lpc32xx_mlc.c 24.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * Driver for NAND MLC Controller in LPC32xx
 *
 * Author: Roland Stigge <stigge@antcom.de>
 *
 * Copyright © 2011 WORK Microwave GmbH
 * Copyright © 2011, 2012 Roland Stigge
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 *
 * NAND Flash Controller Operation:
 * - Read: Auto Decode
 * - Write: Auto Encode
 * - Tested Page Sizes: 2048, 4096
 */

#include <linux/slab.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/mtd/mtd.h>
30
#include <linux/mtd/rawnand.h>
31 32 33 34 35 36 37 38
#include <linux/mtd/partitions.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/delay.h>
#include <linux/completion.h>
#include <linux/interrupt.h>
#include <linux/of.h>
#include <linux/of_gpio.h>
39
#include <linux/mtd/lpc32xx_mlc.h>
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
#include <linux/io.h>
#include <linux/mm.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/mtd/nand_ecc.h>

#define DRV_NAME "lpc32xx_mlc"

/**********************************************************************
* MLC NAND controller register offsets
**********************************************************************/

#define MLC_BUFF(x)			(x + 0x00000)
#define MLC_DATA(x)			(x + 0x08000)
#define MLC_CMD(x)			(x + 0x10000)
#define MLC_ADDR(x)			(x + 0x10004)
#define MLC_ECC_ENC_REG(x)		(x + 0x10008)
#define MLC_ECC_DEC_REG(x)		(x + 0x1000C)
#define MLC_ECC_AUTO_ENC_REG(x)		(x + 0x10010)
#define MLC_ECC_AUTO_DEC_REG(x)		(x + 0x10014)
#define MLC_RPR(x)			(x + 0x10018)
#define MLC_WPR(x)			(x + 0x1001C)
#define MLC_RUBP(x)			(x + 0x10020)
#define MLC_ROBP(x)			(x + 0x10024)
#define MLC_SW_WP_ADD_LOW(x)		(x + 0x10028)
#define MLC_SW_WP_ADD_HIG(x)		(x + 0x1002C)
#define MLC_ICR(x)			(x + 0x10030)
#define MLC_TIME_REG(x)			(x + 0x10034)
#define MLC_IRQ_MR(x)			(x + 0x10038)
#define MLC_IRQ_SR(x)			(x + 0x1003C)
#define MLC_LOCK_PR(x)			(x + 0x10044)
#define MLC_ISR(x)			(x + 0x10048)
#define MLC_CEH(x)			(x + 0x1004C)

/**********************************************************************
* MLC_CMD bit definitions
**********************************************************************/
#define MLCCMD_RESET			0xFF

/**********************************************************************
* MLC_ICR bit definitions
**********************************************************************/
#define MLCICR_WPROT			(1 << 3)
#define MLCICR_LARGEBLOCK		(1 << 2)
#define MLCICR_LONGADDR			(1 << 1)
#define MLCICR_16BIT			(1 << 0)  /* unsupported by LPC32x0! */

/**********************************************************************
* MLC_TIME_REG bit definitions
**********************************************************************/
#define MLCTIMEREG_TCEA_DELAY(n)	(((n) & 0x03) << 24)
#define MLCTIMEREG_BUSY_DELAY(n)	(((n) & 0x1F) << 19)
#define MLCTIMEREG_NAND_TA(n)		(((n) & 0x07) << 16)
#define MLCTIMEREG_RD_HIGH(n)		(((n) & 0x0F) << 12)
#define MLCTIMEREG_RD_LOW(n)		(((n) & 0x0F) << 8)
#define MLCTIMEREG_WR_HIGH(n)		(((n) & 0x0F) << 4)
#define MLCTIMEREG_WR_LOW(n)		(((n) & 0x0F) << 0)

/**********************************************************************
* MLC_IRQ_MR and MLC_IRQ_SR bit definitions
**********************************************************************/
#define MLCIRQ_NAND_READY		(1 << 5)
#define MLCIRQ_CONTROLLER_READY		(1 << 4)
#define MLCIRQ_DECODE_FAILURE		(1 << 3)
#define MLCIRQ_DECODE_ERROR		(1 << 2)
#define MLCIRQ_ECC_READY		(1 << 1)
#define MLCIRQ_WRPROT_FAULT		(1 << 0)

