tonga_smumgr.c 22.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
/*
 * Copyright 2015 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/gfp.h>

#include "smumgr.h"
#include "tonga_smumgr.h"
#include "pp_debug.h"
#include "smu_ucode_xfer_vi.h"
#include "tonga_ppsmc.h"
#include "smu/smu_7_1_2_d.h"
#include "smu/smu_7_1_2_sh_mask.h"
#include "cgs_common.h"

#define TONGA_SMC_SIZE			0x20000
#define BUFFER_SIZE			80000
#define MAX_STRING_SIZE			15
#define BUFFER_SIZETWO              131072 /*128 *1024*/

/**
* Set the address for reading/writing the SMC SRAM space.
* @param    smumgr  the address of the powerplay hardware manager.
* @param    smcAddress the address in the SMC RAM to access.
*/
static int tonga_set_smc_sram_address(struct pp_smumgr *smumgr,
				uint32_t smcAddress, uint32_t limit)
{
	if (smumgr == NULL || smumgr->device == NULL)
		return -EINVAL;
	PP_ASSERT_WITH_CODE((0 == (3 & smcAddress)),
		"SMC address must be 4 byte aligned.",
		return -1;);

	PP_ASSERT_WITH_CODE((limit > (smcAddress + 3)),
		"SMC address is beyond the SMC RAM area.",
		return -1;);

	cgs_write_register(smumgr->device, mmSMC_IND_INDEX_0, smcAddress);
	SMUM_WRITE_FIELD(smumgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_11, 0);

	return 0;
}

/**
* Copy bytes from an array into the SMC RAM space.
*
* @param    smumgr  the address of the powerplay SMU manager.
* @param    smcStartAddress the start address in the SMC RAM to copy bytes to.
* @param    src the byte array to copy the bytes from.
* @param    byteCount the number of bytes to copy.
*/
int tonga_copy_bytes_to_smc(struct pp_smumgr *smumgr,
		uint32_t smcStartAddress, const uint8_t *src,
		uint32_t byteCount, uint32_t limit)
{
	uint32_t addr;
	uint32_t data, orig_data;
	int result = 0;
	uint32_t extra_shift;

	if (smumgr == NULL || smumgr->device == NULL)
		return -EINVAL;
	PP_ASSERT_WITH_CODE((0 == (3 & smcStartAddress)),
		"SMC address must be 4 byte aligned.",
		return 0;);

	PP_ASSERT_WITH_CODE((limit > (smcStartAddress + byteCount)),
		"SMC address is beyond the SMC RAM area.",
		return 0;);

	addr = smcStartAddress;

	while (byteCount >= 4) {
		/*
		 * Bytes are written into the
		 * SMC address space with the MSB first
		 */
		data = (src[0] << 24) + (src[1] << 16) + (src[2] << 8) + src[3];

		result = tonga_set_smc_sram_address(smumgr, addr, limit);

		if (result)
			goto out;

		cgs_write_register(smumgr->device, mmSMC_IND_DATA_0, data);

		src += 4;
		byteCount -= 4;
		addr += 4;
	}

	if (0 != byteCount) {
		/* Now write odd bytes left, do a read modify write cycle */
		data = 0;

		result = tonga_set_smc_sram_address(smumgr, addr, limit);
		if (result)
			goto out;

		orig_data = cgs_read_register(smumgr->device,
							mmSMC_IND_DATA_0);
		extra_shift = 8 * (4 - byteCount);

		while (byteCount > 0) {
			data = (data << 8) + *src++;
			byteCount--;
		}

		data <<= extra_shift;
		data |= (orig_data & ~((~0UL) << extra_shift));

		result = tonga_set_smc_sram_address(smumgr, addr, limit);
		if (result)
			goto out;

		cgs_write_register(smumgr->device, mmSMC_IND_DATA_0, data);
	}

out:
	return result;
}


int tonga_program_jump_on_start(struct pp_smumgr *smumgr)
{
148
	static const unsigned char pData[] = { 0xE0, 0x00, 0x80, 0x40 };
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201

	tonga_copy_bytes_to_smc(smumgr, 0x0, pData, 4, sizeof(pData)+1);

	return 0;
}

/**
* Return if the SMC is currently running.
*
* @param    smumgr  the address of the powerplay hardware manager.
*/
static int tonga_is_smc_ram_running(struct pp_smumgr *smumgr)
{
	return ((0 == SMUM_READ_VFPF_INDIRECT_FIELD(smumgr->device, CGS_IND_REG__SMC,
					SMC_SYSCON_CLOCK_CNTL_0, ck_disable))
			&& (0x20100 <= cgs_read_ind_register(smumgr->device,
					CGS_IND_REG__SMC, ixSMC_PC_C)));
}

static int tonga_send_msg_to_smc_offset(struct pp_smumgr *smumgr)
{
	if (smumgr == NULL || smumgr->device == NULL)
		return -EINVAL;

