (!mp->len) {
		mm->base = NULL;
		return 0;
	}

90 91 92 93 94
#if BITS_PER_LONG != 64 && !defined(HAVE_SYNC_COMPARE_AND_SWAP_SUPPORT)
	pr_err("Cannot use AUX area tracing mmaps\n");
	return -1;
#endif

95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
	pc->aux_offset = mp->offset;
	pc->aux_size = mp->len;

	mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset);
	if (mm->base == MAP_FAILED) {
		pr_debug2("failed to mmap AUX area\n");
		mm->base = NULL;
		return -1;
	}

	return 0;
}

void auxtrace_mmap__munmap(struct auxtrace_mmap *mm)
{
	if (mm->base) {
		munmap(mm->base, mm->len);
		mm->base = NULL;
	}
}

void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp,
				off_t auxtrace_offset,
				unsigned int auxtrace_pages,
				bool auxtrace_overwrite)
{
	if (auxtrace_pages) {
		mp->offset = auxtrace_offset;
		mp->len = auxtrace_pages * (size_t)page_size;
		mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0;
		mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE);
		pr_debug2("AUX area mmap length %zu\n", mp->len);
	} else {
		mp->len = 0;
	}
}

void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp,
				   struct perf_evlist *evlist, int idx,
				   bool per_cpu)
{
	mp->idx = idx;

	if (per_cpu) {
		mp->cpu = evlist->cpus->map[idx];
		if (evlist->threads)
141
			mp->tid = thread_map__pid(evlist->threads, 0);
142 143 144 145
		else
			mp->tid = -1;
	} else {
		mp->cpu = -1;
146
		mp->tid = thread_map__pid(evlist->threads, idx);
147 148
	}
}
149

150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
#define AUXTRACE_INIT_NR_QUEUES	32

static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues)
{
	struct auxtrace_queue *queue_array;
	unsigned int max_nr_queues, i;

	max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue);
	if (nr_queues > max_nr_queues)
		return NULL;

	queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue));
	if (!queue_array)
		return NULL;

	for (i = 0; i < nr_queues; i++) {
		INIT_LIST_HEAD(&queue_array[i].head);
		queue_array[i].priv = NULL;
	}

	return queue_array;
}

int auxtrace_queues__init(struct auxtrace_queues *queues)
{
	queues->nr_queues = AUXTRACE_INIT_NR_QUEUES;
	queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues);
	if (!queues->queue_array)
		return -ENOMEM;
	return 0;
}

static int auxtrace_queues__grow(struct auxtrace_queues *queues,
				 unsigned int new_nr_queues)
{
	unsigned int nr_queues = queues->nr_queues;
	struct auxtrace_queue *queue_array;
	unsigned int i;

	if (!nr_queues)
		nr_queues = AUXTRACE_INIT_NR_QUEUES;

	while (nr_queues && nr_queues < new_nr_queues)
		nr_queues <<= 1;

	if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues)
		return -EINVAL;

	queue_array = auxtrace_alloc_queue_array(nr_queues);
	if (!queue_array)
		return -ENOMEM;

	for (i = 0; i < queues->nr_queues; i++) {
		list_splice_tail(&queues->queue_array[i].head,
				 &queue_array[i].head);
		queue_array[i].priv = queues->queue_array[i].priv;
	}

	queues->nr_queues = nr_queues;
	queues->queue_array = queue_array;

	return 0;
}

static void *auxtrace_copy_data(u64 size, struct perf_session *session)
{
216
	int fd = perf_data__fd(session->data);
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
	void *p;
	ssize_t ret;

	if (size > SSIZE_MAX)
		return NULL;

	p = malloc(size);
	if (!p)
		return NULL;

	ret = readn(fd, p, size);
	if (ret != (ssize_t)size) {
		free(p);
		return NULL;
	}

	return p;
}

236 237 238
static int auxtrace_queues__queue_buffer(struct auxtrace_queues *queues,
					 unsigned int idx,
					 struct auxtrace_buffer *buffer)
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
{
	struct auxtrace_queue *queue;
	int err;

	if (idx >= queues->nr_queues) {
		err = auxtrace_queues__grow(queues, idx + 1);
		if (err)
			return err;
	}

	queue = &queues->queue_array[idx];

	if (!queue->set) {
		queue->set = true;
		queue->tid = buffer->tid;
		queue->cpu = buffer->cpu;
	} else if (buffer->cpu != queue->cpu || buffer->tid != queue->tid) {
		pr_err("auxtrace queue conflict: cpu %d, tid %d vs cpu %d, tid %d\n",
		       queue->cpu, queue->tid, buffer->cpu, buffer->tid);
		return -EINVAL;
	}

	buffer->buffer_nr = queues->next_buffer_nr++;

	list_add_tail(&buffer->list, &queue->head);

	queues->new_data = true;
	queues->populated = true;

	return 0;
}

/* Limit buffers to 32MiB on 32-bit */
#define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024)

static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues,
					 unsigned int idx,
					 struct auxtrace_buffer *buffer)
{
	u64 sz = buffer->size;
	bool consecutive = false;
	struct auxtrace_buffer *b;
	int err;

	while (sz > BUFFER_LIMIT_FOR_32_BIT) {
		b = memdup(buffer, sizeof(struct auxtrace_buffer));
		if (!b)
			return -ENOMEM;
		b->size = BUFFER_LIMIT_FOR_32_BIT;
		b->consecutive = consecutive;
289
		err = auxtrace_queues__queue_buffer(queues, idx, b);
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
		if (err) {
			auxtrace_buffer__free(b);
			return err;
		}
		buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT;
		sz -= BUFFER_LIMIT_FOR_32_BIT;
		consecutive = true;
	}

	buffer->size = sz;
	buffer->consecutive = consecutive;

	return 0;
}

305 306 307
static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues,
				       struct perf_session *session,
				       unsigned int idx,
308 309
				       struct auxtrace_buffer *buffer,
				       struct auxtrace_buffer **buffer_ptr)
310
{
311 312
	int err;

313 314 315
	if (session->one_mmap) {
		buffer->data = buffer->data_offset - session->one_mmap_offset +
			       session->one_mmap_addr;
316
	} else if (perf_data__is_pipe(session->data)) {
317 318 319 320 321 322 323 324 325 326 327
		buffer->data = auxtrace_copy_data(buffer->size, session);
		if (!buffer->data)
			return -ENOMEM;
		buffer->data_needs_freeing = true;
	} else if (BITS_PER_LONG == 32 &&
		   buffer->size > BUFFER_LIMIT_FOR_32_BIT) {
		err = auxtrace_queues__split_buffer(queues, idx, buffer);
		if (err)
			return err;
	}

328 329 330 331 332 333 334 335 336
	err = auxtrace_queues__queue_buffer(queues, idx, buffer);
	if (err)
		return err;