/**********************************************************************
* MLC_LOCK_PR bit definitions
**********************************************************************/
#define MLCLOCKPR_MAGIC			0xA25E

/**********************************************************************
* MLC_ISR bit definitions
**********************************************************************/
#define MLCISR_DECODER_FAILURE		(1 << 6)
#define MLCISR_ERRORS			((1 << 4) | (1 << 5))
#define MLCISR_ERRORS_DETECTED		(1 << 3)
#define MLCISR_ECC_READY		(1 << 2)
#define MLCISR_CONTROLLER_READY		(1 << 1)
#define MLCISR_NAND_READY		(1 << 0)

/**********************************************************************
* MLC_CEH bit definitions
**********************************************************************/
#define MLCCEH_NORMAL			(1 << 0)

struct lpc32xx_nand_cfg_mlc {
	uint32_t tcea_delay;
	uint32_t busy_delay;
	uint32_t nand_ta;
	uint32_t rd_high;
	uint32_t rd_low;
	uint32_t wr_high;
	uint32_t wr_low;
	int wp_gpio;
	struct mtd_partition *parts;
	unsigned num_parts;
};

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
static int lpc32xx_ooblayout_ecc(struct mtd_info *mtd, int section,
				 struct mtd_oob_region *oobregion)
{
	struct nand_chip *nand_chip = mtd_to_nand(mtd);

	if (section >= nand_chip->ecc.steps)
		return -ERANGE;

	oobregion->offset = ((section + 1) * 16) - nand_chip->ecc.bytes;
	oobregion->length = nand_chip->ecc.bytes;

	return 0;
}

static int lpc32xx_ooblayout_free(struct mtd_info *mtd, int section,
				  struct mtd_oob_region *oobregion)
{
	struct nand_chip *nand_chip = mtd_to_nand(mtd);

	if (section >= nand_chip->ecc.steps)
		return -ERANGE;

	oobregion->offset = 16 * section;
	oobregion->length = 16 - nand_chip->ecc.bytes;

	return 0;
}

static const struct mtd_ooblayout_ops lpc32xx_ooblayout_ops = {
	.ecc = lpc32xx_ooblayout_ecc,
	.free = lpc32xx_ooblayout_free,
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
};

static struct nand_bbt_descr lpc32xx_nand_bbt = {
	.options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB |
		   NAND_BBT_WRITE,
	.pages = { 524224, 0, 0, 0, 0, 0, 0, 0 },
};

static struct nand_bbt_descr lpc32xx_nand_bbt_mirror = {
	.options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB |
		   NAND_BBT_WRITE,
	.pages = { 524160, 0, 0, 0, 0, 0, 0, 0 },
};

struct lpc32xx_nand_host {
187
	struct platform_device	*pdev;
188
	struct nand_chip	nand_chip;
189
	struct lpc32xx_mlc_platform_data *pdata;
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
	struct clk		*clk;
	void __iomem		*io_base;
	int			irq;
	struct lpc32xx_nand_cfg_mlc	*ncfg;
	struct completion       comp_nand;
	struct completion       comp_controller;
	uint32_t llptr;
	/*
	 * Physical addresses of ECC buffer, DMA data buffers, OOB data buffer
	 */
	dma_addr_t		oob_buf_phy;
	/*
	 * Virtual addresses of ECC buffer, DMA data buffers, OOB data buffer
	 */
	uint8_t			*oob_buf;
	/* Physical address of DMA base address */
	dma_addr_t		io_base_phy;

	struct completion	comp_dma;
	struct dma_chan		*dma_chan;
	struct dma_slave_config	dma_slave_config;
	struct scatterlist	sgl;
	uint8_t			*dma_buf;
	uint8_t			*dummy_buf;
	int			mlcsubpages; /* number of 512bytes-subpages */
};