	SMUM_WAIT_FIELD_UNEQUAL(smumgr, SMC_RESP_0, SMC_RESP, 0);

	cgs_write_register(smumgr->device, mmSMC_MSG_ARG_0, 0x20000);
	cgs_write_register(smumgr->device, mmSMC_MESSAGE_0, PPSMC_MSG_Test);

	SMUM_WAIT_FIELD_UNEQUAL(smumgr, SMC_RESP_0, SMC_RESP, 0);

	return 0;
}

/**
* Send a message to the SMC, and wait for its response.
*
* @param    smumgr  the address of the powerplay hardware manager.
* @param    msg the message to send.
* @return   The response that came from the SMC.
*/
static int tonga_send_msg_to_smc(struct pp_smumgr *smumgr, uint16_t msg)
{
	if (smumgr == NULL || smumgr->device == NULL)
		return -EINVAL;

	if (!tonga_is_smc_ram_running(smumgr))
		return -1;

	SMUM_WAIT_FIELD_UNEQUAL(smumgr, SMC_RESP_0, SMC_RESP, 0);
	PP_ASSERT_WITH_CODE(
		1 == SMUM_READ_FIELD(smumgr->device, SMC_RESP_0, SMC_RESP),
		"Failed to send Previous Message.",
202
		);
203 204 205 206 207 208 209

	cgs_write_register(smumgr->device, mmSMC_MESSAGE_0, msg);

	SMUM_WAIT_FIELD_UNEQUAL(smumgr, SMC_RESP_0, SMC_RESP, 0);
	PP_ASSERT_WITH_CODE(
		1 == SMUM_READ_FIELD(smumgr->device, SMC_RESP_0, SMC_RESP),
		"Failed to send Message.",
210
		);
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231

	return 0;
}

/*
* Send a message to the SMC, and do not wait for its response.
*
* @param    smumgr  the address of the powerplay hardware manager.
* @param    msg the message to send.
* @return   The response that came from the SMC.
*/
static int tonga_send_msg_to_smc_without_waiting
				(struct pp_smumgr *smumgr, uint16_t msg)
{
	if (smumgr == NULL || smumgr->device == NULL)
		return -EINVAL;

	SMUM_WAIT_FIELD_UNEQUAL(smumgr, SMC_RESP_0, SMC_RESP, 0);
	PP_ASSERT_WITH_CODE(
		1 == SMUM_READ_FIELD(smumgr->device, SMC_RESP_0, SMC_RESP),
		"Failed to send Previous Message.",
232
		);
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
	cgs_write_register(smumgr->device, mmSMC_MESSAGE_0, msg);

	return 0;
}

/*
* Send a message to the SMC with parameter
*
* @param    smumgr:  the address of the powerplay hardware manager.
* @param    msg: the message to send.
* @param    parameter: the parameter to send
* @return   The response that came from the SMC.
*/
static int tonga_send_msg_to_smc_with_parameter(struct pp_smumgr *smumgr,
				uint16_t msg, uint32_t parameter)
{
	if (smumgr == NULL || smumgr->device == NULL)
		return -EINVAL;

	if (!tonga_is_smc_ram_running(smumgr))
		return PPSMC_Result_Failed;

	SMUM_WAIT_FIELD_UNEQUAL(smumgr, SMC_RESP_0, SMC_RESP, 0);
	cgs_write_register(smumgr->device, mmSMC_MSG_ARG_0, parameter);

	return tonga_send_msg_to_smc(smumgr, msg);
}

/*
* Send a message to the SMC with parameter, do not wait for response
*
* @param    smumgr:  the address of the powerplay hardware manager.
* @param    msg: the message to send.
* @param    parameter: the parameter to send
* @return   The response that came from the SMC.
*/
static int tonga_send_msg_to_smc_with_parameter_without_waiting(
			struct pp_smumgr *smumgr,
			uint16_t msg, uint32_t parameter)
{
	if (smumgr == NULL || smumgr->device == NULL)
		return -EINVAL;