	/* FIXME: Doesn't work for split buffer */
	if (buffer_ptr)
		*buffer_ptr = buffer;

	return 0;
337 338
}

339 340 341 342 343 344 345
static bool filter_cpu(struct perf_session *session, int cpu)
{
	unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap;

	return cpu_bitmap && cpu != -1 && !test_bit(cpu, cpu_bitmap);
}

346 347 348 349 350 351 352 353 354
int auxtrace_queues__add_event(struct auxtrace_queues *queues,
			       struct perf_session *session,
			       union perf_event *event, off_t data_offset,
			       struct auxtrace_buffer **buffer_ptr)
{
	struct auxtrace_buffer *buffer;
	unsigned int idx;
	int err;

355 356 357
	if (filter_cpu(session, event->auxtrace.cpu))
		return 0;

358 359 360 361 362 363 364 365 366 367 368 369 370
	buffer = zalloc(sizeof(struct auxtrace_buffer));
	if (!buffer)
		return -ENOMEM;

	buffer->pid = -1;
	buffer->tid = event->auxtrace.tid;
	buffer->cpu = event->auxtrace.cpu;
	buffer->data_offset = data_offset;
	buffer->offset = event->auxtrace.offset;
	buffer->reference = event->auxtrace.reference;
	buffer->size = event->auxtrace.size;
	idx = event->auxtrace.idx;

371 372
	err = auxtrace_queues__add_buffer(queues, session, idx, buffer,
					  buffer_ptr);
373 374 375 376 377 378 379 380 381 382
	if (err)
		goto out_err;

	return 0;

out_err:
	auxtrace_buffer__free(buffer);
	return err;
}

383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues,
					      struct perf_session *session,
					      off_t file_offset, size_t sz)
{
	union perf_event *event;
	int err;
	char buf[PERF_SAMPLE_MAX_SIZE];

	err = perf_session__peek_event(session, file_offset, buf,
				       PERF_SAMPLE_MAX_SIZE, &event, NULL);
	if (err)
		return err;

	if (event->header.type == PERF_RECORD_AUXTRACE) {
		if (event->header.size < sizeof(struct auxtrace_event) ||
		    event->header.size != sz) {
			err = -EINVAL;
			goto out;
		}
		file_offset += event->header.size;
		err = auxtrace_queues__add_event(queues, session, event,
						 file_offset, NULL);
	}
out:
	return err;
}

410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
void auxtrace_queues__free(struct auxtrace_queues *queues)
{
	unsigned int i;

	for (i = 0; i < queues->nr_queues; i++) {
		while (!list_empty(&queues->queue_array[i].head)) {
			struct auxtrace_buffer *buffer;

			buffer = list_entry(queues->queue_array[i].head.next,
					    struct auxtrace_buffer, list);
			list_del(&buffer->list);
			auxtrace_buffer__free(buffer);
		}
	}

	zfree(&queues->queue_array);
	queues->nr_queues = 0;
}

429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
static void auxtrace_heapify(struct auxtrace_heap_item *heap_array,
			     unsigned int pos, unsigned int queue_nr,
			     u64 ordinal)
{
	unsigned int parent;

	while (pos) {
		parent = (pos - 1) >> 1;
		if (heap_array[parent].ordinal <= ordinal)
			break;
		heap_array[pos] = heap_array[parent];
		pos = parent;
	}
	heap_array[pos].queue_nr = queue_nr;
	heap_array[pos].ordinal = ordinal;
}

int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr,
		       u64 ordinal)
{
	struct auxtrace_heap_item *heap_array;

	if (queue_nr >= heap->heap_sz) {
		unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES;

		while (heap_sz <= queue_nr)
			heap_sz <<= 1;
		heap_array = realloc(heap->heap_array,
				     heap_sz * sizeof(struct auxtrace_heap_item));
		if (!heap_array)
			return -ENOMEM;
		heap->heap_array = heap_array;
		heap->heap_sz = heap_sz;
	}

	auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal);

	return 0;
}

void auxtrace_heap__free(struct auxtrace_heap *heap)
{
	zfree(&heap->heap_array);
	heap->heap_cnt = 0;
	heap->heap_sz = 0;
}

void auxtrace_heap__pop(struct auxtrace_heap *heap)
{
	unsigned int pos, last, heap_cnt = heap->heap_cnt;
	struct auxtrace_heap_item *heap_array;

	if (!heap_cnt)
		return;

	heap->heap_cnt -= 1;

	heap_array = heap->heap_array;

	pos = 0;
	while (1) {
		unsigned int left, right;

		left = (pos << 1) + 1;
		if (left >= heap_cnt)
			break;
		right = left + 1;
		if (right >= heap_cnt) {
			heap_array[pos] = heap_array[left];
			return;
		}
		if (heap_array[left].ordinal < heap_array[right].ordinal) {
			heap_array[pos] = heap_array[left];
			pos = left;
		} else {
			heap_array[pos] = heap_array[right];
			pos = right;
		}
	}

	last = heap_cnt - 1;
	auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr,
			 heap_array[last].ordinal);
}

514 515
size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr,
				       struct perf_evlist *evlist)
516 517
{
	if (itr)
518
		return itr->info_priv_size(itr, evlist);
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
	return 0;
}

static int auxtrace_not_supported(void)
{
	pr_err("AUX area tracing is not supported on this architecture\n");
	return -EINVAL;
}

int auxtrace_record__info_fill(struct auxtrace_record *itr,
			       struct perf_session *session,
			       struct auxtrace_info_event *auxtrace_info,
			       size_t priv_size)
{
	if (itr)
		return itr->info_fill(itr, session, auxtrace_info, priv_size);
	return auxtrace_not_supported();
}

void auxtrace_record__free(struct auxtrace_record *itr)
{
	if (itr)
		itr->free(itr);
}

544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
int auxtrace_record__snapshot_start(struct auxtrace_record *itr)
{
	if (itr && itr->snapshot_start)
		return itr->snapshot_start(itr);
	return 0;
}

int auxtrace_record__snapshot_finish(struct auxtrace_record *itr)
{
	if (itr && itr->snapshot_finish)
		return itr->snapshot_finish(itr);
	return 0;
}

int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx,
				   struct auxtrace_mmap *mm,
				   unsigned char *data, u64 *head, u64 *old)
{
	if (itr && itr->find_snapshot)
		return itr->find_snapshot(itr, idx, mm, data, head, old);
	return 0;
}

567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
int auxtrace_record__options(struct auxtrace_record *itr,
			     struct perf_evlist *evlist,
			     struct record_opts *opts)
{
	if (itr)
		return itr->recording_options(itr, evlist, opts);
	return 0;
}

u64 auxtrace_record__reference(struct auxtrace_record *itr)
{
	if (itr)
		return itr->reference(itr);
	return 0;
}

