i915_gem_context.c 58.1 KB
Newer Older
1
/*
2
 * SPDX-License-Identifier: MIT
3
 *
4
 * Copyright © 2011-2012 Intel Corporation
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
 */

/*
 * This file implements HW context support. On gen5+ a HW context consists of an
 * opaque GPU object which is referenced at times of context saves and restores.
 * With RC6 enabled, the context is also referenced as the GPU enters and exists
 * from RC6 (GPU has it's own internal power context, except on gen5). Though
 * something like a context does exist for the media ring, the code only
 * supports contexts for the render ring.
 *
 * In software, there is a distinction between contexts created by the user,
 * and the default HW context. The default HW context is used by GPU clients
 * that do not request setup of their own hardware context. The default
 * context's state is never restored to help prevent programming errors. This
 * would happen if a client ran and piggy-backed off another clients GPU state.
 * The default context only exists to give the GPU some offset to load as the
 * current to invoke a save of the context we actually care about. In fact, the
 * code could likely be constructed, albeit in a more complicated fashion, to
 * never use the default context, though that limits the driver's ability to
 * swap out, and/or destroy other contexts.
 *
 * All other contexts are created as a request by the GPU client. These contexts
 * store GPU state, and thus allow GPU clients to not re-emit state (and
 * potentially query certain state) at any time. The kernel driver makes
 * certain that the appropriate commands are inserted.
 *
 * The context life cycle is semi-complicated in that context BOs may live
 * longer than the context itself because of the way the hardware, and object
 * tracking works. Below is a very crude representation of the state machine
 * describing the context life.
 *                                         refcount     pincount     active
 * S0: initial state                          0            0           0
 * S1: context created                        1            0           0
 * S2: context is currently running           2            1           X
 * S3: GPU referenced, but not current        2            0           1
 * S4: context is current, but destroyed      1            1           0
 * S5: like S3, but destroyed                 1            0           1
 *
 * The most common (but not all) transitions:
 * S0->S1: client creates a context
 * S1->S2: client submits execbuf with context
 * S2->S3: other clients submits execbuf with context
 * S3->S1: context object was retired
 * S3->S2: clients submits another execbuf
 * S2->S4: context destroy called with current context
 * S3->S5->S0: destroy path
 * S4->S5->S0: destroy path on current context
 *
 * There are two confusing terms used above:
 *  The "current context" means the context which is currently running on the
D
Damien Lespiau 已提交
55
 *  GPU. The GPU has loaded its state already and has stored away the gtt
56 57 58 59 60 61 62 63 64 65 66
 *  offset of the BO. The GPU is not actively referencing the data at this
 *  offset, but it will on the next context switch. The only way to avoid this
 *  is to do a GPU reset.
 *
 *  An "active context' is one which was previously the "current context" and is
 *  on the active list waiting for the next context switch to occur. Until this
 *  happens, the object must remain at the same gtt offset. It is therefore
 *  possible to destroy a context, but it is still active.
 *
 */

67
#include <linux/log2.h>
68
#include <linux/nospec.h>
69

70
#include <drm/i915_drm.h>
71

72
#include "gt/intel_engine_heartbeat.h"
73
#include "gt/intel_engine_user.h"
74 75
#include "gt/intel_lrc_reg.h"
#include "gt/intel_ring.h"
76

77
#include "i915_gem_context.h"
78
#include "i915_globals.h"
79
#include "i915_trace.h"
80
#include "i915_user_extensions.h"
81

82 83
#define ALL_L3_SLICES(dev) (1 << NUM_L3_SLICES(dev)) - 1

84
static struct i915_global_gem_context {
85
	struct i915_global base;
86 87 88 89 90 91 92 93 94 95 96 97 98
	struct kmem_cache *slab_luts;
} global;

struct i915_lut_handle *i915_lut_handle_alloc(void)
{
	return kmem_cache_alloc(global.slab_luts, GFP_KERNEL);
}

void i915_lut_handle_free(struct i915_lut_handle *lut)
{
	return kmem_cache_free(global.slab_luts, lut);
}

99
static void lut_close(struct i915_gem_context *ctx)
100
{
101 102 103
	struct radix_tree_iter iter;
	void __rcu **slot;

104
	lockdep_assert_held(&ctx->mutex);
105

106
	rcu_read_lock();
107 108
	radix_tree_for_each_slot(slot, &ctx->handles_vma, &iter, 0) {
		struct i915_vma *vma = rcu_dereference_raw(*slot);
109 110 111 112 113
		struct drm_i915_gem_object *obj = vma->obj;
		struct i915_lut_handle *lut;

		if (!kref_get_unless_zero(&obj->base.refcount))
			continue;
114

115 116 117 118 119
		rcu_read_unlock();
		i915_gem_object_lock(obj);
		list_for_each_entry(lut, &obj->lut_list, obj_link) {
			if (lut->ctx != ctx)
				continue;
120

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
			if (lut->handle != iter.index)
				continue;

			list_del(&lut->obj_link);
			break;
		}
		i915_gem_object_unlock(obj);
		rcu_read_lock();

		if (&lut->obj_link != &obj->lut_list) {
			i915_lut_handle_free(lut);
			radix_tree_iter_delete(&ctx->handles_vma, &iter, slot);
			if (atomic_dec_and_test(&vma->open_count) &&
			    !i915_vma_is_ggtt(vma))
				i915_vma_close(vma);
			i915_gem_object_put(obj);
		}

		i915_gem_object_put(obj);
140
	}
141
	rcu_read_unlock();
142 143
}

144
static struct intel_context *
145 146 147 148
lookup_user_engine(struct i915_gem_context *ctx,
		   unsigned long flags,
		   const struct i915_engine_class_instance *ci)
#define LOOKUP_USER_INDEX BIT(0)
149
{
150
	int idx;
151

152
	if (!!(flags & LOOKUP_USER_INDEX) != i915_gem_context_user_engines(ctx))
153 154
		return ERR_PTR(-EINVAL);

155 156 157 158 159 160 161 162 163
	if (!i915_gem_context_user_engines(ctx)) {
		struct intel_engine_cs *engine;

		engine = intel_engine_lookup_user(ctx->i915,
						  ci->engine_class,
						  ci->engine_instance);
		if (!engine)
			return ERR_PTR(-EINVAL);

164
		idx = engine->legacy_idx;
165 166 167 168 169
	} else {
		idx = ci->engine_instance;
	}

	return i915_gem_context_get_engine(ctx, idx);
170 171
}

172
static void __free_engines(struct i915_gem_engines *e, unsigned int count)
173
{
174 175 176 177 178 179 180 181 182 183 184 185 186 187
	while (count--) {
		if (!e->engines[count])
			continue;

		intel_context_put(e->engines[count]);
	}
	kfree(e);
}

static void free_engines(struct i915_gem_engines *e)
{
	__free_engines(e, e->num_engines);
}

188
static void free_engines_rcu(struct rcu_head *rcu)
189
{
190
	free_engines(container_of(rcu, struct i915_gem_engines, rcu));
191 192
}

193 194
static struct i915_gem_engines *default_engines(struct i915_gem_context *ctx)
{
195
	const struct intel_gt *gt = &ctx->i915->gt;
196 197 198 199 200 201 202 203
	struct intel_engine_cs *engine;
	struct i915_gem_engines *e;
	enum intel_engine_id id;

	e = kzalloc(struct_size(e, engines, I915_NUM_ENGINES), GFP_KERNEL);
	if (!e)
		return ERR_PTR(-ENOMEM);

204
	init_rcu_head(&e->rcu);
205
	for_each_engine(engine, gt, id) {
206 207
		struct intel_context *ce;

208 209 210 211 212 213
		if (engine->legacy_idx == INVALID_ENGINE)
			continue;

		GEM_BUG_ON(engine->legacy_idx >= I915_NUM_ENGINES);
		GEM_BUG_ON(e->engines[engine->legacy_idx]);

214 215
		ce = intel_context_create(ctx, engine);
		if (IS_ERR(ce)) {
216
			__free_engines(e, e->num_engines + 1);
217 218
			return ERR_CAST(ce);
		}
219

220 221
		e->engines[engine->legacy_idx] = ce;
		e->num_engines = max(e->num_engines, engine->legacy_idx);
222
	}
223
	e->num_engines++;
224 225 226 227 228 229

	return e;
}

static void i915_gem_context_free(struct i915_gem_context *ctx)
{
230
	GEM_BUG_ON(!i915_gem_context_is_closed(ctx));
231

232 233 234 235
	spin_lock(&ctx->i915->gem.contexts.lock);
	list_del(&ctx->link);
	spin_unlock(&ctx->i915->gem.contexts.lock);

236 237
	free_engines(rcu_access_pointer(ctx->engines));
	mutex_destroy(&ctx->engines_mutex);
238

239
	if (ctx->timeline)
240
		intel_timeline_put(ctx->timeline);
241

242
	kfree(ctx->name);
243
	put_pid(ctx->pid);
244

245
	mutex_destroy(&ctx->mutex);
246

247
	kfree_rcu(ctx, rcu);
248 249
}

250
static void contexts_free_all(struct llist_node *list)
251
{
252
	struct i915_gem_context *ctx, *cn;
253

254
	llist_for_each_entry_safe(ctx, cn, list, free_link)
255 256 257
		i915_gem_context_free(ctx);
}

258
static void contexts_flush_free(struct i915_gem_contexts *gc)
259
{
260
	contexts_free_all(llist_del_all(&gc->free_list));
261 262
}

263 264
static void contexts_free_worker(struct work_struct *work)
{
265 266
	struct i915_gem_contexts *gc =
		container_of(work, typeof(*gc), free_work);
267