	SMUM_WAIT_FIELD_UNEQUAL(smumgr, SMC_RESP_0, SMC_RESP, 0);

	cgs_write_register(smumgr->device, mmSMC_MSG_ARG_0, parameter);

	return tonga_send_msg_to_smc_without_waiting(smumgr, msg);
}

/*
 * Read a 32bit value from the SMC SRAM space.
 * ALL PARAMETERS ARE IN HOST BYTE ORDER.
 * @param    smumgr  the address of the powerplay hardware manager.
 * @param    smcAddress the address in the SMC RAM to access.
 * @param    value and output parameter for the data read from the SMC SRAM.
 */
int tonga_read_smc_sram_dword(struct pp_smumgr *smumgr,
					uint32_t smcAddress, uint32_t *value,
					uint32_t limit)
{
	int result;

	result = tonga_set_smc_sram_address(smumgr, smcAddress, limit);

	if (0 != result)
		return result;

	*value = cgs_read_register(smumgr->device, mmSMC_IND_DATA_0);

	return 0;
}

/*
 * Write a 32bit value to the SMC SRAM space.
 * ALL PARAMETERS ARE IN HOST BYTE ORDER.
 * @param    smumgr  the address of the powerplay hardware manager.
 * @param    smcAddress the address in the SMC RAM to access.
 * @param    value to write to the SMC SRAM.
 */
int tonga_write_smc_sram_dword(struct pp_smumgr *smumgr,
					uint32_t smcAddress, uint32_t value,
					uint32_t limit)
{
	int result;

	result = tonga_set_smc_sram_address(smumgr, smcAddress, limit);

	if (0 != result)
		return result;

	cgs_write_register(smumgr->device, mmSMC_IND_DATA_0, value);

	return 0;
}

static int tonga_smu_fini(struct pp_smumgr *smumgr)
{
331 332 333 334 335
	struct tonga_smumgr *priv = (struct tonga_smumgr *)(smumgr->backend);

	smu_free_memory(smumgr->device, (void *)priv->smu_buffer.handle);
	smu_free_memory(smumgr->device, (void *)priv->header_buffer.handle);

336 337 338 339
	if (smumgr->backend != NULL) {
		kfree(smumgr->backend);
		smumgr->backend = NULL;
	}
340 341

	cgs_rel_firmware(smumgr->device, CGS_UCODE_ID_SMU);
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
	return 0;
}

static enum cgs_ucode_id tonga_convert_fw_type_to_cgs(uint32_t fw_type)
{
	enum cgs_ucode_id result = CGS_UCODE_ID_MAXIMUM;

	switch (fw_type) {
	case UCODE_ID_SMU:
		result = CGS_UCODE_ID_SMU;
		break;
	case UCODE_ID_SDMA0:
		result = CGS_UCODE_ID_SDMA0;
		break;
	case UCODE_ID_SDMA1:
		result = CGS_UCODE_ID_SDMA1;
		break;
	case UCODE_ID_CP_CE:
		result = CGS_UCODE_ID_CP_CE;
		break;
	case UCODE_ID_CP_PFP:
		result = CGS_UCODE_ID_CP_PFP;
		break;
	case UCODE_ID_CP_ME:
		result = CGS_UCODE_ID_CP_ME;
		break;
	case UCODE_ID_CP_MEC:
		result = CGS_UCODE_ID_CP_MEC;
		break;
	case UCODE_ID_CP_MEC_JT1:
		result = CGS_UCODE_ID_CP_MEC_JT1;
		break;
	case UCODE_ID_CP_MEC_JT2:
		result = CGS_UCODE_ID_CP_MEC_JT2;
		break;
	case UCODE_ID_RLC_G:
		result = CGS_UCODE_ID_RLC_G;
		break;
	default:
		break;
	}

	return result;
}

/**
 * Convert the PPIRI firmware type to SMU type mask.
 * For MEC, we need to check all MEC related type
*/
static uint16_t tonga_get_mask_for_firmware_type(uint16_t firmwareType)
{
	uint16_t result = 0;