/*
 * Activate/Deactivate DMA Operation:
 *
 * Using the PL080 DMA Controller for transferring the 512 byte subpages
 * instead of doing readl() / writel() in a loop slows it down significantly.
 * Measurements via getnstimeofday() upon 512 byte subpage reads reveal:
 *
 * - readl() of 128 x 32 bits in a loop: ~20us
 * - DMA read of 512 bytes (32 bit, 4...128 words bursts): ~60us
 * - DMA read of 512 bytes (32 bit, no bursts): ~100us
 *
 * This applies to the transfer itself. In the DMA case: only the
 * wait_for_completion() (DMA setup _not_ included).
 *
 * Note that the 512 bytes subpage transfer is done directly from/to a
 * FIFO/buffer inside the NAND controller. Most of the time (~400-800us for a
 * 2048 bytes page) is spent waiting for the NAND IRQ, anyway. (The NAND
 * controller transferring data between its internal buffer to/from the NAND
 * chip.)
 *
 * Therefore, using the PL080 DMA is disabled by default, for now.
 *
 */
static int use_dma;

static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host)
{
	uint32_t clkrate, tmp;

	/* Reset MLC controller */
	writel(MLCCMD_RESET, MLC_CMD(host->io_base));
	udelay(1000);

	/* Get base clock for MLC block */
	clkrate = clk_get_rate(host->clk);
	if (clkrate == 0)
		clkrate = 104000000;

	/* Unlock MLC_ICR
	 * (among others, will be locked again automatically) */
	writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base));

	/* Configure MLC Controller: Large Block, 5 Byte Address */
	tmp = MLCICR_LARGEBLOCK | MLCICR_LONGADDR;
	writel(tmp, MLC_ICR(host->io_base));

	/* Unlock MLC_TIME_REG
	 * (among others, will be locked again automatically) */
	writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base));

	/* Compute clock setup values, see LPC and NAND manual */
	tmp = 0;
	tmp |= MLCTIMEREG_TCEA_DELAY(clkrate / host->ncfg->tcea_delay + 1);
	tmp |= MLCTIMEREG_BUSY_DELAY(clkrate / host->ncfg->busy_delay + 1);
	tmp |= MLCTIMEREG_NAND_TA(clkrate / host->ncfg->nand_ta + 1);
	tmp |= MLCTIMEREG_RD_HIGH(clkrate / host->ncfg->rd_high + 1);
	tmp |= MLCTIMEREG_RD_LOW(clkrate / host->ncfg->rd_low);
	tmp |= MLCTIMEREG_WR_HIGH(clkrate / host->ncfg->wr_high + 1);
	tmp |= MLCTIMEREG_WR_LOW(clkrate / host->ncfg->wr_low);
	writel(tmp, MLC_TIME_REG(host->io_base));

	/* Enable IRQ for CONTROLLER_READY and NAND_READY */
	writeb(MLCIRQ_CONTROLLER_READY | MLCIRQ_NAND_READY,
			MLC_IRQ_MR(host->io_base));

	/* Normal nCE operation: nCE controlled by controller */
	writel(MLCCEH_NORMAL, MLC_CEH(host->io_base));
}

/*
 * Hardware specific access to control lines
 */
289
static void lpc32xx_nand_cmd_ctrl(struct nand_chip *nand_chip, int cmd,
290 291
				  unsigned int ctrl)
{
292
	struct lpc32xx_nand_host *host = nand_get_controller_data(nand_chip);
293 294 295 296 297 298 299 300 301 302 303 304

	if (cmd != NAND_CMD_NONE) {
		if (ctrl & NAND_CLE)
			writel(cmd, MLC_CMD(host->io_base));
		else
			writel(cmd, MLC_ADDR(host->io_base));
	}
}

/*
 * Read Device Ready (NAND device _and_ controller ready)
 */
305
static int lpc32xx_nand_device_ready(struct nand_chip *nand_chip)
306
{
307
	struct lpc32xx_nand_host *host = nand_get_controller_data(nand_chip);
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330

	if ((readb(MLC_ISR(host->io_base)) &
	     (MLCISR_CONTROLLER_READY | MLCISR_NAND_READY)) ==
	    (MLCISR_CONTROLLER_READY | MLCISR_NAND_READY))
		return  1;

	return 0;
}

static irqreturn_t lpc3xxx_nand_irq(int irq, struct lpc32xx_nand_host *host)
{
	uint8_t sr;