583 584 585 586 587 588 589 590 591 592 593 594 595
int auxtrace_parse_snapshot_options(struct auxtrace_record *itr,
				    struct record_opts *opts, const char *str)
{
	if (!str)
		return 0;

	if (itr)
		return itr->parse_snapshot_options(itr, opts, str);

	pr_err("No AUX area tracing to snapshot\n");
	return -EINVAL;
}

596 597 598 599 600 601 602
struct auxtrace_record *__weak
auxtrace_record__init(struct perf_evlist *evlist __maybe_unused, int *err)
{
	*err = 0;
	return NULL;
}

603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
static int auxtrace_index__alloc(struct list_head *head)
{
	struct auxtrace_index *auxtrace_index;

	auxtrace_index = malloc(sizeof(struct auxtrace_index));
	if (!auxtrace_index)
		return -ENOMEM;

	auxtrace_index->nr = 0;
	INIT_LIST_HEAD(&auxtrace_index->list);

	list_add_tail(&auxtrace_index->list, head);

	return 0;
}

void auxtrace_index__free(struct list_head *head)
{
	struct auxtrace_index *auxtrace_index, *n;

	list_for_each_entry_safe(auxtrace_index, n, head, list) {
		list_del(&auxtrace_index->list);
		free(auxtrace_index);
	}
}

static struct auxtrace_index *auxtrace_index__last(struct list_head *head)
{
	struct auxtrace_index *auxtrace_index;
	int err;

	if (list_empty(head)) {
		err = auxtrace_index__alloc(head);
		if (err)
			return NULL;
	}

	auxtrace_index = list_entry(head->prev, struct auxtrace_index, list);

	if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) {
		err = auxtrace_index__alloc(head);
		if (err)
			return NULL;
		auxtrace_index = list_entry(head->prev, struct auxtrace_index,
					    list);
	}

	return auxtrace_index;
}

int auxtrace_index__auxtrace_event(struct list_head *head,
				   union perf_event *event, off_t file_offset)
{
	struct auxtrace_index *auxtrace_index;
	size_t nr;

	auxtrace_index = auxtrace_index__last(head);
	if (!auxtrace_index)
		return -ENOMEM;

	nr = auxtrace_index->nr;
	auxtrace_index->entries[nr].file_offset = file_offset;
	auxtrace_index->entries[nr].sz = event->header.size;
	auxtrace_index->nr += 1;

	return 0;
}

static int auxtrace_index__do_write(int fd,
				    struct auxtrace_index *auxtrace_index)
{
	struct auxtrace_index_entry ent;
	size_t i;

	for (i = 0; i < auxtrace_index->nr; i++) {
		ent.file_offset = auxtrace_index->entries[i].file_offset;
		ent.sz = auxtrace_index->entries[i].sz;
		if (writen(fd, &ent, sizeof(ent)) != sizeof(ent))
			return -errno;
	}
	return 0;
}

int auxtrace_index__write(int fd, struct list_head *head)
{
	struct auxtrace_index *auxtrace_index;
	u64 total = 0;
	int err;

	list_for_each_entry(auxtrace_index, head, list)
		total += auxtrace_index->nr;

	if (writen(fd, &total, sizeof(total)) != sizeof(total))
		return -errno;

	list_for_each_entry(auxtrace_index, head, list) {
		err = auxtrace_index__do_write(fd, auxtrace_index);
		if (err)
			return err;
	}

	return 0;
}

static int auxtrace_index__process_entry(int fd, struct list_head *head,
					 bool needs_swap)
{
	struct auxtrace_index *auxtrace_index;
	struct auxtrace_index_entry ent;
	size_t nr;

	if (readn(fd, &ent, sizeof(ent)) != sizeof(ent))
		return -1;

	auxtrace_index = auxtrace_index__last(head);
	if (!auxtrace_index)
		return -1;

	nr = auxtrace_index->nr;
	if (needs_swap) {
		auxtrace_index->entries[nr].file_offset =
						bswap_64(ent.file_offset);
		auxtrace_index->entries[nr].sz = bswap_64(ent.sz);
	} else {
		auxtrace_index->entries[nr].file_offset = ent.file_offset;
		auxtrace_index->entries[nr].sz = ent.sz;
	}

	auxtrace_index->nr = nr + 1;

	return 0;
}

int auxtrace_index__process(int fd, u64 size, struct perf_session *session,
			    bool needs_swap)
{
	struct list_head *head = &session->auxtrace_index;
	u64 nr;

	if (readn(fd, &nr, sizeof(u64)) != sizeof(u64))
		return -1;

	if (needs_swap)
		nr = bswap_64(nr);

	if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size)
		return -1;

	while (nr--) {
		int err;

		err = auxtrace_index__process_entry(fd, head, needs_swap);
		if (err)
			return -1;
	}

	return 0;
}

static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues,
						struct perf_session *session,
						struct auxtrace_index_entry *ent)
{
	return auxtrace_queues__add_indexed_event(queues, session,
						  ent->file_offset, ent->sz);
}

int auxtrace_queues__process_index(struct auxtrace_queues *queues,
				   struct perf_session *session)
{
	struct auxtrace_index *auxtrace_index;
	struct auxtrace_index_entry *ent;
	size_t i;
	int err;

778 779 780
	if (auxtrace__dont_decode(session))
		return 0;

781 782 783 784 785 786 787 788 789 790 791 792 793
	list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
		for (i = 0; i < auxtrace_index->nr; i++) {
			ent = &auxtrace_index->entries[i];
			err = auxtrace_queues__process_index_entry(queues,
								   session,
								   ent);
			if (err)
				return err;
		}
	}
	return 0;
}

794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue,
					      struct auxtrace_buffer *buffer)
{
	if (buffer) {
		if (list_is_last(&buffer->list, &queue->head))
			return NULL;
		return list_entry(buffer->list.next, struct auxtrace_buffer,
				  list);
	} else {
		if (list_empty(&queue->head))
			return NULL;
		return list_entry(queue->head.next, struct auxtrace_buffer,
				  list);
	}
}

void *auxtrace_buffer__get_data(struct auxtrace_buffer *buffer, int fd)
{
	size_t adj = buffer->data_offset & (page_size - 1);
	size_t size = buffer->size + adj;
	off_t file_offset = buffer->data_offset - adj;
	void *addr;

	if (buffer->data)
		return buffer->data;

	addr = mmap(NULL, size, PROT_READ, MAP_SHARED, fd, file_offset);
	if (addr == MAP_FAILED)
		return NULL;

	buffer->mmap_addr = addr;
	buffer->mmap_size = size;

	buffer->data = addr + adj;

	return buffer->data;
}

void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer)
{
	if (!buffer->data || !buffer->mmap_addr)
		return;
	munmap(buffer->mmap_addr, buffer->mmap_size);
	buffer->mmap_addr = NULL;
	buffer->mmap_size = 0;
	buffer->data = NULL;
	buffer->use_data = NULL;
}

void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer)
{
	auxtrace_buffer__put_data(buffer);
	if (buffer->data_needs_freeing) {
		buffer->data_needs_freeing = false;
		zfree(&buffer->data);
		buffer->use_data = NULL;
		buffer->size = 0;
	}
}

void auxtrace_buffer__free(struct auxtrace_buffer *buffer)
{
	auxtrace_buffer__drop_data(buffer);
	free(buffer);
}