	switch (firmwareType) {
	case UCODE_ID_SDMA0:
		result = UCODE_ID_SDMA0_MASK;
		break;
	case UCODE_ID_SDMA1:
		result = UCODE_ID_SDMA1_MASK;
		break;
	case UCODE_ID_CP_CE:
		result = UCODE_ID_CP_CE_MASK;
		break;
	case UCODE_ID_CP_PFP:
		result = UCODE_ID_CP_PFP_MASK;
		break;
	case UCODE_ID_CP_ME:
		result = UCODE_ID_CP_ME_MASK;
		break;
	case UCODE_ID_CP_MEC:
	case UCODE_ID_CP_MEC_JT1:
	case UCODE_ID_CP_MEC_JT2:
		result = UCODE_ID_CP_MEC_MASK;
		break;
	case UCODE_ID_RLC_G:
		result = UCODE_ID_RLC_G_MASK;
		break;
	default:
		break;
	}

	return result;
}

/**
 * Check if the FW has been loaded,
 * SMU will not return if loading has not finished.
*/
static int tonga_check_fw_load_finish(struct pp_smumgr *smumgr, uint32_t fwType)
{
	uint16_t fwMask = tonga_get_mask_for_firmware_type(fwType);

	if (0 != SMUM_WAIT_VFPF_INDIRECT_REGISTER(smumgr, SMC_IND,
				SOFT_REGISTERS_TABLE_28, fwMask, fwMask)) {
		printk(KERN_ERR "[ powerplay ] check firmware loading failed\n");
		return -EINVAL;
	}

	return 0;
}

/* Populate one firmware image to the data structure */
static int tonga_populate_single_firmware_entry(struct pp_smumgr *smumgr,
				uint16_t firmware_type,
				struct SMU_Entry *pentry)
{
	int result;
	struct cgs_firmware_info info = {0};

	result = cgs_get_firmware_info(
				smumgr->device,
				tonga_convert_fw_type_to_cgs(firmware_type),
				&info);

	if (result == 0) {
		pentry->version = 0;
		pentry->id = (uint16_t)firmware_type;
		pentry->image_addr_high = smu_upper_32_bits(info.mc_addr);
		pentry->image_addr_low = smu_lower_32_bits(info.mc_addr);
		pentry->meta_data_addr_high = 0;
		pentry->meta_data_addr_low = 0;
		pentry->data_size_byte = info.image_size;
		pentry->num_register_entries = 0;

		if (firmware_type == UCODE_ID_RLC_G)
			pentry->flags = 1;
		else
			pentry->flags = 0;
	} else {
		return result;
	}

	return result;
}

static int tonga_request_smu_reload_fw(struct pp_smumgr *smumgr)
{
	struct tonga_smumgr *tonga_smu =
		(struct tonga_smumgr *)(smumgr->backend);
	uint16_t fw_to_load;
	int result = 0;
	struct SMU_DRAMData_TOC *toc;
	/**
	 * First time this gets called during SmuMgr init,
	 * we haven't processed SMU header file yet,
	 * so Soft Register Start offset is unknown.
	 * However, for this case, UcodeLoadStatus is already 0,
	 * so we can skip this if the Soft Registers Start offset is 0.
	 */
	cgs_write_ind_register(smumgr->device,
		CGS_IND_REG__SMC, ixSOFT_REGISTERS_TABLE_28, 0);

	tonga_send_msg_to_smc_with_parameter(smumgr,
		PPSMC_MSG_SMU_DRAM_ADDR_HI,
		tonga_smu->smu_buffer.mc_addr_high);
	tonga_send_msg_to_smc_with_parameter(smumgr,
		PPSMC_MSG_SMU_DRAM_ADDR_LO,
		tonga_smu->smu_buffer.mc_addr_low);

	toc = (struct SMU_DRAMData_TOC *)tonga_smu->pHeader;
	toc->num_entries = 0;
	toc->structure_version = 1;