	/* Clear interrupt flag by reading status */
	sr = readb(MLC_IRQ_SR(host->io_base));
	if (sr & MLCIRQ_NAND_READY)
		complete(&host->comp_nand);
	if (sr & MLCIRQ_CONTROLLER_READY)
		complete(&host->comp_controller);

	return IRQ_HANDLED;
}

331
static int lpc32xx_waitfunc_nand(struct nand_chip *chip)
332
{
333
	struct mtd_info *mtd = nand_to_mtd(chip);
334
	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350

	if (readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY)
		goto exit;

	wait_for_completion(&host->comp_nand);

	while (!(readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY)) {
		/* Seems to be delayed sometimes by controller */
		dev_dbg(&mtd->dev, "Warning: NAND not ready.\n");
		cpu_relax();
	}

exit:
	return NAND_STATUS_READY;
}

351
static int lpc32xx_waitfunc_controller(struct nand_chip *chip)
352
{
353
	struct mtd_info *mtd = nand_to_mtd(chip);
354
	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370

	if (readb(MLC_ISR(host->io_base)) & MLCISR_CONTROLLER_READY)
		goto exit;

	wait_for_completion(&host->comp_controller);

	while (!(readb(MLC_ISR(host->io_base)) &
		 MLCISR_CONTROLLER_READY)) {
		dev_dbg(&mtd->dev, "Warning: Controller not ready.\n");
		cpu_relax();
	}

exit:
	return NAND_STATUS_READY;
}

371
static int lpc32xx_waitfunc(struct nand_chip *chip)
372
{
373 374
	lpc32xx_waitfunc_nand(chip);
	lpc32xx_waitfunc_controller(chip);
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404

	return NAND_STATUS_READY;
}

/*
 * Enable NAND write protect
 */
static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host)
{
	if (gpio_is_valid(host->ncfg->wp_gpio))
		gpio_set_value(host->ncfg->wp_gpio, 0);
}

/*
 * Disable NAND write protect
 */
static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host)
{
	if (gpio_is_valid(host->ncfg->wp_gpio))
		gpio_set_value(host->ncfg->wp_gpio, 1);
}

static void lpc32xx_dma_complete_func(void *completion)
{
	complete(completion);
}

static int lpc32xx_xmit_dma(struct mtd_info *mtd, void *mem, int len,
			    enum dma_transfer_direction dir)
{
405
	struct nand_chip *chip = mtd_to_nand(mtd);
406
	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
	struct dma_async_tx_descriptor *desc;
	int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
	int res;

	sg_init_one(&host->sgl, mem, len);

	res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1,
			 DMA_BIDIRECTIONAL);
	if (res != 1) {
		dev_err(mtd->dev.parent, "Failed to map sg list\n");
		return -ENXIO;
	}
	desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir,
				       flags);
	if (!desc) {
		dev_err(mtd->dev.parent, "Failed to prepare slave sg\n");
		goto out1;
	}

	init_completion(&host->comp_dma);
	desc->callback = lpc32xx_dma_complete_func;
	desc->callback_param = &host->comp_dma;

	dmaengine_submit(desc);
	dma_async_issue_pending(host->dma_chan);

	wait_for_completion_timeout(&host->comp_dma, msecs_to_jiffies(1000));

	dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
		     DMA_BIDIRECTIONAL);
	return 0;
out1:
	dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
		     DMA_BIDIRECTIONAL);
	return -ENXIO;
}

444 445
static int lpc32xx_read_page(struct nand_chip *chip, uint8_t *buf,
			     int oob_required, int page)
446
{
447
	struct mtd_info *mtd = nand_to_mtd(chip);
448
	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
	int i, j;
	uint8_t *oobbuf = chip->oob_poi;
	uint32_t mlc_isr;
	int res;
	uint8_t *dma_buf;
	bool dma_mapped;

	if ((void *)buf <= high_memory) {
		dma_buf = buf;
		dma_mapped = true;
	} else {
		dma_buf = host->dma_buf;
		dma_mapped = false;
	}