268
	contexts_flush_free(gc);
269 270 271 272 273
}

void i915_gem_context_release(struct kref *ref)
{
	struct i915_gem_context *ctx = container_of(ref, typeof(*ctx), ref);
274
	struct i915_gem_contexts *gc = &ctx->i915->gem.contexts;
275 276

	trace_i915_context_free(ctx);
277 278
	if (llist_add(&ctx->free_link, &gc->free_list))
		schedule_work(&gc->free_work);
279 280
}

281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
static inline struct i915_gem_engines *
__context_engines_static(const struct i915_gem_context *ctx)
{
	return rcu_dereference_protected(ctx->engines, true);
}

static bool __reset_engine(struct intel_engine_cs *engine)
{
	struct intel_gt *gt = engine->gt;
	bool success = false;

	if (!intel_has_reset_engine(gt))
		return false;

	if (!test_and_set_bit(I915_RESET_ENGINE + engine->id,
			      &gt->reset.flags)) {
		success = intel_engine_reset(engine, NULL) == 0;
		clear_and_wake_up_bit(I915_RESET_ENGINE + engine->id,
				      &gt->reset.flags);
	}

	return success;
}

static void __reset_context(struct i915_gem_context *ctx,
			    struct intel_engine_cs *engine)
{
	intel_gt_handle_error(engine->gt, engine->mask, 0,
			      "context closure in %s", ctx->name);
}

static bool __cancel_engine(struct intel_engine_cs *engine)
{
	/*
	 * Send a "high priority pulse" down the engine to cause the
	 * current request to be momentarily preempted. (If it fails to
	 * be preempted, it will be reset). As we have marked our context
	 * as banned, any incomplete request, including any running, will
	 * be skipped following the preemption.
	 *
	 * If there is no hangchecking (one of the reasons why we try to
	 * cancel the context) and no forced preemption, there may be no
	 * means by which we reset the GPU and evict the persistent hog.
	 * Ergo if we are unable to inject a preemptive pulse that can
	 * kill the banned context, we fallback to doing a local reset
	 * instead.
	 */
328 329
	if (IS_ACTIVE(CONFIG_DRM_I915_PREEMPT_TIMEOUT) &&
	    !intel_engine_pulse(engine))
330 331 332 333 334 335
		return true;

	/* If we are unable to send a pulse, try resetting this engine. */
	return __reset_engine(engine);
}

336
static struct intel_engine_cs *__active_engine(struct i915_request *rq)
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
{
	struct intel_engine_cs *engine, *locked;

	/*
	 * Serialise with __i915_request_submit() so that it sees
	 * is-banned?, or we know the request is already inflight.
	 */
	locked = READ_ONCE(rq->engine);
	spin_lock_irq(&locked->active.lock);
	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
		spin_unlock(&locked->active.lock);
		spin_lock(&engine->active.lock);
		locked = engine;
	}

	engine = NULL;
	if (i915_request_is_active(rq) && !rq->fence.error)
		engine = rq->engine;

	spin_unlock_irq(&locked->active.lock);

	return engine;
}

361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
static struct intel_engine_cs *active_engine(struct intel_context *ce)
{
	struct intel_engine_cs *engine = NULL;
	struct i915_request *rq;

	if (!ce->timeline)
		return NULL;

	rcu_read_lock();
	list_for_each_entry_reverse(rq, &ce->timeline->requests, link) {
		if (i915_request_completed(rq))
			break;

		/* Check with the backend if the request is inflight */
		engine = __active_engine(rq);
		if (engine)
			break;
	}
	rcu_read_unlock();

	return engine;
}

384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
static void kill_context(struct i915_gem_context *ctx)
{
	struct i915_gem_engines_iter it;
	struct intel_context *ce;

	/*
	 * If we are already banned, it was due to a guilty request causing
	 * a reset and the entire context being evicted from the GPU.
	 */
	if (i915_gem_context_is_banned(ctx))
		return;

	i915_gem_context_set_banned(ctx);

	/*
	 * Map the user's engine back to the actual engines; one virtual
	 * engine will be mapped to multiple engines, and using ctx->engine[]
	 * the same engine may be have multiple instances in the user's map.
	 * However, we only care about pending requests, so only include
	 * engines on which there are incomplete requests.
	 */
	for_each_gem_engine(ce, __context_engines_static(ctx), it) {
		struct intel_engine_cs *engine;

408 409 410 411 412 413 414 415
		/*
		 * Check the current active state of this context; if we
		 * are currently executing on the GPU we need to evict
		 * ourselves. On the other hand, if we haven't yet been
		 * submitted to the GPU or if everything is complete,
		 * we have nothing to do.
		 */
		engine = active_engine(ce);
416 417 418 419 420 421 422 423 424 425 426 427

		/* First attempt to gracefully cancel the context */
		if (engine && !__cancel_engine(engine))
			/*
			 * If we are unable to send a preemptive pulse to bump
			 * the context from the GPU, we have to resort to a full
			 * reset. We hope the collateral damage is worth it.
			 */
			__reset_context(ctx, engine);
	}
}

428 429
static void context_close(struct i915_gem_context *ctx)
{
430
	struct i915_address_space *vm;
431

432
	i915_gem_context_set_closed(ctx);
433

434 435
	mutex_lock(&ctx->mutex);

436 437 438 439
	vm = i915_gem_context_vm(ctx);
	if (vm)
		i915_vm_close(vm);

440
	ctx->file_priv = ERR_PTR(-EBADF);
441

442 443 444 445 446
	/*
	 * The LUT uses the VMA as a backpointer to unref the object,
	 * so we need to clear the LUT before we close all the VMA (inside
	 * the ppgtt).
	 */
447 448
	lut_close(ctx);

449
	mutex_unlock(&ctx->mutex);
450 451 452 453 454 455 456 457

	/*
	 * If the user has disabled hangchecking, we can not be sure that
	 * the batches will ever complete after the context is closed,
	 * keeping the context and all resources pinned forever. So in this
	 * case we opt to forcibly kill off all remaining requests on
	 * context close.
	 */
458 459
	if (!i915_gem_context_is_persistent(ctx) ||
	    !i915_modparams.enable_hangcheck)
460 461
		kill_context(ctx);

462 463 464
	i915_gem_context_put(ctx);
}

465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
static int __context_set_persistence(struct i915_gem_context *ctx, bool state)
{
	if (i915_gem_context_is_persistent(ctx) == state)
		return 0;

	if (state) {
		/*
		 * Only contexts that are short-lived [that will expire or be
		 * reset] are allowed to survive past termination. We require
		 * hangcheck to ensure that the persistent requests are healthy.
		 */
		if (!i915_modparams.enable_hangcheck)
			return -EINVAL;

		i915_gem_context_set_persistence(ctx);
	} else {
		/* To cancel a context we use "preempt-to-idle" */
		if (!(ctx->i915->caps.scheduler & I915_SCHEDULER_CAP_PREEMPTION))
			return -ENODEV;

		i915_gem_context_clear_persistence(ctx);
	}

	return 0;
}

491
static struct i915_gem_context *
492
__create_context(struct drm_i915_private *i915)
493
{
494
	struct i915_gem_context *ctx;
495 496
	struct i915_gem_engines *e;
	int err;
497
	int i;
498

499
	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
500
	if (!ctx)
501
		return ERR_PTR(-ENOMEM);
502

503
	kref_init(&ctx->ref);
504
	ctx->i915 = i915;
505
	ctx->sched.priority = I915_USER_PRIORITY(I915_PRIORITY_NORMAL);
506
	mutex_init(&ctx->mutex);
507

508 509 510 511 512 513 514
	mutex_init(&ctx->engines_mutex);
	e = default_engines(ctx);
	if (IS_ERR(e)) {
		err = PTR_ERR(e);
		goto err_free;
	}
	RCU_INIT_POINTER(ctx->engines, e);
515

516
	INIT_RADIX_TREE(&ctx->handles_vma, GFP_KERNEL);
517

518 519 520
	/* NB: Mark all slices as needing a remap so that when the context first
	 * loads it will restore whatever remap state already exists. If there
	 * is no remap info, it will be a NOP. */
521
	ctx->remap_slice = ALL_L3_SLICES(i915);
522

523
	i915_gem_context_set_bannable(ctx);
524
	i915_gem_context_set_recoverable(ctx);
525
	__context_set_persistence(ctx, true /* cgroup hook? */);
526

527 528 529
	for (i = 0; i < ARRAY_SIZE(ctx->hang_timestamp); i++)
		ctx->hang_timestamp[i] = jiffies - CONTEXT_FAST_HANG_JIFFIES;

530 531 532 533
	spin_lock(&i915->gem.contexts.lock);
	list_add_tail(&ctx->link, &i915->gem.contexts.list);
	spin_unlock(&i915->gem.contexts.lock);

534
	return ctx;
535 536 537 538

err_free:
	kfree(ctx);
	return ERR_PTR(err);
539 540
}

541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
static void
context_apply_all(struct i915_gem_context *ctx,
		  void (*fn)(struct intel_context *ce, void *data),
		  void *data)
{
	struct i915_gem_engines_iter it;
	struct intel_context *ce;

	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it)
		fn(ce, data);
	i915_gem_context_unlock_engines(ctx);
}

static void __apply_ppgtt(struct intel_context *ce, void *vm)
{
	i915_vm_put(ce->vm);
	ce->vm = i915_vm_get(vm);
}

560 561
static struct i915_address_space *
__set_ppgtt(struct i915_gem_context *ctx, struct i915_address_space *vm)
562
{
563
	struct i915_address_space *old = i915_gem_context_vm(ctx);
564

565 566
	GEM_BUG_ON(old && i915_vm_is_4lvl(vm) != i915_vm_is_4lvl(old));

567
	rcu_assign_pointer(ctx->vm, i915_vm_open(vm));
568
	context_apply_all(ctx, __apply_ppgtt, vm);
569