	PP_ASSERT_WITH_CODE(
		0 == tonga_populate_single_firmware_entry(smumgr,
		UCODE_ID_RLC_G,
		&toc->entry[toc->num_entries++]),
		"Failed to Get Firmware Entry.\n",
		return -1);
	PP_ASSERT_WITH_CODE(
		0 == tonga_populate_single_firmware_entry(smumgr,
		UCODE_ID_CP_CE,
		&toc->entry[toc->num_entries++]),
		"Failed to Get Firmware Entry.\n",
		return -1);
	PP_ASSERT_WITH_CODE(
		0 == tonga_populate_single_firmware_entry
		(smumgr, UCODE_ID_CP_PFP, &toc->entry[toc->num_entries++]),
		"Failed to Get Firmware Entry.\n", return -1);
	PP_ASSERT_WITH_CODE(
		0 == tonga_populate_single_firmware_entry
		(smumgr, UCODE_ID_CP_ME, &toc->entry[toc->num_entries++]),
		"Failed to Get Firmware Entry.\n", return -1);
	PP_ASSERT_WITH_CODE(
		0 == tonga_populate_single_firmware_entry
		(smumgr, UCODE_ID_CP_MEC, &toc->entry[toc->num_entries++]),
		"Failed to Get Firmware Entry.\n", return -1);
	PP_ASSERT_WITH_CODE(
		0 == tonga_populate_single_firmware_entry
		(smumgr, UCODE_ID_CP_MEC_JT1, &toc->entry[toc->num_entries++]),
		"Failed to Get Firmware Entry.\n", return -1);
	PP_ASSERT_WITH_CODE(
		0 == tonga_populate_single_firmware_entry
		(smumgr, UCODE_ID_CP_MEC_JT2, &toc->entry[toc->num_entries++]),
		"Failed to Get Firmware Entry.\n", return -1);
	PP_ASSERT_WITH_CODE(
		0 == tonga_populate_single_firmware_entry
		(smumgr, UCODE_ID_SDMA0, &toc->entry[toc->num_entries++]),
		"Failed to Get Firmware Entry.\n", return -1);
	PP_ASSERT_WITH_CODE(
		0 == tonga_populate_single_firmware_entry
		(smumgr, UCODE_ID_SDMA1, &toc->entry[toc->num_entries++]),
		"Failed to Get Firmware Entry.\n", return -1);

	tonga_send_msg_to_smc_with_parameter(smumgr,
		PPSMC_MSG_DRV_DRAM_ADDR_HI,
		tonga_smu->header_buffer.mc_addr_high);
	tonga_send_msg_to_smc_with_parameter(smumgr,
		PPSMC_MSG_DRV_DRAM_ADDR_LO,
		tonga_smu->header_buffer.mc_addr_low);

	fw_to_load = UCODE_ID_RLC_G_MASK
			+ UCODE_ID_SDMA0_MASK
			+ UCODE_ID_SDMA1_MASK
			+ UCODE_ID_CP_CE_MASK
			+ UCODE_ID_CP_ME_MASK
			+ UCODE_ID_CP_PFP_MASK
			+ UCODE_ID_CP_MEC_MASK;

	PP_ASSERT_WITH_CODE(
		0 == tonga_send_msg_to_smc_with_parameter_without_waiting(
		smumgr, PPSMC_MSG_LoadUcodes, fw_to_load),
		"Fail to Request SMU Load uCode", return 0);

	return result;
}

static int tonga_request_smu_load_specific_fw(struct pp_smumgr *smumgr,
				uint32_t firmwareType)
{
	return 0;
}

/**
 * Upload the SMC firmware to the SMC microcontroller.
 *
 * @param    smumgr  the address of the powerplay hardware manager.
 * @param    pFirmware the data structure containing the various sections of the firmware.
 */
static int tonga_smu_upload_firmware_image(struct pp_smumgr *smumgr)
{
	const uint8_t *src;
	uint32_t byte_count;
	uint32_t *data;
	struct cgs_firmware_info info = {0};

	if (smumgr == NULL || smumgr->device == NULL)
		return -EINVAL;

	cgs_get_firmware_info(smumgr->device,
		tonga_convert_fw_type_to_cgs(UCODE_ID_SMU), &info);

	if (info.image_size & 3) {
		printk(KERN_ERR "[ powerplay ] SMC ucode is not 4 bytes aligned\n");
		return -EINVAL;
	}

	if (info.image_size > TONGA_SMC_SIZE) {
		printk(KERN_ERR "[ powerplay ] SMC address is beyond the SMC RAM area\n");
		return -EINVAL;
	}

	cgs_write_register(smumgr->device, mmSMC_IND_INDEX_0, 0x20000);
	SMUM_WRITE_FIELD(smumgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 1);

	byte_count = info.image_size;
	src = (const uint8_t *)info.kptr;

	data = (uint32_t *)src;
	for (; byte_count >= 4; data++, byte_count -= 4)
		cgs_write_register(smumgr->device, mmSMC_IND_DATA_0, data[0]);