860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
void auxtrace_synth_error(struct auxtrace_error_event *auxtrace_error, int type,
			  int code, int cpu, pid_t pid, pid_t tid, u64 ip,
			  const char *msg)
{
	size_t size;

	memset(auxtrace_error, 0, sizeof(struct auxtrace_error_event));

	auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR;
	auxtrace_error->type = type;
	auxtrace_error->code = code;
	auxtrace_error->cpu = cpu;
	auxtrace_error->pid = pid;
	auxtrace_error->tid = tid;
	auxtrace_error->ip = ip;
	strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG);

	size = (void *)auxtrace_error->msg - (void *)auxtrace_error +
	       strlen(auxtrace_error->msg) + 1;
	auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64));
}

882 883 884 885 886 887 888 889 890 891
int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr,
					 struct perf_tool *tool,
					 struct perf_session *session,
					 perf_event__handler_t process)
{
	union perf_event *ev;
	size_t priv_size;
	int err;

	pr_debug2("Synthesizing auxtrace information\n");
892
	priv_size = auxtrace_record__info_priv_size(itr, session->evlist);
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
	ev = zalloc(sizeof(struct auxtrace_info_event) + priv_size);
	if (!ev)
		return -ENOMEM;

	ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO;
	ev->auxtrace_info.header.size = sizeof(struct auxtrace_info_event) +
					priv_size;
	err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info,
					 priv_size);
	if (err)
		goto out_free;

	err = process(tool, ev, NULL, NULL);
out_free:
	free(ev);
	return err;
}

911 912
int perf_event__process_auxtrace_info(struct perf_tool *tool __maybe_unused,
				      union perf_event *event,
913
				      struct perf_session *session)
914 915 916 917 918 919 920
{
	enum auxtrace_type type = event->auxtrace_info.type;

	if (dump_trace)
		fprintf(stdout, " type: %u\n", type);

	switch (type) {
921
	case PERF_AUXTRACE_INTEL_PT:
922
		return intel_pt_process_auxtrace_info(event, session);
923 924
	case PERF_AUXTRACE_INTEL_BTS:
		return intel_bts_process_auxtrace_info(event, session);
925 926
	case PERF_AUXTRACE_ARM_SPE:
		return arm_spe_process_auxtrace_info(event, session);
927
	case PERF_AUXTRACE_CS_ETM:
928
		return cs_etm__process_auxtrace_info(event, session);
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
	case PERF_AUXTRACE_UNKNOWN:
	default:
		return -EINVAL;
	}
}

s64 perf_event__process_auxtrace(struct perf_tool *tool,
				 union perf_event *event,
				 struct perf_session *session)
{
	s64 err;

	if (dump_trace)
		fprintf(stdout, " size: %#"PRIx64"  offset: %#"PRIx64"  ref: %#"PRIx64"  idx: %u  tid: %d  cpu: %d\n",
			event->auxtrace.size, event->auxtrace.offset,
			event->auxtrace.reference, event->auxtrace.idx,
			event->auxtrace.tid, event->auxtrace.cpu);

	if (auxtrace__dont_decode(session))
		return event->auxtrace.size;

	if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE)
		return -EINVAL;

	err = session->auxtrace->process_auxtrace_event(session, event, tool);
	if (err < 0)
		return err;

	return event->auxtrace.size;
}

960 961 962 963
#define PERF_ITRACE_DEFAULT_PERIOD_TYPE		PERF_ITRACE_PERIOD_NANOSECS
#define PERF_ITRACE_DEFAULT_PERIOD		100000
#define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ	16
#define PERF_ITRACE_MAX_CALLCHAIN_SZ		1024
964 965
#define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ	64
#define PERF_ITRACE_MAX_LAST_BRANCH_SZ		1024
966 967 968 969 970

void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts)
{
	synth_opts->instructions = true;
	synth_opts->branches = true;
971
	synth_opts->transactions = true;
972
	synth_opts->ptwrites = true;
973
	synth_opts->pwr_events = true;
974 975 976 977
	synth_opts->errors = true;
	synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE;
	synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
	synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
978
	synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
979
	synth_opts->initial_skip = 0;
980 981 982 983 984 985 986 987 988 989 990 991 992
}

/*
 * Please check tools/perf/Documentation/perf-script.txt for information
 * about the options parsed here, which is introduced after this cset,
 * when support in 'perf script' for these options is introduced.
 */
int itrace_parse_synth_opts(const struct option *opt, const char *str,
			    int unset)
{
	struct itrace_synth_opts *synth_opts = opt->value;
	const char *p;
	char *endptr;
993
	bool period_type_set = false;
994
	bool period_set = false;
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015

	synth_opts->set = true;

	if (unset) {
		synth_opts->dont_decode = true;
		return 0;
	}

	if (!str) {
		itrace_synth_opts__set_default(synth_opts);
		return 0;
	}

	for (p = str; *p;) {
		switch (*p++) {
		case 'i':
			synth_opts->instructions = true;
			while (*p == ' ' || *p == ',')
				p += 1;
			if (isdigit(*p)) {
				synth_opts->period = strtoull(p, &endptr, 10);
1016
				period_set = true;
1017 1018 1019 1020 1021 1022 1023
				p = endptr;
				while (*p == ' ' || *p == ',')
					p += 1;
				switch (*p++) {
				case 'i':
					synth_opts->period_type =
						PERF_ITRACE_PERIOD_INSTRUCTIONS;
1024
					period_type_set = true;
1025 1026 1027 1028
					break;
				case 't':
					synth_opts->period_type =
						PERF_ITRACE_PERIOD_TICKS;
1029
					period_type_set = true;
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
					break;
				case 'm':
					synth_opts->period *= 1000;
					/* Fall through */
				case 'u':
					synth_opts->period *= 1000;
					/* Fall through */
				case 'n':
					if (*p++ != 's')
						goto out_err;
					synth_opts->period_type =
						PERF_ITRACE_PERIOD_NANOSECS;
1042
					period_type_set = true;
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
					break;
				case '\0':
					goto out;
				default:
					goto out_err;
				}
			}
			break;
		case 'b':
			synth_opts->branches = true;
			break;
1054 1055 1056
		case 'x':
			synth_opts->transactions = true;
			break;
1057 1058 1059
		case 'w':
			synth_opts->ptwrites = true;
			break;
1060 1061 1062
		case 'p':
			synth_opts->pwr_events = true;
			break;
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
		case 'e':
			synth_opts->errors = true;
			break;
		case 'd':
			synth_opts->log = true;
			break;
		case 'c':
			synth_opts->branches = true;
			synth_opts->calls = true;
			break;
		case 'r':
			synth_opts->branches = true;
			synth_opts->returns = true;
			break;
		case 'g':
			synth_opts->callchain = true;
			synth_opts->callchain_sz =
					PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
			while (*p == ' ' || *p == ',')
				p += 1;
			if (isdigit(*p)) {
				unsigned int val;