570 571 572 573
	return old;
}

static void __assign_ppgtt(struct i915_gem_context *ctx,
574
			   struct i915_address_space *vm)
575
{
576
	if (vm == rcu_access_pointer(ctx->vm))
577 578
		return;

579 580
	vm = __set_ppgtt(ctx, vm);
	if (vm)
581
		i915_vm_close(vm);
582 583
}

584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
static void __set_timeline(struct intel_timeline **dst,
			   struct intel_timeline *src)
{
	struct intel_timeline *old = *dst;

	*dst = src ? intel_timeline_get(src) : NULL;

	if (old)
		intel_timeline_put(old);
}

static void __apply_timeline(struct intel_context *ce, void *timeline)
{
	__set_timeline(&ce->timeline, timeline);
}

static void __assign_timeline(struct i915_gem_context *ctx,
			      struct intel_timeline *timeline)
{
	__set_timeline(&ctx->timeline, timeline);
	context_apply_all(ctx, __apply_timeline, timeline);
}

607
static struct i915_gem_context *
608
i915_gem_create_context(struct drm_i915_private *i915, unsigned int flags)
609
{
610
	struct i915_gem_context *ctx;
611

612
	if (flags & I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE &&
613
	    !HAS_EXECLISTS(i915))
614 615
		return ERR_PTR(-EINVAL);

616 617
	/* Reap the stale contexts */
	contexts_flush_free(&i915->gem.contexts);
618

619
	ctx = __create_context(i915);
620
	if (IS_ERR(ctx))
621
		return ctx;
622

623
	if (HAS_FULL_PPGTT(i915)) {
624
		struct i915_ppgtt *ppgtt;
625

626
		ppgtt = i915_ppgtt_create(i915);
627
		if (IS_ERR(ppgtt)) {
628 629
			DRM_DEBUG_DRIVER("PPGTT setup failed (%ld)\n",
					 PTR_ERR(ppgtt));
630
			context_close(ctx);
631
			return ERR_CAST(ppgtt);
632 633
		}

634
		mutex_lock(&ctx->mutex);
635
		__assign_ppgtt(ctx, &ppgtt->vm);
636 637
		mutex_unlock(&ctx->mutex);

638
		i915_vm_put(&ppgtt->vm);
639
	}
640

641
	if (flags & I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE) {
642
		struct intel_timeline *timeline;
643

644
		timeline = intel_timeline_create(&i915->gt, NULL);
645 646 647 648 649
		if (IS_ERR(timeline)) {
			context_close(ctx);
			return ERR_CAST(timeline);
		}

650 651
		__assign_timeline(ctx, timeline);
		intel_timeline_put(timeline);
652 653
	}

654 655
	trace_i915_context_create(ctx);

656
	return ctx;
657 658
}

659 660 661 662 663 664 665 666 667 668 669 670 671
static void
destroy_kernel_context(struct i915_gem_context **ctxp)
{
	struct i915_gem_context *ctx;

	/* Keep the context ref so that we can free it immediately ourselves */
	ctx = i915_gem_context_get(fetch_and_zero(ctxp));
	GEM_BUG_ON(!i915_gem_context_is_kernel(ctx));

	context_close(ctx);
	i915_gem_context_free(ctx);
}

672 673
struct i915_gem_context *
i915_gem_context_create_kernel(struct drm_i915_private *i915, int prio)
674 675 676
{
	struct i915_gem_context *ctx;

677
	ctx = i915_gem_create_context(i915, 0);
678 679 680 681
	if (IS_ERR(ctx))
		return ctx;

	i915_gem_context_clear_bannable(ctx);
682
	i915_gem_context_set_persistence(ctx);
683
	ctx->sched.priority = I915_USER_PRIORITY(prio);
684 685 686 687 688 689

	GEM_BUG_ON(!i915_gem_context_is_kernel(ctx));

	return ctx;
}

690
static void init_contexts(struct i915_gem_contexts *gc)
691
{
692 693
	spin_lock_init(&gc->lock);
	INIT_LIST_HEAD(&gc->list);
694

695 696
	INIT_WORK(&gc->free_work, contexts_free_worker);
	init_llist_head(&gc->free_list);
697 698
}

699
int i915_gem_init_contexts(struct drm_i915_private *i915)
700
{
701
	struct i915_gem_context *ctx;
702

703
	/* Reassure ourselves we are only called once */
704
	GEM_BUG_ON(i915->kernel_context);
705

706
	init_contexts(&i915->gem.contexts);
707

708
	/* lowest priority; idle task */
709
	ctx = i915_gem_context_create_kernel(i915, I915_PRIORITY_MIN);
710
	if (IS_ERR(ctx)) {
711
		DRM_ERROR("Failed to create default global context\n");
712
		return PTR_ERR(ctx);
713
	}
714
	i915->kernel_context = ctx;
715

716
	DRM_DEBUG_DRIVER("%s context support initialized\n",
717
			 DRIVER_CAPS(i915)->has_logical_contexts ?
718
			 "logical" : "fake");
719
	return 0;
720 721
}

722
void i915_gem_driver_release__contexts(struct drm_i915_private *i915)
723
{
724
	destroy_kernel_context(&i915->kernel_context);
725 726
}

727 728
static int context_idr_cleanup(int id, void *p, void *data)
{
729
	context_close(p);
730
	return 0;
731 732
}

733 734
static int vm_idr_cleanup(int id, void *p, void *data)
{
735
	i915_vm_put(p);
736 737 738
	return 0;
}

739 740 741
static int gem_context_register(struct i915_gem_context *ctx,
				struct drm_i915_file_private *fpriv)
{
742
	struct i915_address_space *vm;
743 744 745
	int ret;

	ctx->file_priv = fpriv;
746 747 748 749 750 751

	mutex_lock(&ctx->mutex);
	vm = i915_gem_context_vm(ctx);
	if (vm)
		WRITE_ONCE(vm->file, fpriv); /* XXX */
	mutex_unlock(&ctx->mutex);
752 753 754 755 756 757 758 759 760 761

	ctx->pid = get_task_pid(current, PIDTYPE_PID);
	ctx->name = kasprintf(GFP_KERNEL, "%s[%d]",
			      current->comm, pid_nr(ctx->pid));
	if (!ctx->name) {
		ret = -ENOMEM;
		goto err_pid;
	}

	/* And finally expose ourselves to userspace via the idr */
762
	mutex_lock(&fpriv->context_idr_lock);
763
	ret = idr_alloc(&fpriv->context_idr, ctx, 0, 0, GFP_KERNEL);
764
	mutex_unlock(&fpriv->context_idr_lock);
765 766
	if (ret >= 0)
		goto out;
767 768 769 770

	kfree(fetch_and_zero(&ctx->name));
err_pid:
	put_pid(fetch_and_zero(&ctx->pid));
771
out:
772 773 774
	return ret;
}

775 776
int i915_gem_context_open(struct drm_i915_private *i915,
			  struct drm_file *file)
777 778
{
	struct drm_i915_file_private *file_priv = file->driver_priv;
779
	struct i915_gem_context *ctx;
780
	int err;
781

782
	mutex_init(&file_priv->context_idr_lock);
783 784 785 786
	mutex_init(&file_priv->vm_idr_lock);

	idr_init(&file_priv->context_idr);
	idr_init_base(&file_priv->vm_idr, 1);
787

788
	ctx = i915_gem_create_context(i915, 0);
789
	if (IS_ERR(ctx)) {
790 791
		err = PTR_ERR(ctx);
		goto err;
792 793
	}

794
	err = gem_context_register(ctx, file_priv);
795
	if (err < 0)
796 797
		goto err_ctx;

798
	GEM_BUG_ON(i915_gem_context_is_kernel(ctx));
799
	GEM_BUG_ON(err > 0);
800

801
	return 0;
802 803 804

err_ctx:
	context_close(ctx);
805
err:
806
	idr_destroy(&file_priv->vm_idr);
807
	idr_destroy(&file_priv->context_idr);
808 809
	mutex_destroy(&file_priv->vm_idr_lock);
	mutex_destroy(&file_priv->context_idr_lock);
810
	return err;
811 812
}

813
void i915_gem_context_close(struct drm_file *file)
814
{
815
	struct drm_i915_file_private *file_priv = file->driver_priv;
816
	struct drm_i915_private *i915 = file_priv->dev_priv;
817

818
	idr_for_each(&file_priv->context_idr, context_idr_cleanup, NULL);
819
	idr_destroy(&file_priv->context_idr);
820
	mutex_destroy(&file_priv->context_idr_lock);
821 822 823 824

	idr_for_each(&file_priv->vm_idr, vm_idr_cleanup, NULL);
	idr_destroy(&file_priv->vm_idr);
	mutex_destroy(&file_priv->vm_idr_lock);
825 826

	contexts_flush_free(&i915->gem.contexts);
827 828 829 830 831 832 833 834
}

int i915_gem_vm_create_ioctl(struct drm_device *dev, void *data,
			     struct drm_file *file)
{
	struct drm_i915_private *i915 = to_i915(dev);
	struct drm_i915_gem_vm_control *args = data;
	struct drm_i915_file_private *file_priv = file->driver_priv;
835
	struct i915_ppgtt *ppgtt;
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
	int err;

	if (!HAS_FULL_PPGTT(i915))
		return -ENODEV;

	if (args->flags)
		return -EINVAL;

	ppgtt = i915_ppgtt_create(i915);
	if (IS_ERR(ppgtt))
		return PTR_ERR(ppgtt);

	ppgtt->vm.file = file_priv;

	if (args->extensions) {
		err = i915_user_extensions(u64_to_user_ptr(args->extensions),
					   NULL, 0,
					   ppgtt);
		if (err)
			goto err_put;
	}

	err = mutex_lock_interruptible(&file_priv->vm_idr_lock);
	if (err)
		goto err_put;