	/* Writing Command and Address */
465
	nand_read_page_op(chip, page, 0, NULL, 0);
466 467 468 469 470 471 472

	/* For all sub-pages */
	for (i = 0; i < host->mlcsubpages; i++) {
		/* Start Auto Decode Command */
		writeb(0x00, MLC_ECC_AUTO_DEC_REG(host->io_base));

		/* Wait for Controller Ready */
473
		lpc32xx_waitfunc_controller(chip);
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509

		/* Check ECC Error status */
		mlc_isr = readl(MLC_ISR(host->io_base));
		if (mlc_isr & MLCISR_DECODER_FAILURE) {
			mtd->ecc_stats.failed++;
			dev_warn(&mtd->dev, "%s: DECODER_FAILURE\n", __func__);
		} else if (mlc_isr & MLCISR_ERRORS_DETECTED) {
			mtd->ecc_stats.corrected += ((mlc_isr >> 4) & 0x3) + 1;
		}

		/* Read 512 + 16 Bytes */
		if (use_dma) {
			res = lpc32xx_xmit_dma(mtd, dma_buf + i * 512, 512,
					       DMA_DEV_TO_MEM);
			if (res)
				return res;
		} else {
			for (j = 0; j < (512 >> 2); j++) {
				*((uint32_t *)(buf)) =
					readl(MLC_BUFF(host->io_base));
				buf += 4;
			}
		}
		for (j = 0; j < (16 >> 2); j++) {
			*((uint32_t *)(oobbuf)) =
				readl(MLC_BUFF(host->io_base));
			oobbuf += 4;
		}
	}

	if (use_dma && !dma_mapped)
		memcpy(buf, dma_buf, mtd->writesize);

	return 0;
}

510
static int lpc32xx_write_page_lowlevel(struct nand_chip *chip,
511 512
				       const uint8_t *buf, int oob_required,
				       int page)
513
{
514
	struct mtd_info *mtd = nand_to_mtd(chip);
515
	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
516 517 518 519 520 521 522 523 524 525
	const uint8_t *oobbuf = chip->oob_poi;
	uint8_t *dma_buf = (uint8_t *)buf;
	int res;
	int i, j;

	if (use_dma && (void *)buf >= high_memory) {
		dma_buf = host->dma_buf;
		memcpy(dma_buf, buf, mtd->writesize);
	}

526 527
	nand_prog_page_begin_op(chip, page, 0, NULL, 0);

528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
	for (i = 0; i < host->mlcsubpages; i++) {
		/* Start Encode */
		writeb(0x00, MLC_ECC_ENC_REG(host->io_base));

		/* Write 512 + 6 Bytes to Buffer */
		if (use_dma) {
			res = lpc32xx_xmit_dma(mtd, dma_buf + i * 512, 512,
					       DMA_MEM_TO_DEV);
			if (res)
				return res;
		} else {
			for (j = 0; j < (512 >> 2); j++) {
				writel(*((uint32_t *)(buf)),
				       MLC_BUFF(host->io_base));
				buf += 4;
			}
		}
		writel(*((uint32_t *)(oobbuf)), MLC_BUFF(host->io_base));
		oobbuf += 4;
		writew(*((uint16_t *)(oobbuf)), MLC_BUFF(host->io_base));
		oobbuf += 12;

		/* Auto Encode w/ Bit 8 = 0 (see LPC MLC Controller manual) */
		writeb(0x00, MLC_ECC_AUTO_ENC_REG(host->io_base));

		/* Wait for Controller Ready */
554
		lpc32xx_waitfunc_controller(chip);
555
	}
556 557

	return nand_prog_page_end_op(chip);
558 559
}

560
static int lpc32xx_read_oob(struct nand_chip *chip, int page)
561
{
562
	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
563 564

	/* Read whole page - necessary with MLC controller! */
565
	lpc32xx_read_page(chip, host->dummy_buf, 1, page);
566 567 568 569

	return 0;
}

570
static int lpc32xx_write_oob(struct nand_chip *chip, int page)
571 572 573 574 575 576
{
	/* None, write_oob conflicts with the automatic LPC MLC ECC decoder! */
	return 0;
}