				val = strtoul(p, &endptr, 10);
				p = endptr;
				if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ)
					goto out_err;
				synth_opts->callchain_sz = val;
			}
			break;
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
		case 'l':
			synth_opts->last_branch = true;
			synth_opts->last_branch_sz =
					PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
			while (*p == ' ' || *p == ',')
				p += 1;
			if (isdigit(*p)) {
				unsigned int val;

				val = strtoul(p, &endptr, 10);
				p = endptr;
				if (!val ||
				    val > PERF_ITRACE_MAX_LAST_BRANCH_SZ)
					goto out_err;
				synth_opts->last_branch_sz = val;
			}
			break;
1110 1111 1112 1113 1114 1115
		case 's':
			synth_opts->initial_skip = strtoul(p, &endptr, 10);
			if (p == endptr)
				goto out_err;
			p = endptr;
			break;
1116 1117 1118 1119 1120 1121 1122 1123 1124
		case ' ':
		case ',':
			break;
		default:
			goto out_err;
		}
	}
out:
	if (synth_opts->instructions) {
1125
		if (!period_type_set)
1126 1127
			synth_opts->period_type =
					PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1128
		if (!period_set)
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
			synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
	}

	return 0;

out_err:
	pr_err("Bad Instruction Tracing options '%s'\n", str);
	return -EINVAL;
}

1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
static const char * const auxtrace_error_type_name[] = {
	[PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace",
};

static const char *auxtrace_error_name(int type)
{
	const char *error_type_name = NULL;

	if (type < PERF_AUXTRACE_ERROR_MAX)
		error_type_name = auxtrace_error_type_name[type];
	if (!error_type_name)
		error_type_name = "unknown AUX";
	return error_type_name;
}

size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp)
{
	struct auxtrace_error_event *e = &event->auxtrace_error;
	int ret;

	ret = fprintf(fp, " %s error type %u",
		      auxtrace_error_name(e->type), e->type);
	ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRIx64" code %u: %s\n",
		       e->cpu, e->pid, e->tid, e->ip, e->code, e->msg);
	return ret;
}

void perf_session__auxtrace_error_inc(struct perf_session *session,
				      union perf_event *event)
{
	struct auxtrace_error_event *e = &event->auxtrace_error;

	if (e->type < PERF_AUXTRACE_ERROR_MAX)
		session->evlist->stats.nr_auxtrace_errors[e->type] += 1;
}

void events_stats__auxtrace_error_warn(const struct events_stats *stats)
{
	int i;

	for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) {
		if (!stats->nr_auxtrace_errors[i])
			continue;
		ui__warning("%u %s errors\n",
			    stats->nr_auxtrace_errors[i],
			    auxtrace_error_name(i));
	}
}

int perf_event__process_auxtrace_error(struct perf_tool *tool __maybe_unused,
				       union perf_event *event,
1190
				       struct perf_session *session)
1191
{
1192 1193 1194
	if (auxtrace__dont_decode(session))
		return 0;

1195 1196 1197 1198
	perf_event__fprintf_auxtrace_error(event, stdout);
	return 0;
}

1199 1200 1201 1202
static int __auxtrace_mmap__read(struct auxtrace_mmap *mm,
				 struct auxtrace_record *itr,
				 struct perf_tool *tool, process_auxtrace_t fn,
				 bool snapshot, size_t snapshot_size)
1203
{
1204
	u64 head, old = mm->prev, offset, ref;
1205 1206 1207 1208 1209
	unsigned char *data = mm->base;
	size_t size, head_off, old_off, len1, len2, padding;
	union perf_event ev;
	void *data1, *data2;

1210 1211 1212 1213 1214 1215 1216 1217 1218
	if (snapshot) {
		head = auxtrace_mmap__read_snapshot_head(mm);
		if (auxtrace_record__find_snapshot(itr, mm->idx, mm, data,
						   &head, &old))
			return -1;
	} else {
		head = auxtrace_mmap__read_head(mm);
	}

1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
	if (old == head)
		return 0;

	pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n",
		  mm->idx, old, head, head - old);

	if (mm->mask) {
		head_off = head & mm->mask;
		old_off = old & mm->mask;
	} else {
		head_off = head % mm->len;
		old_off = old % mm->len;
	}

	if (head_off > old_off)
		size = head_off - old_off;
	else
		size = mm->len - (old_off - head_off);

1238 1239 1240
	if (snapshot && size > snapshot_size)
		size = snapshot_size;

1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
	ref = auxtrace_record__reference(itr);

	if (head > old || size <= head || mm->mask) {
		offset = head - size;
	} else {
		/*
		 * When the buffer size is not a power of 2, 'head' wraps at the
		 * highest multiple of the buffer size, so we have to subtract
		 * the remainder here.
		 */
		u64 rem = (0ULL - mm->len) % mm->len;

		offset = head - size - rem;
	}

	if (size > head_off) {
		len1 = size - head_off;
		data1 = &data[mm->len - len1];
		len2 = head_off;
		data2 = &data[0];
	} else {
		len1 = size;
		data1 = &data[head_off - len1];
		len2 = 0;
		data2 = NULL;
	}

1268 1269 1270 1271 1272 1273 1274
	if (itr->alignment) {
		unsigned int unwanted = len1 % itr->alignment;

		len1 -= unwanted;
		size -= unwanted;
	}

1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
	/* padding must be written by fn() e.g. record__process_auxtrace() */
	padding = size & 7;
	if (padding)
		padding = 8 - padding;

	memset(&ev, 0, sizeof(ev));
	ev.auxtrace.header.type = PERF_RECORD_AUXTRACE;
	ev.auxtrace.header.size = sizeof(ev.auxtrace);
	ev.auxtrace.size = size + padding;
	ev.auxtrace.offset = offset;
	ev.auxtrace.reference = ref;
	ev.auxtrace.idx = mm->idx;
	ev.auxtrace.tid = mm->tid;
	ev.auxtrace.cpu = mm->cpu;

	if (fn(tool, &ev, data1, len1, data2, len2))
		return -1;

	mm->prev = head;