862
	err = idr_alloc(&file_priv->vm_idr, &ppgtt->vm, 0, 0, GFP_KERNEL);
863 864 865
	if (err < 0)
		goto err_unlock;

866
	GEM_BUG_ON(err == 0); /* reserved for invalid/unassigned ppgtt */
867 868 869 870 871 872 873 874 875

	mutex_unlock(&file_priv->vm_idr_lock);

	args->vm_id = err;
	return 0;

err_unlock:
	mutex_unlock(&file_priv->vm_idr_lock);
err_put:
876
	i915_vm_put(&ppgtt->vm);
877 878 879 880 881 882 883 884
	return err;
}

int i915_gem_vm_destroy_ioctl(struct drm_device *dev, void *data,
			      struct drm_file *file)
{
	struct drm_i915_file_private *file_priv = file->driver_priv;
	struct drm_i915_gem_vm_control *args = data;
885
	struct i915_address_space *vm;
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
	int err;
	u32 id;

	if (args->flags)
		return -EINVAL;

	if (args->extensions)
		return -EINVAL;

	id = args->vm_id;
	if (!id)
		return -ENOENT;

	err = mutex_lock_interruptible(&file_priv->vm_idr_lock);
	if (err)
		return err;

903
	vm = idr_remove(&file_priv->vm_idr, id);
904 905

	mutex_unlock(&file_priv->vm_idr_lock);
906
	if (!vm)
907 908
		return -ENOENT;

909
	i915_vm_put(vm);
910
	return 0;
911 912
}

913 914 915 916 917 918
struct context_barrier_task {
	struct i915_active base;
	void (*task)(void *data);
	void *data;
};

919
__i915_active_call
920 921 922 923 924 925 926 927 928 929 930
static void cb_retire(struct i915_active *base)
{
	struct context_barrier_task *cb = container_of(base, typeof(*cb), base);

	if (cb->task)
		cb->task(cb->data);

	i915_active_fini(&cb->base);
	kfree(cb);
}

931
I915_SELFTEST_DECLARE(static intel_engine_mask_t context_barrier_inject_fault);
932
static int context_barrier_task(struct i915_gem_context *ctx,
933
				intel_engine_mask_t engines,
934
				bool (*skip)(struct intel_context *ce, void *data),
935
				int (*emit)(struct i915_request *rq, void *data),
936 937 938 939
				void (*task)(void *data),
				void *data)
{
	struct context_barrier_task *cb;
940 941
	struct i915_gem_engines_iter it;
	struct intel_context *ce;
942 943 944 945 946 947 948 949
	int err = 0;

	GEM_BUG_ON(!task);

	cb = kmalloc(sizeof(*cb), GFP_KERNEL);
	if (!cb)
		return -ENOMEM;

950
	i915_active_init(&cb->base, NULL, cb_retire);
951 952 953 954 955
	err = i915_active_acquire(&cb->base);
	if (err) {
		kfree(cb);
		return err;
	}
956

957
	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
958 959 960
		struct i915_request *rq;

		if (I915_SELFTEST_ONLY(context_barrier_inject_fault &
961
				       ce->engine->mask)) {
962 963 964 965
			err = -ENXIO;
			break;
		}

966 967 968 969
		if (!(ce->engine->mask & engines))
			continue;

		if (skip && skip(ce, data))
970 971
			continue;

972
		rq = intel_context_create_request(ce);
973 974 975 976 977
		if (IS_ERR(rq)) {
			err = PTR_ERR(rq);
			break;
		}

978 979 980 981
		err = 0;
		if (emit)
			err = emit(rq, data);
		if (err == 0)
982
			err = i915_active_add_request(&cb->base, rq);
983

984 985 986 987
		i915_request_add(rq);
		if (err)
			break;
	}
988
	i915_gem_context_unlock_engines(ctx);
989 990 991 992 993 994 995 996 997

	cb->task = err ? NULL : task; /* caller needs to unwind instead */
	cb->data = data;

	i915_active_release(&cb->base);

	return err;
}

998 999
static int get_ppgtt(struct drm_i915_file_private *file_priv,
		     struct i915_gem_context *ctx,
1000 1001
		     struct drm_i915_gem_context_param *args)
{
1002
	struct i915_address_space *vm;
1003 1004
	int ret;

1005
	if (!rcu_access_pointer(ctx->vm))
1006 1007
		return -ENODEV;

1008
	rcu_read_lock();
1009
	vm = i915_vm_get(ctx->vm);
1010
	rcu_read_unlock();
1011 1012 1013 1014 1015

	ret = mutex_lock_interruptible(&file_priv->vm_idr_lock);
	if (ret)
		goto err_put;

1016
	ret = idr_alloc(&file_priv->vm_idr, vm, 0, 0, GFP_KERNEL);
1017 1018 1019
	GEM_BUG_ON(!ret);
	if (ret < 0)
		goto err_unlock;
1020

1021
	i915_vm_open(vm);
1022 1023

	args->size = 0;
1024
	args->value = ret;
1025 1026 1027 1028 1029

	ret = 0;
err_unlock:
	mutex_unlock(&file_priv->vm_idr_lock);
err_put:
1030
	i915_vm_put(vm);
1031 1032 1033 1034 1035
	return ret;
}

static void set_ppgtt_barrier(void *data)
{
1036
	struct i915_address_space *old = data;
1037

1038 1039
	if (INTEL_GEN(old->i915) < 8)
		gen6_ppgtt_unpin_all(i915_vm_to_ppgtt(old));
1040

1041
	i915_vm_close(old);
1042 1043 1044 1045
}

static int emit_ppgtt_update(struct i915_request *rq, void *data)
{
1046
	struct i915_address_space *vm = rq->hw_context->vm;
1047
	struct intel_engine_cs *engine = rq->engine;
1048
	u32 base = engine->mmio_base;
1049 1050 1051
	u32 *cs;
	int i;

1052
	if (i915_vm_is_4lvl(vm)) {
1053
		struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1054
		const dma_addr_t pd_daddr = px_dma(ppgtt->pd);
1055 1056 1057 1058 1059 1060 1061

		cs = intel_ring_begin(rq, 6);
		if (IS_ERR(cs))
			return PTR_ERR(cs);

		*cs++ = MI_LOAD_REGISTER_IMM(2);

1062
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 0));
1063
		*cs++ = upper_32_bits(pd_daddr);
1064
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 0));
1065 1066 1067 1068 1069
		*cs++ = lower_32_bits(pd_daddr);

		*cs++ = MI_NOOP;
		intel_ring_advance(rq, cs);
	} else if (HAS_LOGICAL_RING_CONTEXTS(engine->i915)) {
1070
		struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1071 1072 1073 1074 1075 1076
		int err;

		/* Magic required to prevent forcewake errors! */
		err = engine->emit_flush(rq, EMIT_INVALIDATE);
		if (err)
			return err;
1077

1078 1079 1080 1081
		cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
		if (IS_ERR(cs))
			return PTR_ERR(cs);

1082
		*cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
1083 1084 1085
		for (i = GEN8_3LVL_PDPES; i--; ) {
			const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1086
			*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i));
1087
			*cs++ = upper_32_bits(pd_daddr);
1088
			*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i));
1089 1090 1091 1092 1093 1094
			*cs++ = lower_32_bits(pd_daddr);
		}
		*cs++ = MI_NOOP;
		intel_ring_advance(rq, cs);
	} else {
		/* ppGTT is not part of the legacy context image */
1095
		gen6_ppgtt_pin(i915_vm_to_ppgtt(vm));
1096 1097 1098 1099 1100
	}

	return 0;
}

1101 1102 1103 1104 1105 1106 1107 1108
static bool skip_ppgtt_update(struct intel_context *ce, void *data)
{
	if (HAS_LOGICAL_RING_CONTEXTS(ce->engine->i915))
		return !ce->state;
	else
		return !atomic_read(&ce->pin_count);
}

1109 1110
static int set_ppgtt(struct drm_i915_file_private *file_priv,
		     struct i915_gem_context *ctx,
1111 1112
		     struct drm_i915_gem_context_param *args)
{
1113
	struct i915_address_space *vm, *old;
1114 1115 1116 1117 1118
	int err;

	if (args->size)
		return -EINVAL;

1119
	if (!rcu_access_pointer(ctx->vm))
1120 1121 1122 1123 1124
		return -ENODEV;

	if (upper_32_bits(args->value))
		return -ENOENT;

1125
	rcu_read_lock();
1126
	vm = idr_find(&file_priv->vm_idr, args->value);
1127 1128 1129
	if (vm && !kref_get_unless_zero(&vm->ref))
		vm = NULL;
	rcu_read_unlock();
1130
	if (!vm)
1131 1132
		return -ENOENT;

1133
	err = mutex_lock_interruptible(&ctx->mutex);
1134 1135 1136
	if (err)
		goto out;

1137 1138 1139 1140 1141 1142
	if (i915_gem_context_is_closed(ctx)) {
		err = -ENOENT;
		goto out;
	}

	if (vm == rcu_access_pointer(ctx->vm))
1143 1144 1145 1146 1147
		goto unlock;

	/* Teardown the existing obj:vma cache, it will have to be rebuilt. */
	lut_close(ctx);

1148
	old = __set_ppgtt(ctx, vm);
1149 1150 1151 1152 1153 1154 1155

	/*
	 * We need to flush any requests using the current ppgtt before
	 * we release it as the requests do not hold a reference themselves,
	 * only indirectly through the context.
	 */
	err = context_barrier_task(ctx, ALL_ENGINES,
1156
				   skip_ppgtt_update,
1157 1158 1159 1160
				   emit_ppgtt_update,
				   set_ppgtt_barrier,
				   old);
	if (err) {
1161 1162
		i915_vm_close(__set_ppgtt(ctx, old));
		i915_vm_close(old);
1163 1164 1165
	}

unlock:
1166
	mutex_unlock(&ctx->mutex);
1167
out:
1168
	i915_vm_put(vm);
1169 1170 1171
	return err;
}