/* Prepares MLC for transfers with H/W ECC enabled: always enabled anyway */
577
static void lpc32xx_ecc_enable(struct nand_chip *chip, int mode)
578 579 580 581 582 583
{
	/* Always enabled! */
}

static int lpc32xx_dma_setup(struct lpc32xx_nand_host *host)
{
584
	struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
585 586
	dma_cap_mask_t mask;

587 588 589 590 591
	if (!host->pdata || !host->pdata->dma_filter) {
		dev_err(mtd->dev.parent, "no DMA platform data\n");
		return -ENOENT;
	}

592 593
	dma_cap_zero(mask);
	dma_cap_set(DMA_SLAVE, mask);
594 595
	host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter,
					     "nand-mlc");
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
	if (!host->dma_chan) {
		dev_err(mtd->dev.parent, "Failed to request DMA channel\n");
		return -EBUSY;
	}

	/*
	 * Set direction to a sensible value even if the dmaengine driver
	 * should ignore it. With the default (DMA_MEM_TO_MEM), the amba-pl08x
	 * driver criticizes it as "alien transfer direction".
	 */
	host->dma_slave_config.direction = DMA_DEV_TO_MEM;
	host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
	host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
	host->dma_slave_config.src_maxburst = 128;
	host->dma_slave_config.dst_maxburst = 128;
	/* DMA controller does flow control: */
	host->dma_slave_config.device_fc = false;
	host->dma_slave_config.src_addr = MLC_BUFF(host->io_base_phy);
	host->dma_slave_config.dst_addr = MLC_BUFF(host->io_base_phy);
	if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) {
		dev_err(mtd->dev.parent, "Failed to setup DMA slave\n");
		goto out1;
	}

	return 0;
out1:
	dma_release_channel(host->dma_chan);
	return -ENXIO;
}

static struct lpc32xx_nand_cfg_mlc *lpc32xx_parse_dt(struct device *dev)
{
628
	struct lpc32xx_nand_cfg_mlc *ncfg;
629 630
	struct device_node *np = dev->of_node;

631
	ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL);
632
	if (!ncfg)
633 634
		return NULL;

635 636 637 638 639 640 641 642 643 644 645
	of_property_read_u32(np, "nxp,tcea-delay", &ncfg->tcea_delay);
	of_property_read_u32(np, "nxp,busy-delay", &ncfg->busy_delay);
	of_property_read_u32(np, "nxp,nand-ta", &ncfg->nand_ta);
	of_property_read_u32(np, "nxp,rd-high", &ncfg->rd_high);
	of_property_read_u32(np, "nxp,rd-low", &ncfg->rd_low);
	of_property_read_u32(np, "nxp,wr-high", &ncfg->wr_high);
	of_property_read_u32(np, "nxp,wr-low", &ncfg->wr_low);

	if (!ncfg->tcea_delay || !ncfg->busy_delay || !ncfg->nand_ta ||
	    !ncfg->rd_high || !ncfg->rd_low || !ncfg->wr_high ||
	    !ncfg->wr_low) {
646 647 648 649
		dev_err(dev, "chip parameters not specified correctly\n");
		return NULL;
	}

650
	ncfg->wp_gpio = of_get_named_gpio(np, "gpios", 0);
651

652
	return ncfg;
653 654
}

655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
static int lpc32xx_nand_attach_chip(struct nand_chip *chip)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
	struct device *dev = &host->pdev->dev;

	host->dma_buf = devm_kzalloc(dev, mtd->writesize, GFP_KERNEL);
	if (!host->dma_buf)
		return -ENOMEM;

	host->dummy_buf = devm_kzalloc(dev, mtd->writesize, GFP_KERNEL);
	if (!host->dummy_buf)
		return -ENOMEM;

	chip->ecc.mode = NAND_ECC_HW;
	chip->ecc.size = 512;
	mtd_set_ooblayout(mtd, &lpc32xx_ooblayout_ops);
	host->mlcsubpages = mtd->writesize / 512;

	return 0;
}

static const struct nand_controller_ops lpc32xx_nand_controller_ops = {
	.attach_chip = lpc32xx_nand_attach_chip,
};