1295 1296 1297 1298
	if (!snapshot) {
		auxtrace_mmap__write_tail(mm, head);
		if (itr->read_finish) {
			int err;
1299

1300 1301 1302 1303
			err = itr->read_finish(itr, mm->idx);
			if (err < 0)
				return err;
		}
1304 1305 1306 1307
	}

	return 1;
}
1308

1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
int auxtrace_mmap__read(struct auxtrace_mmap *mm, struct auxtrace_record *itr,
			struct perf_tool *tool, process_auxtrace_t fn)
{
	return __auxtrace_mmap__read(mm, itr, tool, fn, false, 0);
}

int auxtrace_mmap__read_snapshot(struct auxtrace_mmap *mm,
				 struct auxtrace_record *itr,
				 struct perf_tool *tool, process_auxtrace_t fn,
				 size_t snapshot_size)
{
	return __auxtrace_mmap__read(mm, itr, tool, fn, true, snapshot_size);
}

1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
/**
 * struct auxtrace_cache - hash table to implement a cache
 * @hashtable: the hashtable
 * @sz: hashtable size (number of hlists)
 * @entry_size: size of an entry
 * @limit: limit the number of entries to this maximum, when reached the cache
 *         is dropped and caching begins again with an empty cache
 * @cnt: current number of entries
 * @bits: hashtable size (@sz = 2^@bits)
 */
struct auxtrace_cache {
	struct hlist_head *hashtable;
	size_t sz;
	size_t entry_size;
	size_t limit;
	size_t cnt;
	unsigned int bits;
};

struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size,
					   unsigned int limit_percent)
{
	struct auxtrace_cache *c;
	struct hlist_head *ht;
	size_t sz, i;

	c = zalloc(sizeof(struct auxtrace_cache));
	if (!c)
		return NULL;

	sz = 1UL << bits;

	ht = calloc(sz, sizeof(struct hlist_head));
	if (!ht)
		goto out_free;

	for (i = 0; i < sz; i++)
		INIT_HLIST_HEAD(&ht[i]);

	c->hashtable = ht;
	c->sz = sz;
	c->entry_size = entry_size;
	c->limit = (c->sz * limit_percent) / 100;
	c->bits = bits;

	return c;

out_free:
	free(c);
	return NULL;
}

static void auxtrace_cache__drop(struct auxtrace_cache *c)
{
	struct auxtrace_cache_entry *entry;
	struct hlist_node *tmp;
	size_t i;

	if (!c)
		return;

	for (i = 0; i < c->sz; i++) {
		hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) {
			hlist_del(&entry->hash);
			auxtrace_cache__free_entry(c, entry);
		}
	}

	c->cnt = 0;
}

void auxtrace_cache__free(struct auxtrace_cache *c)
{
	if (!c)
		return;

	auxtrace_cache__drop(c);
	free(c->hashtable);
	free(c);
}

void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c)
{
	return malloc(c->entry_size);
}

void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused,
				void *entry)
{
	free(entry);
}

int auxtrace_cache__add(struct auxtrace_cache *c, u32 key,
			struct auxtrace_cache_entry *entry)
{
	if (c->limit && ++c->cnt > c->limit)
		auxtrace_cache__drop(c);

	entry->key = key;
	hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]);

	return 0;
}

void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key)
{
	struct auxtrace_cache_entry *entry;
	struct hlist_head *hlist;

	if (!c)
		return NULL;

	hlist = &c->hashtable[hash_32(key, c->bits)];
	hlist_for_each_entry(entry, hlist, hash) {
		if (entry->key == key)
			return entry;
	}

	return NULL;
}
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860

static void addr_filter__free_str(struct addr_filter *filt)
{
	free(filt->str);
	filt->action   = NULL;
	filt->sym_from = NULL;
	filt->sym_to   = NULL;
	filt->filename = NULL;
	filt->str      = NULL;
}

static struct addr_filter *addr_filter__new(void)
{
	struct addr_filter *filt = zalloc(sizeof(*filt));

	if (filt)
		INIT_LIST_HEAD(&filt->list);

	return filt;
}

static void addr_filter__free(struct addr_filter *filt)
{
	if (filt)
		addr_filter__free_str(filt);
	free(filt);
}

static void addr_filters__add(struct addr_filters *filts,
			      struct addr_filter *filt)
{
	list_add_tail(&filt->list, &filts->head);
	filts->cnt += 1;
}

static void addr_filters__del(struct addr_filters *filts,
			      struct addr_filter *filt)
{
	list_del_init(&filt->list);
	filts->cnt -= 1;
}

void addr_filters__init(struct addr_filters *filts)
{
	INIT_LIST_HEAD(&filts->head);
	filts->cnt = 0;
}

void addr_filters__exit(struct addr_filters *filts)
{
	struct addr_filter *filt, *n;

	list_for_each_entry_safe(filt, n, &filts->head, list) {
		addr_filters__del(filts, filt);
		addr_filter__free(filt);
	}
}

static int parse_num_or_str(char **inp, u64 *num, const char **str,
			    const char *str_delim)
{
	*inp += strspn(*inp, " ");

	if (isdigit(**inp)) {
		char *endptr;

		if (!num)
			return -EINVAL;
		errno = 0;
		*num = strtoull(*inp, &endptr, 0);
		if (errno)
			return -errno;
		if (endptr == *inp)
			return -EINVAL;
		*inp = endptr;
	} else {
		size_t n;

		if (!str)
			return -EINVAL;
		*inp += strspn(*inp, " ");
		*str = *inp;
		n = strcspn(*inp, str_delim);
		if (!n)
			return -EINVAL;
		*inp += n;
		if (**inp) {
			**inp = '\0';
			*inp += 1;
		}
	}
	return 0;
}

static int parse_action(struct addr_filter *filt)
{
	if (!strcmp(filt->action, "filter")) {
		filt->start = true;
		filt->range = true;
	} else if (!strcmp(filt->action, "start")) {
		filt->start = true;
	} else if (!strcmp(filt->action, "stop")) {
		filt->start = false;
	} else if (!strcmp(filt->action, "tracestop")) {
		filt->start = false;
		filt->range = true;
		filt->action += 5; /* Change 'tracestop' to 'stop' */
	} else {
		return -EINVAL;
	}
	return 0;
}

static int parse_sym_idx(char **inp, int *idx)
{
	*idx = -1;

	*inp += strspn(*inp, " ");

	if (**inp != '#')
		return 0;