1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
static int gen8_emit_rpcs_config(struct i915_request *rq,
				 struct intel_context *ce,
				 struct intel_sseu sseu)
{
	u64 offset;
	u32 *cs;

	cs = intel_ring_begin(rq, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	offset = i915_ggtt_offset(ce->state) +
		 LRC_STATE_PN * PAGE_SIZE +
1185
		 CTX_R_PWR_CLK_STATE * 4;
1186 1187 1188 1189

	*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
1190
	*cs++ = intel_sseu_make_rpcs(rq->i915, &sseu);
1191 1192 1193 1194 1195 1196 1197

	intel_ring_advance(rq, cs);

	return 0;
}

static int
1198
gen8_modify_rpcs(struct intel_context *ce, struct intel_sseu sseu)
1199
{
1200
	struct i915_request *rq;
1201 1202
	int ret;

1203
	lockdep_assert_held(&ce->pin_mutex);
1204

1205 1206 1207 1208 1209 1210 1211 1212
	/*
	 * If the context is not idle, we have to submit an ordered request to
	 * modify its context image via the kernel context (writing to our own
	 * image, or into the registers directory, does not stick). Pristine
	 * and idle contexts will be configured on pinning.
	 */
	if (!intel_context_is_pinned(ce))
		return 0;
1213

1214
	rq = i915_request_create(ce->engine->kernel_context);
1215 1216
	if (IS_ERR(rq))
		return PTR_ERR(rq);
1217

1218 1219 1220 1221
	/* Serialise with the remote context */
	ret = intel_context_prepare_remote_request(ce, rq);
	if (ret == 0)
		ret = gen8_emit_rpcs_config(rq, ce, sseu);
1222 1223 1224 1225 1226 1227

	i915_request_add(rq);
	return ret;
}

static int
1228
intel_context_reconfigure_sseu(struct intel_context *ce, struct intel_sseu sseu)
1229
{
1230
	int ret;
1231

1232
	GEM_BUG_ON(INTEL_GEN(ce->engine->i915) < 8);
1233

1234 1235 1236
	ret = intel_context_lock_pinned(ce);
	if (ret)
		return ret;
1237

1238 1239
	/* Nothing to do if unmodified. */
	if (!memcmp(&ce->sseu, &sseu, sizeof(sseu)))
1240
		goto unlock;
1241

1242
	ret = gen8_modify_rpcs(ce, sseu);
1243 1244 1245
	if (!ret)
		ce->sseu = sseu;

1246
unlock:
1247
	intel_context_unlock_pinned(ce);
1248 1249 1250
	return ret;
}

1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
static int
user_to_context_sseu(struct drm_i915_private *i915,
		     const struct drm_i915_gem_context_param_sseu *user,
		     struct intel_sseu *context)
{
	const struct sseu_dev_info *device = &RUNTIME_INFO(i915)->sseu;

	/* No zeros in any field. */
	if (!user->slice_mask || !user->subslice_mask ||
	    !user->min_eus_per_subslice || !user->max_eus_per_subslice)
		return -EINVAL;

	/* Max > min. */
	if (user->max_eus_per_subslice < user->min_eus_per_subslice)
		return -EINVAL;

	/*
	 * Some future proofing on the types since the uAPI is wider than the
	 * current internal implementation.
	 */
	if (overflows_type(user->slice_mask, context->slice_mask) ||
	    overflows_type(user->subslice_mask, context->subslice_mask) ||
	    overflows_type(user->min_eus_per_subslice,
			   context->min_eus_per_subslice) ||
	    overflows_type(user->max_eus_per_subslice,
			   context->max_eus_per_subslice))
		return -EINVAL;

	/* Check validity against hardware. */
	if (user->slice_mask & ~device->slice_mask)
		return -EINVAL;

	if (user->subslice_mask & ~device->subslice_mask[0])
		return -EINVAL;

	if (user->max_eus_per_subslice > device->max_eus_per_subslice)
		return -EINVAL;

	context->slice_mask = user->slice_mask;
	context->subslice_mask = user->subslice_mask;
	context->min_eus_per_subslice = user->min_eus_per_subslice;
	context->max_eus_per_subslice = user->max_eus_per_subslice;

	/* Part specific restrictions. */
	if (IS_GEN(i915, 11)) {
		unsigned int hw_s = hweight8(device->slice_mask);
		unsigned int hw_ss_per_s = hweight8(device->subslice_mask[0]);
		unsigned int req_s = hweight8(context->slice_mask);
		unsigned int req_ss = hweight8(context->subslice_mask);

		/*
		 * Only full subslice enablement is possible if more than one
		 * slice is turned on.
		 */
		if (req_s > 1 && req_ss != hw_ss_per_s)
			return -EINVAL;

		/*
		 * If more than four (SScount bitfield limit) subslices are
		 * requested then the number has to be even.
		 */
		if (req_ss > 4 && (req_ss & 1))
			return -EINVAL;

		/*
		 * If only one slice is enabled and subslice count is below the
		 * device full enablement, it must be at most half of the all
		 * available subslices.
		 */
		if (req_s == 1 && req_ss < hw_ss_per_s &&
		    req_ss > (hw_ss_per_s / 2))
			return -EINVAL;

		/* ABI restriction - VME use case only. */

		/* All slices or one slice only. */
		if (req_s != 1 && req_s != hw_s)
			return -EINVAL;

		/*
		 * Half subslices or full enablement only when one slice is
		 * enabled.
		 */
		if (req_s == 1 &&
		    (req_ss != hw_ss_per_s && req_ss != (hw_ss_per_s / 2)))
			return -EINVAL;

		/* No EU configuration changes. */
		if ((user->min_eus_per_subslice !=
		     device->max_eus_per_subslice) ||
		    (user->max_eus_per_subslice !=
		     device->max_eus_per_subslice))
			return -EINVAL;
	}

	return 0;
}

static int set_sseu(struct i915_gem_context *ctx,
		    struct drm_i915_gem_context_param *args)
{
	struct drm_i915_private *i915 = ctx->i915;
	struct drm_i915_gem_context_param_sseu user_sseu;
1354
	struct intel_context *ce;
1355
	struct intel_sseu sseu;
1356
	unsigned long lookup;
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
	int ret;

	if (args->size < sizeof(user_sseu))
		return -EINVAL;

	if (!IS_GEN(i915, 11))
		return -ENODEV;

	if (copy_from_user(&user_sseu, u64_to_user_ptr(args->value),
			   sizeof(user_sseu)))
		return -EFAULT;

1369
	if (user_sseu.rsvd)
1370 1371
		return -EINVAL;

1372 1373 1374 1375 1376 1377 1378 1379
	if (user_sseu.flags & ~(I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX))
		return -EINVAL;

	lookup = 0;
	if (user_sseu.flags & I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX)
		lookup |= LOOKUP_USER_INDEX;

	ce = lookup_user_engine(ctx, lookup, &user_sseu.engine);
1380 1381
	if (IS_ERR(ce))
		return PTR_ERR(ce);
1382 1383

	/* Only render engine supports RPCS configuration. */
1384 1385 1386 1387
	if (ce->engine->class != RENDER_CLASS) {
		ret = -ENODEV;
		goto out_ce;
	}
1388 1389 1390

	ret = user_to_context_sseu(i915, &user_sseu, &sseu);
	if (ret)
1391
		goto out_ce;
1392

1393
	ret = intel_context_reconfigure_sseu(ce, sseu);
1394
	if (ret)
1395
		goto out_ce;
1396 1397 1398

	args->size = sizeof(user_sseu);

1399 1400 1401
out_ce:
	intel_context_put(ce);
	return ret;
1402 1403
}

1404 1405 1406 1407 1408
struct set_engines {
	struct i915_gem_context *ctx;
	struct i915_gem_engines *engines;
};

1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
static int
set_engines__load_balance(struct i915_user_extension __user *base, void *data)
{
	struct i915_context_engines_load_balance __user *ext =
		container_of_user(base, typeof(*ext), base);
	const struct set_engines *set = data;
	struct intel_engine_cs *stack[16];
	struct intel_engine_cs **siblings;
	struct intel_context *ce;
	u16 num_siblings, idx;
	unsigned int n;
	int err;

	if (!HAS_EXECLISTS(set->ctx->i915))
		return -ENODEV;

	if (USES_GUC_SUBMISSION(set->ctx->i915))
		return -ENODEV; /* not implement yet */

	if (get_user(idx, &ext->engine_index))
		return -EFAULT;

	if (idx >= set->engines->num_engines) {
		DRM_DEBUG("Invalid placement value, %d >= %d\n",
			  idx, set->engines->num_engines);
		return -EINVAL;
	}

	idx = array_index_nospec(idx, set->engines->num_engines);
	if (set->engines->engines[idx]) {
		DRM_DEBUG("Invalid placement[%d], already occupied\n", idx);
		return -EEXIST;
	}

	if (get_user(num_siblings, &ext->num_siblings))
		return -EFAULT;

	err = check_user_mbz(&ext->flags);
	if (err)
		return err;

	err = check_user_mbz(&ext->mbz64);
	if (err)
		return err;

	siblings = stack;
	if (num_siblings > ARRAY_SIZE(stack)) {
		siblings = kmalloc_array(num_siblings,
					 sizeof(*siblings),
					 GFP_KERNEL);
		if (!siblings)
			return -ENOMEM;
	}

	for (n = 0; n < num_siblings; n++) {
		struct i915_engine_class_instance ci;

		if (copy_from_user(&ci, &ext->engines[n], sizeof(ci))) {
			err = -EFAULT;
			goto out_siblings;
		}