681 682 683
/*
 * Probe for NAND controller
 */
684
static int lpc32xx_nand_probe(struct platform_device *pdev)
685 686 687 688 689 690 691 692 693
{
	struct lpc32xx_nand_host *host;
	struct mtd_info *mtd;
	struct nand_chip *nand_chip;
	struct resource *rc;
	int res;

	/* Allocate memory for the device structure (and zero it) */
	host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
694
	if (!host)
695 696
		return -ENOMEM;

697 698
	host->pdev = pdev;

699
	rc = platform_get_resource(pdev, IORESOURCE_MEM, 0);
700 701 702
	host->io_base = devm_ioremap_resource(&pdev->dev, rc);
	if (IS_ERR(host->io_base))
		return PTR_ERR(host->io_base);
703

704 705 706
	host->io_base_phy = rc->start;

	nand_chip = &host->nand_chip;
707
	mtd = nand_to_mtd(nand_chip);
708 709 710
	if (pdev->dev.of_node)
		host->ncfg = lpc32xx_parse_dt(&pdev->dev);
	if (!host->ncfg) {
711 712
		dev_err(&pdev->dev,
			"Missing or bad NAND config from device tree\n");
713 714 715 716 717 718 719 720 721 722 723
		return -ENOENT;
	}
	if (host->ncfg->wp_gpio == -EPROBE_DEFER)
		return -EPROBE_DEFER;
	if (gpio_is_valid(host->ncfg->wp_gpio) &&
			gpio_request(host->ncfg->wp_gpio, "NAND WP")) {
		dev_err(&pdev->dev, "GPIO not available\n");
		return -EBUSY;
	}
	lpc32xx_wp_disable(host);

724
	host->pdata = dev_get_platdata(&pdev->dev);
725

726 727
	/* link the private data structures */
	nand_set_controller_data(nand_chip, host);
728
	nand_set_flash_node(nand_chip, pdev->dev.of_node);
729 730 731 732 733 734 735
	mtd->dev.parent = &pdev->dev;

	/* Get NAND clock */
	host->clk = clk_get(&pdev->dev, NULL);
	if (IS_ERR(host->clk)) {
		dev_err(&pdev->dev, "Clock initialization failure\n");
		res = -ENOENT;
736
		goto free_gpio;
737
	}
738 739
	res = clk_prepare_enable(host->clk);
	if (res)
740
		goto put_clk;
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761

	nand_chip->cmd_ctrl = lpc32xx_nand_cmd_ctrl;
	nand_chip->dev_ready = lpc32xx_nand_device_ready;
	nand_chip->chip_delay = 25; /* us */
	nand_chip->IO_ADDR_R = MLC_DATA(host->io_base);
	nand_chip->IO_ADDR_W = MLC_DATA(host->io_base);

	/* Init NAND controller */
	lpc32xx_nand_setup(host);

	platform_set_drvdata(pdev, host);

	/* Initialize function pointers */
	nand_chip->ecc.hwctl = lpc32xx_ecc_enable;
	nand_chip->ecc.read_page_raw = lpc32xx_read_page;
	nand_chip->ecc.read_page = lpc32xx_read_page;
	nand_chip->ecc.write_page_raw = lpc32xx_write_page_lowlevel;
	nand_chip->ecc.write_page = lpc32xx_write_page_lowlevel;
	nand_chip->ecc.write_oob = lpc32xx_write_oob;
	nand_chip->ecc.read_oob = lpc32xx_read_oob;
	nand_chip->ecc.strength = 4;
762
	nand_chip->ecc.bytes = 10;
763 764
	nand_chip->waitfunc = lpc32xx_waitfunc;

765
	nand_chip->options = NAND_NO_SUBPAGE_WRITE;
766 767 768 769 770 771 772 773
	nand_chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
	nand_chip->bbt_td = &lpc32xx_nand_bbt;
	nand_chip->bbt_md = &lpc32xx_nand_bbt_mirror;

	if (use_dma) {
		res = lpc32xx_dma_setup(host);
		if (res) {
			res = -EIO;
774
			goto unprepare_clk;
775 776 777 778 779 780 781 782 783 784
		}
	}