	SMUM_WRITE_FIELD(smumgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 0);

	return 0;
}

static int tonga_start_in_protection_mode(struct pp_smumgr *smumgr)
{
	int result;

	/* Assert reset */
	SMUM_WRITE_VFPF_INDIRECT_FIELD(smumgr->device, CGS_IND_REG__SMC,
		SMC_SYSCON_RESET_CNTL, rst_reg, 1);

	result = tonga_smu_upload_firmware_image(smumgr);
	if (result)
		return result;

	/* Clear status */
	cgs_write_ind_register(smumgr->device, CGS_IND_REG__SMC,
		ixSMU_STATUS, 0);

	/* Enable clock */
	SMUM_WRITE_VFPF_INDIRECT_FIELD(smumgr->device, CGS_IND_REG__SMC,
		SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);

	/* De-assert reset */
	SMUM_WRITE_VFPF_INDIRECT_FIELD(smumgr->device, CGS_IND_REG__SMC,
		SMC_SYSCON_RESET_CNTL, rst_reg, 0);

	/* Set SMU Auto Start */
	SMUM_WRITE_VFPF_INDIRECT_FIELD(smumgr->device, CGS_IND_REG__SMC,
		SMU_INPUT_DATA, AUTO_START, 1);

	/* Clear firmware interrupt enable flag */
	cgs_write_ind_register(smumgr->device, CGS_IND_REG__SMC,
		ixFIRMWARE_FLAGS, 0);

	SMUM_WAIT_VFPF_INDIRECT_FIELD(smumgr, SMC_IND,
		RCU_UC_EVENTS, INTERRUPTS_ENABLED, 1);

	/**
	 * Call Test SMU message with 0x20000 offset to trigger SMU start
	 */
	tonga_send_msg_to_smc_offset(smumgr);

	/* Wait for done bit to be set */
	SMUM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(smumgr, SMC_IND,
		SMU_STATUS, SMU_DONE, 0);

	/* Check pass/failed indicator */
	if (1 != SMUM_READ_VFPF_INDIRECT_FIELD(smumgr->device,
				CGS_IND_REG__SMC, SMU_STATUS, SMU_PASS)) {
		printk(KERN_ERR "[ powerplay ] SMU Firmware start failed\n");
		return -EINVAL;
	}

	/* Wait for firmware to initialize */
	SMUM_WAIT_VFPF_INDIRECT_FIELD(smumgr, SMC_IND,
		FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);

	return 0;
}


static int tonga_start_in_non_protection_mode(struct pp_smumgr *smumgr)
{
	int result = 0;

	/* wait for smc boot up */
	SMUM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(smumgr, SMC_IND,
		RCU_UC_EVENTS, boot_seq_done, 0);

	/*Clear firmware interrupt enable flag*/
	cgs_write_ind_register(smumgr->device, CGS_IND_REG__SMC,
		ixFIRMWARE_FLAGS, 0);


	SMUM_WRITE_VFPF_INDIRECT_FIELD(smumgr->device, CGS_IND_REG__SMC,
		SMC_SYSCON_RESET_CNTL, rst_reg, 1);

	result = tonga_smu_upload_firmware_image(smumgr);

	if (result != 0)
		return result;

	/* Set smc instruct start point at 0x0 */
	tonga_program_jump_on_start(smumgr);


	SMUM_WRITE_VFPF_INDIRECT_FIELD(smumgr->device, CGS_IND_REG__SMC,
		SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);

	/*De-assert reset*/
	SMUM_WRITE_VFPF_INDIRECT_FIELD(smumgr->device, CGS_IND_REG__SMC,
		SMC_SYSCON_RESET_CNTL, rst_reg, 0);

	/* Wait for firmware to initialize */
	SMUM_WAIT_VFPF_INDIRECT_FIELD(smumgr, SMC_IND,
		FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);

	return result;
}

static int tonga_start_smu(struct pp_smumgr *smumgr)
{
	int result;