		siblings[n] = intel_engine_lookup_user(set->ctx->i915,
						       ci.engine_class,
						       ci.engine_instance);
		if (!siblings[n]) {
			DRM_DEBUG("Invalid sibling[%d]: { class:%d, inst:%d }\n",
				  n, ci.engine_class, ci.engine_instance);
			err = -EINVAL;
			goto out_siblings;
		}
	}

	ce = intel_execlists_create_virtual(set->ctx, siblings, n);
	if (IS_ERR(ce)) {
		err = PTR_ERR(ce);
		goto out_siblings;
	}

	if (cmpxchg(&set->engines->engines[idx], NULL, ce)) {
		intel_context_put(ce);
		err = -EEXIST;
		goto out_siblings;
	}

out_siblings:
	if (siblings != stack)
		kfree(siblings);

	return err;
}

1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
static int
set_engines__bond(struct i915_user_extension __user *base, void *data)
{
	struct i915_context_engines_bond __user *ext =
		container_of_user(base, typeof(*ext), base);
	const struct set_engines *set = data;
	struct i915_engine_class_instance ci;
	struct intel_engine_cs *virtual;
	struct intel_engine_cs *master;
	u16 idx, num_bonds;
	int err, n;

	if (get_user(idx, &ext->virtual_index))
		return -EFAULT;

	if (idx >= set->engines->num_engines) {
		DRM_DEBUG("Invalid index for virtual engine: %d >= %d\n",
			  idx, set->engines->num_engines);
		return -EINVAL;
	}

	idx = array_index_nospec(idx, set->engines->num_engines);
	if (!set->engines->engines[idx]) {
		DRM_DEBUG("Invalid engine at %d\n", idx);
		return -EINVAL;
	}
	virtual = set->engines->engines[idx]->engine;

	err = check_user_mbz(&ext->flags);
	if (err)
		return err;

	for (n = 0; n < ARRAY_SIZE(ext->mbz64); n++) {
		err = check_user_mbz(&ext->mbz64[n]);
		if (err)
			return err;
	}

	if (copy_from_user(&ci, &ext->master, sizeof(ci)))
		return -EFAULT;

	master = intel_engine_lookup_user(set->ctx->i915,
					  ci.engine_class, ci.engine_instance);
	if (!master) {
		DRM_DEBUG("Unrecognised master engine: { class:%u, instance:%u }\n",
			  ci.engine_class, ci.engine_instance);
		return -EINVAL;
	}

	if (get_user(num_bonds, &ext->num_bonds))
		return -EFAULT;

	for (n = 0; n < num_bonds; n++) {
		struct intel_engine_cs *bond;

		if (copy_from_user(&ci, &ext->engines[n], sizeof(ci)))
			return -EFAULT;

		bond = intel_engine_lookup_user(set->ctx->i915,
						ci.engine_class,
						ci.engine_instance);
		if (!bond) {
			DRM_DEBUG("Unrecognised engine[%d] for bonding: { class:%d, instance: %d }\n",
				  n, ci.engine_class, ci.engine_instance);
			return -EINVAL;
		}

		/*
		 * A non-virtual engine has no siblings to choose between; and
		 * a submit fence will always be directed to the one engine.
		 */
		if (intel_engine_is_virtual(virtual)) {
			err = intel_virtual_engine_attach_bond(virtual,
							       master,
							       bond);
			if (err)
				return err;
		}
	}

	return 0;
}

1584
static const i915_user_extension_fn set_engines__extensions[] = {
1585
	[I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE] = set_engines__load_balance,
1586
	[I915_CONTEXT_ENGINES_EXT_BOND] = set_engines__bond,
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
};

static int
set_engines(struct i915_gem_context *ctx,
	    const struct drm_i915_gem_context_param *args)
{
	struct i915_context_param_engines __user *user =
		u64_to_user_ptr(args->value);
	struct set_engines set = { .ctx = ctx };
	unsigned int num_engines, n;
	u64 extensions;
	int err;

	if (!args->size) { /* switch back to legacy user_ring_map */
		if (!i915_gem_context_user_engines(ctx))
			return 0;

		set.engines = default_engines(ctx);
		if (IS_ERR(set.engines))
			return PTR_ERR(set.engines);

		goto replace;
	}

	BUILD_BUG_ON(!IS_ALIGNED(sizeof(*user), sizeof(*user->engines)));
	if (args->size < sizeof(*user) ||
	    !IS_ALIGNED(args->size, sizeof(*user->engines))) {
		DRM_DEBUG("Invalid size for engine array: %d\n",
			  args->size);
		return -EINVAL;
	}

	/*
	 * Note that I915_EXEC_RING_MASK limits execbuf to only using the
	 * first 64 engines defined here.
	 */
	num_engines = (args->size - sizeof(*user)) / sizeof(*user->engines);

	set.engines = kmalloc(struct_size(set.engines, engines, num_engines),
			      GFP_KERNEL);
	if (!set.engines)
		return -ENOMEM;

1630
	init_rcu_head(&set.engines->rcu);
1631 1632 1633
	for (n = 0; n < num_engines; n++) {
		struct i915_engine_class_instance ci;
		struct intel_engine_cs *engine;
1634
		struct intel_context *ce;
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656

		if (copy_from_user(&ci, &user->engines[n], sizeof(ci))) {
			__free_engines(set.engines, n);
			return -EFAULT;
		}

		if (ci.engine_class == (u16)I915_ENGINE_CLASS_INVALID &&
		    ci.engine_instance == (u16)I915_ENGINE_CLASS_INVALID_NONE) {
			set.engines->engines[n] = NULL;
			continue;
		}

		engine = intel_engine_lookup_user(ctx->i915,
						  ci.engine_class,
						  ci.engine_instance);
		if (!engine) {
			DRM_DEBUG("Invalid engine[%d]: { class:%d, instance:%d }\n",
				  n, ci.engine_class, ci.engine_instance);
			__free_engines(set.engines, n);
			return -ENOENT;
		}

1657 1658
		ce = intel_context_create(ctx, engine);
		if (IS_ERR(ce)) {
1659
			__free_engines(set.engines, n);
1660
			return PTR_ERR(ce);
1661
		}
1662 1663

		set.engines->engines[n] = ce;
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
	}
	set.engines->num_engines = num_engines;

	err = -EFAULT;
	if (!get_user(extensions, &user->extensions))
		err = i915_user_extensions(u64_to_user_ptr(extensions),
					   set_engines__extensions,
					   ARRAY_SIZE(set_engines__extensions),
					   &set);
	if (err) {
		free_engines(set.engines);
		return err;
	}

replace:
	mutex_lock(&ctx->engines_mutex);
	if (args->size)
		i915_gem_context_set_user_engines(ctx);
	else
		i915_gem_context_clear_user_engines(ctx);
	rcu_swap_protected(ctx->engines, set.engines, 1);
	mutex_unlock(&ctx->engines_mutex);

1687
	call_rcu(&set.engines->rcu, free_engines_rcu);
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701

	return 0;
}

static struct i915_gem_engines *
__copy_engines(struct i915_gem_engines *e)
{
	struct i915_gem_engines *copy;
	unsigned int n;

	copy = kmalloc(struct_size(e, engines, e->num_engines), GFP_KERNEL);
	if (!copy)
		return ERR_PTR(-ENOMEM);

1702
	init_rcu_head(&copy->rcu);
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
	for (n = 0; n < e->num_engines; n++) {
		if (e->engines[n])
			copy->engines[n] = intel_context_get(e->engines[n]);
		else
			copy->engines[n] = NULL;
	}
	copy->num_engines = n;

	return copy;
}

static int
get_engines(struct i915_gem_context *ctx,
	    struct drm_i915_gem_context_param *args)
{
	struct i915_context_param_engines __user *user;
	struct i915_gem_engines *e;
	size_t n, count, size;
	int err = 0;

	err = mutex_lock_interruptible(&ctx->engines_mutex);
	if (err)
		return err;

	e = NULL;
	if (i915_gem_context_user_engines(ctx))
		e = __copy_engines(i915_gem_context_engines(ctx));
	mutex_unlock(&ctx->engines_mutex);
	if (IS_ERR_OR_NULL(e)) {
		args->size = 0;
		return PTR_ERR_OR_ZERO(e);
	}

	count = e->num_engines;

	/* Be paranoid in case we have an impedance mismatch */
	if (!check_struct_size(user, engines, count, &size)) {
		err = -EINVAL;
		goto err_free;
	}
	if (overflows_type(size, args->size)) {
		err = -EINVAL;
		goto err_free;
	}

	if (!args->size) {
		args->size = size;
		goto err_free;
	}

	if (args->size < size) {
		err = -EINVAL;
		goto err_free;
	}

	user = u64_to_user_ptr(args->value);
	if (!access_ok(user, size)) {
		err = -EFAULT;
		goto err_free;
	}

	if (put_user(0, &user->extensions)) {
		err = -EFAULT;
		goto err_free;
	}

	for (n = 0; n < count; n++) {
		struct i915_engine_class_instance ci = {
			.engine_class = I915_ENGINE_CLASS_INVALID,
			.engine_instance = I915_ENGINE_CLASS_INVALID_NONE,
		};

		if (e->engines[n]) {
			ci.engine_class = e->engines[n]->engine->uabi_class;
1777
			ci.engine_instance = e->engines[n]->engine->uabi_instance;
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
		}

		if (copy_to_user(&user->engines[n], &ci, sizeof(ci))) {
			err = -EFAULT;
			goto err_free;
		}
	}

	args->size = size;

err_free:
1789
	free_engines(e);
1790 1791 1792
	return err;
}

1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
static int
set_persistence(struct i915_gem_context *ctx,
		const struct drm_i915_gem_context_param *args)
{
	if (args->size)
		return -EINVAL;

	return __context_set_persistence(ctx, args->value);
}

1803 1804
static int ctx_setparam(struct drm_i915_file_private *fpriv,
			struct i915_gem_context *ctx,
1805
			struct drm_i915_gem_context_param *args)
1806
{
1807
	int ret = 0;
1808 1809

	switch (args->param) {
1810
	case I915_CONTEXT_PARAM_NO_ZEROMAP:
1811
		if (args->size)
1812
			ret = -EINVAL;
1813 1814 1815 1816
		else if (args->value)
			set_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags);
		else
			clear_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags);
1817
		break;
1818