	*inp += 1;

	if (**inp == 'g' || **inp == 'G') {
		*inp += 1;
		*idx = 0;
	} else {
		unsigned long num;
		char *endptr;

		errno = 0;
		num = strtoul(*inp, &endptr, 0);
		if (errno)
			return -errno;
		if (endptr == *inp || num > INT_MAX)
			return -EINVAL;
		*inp = endptr;
		*idx = num;
	}

	return 0;
}

static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx)
{
	int err = parse_num_or_str(inp, num, str, " ");

	if (!err && *str)
		err = parse_sym_idx(inp, idx);

	return err;
}

static int parse_one_filter(struct addr_filter *filt, const char **filter_inp)
{
	char *fstr;
	int err;

	filt->str = fstr = strdup(*filter_inp);
	if (!fstr)
		return -ENOMEM;

	err = parse_num_or_str(&fstr, NULL, &filt->action, " ");
	if (err)
		goto out_err;

	err = parse_action(filt);
	if (err)
		goto out_err;

	err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from,
			      &filt->sym_from_idx);
	if (err)
		goto out_err;

	fstr += strspn(fstr, " ");

	if (*fstr == '/') {
		fstr += 1;
		err = parse_addr_size(&fstr, &filt->size, &filt->sym_to,
				      &filt->sym_to_idx);
		if (err)
			goto out_err;
		filt->range = true;
	}

	fstr += strspn(fstr, " ");

	if (*fstr == '@') {
		fstr += 1;
		err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,");
		if (err)
			goto out_err;
	}

	fstr += strspn(fstr, " ,");

	*filter_inp += fstr - filt->str;

	return 0;

out_err:
	addr_filter__free_str(filt);

	return err;
}

int addr_filters__parse_bare_filter(struct addr_filters *filts,
				    const char *filter)
{
	struct addr_filter *filt;
	const char *fstr = filter;
	int err;

	while (*fstr) {
		filt = addr_filter__new();
		err = parse_one_filter(filt, &fstr);
		if (err) {
			addr_filter__free(filt);
			addr_filters__exit(filts);
			return err;
		}
		addr_filters__add(filts, filt);
	}

	return 0;
}

struct sym_args {
	const char	*name;
	u64		start;
	u64		size;
	int		idx;
	int		cnt;
	bool		started;
	bool		global;
	bool		selected;
	bool		duplicate;
	bool		near;
};

static bool kern_sym_match(struct sym_args *args, const char *name, char type)
{
	/* A function with the same name, and global or the n'th found or any */
	return symbol_type__is_a(type, MAP__FUNCTION) &&
	       !strcmp(name, args->name) &&
	       ((args->global && isupper(type)) ||
		(args->selected && ++(args->cnt) == args->idx) ||
		(!args->global && !args->selected));
}

static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start)
{
	struct sym_args *args = arg;

	if (args->started) {
		if (!args->size)
			args->size = start - args->start;
		if (args->selected) {
			if (args->size)
				return 1;
		} else if (kern_sym_match(args, name, type)) {
			args->duplicate = true;
			return 1;
		}
	} else if (kern_sym_match(args, name, type)) {
		args->started = true;
		args->start = start;
	}

	return 0;
}

static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start)
{
	struct sym_args *args = arg;

	if (kern_sym_match(args, name, type)) {
		pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
		       ++args->cnt, start, type, name);
		args->near = true;
	} else if (args->near) {
		args->near = false;
		pr_err("\t\twhich is near\t\t%s\n", name);
	}

	return 0;
}

static int sym_not_found_error(const char *sym_name, int idx)
{
	if (idx > 0) {
		pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n",
		       idx, sym_name);
	} else if (!idx) {
		pr_err("Global symbol '%s' not found.\n", sym_name);
	} else {
		pr_err("Symbol '%s' not found.\n", sym_name);
	}
	pr_err("Note that symbols must be functions.\n");

	return -EINVAL;
}

static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx)
{
	struct sym_args args = {
		.name = sym_name,
		.idx = idx,
		.global = !idx,
		.selected = idx > 0,
	};
	int err;

	*start = 0;
	*size = 0;

	err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb);
	if (err < 0) {
		pr_err("Failed to parse /proc/kallsyms\n");
		return err;
	}

	if (args.duplicate) {
		pr_err("Multiple kernel symbols with name '%s'\n", sym_name);
		args.cnt = 0;
		kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb);
		pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
		       sym_name);
		pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
		return -EINVAL;
	}

	if (!args.started) {
		pr_err("Kernel symbol lookup: ");
		return sym_not_found_error(sym_name, idx);
	}

	*start = args.start;
	*size = args.size;

	return 0;
}

static int find_entire_kern_cb(void *arg, const char *name __maybe_unused,
			       char type, u64 start)
{
	struct sym_args *args = arg;

	if (!symbol_type__is_a(type, MAP__FUNCTION))
		return 0;

	if (!args->started) {
		args->started = true;
		args->start = start;
	}
	/* Don't know exactly where the kernel ends, so we add a page */
	args->size = round_up(start, page_size) + page_size - args->start;

	return 0;
}

static int addr_filter__entire_kernel(struct addr_filter *filt)
{
	struct sym_args args = { .started = false };
	int err;

	err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb);
	if (err < 0 || !args.started) {
		pr_err("Failed to parse /proc/kallsyms\n");
		return err;
	}

	filt->addr = args.start;
	filt->size = args.size;

	return 0;
}

static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size)
{
	if (start + size >= filt->addr)
		return 0;

	if (filt->sym_from) {
		pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n",
		       filt->sym_to, start, filt->sym_from, filt->addr);
	} else {
		pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n",
		       filt->sym_to, start, filt->addr);
	}

	return -EINVAL;
}

static int addr_filter__resolve_kernel_syms(struct addr_filter *filt)
{
	bool no_size = false;
	u64 start, size;
	int err;

	if (symbol_conf.kptr_restrict) {
		pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n");
		return -EINVAL;
	}

	if (filt->sym_from && !strcmp(filt->sym_from, "*"))
		return addr_filter__entire_kernel(filt);

	if (filt->sym_from) {
		err = find_kern_sym(filt->sym_from, &start, &size,
				    filt->sym_from_idx);
		if (err)
			return err;
		filt->addr = start;
		if (filt->range && !filt->size && !filt->sym_to) {
			filt->size = size;
1861
			no_size = !size;
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
		}
	}

	if (filt->sym_to) {
		err = find_kern_sym(filt->sym_to, &start, &size,
				    filt->sym_to_idx);
		if (err)
			return err;

		err = check_end_after_start(filt, start, size);
		if (err)
			return err;
		filt->size = start + size - filt->addr;
1875
		no_size = !size;
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
	}