	/* Only start SMC if SMC RAM is not running */
	if (!tonga_is_smc_ram_running(smumgr)) {
		/*Check if SMU is running in protected mode*/
		if (0 == SMUM_READ_VFPF_INDIRECT_FIELD(smumgr->device, CGS_IND_REG__SMC,
					SMU_FIRMWARE, SMU_MODE)) {
			result = tonga_start_in_non_protection_mode(smumgr);
			if (result)
				return result;
		} else {
			result = tonga_start_in_protection_mode(smumgr);
			if (result)
				return result;
		}
	}

	result = tonga_request_smu_reload_fw(smumgr);

	return result;
}

/**
 * Write a 32bit value to the SMC SRAM space.
 * ALL PARAMETERS ARE IN HOST BYTE ORDER.
 * @param    smumgr  the address of the powerplay hardware manager.
 * @param    smcAddress the address in the SMC RAM to access.
 * @param    value to write to the SMC SRAM.
 */
static int tonga_smu_init(struct pp_smumgr *smumgr)
{
	struct tonga_smumgr *tonga_smu;
	uint8_t *internal_buf;
	uint64_t mc_addr = 0;
	/* Allocate memory for backend private data */
	tonga_smu = (struct tonga_smumgr *)(smumgr->backend);
	tonga_smu->header_buffer.data_size =
		((sizeof(struct SMU_DRAMData_TOC) / 4096) + 1) * 4096;
	tonga_smu->smu_buffer.data_size = 200*4096;

	smu_allocate_memory(smumgr->device,
		tonga_smu->header_buffer.data_size,
		CGS_GPU_MEM_TYPE__VISIBLE_CONTIG_FB,
		PAGE_SIZE,
		&mc_addr,
		&tonga_smu->header_buffer.kaddr,
		&tonga_smu->header_buffer.handle);

	tonga_smu->pHeader = tonga_smu->header_buffer.kaddr;
	tonga_smu->header_buffer.mc_addr_high = smu_upper_32_bits(mc_addr);
	tonga_smu->header_buffer.mc_addr_low = smu_lower_32_bits(mc_addr);

	PP_ASSERT_WITH_CODE((NULL != tonga_smu->pHeader),
		"Out of memory.",
		kfree(smumgr->backend);
		cgs_free_gpu_mem(smumgr->device,
		(cgs_handle_t)tonga_smu->header_buffer.handle);
		return -1);

	smu_allocate_memory(smumgr->device,
		tonga_smu->smu_buffer.data_size,
		CGS_GPU_MEM_TYPE__VISIBLE_CONTIG_FB,
		PAGE_SIZE,
		&mc_addr,
		&tonga_smu->smu_buffer.kaddr,
		&tonga_smu->smu_buffer.handle);

	internal_buf = tonga_smu->smu_buffer.kaddr;
	tonga_smu->smu_buffer.mc_addr_high = smu_upper_32_bits(mc_addr);
	tonga_smu->smu_buffer.mc_addr_low = smu_lower_32_bits(mc_addr);

	PP_ASSERT_WITH_CODE((NULL != internal_buf),
		"Out of memory.",
		kfree(smumgr->backend);
		cgs_free_gpu_mem(smumgr->device,
		(cgs_handle_t)tonga_smu->smu_buffer.handle);
		return -1;);

	return 0;
}

static const struct pp_smumgr_func tonga_smu_funcs = {
	.smu_init = &tonga_smu_init,
	.smu_fini = &tonga_smu_fini,
	.start_smu = &tonga_start_smu,
	.check_fw_load_finish = &tonga_check_fw_load_finish,
	.request_smu_load_fw = &tonga_request_smu_reload_fw,
	.request_smu_load_specific_fw = &tonga_request_smu_load_specific_fw,
	.send_msg_to_smc = &tonga_send_msg_to_smc,
	.send_msg_to_smc_with_parameter = &tonga_send_msg_to_smc_with_parameter,
	.download_pptable_settings = NULL,
	.upload_pptable_settings = NULL,
};

int tonga_smum_init(struct pp_smumgr *smumgr)
{
	struct tonga_smumgr *tonga_smu = NULL;

	tonga_smu = kzalloc(sizeof(struct tonga_smumgr), GFP_KERNEL);

	if (tonga_smu == NULL)
820
		return -ENOMEM;
821 822 823 824 825 826

	smumgr->backend = tonga_smu;
	smumgr->smumgr_funcs = &tonga_smu_funcs;

	return 0;
}