1819
	case I915_CONTEXT_PARAM_NO_ERROR_CAPTURE:
1820
		if (args->size)
1821
			ret = -EINVAL;
1822 1823 1824 1825
		else if (args->value)
			i915_gem_context_set_no_error_capture(ctx);
		else
			i915_gem_context_clear_no_error_capture(ctx);
1826
		break;
1827

1828 1829 1830 1831 1832
	case I915_CONTEXT_PARAM_BANNABLE:
		if (args->size)
			ret = -EINVAL;
		else if (!capable(CAP_SYS_ADMIN) && !args->value)
			ret = -EPERM;
1833 1834
		else if (args->value)
			i915_gem_context_set_bannable(ctx);
1835
		else
1836
			i915_gem_context_clear_bannable(ctx);
1837
		break;
1838

1839 1840 1841 1842 1843 1844 1845 1846 1847
	case I915_CONTEXT_PARAM_RECOVERABLE:
		if (args->size)
			ret = -EINVAL;
		else if (args->value)
			i915_gem_context_set_recoverable(ctx);
		else
			i915_gem_context_clear_recoverable(ctx);
		break;

1848 1849
	case I915_CONTEXT_PARAM_PRIORITY:
		{
1850
			s64 priority = args->value;
1851 1852 1853

			if (args->size)
				ret = -EINVAL;
1854
			else if (!(ctx->i915->caps.scheduler & I915_SCHEDULER_CAP_PRIORITY))
1855 1856 1857 1858 1859 1860 1861 1862
				ret = -ENODEV;
			else if (priority > I915_CONTEXT_MAX_USER_PRIORITY ||
				 priority < I915_CONTEXT_MIN_USER_PRIORITY)
				ret = -EINVAL;
			else if (priority > I915_CONTEXT_DEFAULT_PRIORITY &&
				 !capable(CAP_SYS_NICE))
				ret = -EPERM;
			else
1863 1864
				ctx->sched.priority =
					I915_USER_PRIORITY(priority);
1865 1866
		}
		break;
1867

1868 1869 1870
	case I915_CONTEXT_PARAM_SSEU:
		ret = set_sseu(ctx, args);
		break;
1871 1872

	case I915_CONTEXT_PARAM_VM:
1873
		ret = set_ppgtt(fpriv, ctx, args);
1874 1875
		break;

1876 1877 1878 1879
	case I915_CONTEXT_PARAM_ENGINES:
		ret = set_engines(ctx, args);
		break;

1880 1881 1882 1883
	case I915_CONTEXT_PARAM_PERSISTENCE:
		ret = set_persistence(ctx, args);
		break;

1884
	case I915_CONTEXT_PARAM_BAN_PERIOD:
1885 1886 1887 1888 1889
	default:
		ret = -EINVAL;
		break;
	}

1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
	return ret;
}

struct create_ext {
	struct i915_gem_context *ctx;
	struct drm_i915_file_private *fpriv;
};

static int create_setparam(struct i915_user_extension __user *ext, void *data)
{
	struct drm_i915_gem_context_create_ext_setparam local;
	const struct create_ext *arg = data;

	if (copy_from_user(&local, ext, sizeof(local)))
		return -EFAULT;

	if (local.param.ctx_id)
		return -EINVAL;

1909
	return ctx_setparam(arg->fpriv, arg->ctx, &local.param);
1910 1911
}

1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
static int clone_engines(struct i915_gem_context *dst,
			 struct i915_gem_context *src)
{
	struct i915_gem_engines *e = i915_gem_context_lock_engines(src);
	struct i915_gem_engines *clone;
	bool user_engines;
	unsigned long n;

	clone = kmalloc(struct_size(e, engines, e->num_engines), GFP_KERNEL);
	if (!clone)
		goto err_unlock;

1924
	init_rcu_head(&clone->rcu);
1925
	for (n = 0; n < e->num_engines; n++) {
1926 1927
		struct intel_engine_cs *engine;

1928 1929 1930 1931
		if (!e->engines[n]) {
			clone->engines[n] = NULL;
			continue;
		}
1932
		engine = e->engines[n]->engine;
1933

1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
		/*
		 * Virtual engines are singletons; they can only exist
		 * inside a single context, because they embed their
		 * HW context... As each virtual context implies a single
		 * timeline (each engine can only dequeue a single request
		 * at any time), it would be surprising for two contexts
		 * to use the same engine. So let's create a copy of
		 * the virtual engine instead.
		 */
		if (intel_engine_is_virtual(engine))
			clone->engines[n] =
				intel_execlists_clone_virtual(dst, engine);
		else
			clone->engines[n] = intel_context_create(dst, engine);
		if (IS_ERR_OR_NULL(clone->engines[n])) {
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
			__free_engines(clone, n);
			goto err_unlock;
		}
	}
	clone->num_engines = n;

	user_engines = i915_gem_context_user_engines(src);
	i915_gem_context_unlock_engines(src);

	free_engines(dst->engines);
	RCU_INIT_POINTER(dst->engines, clone);
	if (user_engines)
		i915_gem_context_set_user_engines(dst);
	else
		i915_gem_context_clear_user_engines(dst);
	return 0;

err_unlock:
	i915_gem_context_unlock_engines(src);
	return -ENOMEM;
}

static int clone_flags(struct i915_gem_context *dst,
		       struct i915_gem_context *src)
{
	dst->user_flags = src->user_flags;
	return 0;
}

static int clone_schedattr(struct i915_gem_context *dst,
			   struct i915_gem_context *src)
{
	dst->sched = src->sched;
	return 0;
}

static int clone_sseu(struct i915_gem_context *dst,
		      struct i915_gem_context *src)
{
	struct i915_gem_engines *e = i915_gem_context_lock_engines(src);
	struct i915_gem_engines *clone;
	unsigned long n;
	int err;

	clone = dst->engines; /* no locking required; sole access */
	if (e->num_engines != clone->num_engines) {
		err = -EINVAL;
		goto unlock;
	}

	for (n = 0; n < e->num_engines; n++) {
		struct intel_context *ce = e->engines[n];

		if (clone->engines[n]->engine->class != ce->engine->class) {
			/* Must have compatible engine maps! */
			err = -EINVAL;
			goto unlock;
		}

		/* serialises with set_sseu */
		err = intel_context_lock_pinned(ce);
		if (err)
			goto unlock;

		clone->engines[n]->sseu = ce->sseu;
		intel_context_unlock_pinned(ce);
	}

	err = 0;
unlock:
	i915_gem_context_unlock_engines(src);
	return err;
}

static int clone_timeline(struct i915_gem_context *dst,
			  struct i915_gem_context *src)
{
2026 2027
	if (src->timeline)
		__assign_timeline(dst, src->timeline);
2028 2029 2030 2031 2032 2033 2034

	return 0;
}

static int clone_vm(struct i915_gem_context *dst,
		    struct i915_gem_context *src)
{
2035
	struct i915_address_space *vm;
2036
	int err = 0;
2037 2038 2039

	rcu_read_lock();
	do {
2040
		vm = rcu_dereference(src->vm);
2041
		if (!vm)
2042 2043
			break;

2044
		if (!kref_get_unless_zero(&vm->ref))
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
			continue;

		/*
		 * This ppgtt may have be reallocated between
		 * the read and the kref, and reassigned to a third
		 * context. In order to avoid inadvertent sharing
		 * of this ppgtt with that third context (and not
		 * src), we have to confirm that we have the same
		 * ppgtt after passing through the strong memory
		 * barrier implied by a successful
		 * kref_get_unless_zero().
		 *
		 * Once we have acquired the current ppgtt of src,
		 * we no longer care if it is released from src, as
		 * it cannot be reallocated elsewhere.
		 */

2062
		if (vm == rcu_access_pointer(src->vm))
2063 2064
			break;

2065
		i915_vm_put(vm);
2066 2067 2068
	} while (1);
	rcu_read_unlock();

2069
	if (vm) {
2070 2071 2072 2073 2074 2075
		if (!mutex_lock_interruptible(&dst->mutex)) {
			__assign_ppgtt(dst, vm);
			mutex_unlock(&dst->mutex);
		} else {
			err = -EINTR;
		}
2076
		i915_vm_put(vm);
2077 2078
	}

2079
	return err;
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
}

static int create_clone(struct i915_user_extension __user *ext, void *data)
{
	static int (* const fn[])(struct i915_gem_context *dst,
				  struct i915_gem_context *src) = {
#define MAP(x, y) [ilog2(I915_CONTEXT_CLONE_##x)] = y
		MAP(ENGINES, clone_engines),
		MAP(FLAGS, clone_flags),
		MAP(SCHEDATTR, clone_schedattr),
		MAP(SSEU, clone_sseu),
		MAP(TIMELINE, clone_timeline),
		MAP(VM, clone_vm),
#undef MAP
	};
	struct drm_i915_gem_context_create_ext_clone local;
	const struct create_ext *arg = data;
	struct i915_gem_context *dst = arg->ctx;
	struct i915_gem_context *src;
	int err, bit;

	if (copy_from_user(&local, ext, sizeof(local)))
		return -EFAULT;

	BUILD_BUG_ON(GENMASK(BITS_PER_TYPE(local.flags) - 1, ARRAY_SIZE(fn)) !=
		     I915_CONTEXT_CLONE_UNKNOWN);

	if (local.flags & I915_CONTEXT_CLONE_UNKNOWN)
		return -EINVAL;

	if (local.rsvd)
		return -EINVAL;

	rcu_read_lock();
	src = __i915_gem_context_lookup_rcu(arg->fpriv, local.clone_id);
	rcu_read_unlock();
	if (!src)
		return -ENOENT;