	/* The very last symbol in kallsyms does not imply a particular size */
	if (no_size) {
		pr_err("Cannot determine size of symbol '%s'\n",
		       filt->sym_to ? filt->sym_to : filt->sym_from);
		return -EINVAL;
	}

	return 0;
}

static struct dso *load_dso(const char *name)
{
	struct map *map;
	struct dso *dso;

	map = dso__new_map(name);
	if (!map)
		return NULL;

	map__load(map);

	dso = dso__get(map->dso);

	map__put(map);

	return dso;
}

static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt,
			  int idx)
{
	/* Same name, and global or the n'th found or any */
	return !arch__compare_symbol_names(name, sym->name) &&
	       ((!idx && sym->binding == STB_GLOBAL) ||
		(idx > 0 && ++*cnt == idx) ||
		idx < 0);
}

static void print_duplicate_syms(struct dso *dso, const char *sym_name)
{
	struct symbol *sym;
	bool near = false;
	int cnt = 0;

	pr_err("Multiple symbols with name '%s'\n", sym_name);

	sym = dso__first_symbol(dso, MAP__FUNCTION);
	while (sym) {
		if (dso_sym_match(sym, sym_name, &cnt, -1)) {
			pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
			       ++cnt, sym->start,
			       sym->binding == STB_GLOBAL ? 'g' :
			       sym->binding == STB_LOCAL  ? 'l' : 'w',
			       sym->name);
			near = true;
		} else if (near) {
			near = false;
			pr_err("\t\twhich is near\t\t%s\n", sym->name);
		}
		sym = dso__next_symbol(sym);
	}

	pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
	       sym_name);
	pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
}

static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start,
			u64 *size, int idx)
{
	struct symbol *sym;
	int cnt = 0;

	*start = 0;
	*size = 0;

	sym = dso__first_symbol(dso, MAP__FUNCTION);
	while (sym) {
		if (*start) {
			if (!*size)
				*size = sym->start - *start;
			if (idx > 0) {
				if (*size)
					return 1;
			} else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
				print_duplicate_syms(dso, sym_name);
				return -EINVAL;
			}
		} else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
			*start = sym->start;
			*size = sym->end - sym->start;
		}
		sym = dso__next_symbol(sym);
	}

	if (!*start)
		return sym_not_found_error(sym_name, idx);

	return 0;
}

static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso)
{
	struct symbol *first_sym = dso__first_symbol(dso, MAP__FUNCTION);
	struct symbol *last_sym = dso__last_symbol(dso, MAP__FUNCTION);

	if (!first_sym || !last_sym) {
		pr_err("Failed to determine filter for %s\nNo symbols found.\n",
		       filt->filename);
		return -EINVAL;
	}

	filt->addr = first_sym->start;
	filt->size = last_sym->end - first_sym->start;

	return 0;
}

static int addr_filter__resolve_syms(struct addr_filter *filt)
{
	u64 start, size;
	struct dso *dso;
	int err = 0;

	if (!filt->sym_from && !filt->sym_to)
		return 0;

	if (!filt->filename)
		return addr_filter__resolve_kernel_syms(filt);

	dso = load_dso(filt->filename);
	if (!dso) {
		pr_err("Failed to load symbols from: %s\n", filt->filename);
		return -EINVAL;
	}

	if (filt->sym_from && !strcmp(filt->sym_from, "*")) {
		err = addr_filter__entire_dso(filt, dso);
		goto put_dso;
	}

	if (filt->sym_from) {
		err = find_dso_sym(dso, filt->sym_from, &start, &size,
				   filt->sym_from_idx);
		if (err)
			goto put_dso;
		filt->addr = start;
		if (filt->range && !filt->size && !filt->sym_to)
			filt->size = size;
	}

	if (filt->sym_to) {
		err = find_dso_sym(dso, filt->sym_to, &start, &size,
				   filt->sym_to_idx);
		if (err)
			goto put_dso;

		err = check_end_after_start(filt, start, size);
		if (err)
			return err;

		filt->size = start + size - filt->addr;
	}

put_dso:
	dso__put(dso);

	return err;
}

static char *addr_filter__to_str(struct addr_filter *filt)
{
	char filename_buf[PATH_MAX];
	const char *at = "";
	const char *fn = "";
	char *filter;
	int err;

	if (filt->filename) {
		at = "@";
		fn = realpath(filt->filename, filename_buf);
		if (!fn)
			return NULL;
	}

	if (filt->range) {
		err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s",
			       filt->action, filt->addr, filt->size, at, fn);
	} else {
		err = asprintf(&filter, "%s 0x%"PRIx64"%s%s",
			       filt->action, filt->addr, at, fn);
	}

	return err < 0 ? NULL : filter;
}

static int parse_addr_filter(struct perf_evsel *evsel, const char *filter,
			     int max_nr)
{
	struct addr_filters filts;
	struct addr_filter *filt;
	int err;

	addr_filters__init(&filts);

	err = addr_filters__parse_bare_filter(&filts, filter);
	if (err)
		goto out_exit;

	if (filts.cnt > max_nr) {
		pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n",
		       filts.cnt, max_nr);
		err = -EINVAL;
		goto out_exit;
	}

	list_for_each_entry(filt, &filts.head, list) {
		char *new_filter;

		err = addr_filter__resolve_syms(filt);
		if (err)
			goto out_exit;

		new_filter = addr_filter__to_str(filt);
		if (!new_filter) {
			err = -ENOMEM;
			goto out_exit;
		}

		if (perf_evsel__append_addr_filter(evsel, new_filter)) {
			err = -ENOMEM;
			goto out_exit;
		}
	}

out_exit:
	addr_filters__exit(&filts);

	if (err) {
		pr_err("Failed to parse address filter: '%s'\n", filter);
		pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n");
		pr_err("Where multiple filters are separated by space or comma.\n");
	}

	return err;
}

static struct perf_pmu *perf_evsel__find_pmu(struct perf_evsel *evsel)
{
	struct perf_pmu *pmu = NULL;

	while ((pmu = perf_pmu__scan(pmu)) != NULL) {
		if (pmu->type == evsel->attr.type)
			break;
	}

	return pmu;
}

static int perf_evsel__nr_addr_filter(struct perf_evsel *evsel)
{
	struct perf_pmu *pmu = perf_evsel__find_pmu(evsel);
	int nr_addr_filters = 0;

	if (!pmu)
		return 0;

	perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters);

	return nr_addr_filters;
}

int auxtrace_parse_filters(struct perf_evlist *evlist)
{
	struct perf_evsel *evsel;
	char *filter;
	int err, max_nr;

	evlist__for_each_entry(evlist, evsel) {
		filter = evsel->filter;
		max_nr = perf_evsel__nr_addr_filter(evsel);
		if (!filter || !max_nr)
			continue;
		evsel->filter = NULL;
		err = parse_addr_filter(evsel, filter, max_nr);
		free(filter);
		if (err)
			return err;
		pr_debug("Address filter: %s\n", evsel->filter);
	}

	return 0;
}