	/* initially clear interrupt status */
	readb(MLC_IRQ_SR(host->io_base));

	init_completion(&host->comp_nand);
	init_completion(&host->comp_controller);

	host->irq = platform_get_irq(pdev, 0);
785
	if (host->irq < 0) {
786 787
		dev_err(&pdev->dev, "failed to get platform irq\n");
		res = -EINVAL;
788
		goto release_dma_chan;
789 790 791 792 793 794
	}

	if (request_irq(host->irq, (irq_handler_t)&lpc3xxx_nand_irq,
			IRQF_TRIGGER_HIGH, DRV_NAME, host)) {
		dev_err(&pdev->dev, "Error requesting NAND IRQ\n");
		res = -ENXIO;
795
		goto release_dma_chan;
796 797 798
	}

	/*
799 800
	 * Scan to find existence of the device and get the type of NAND device:
	 * SMALL block or LARGE block.
801
	 */
802
	nand_chip->dummy_controller.ops = &lpc32xx_nand_controller_ops;
803
	res = nand_scan(nand_chip, 1);
804
	if (res)
805
		goto free_irq;
806 807 808

	mtd->name = DRV_NAME;

809 810
	res = mtd_device_register(mtd, host->ncfg->parts,
				  host->ncfg->num_parts);
811
	if (res)
812
		goto cleanup_nand;
813

814
	return 0;
815

816 817
cleanup_nand:
	nand_cleanup(nand_chip);
818
free_irq:
819
	free_irq(host->irq, host);
820
release_dma_chan:
821 822
	if (use_dma)
		dma_release_channel(host->dma_chan);
823
unprepare_clk:
824
	clk_disable_unprepare(host->clk);
825
put_clk:
826
	clk_put(host->clk);
827
free_gpio:
828 829 830 831 832 833 834 835 836
	lpc32xx_wp_enable(host);
	gpio_free(host->ncfg->wp_gpio);

	return res;
}

/*
 * Remove NAND device
 */
837
static int lpc32xx_nand_remove(struct platform_device *pdev)
838 839 840
{
	struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);

841
	nand_release(&host->nand_chip);
842 843 844 845
	free_irq(host->irq, host);
	if (use_dma)
		dma_release_channel(host->dma_chan);

846
	clk_disable_unprepare(host->clk);
847 848 849 850 851 852 853 854 855 856 857 858
	clk_put(host->clk);

	lpc32xx_wp_enable(host);
	gpio_free(host->ncfg->wp_gpio);

	return 0;
}

#ifdef CONFIG_PM
static int lpc32xx_nand_resume(struct platform_device *pdev)
{
	struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
859
	int ret;
860 861

	/* Re-enable NAND clock */
862 863 864
	ret = clk_prepare_enable(host->clk);
	if (ret)
		return ret;
865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882

	/* Fresh init of NAND controller */
	lpc32xx_nand_setup(host);

	/* Disable write protect */
	lpc32xx_wp_disable(host);

	return 0;
}

static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm)
{
	struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);

	/* Enable write protect for safety */
	lpc32xx_wp_enable(host);

	/* Disable clock */
883
	clk_disable_unprepare(host->clk);
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
	return 0;
}

#else
#define lpc32xx_nand_resume NULL
#define lpc32xx_nand_suspend NULL
#endif

static const struct of_device_id lpc32xx_nand_match[] = {
	{ .compatible = "nxp,lpc3220-mlc" },
	{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, lpc32xx_nand_match);

static struct platform_driver lpc32xx_nand_driver = {
	.probe		= lpc32xx_nand_probe,
900
	.remove		= lpc32xx_nand_remove,
901 902 903 904
	.resume		= lpc32xx_nand_resume,
	.suspend	= lpc32xx_nand_suspend,
	.driver		= {
		.name	= DRV_NAME,
905
		.of_match_table = lpc32xx_nand_match,
906 907 908 909 910 911 912 913
	},
};

module_platform_driver(lpc32xx_nand_driver);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX MLC controller");
新手
引导
客服 返回
顶部