	GEM_BUG_ON(src == dst);

	for (bit = 0; bit < ARRAY_SIZE(fn); bit++) {
		if (!(local.flags & BIT(bit)))
			continue;

		err = fn[bit](dst, src);
		if (err)
			return err;
	}

	return 0;
}

2133 2134
static const i915_user_extension_fn create_extensions[] = {
	[I915_CONTEXT_CREATE_EXT_SETPARAM] = create_setparam,
2135
	[I915_CONTEXT_CREATE_EXT_CLONE] = create_clone,
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
};

static bool client_is_banned(struct drm_i915_file_private *file_priv)
{
	return atomic_read(&file_priv->ban_score) >= I915_CLIENT_SCORE_BANNED;
}

int i915_gem_context_create_ioctl(struct drm_device *dev, void *data,
				  struct drm_file *file)
{
	struct drm_i915_private *i915 = to_i915(dev);
	struct drm_i915_gem_context_create_ext *args = data;
	struct create_ext ext_data;
	int ret;

	if (!DRIVER_CAPS(i915)->has_logical_contexts)
		return -ENODEV;

	if (args->flags & I915_CONTEXT_CREATE_FLAGS_UNKNOWN)
		return -EINVAL;

2157
	ret = intel_gt_terminally_wedged(&i915->gt);
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
	if (ret)
		return ret;

	ext_data.fpriv = file->driver_priv;
	if (client_is_banned(ext_data.fpriv)) {
		DRM_DEBUG("client %s[%d] banned from creating ctx\n",
			  current->comm,
			  pid_nr(get_task_pid(current, PIDTYPE_PID)));
		return -EIO;
	}

2169
	ext_data.ctx = i915_gem_create_context(i915, args->flags);
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
	if (IS_ERR(ext_data.ctx))
		return PTR_ERR(ext_data.ctx);

	if (args->flags & I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS) {
		ret = i915_user_extensions(u64_to_user_ptr(args->extensions),
					   create_extensions,
					   ARRAY_SIZE(create_extensions),
					   &ext_data);
		if (ret)
			goto err_ctx;
	}

	ret = gem_context_register(ext_data.ctx, ext_data.fpriv);
	if (ret < 0)
		goto err_ctx;

	args->ctx_id = ret;
	DRM_DEBUG("HW context %d created\n", args->ctx_id);

	return 0;

err_ctx:
	context_close(ext_data.ctx);
	return ret;
}

int i915_gem_context_destroy_ioctl(struct drm_device *dev, void *data,
				   struct drm_file *file)
{
	struct drm_i915_gem_context_destroy *args = data;
	struct drm_i915_file_private *file_priv = file->driver_priv;
	struct i915_gem_context *ctx;

	if (args->pad != 0)
		return -EINVAL;

	if (!args->ctx_id)
		return -ENOENT;

	if (mutex_lock_interruptible(&file_priv->context_idr_lock))
		return -EINTR;

	ctx = idr_remove(&file_priv->context_idr, args->ctx_id);
	mutex_unlock(&file_priv->context_idr_lock);
	if (!ctx)
		return -ENOENT;

	context_close(ctx);
	return 0;
}

static int get_sseu(struct i915_gem_context *ctx,
		    struct drm_i915_gem_context_param *args)
{
	struct drm_i915_gem_context_param_sseu user_sseu;
	struct intel_context *ce;
2226
	unsigned long lookup;
2227
	int err;
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237

	if (args->size == 0)
		goto out;
	else if (args->size < sizeof(user_sseu))
		return -EINVAL;

	if (copy_from_user(&user_sseu, u64_to_user_ptr(args->value),
			   sizeof(user_sseu)))
		return -EFAULT;

2238
	if (user_sseu.rsvd)
2239 2240
		return -EINVAL;

2241 2242 2243 2244 2245 2246 2247 2248
	if (user_sseu.flags & ~(I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX))
		return -EINVAL;

	lookup = 0;
	if (user_sseu.flags & I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX)
		lookup |= LOOKUP_USER_INDEX;

	ce = lookup_user_engine(ctx, lookup, &user_sseu.engine);
2249 2250 2251
	if (IS_ERR(ce))
		return PTR_ERR(ce);

2252 2253 2254 2255 2256 2257
	err = intel_context_lock_pinned(ce); /* serialises with set_sseu */
	if (err) {
		intel_context_put(ce);
		return err;
	}

2258 2259 2260 2261 2262
	user_sseu.slice_mask = ce->sseu.slice_mask;
	user_sseu.subslice_mask = ce->sseu.subslice_mask;
	user_sseu.min_eus_per_subslice = ce->sseu.min_eus_per_subslice;
	user_sseu.max_eus_per_subslice = ce->sseu.max_eus_per_subslice;

2263 2264
	intel_context_unlock_pinned(ce);
	intel_context_put(ce);
2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295

	if (copy_to_user(u64_to_user_ptr(args->value), &user_sseu,
			 sizeof(user_sseu)))
		return -EFAULT;

out:
	args->size = sizeof(user_sseu);

	return 0;
}

int i915_gem_context_getparam_ioctl(struct drm_device *dev, void *data,
				    struct drm_file *file)
{
	struct drm_i915_file_private *file_priv = file->driver_priv;
	struct drm_i915_gem_context_param *args = data;
	struct i915_gem_context *ctx;
	int ret = 0;

	ctx = i915_gem_context_lookup(file_priv, args->ctx_id);
	if (!ctx)
		return -ENOENT;

	switch (args->param) {
	case I915_CONTEXT_PARAM_NO_ZEROMAP:
		args->size = 0;
		args->value = test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags);
		break;

	case I915_CONTEXT_PARAM_GTT_SIZE:
		args->size = 0;
2296 2297 2298
		rcu_read_lock();
		if (rcu_access_pointer(ctx->vm))
			args->value = rcu_dereference(ctx->vm)->total;
2299 2300
		else
			args->value = to_i915(dev)->ggtt.vm.total;
2301
		rcu_read_unlock();
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
		break;

	case I915_CONTEXT_PARAM_NO_ERROR_CAPTURE:
		args->size = 0;
		args->value = i915_gem_context_no_error_capture(ctx);
		break;

	case I915_CONTEXT_PARAM_BANNABLE:
		args->size = 0;
		args->value = i915_gem_context_is_bannable(ctx);
		break;

	case I915_CONTEXT_PARAM_RECOVERABLE:
		args->size = 0;
		args->value = i915_gem_context_is_recoverable(ctx);
		break;

	case I915_CONTEXT_PARAM_PRIORITY:
		args->size = 0;
		args->value = ctx->sched.priority >> I915_USER_PRIORITY_SHIFT;
		break;

	case I915_CONTEXT_PARAM_SSEU:
		ret = get_sseu(ctx, args);
		break;

	case I915_CONTEXT_PARAM_VM:
2329
		ret = get_ppgtt(file_priv, ctx, args);
2330 2331
		break;

2332 2333 2334 2335
	case I915_CONTEXT_PARAM_ENGINES:
		ret = get_engines(ctx, args);
		break;

2336 2337 2338 2339 2340
	case I915_CONTEXT_PARAM_PERSISTENCE:
		args->size = 0;
		args->value = i915_gem_context_is_persistent(ctx);
		break;

2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
	case I915_CONTEXT_PARAM_BAN_PERIOD:
	default:
		ret = -EINVAL;
		break;
	}

	i915_gem_context_put(ctx);
	return ret;
}

int i915_gem_context_setparam_ioctl(struct drm_device *dev, void *data,
				    struct drm_file *file)
{
	struct drm_i915_file_private *file_priv = file->driver_priv;
	struct drm_i915_gem_context_param *args = data;
	struct i915_gem_context *ctx;
	int ret;

	ctx = i915_gem_context_lookup(file_priv, args->ctx_id);
	if (!ctx)
		return -ENOENT;

2363
	ret = ctx_setparam(file_priv, ctx, args);
2364

2365
	i915_gem_context_put(ctx);
2366 2367
	return ret;
}
2368 2369 2370 2371

int i915_gem_context_reset_stats_ioctl(struct drm_device *dev,
				       void *data, struct drm_file *file)
{
2372
	struct drm_i915_private *i915 = to_i915(dev);
2373
	struct drm_i915_reset_stats *args = data;
2374
	struct i915_gem_context *ctx;
2375 2376 2377 2378 2379
	int ret;

	if (args->flags || args->pad)
		return -EINVAL;

2380 2381 2382 2383 2384
	ret = -ENOENT;
	rcu_read_lock();
	ctx = __i915_gem_context_lookup_rcu(file->driver_priv, args->ctx_id);
	if (!ctx)
		goto out;
2385

2386 2387 2388 2389 2390 2391
	/*
	 * We opt for unserialised reads here. This may result in tearing
	 * in the extremely unlikely event of a GPU hang on this context
	 * as we are querying them. If we need that extra layer of protection,
	 * we should wrap the hangstats with a seqlock.
	 */
2392 2393

	if (capable(CAP_SYS_ADMIN))
2394
		args->reset_count = i915_reset_count(&i915->gpu_error);
2395 2396 2397
	else
		args->reset_count = 0;

2398 2399
	args->batch_active = atomic_read(&ctx->guilty_count);
	args->batch_pending = atomic_read(&ctx->active_count);
2400

2401 2402 2403 2404
	ret = 0;
out:
	rcu_read_unlock();
	return ret;
2405
}
2406

2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
/* GEM context-engines iterator: for_each_gem_engine() */
struct intel_context *
i915_gem_engines_iter_next(struct i915_gem_engines_iter *it)
{
	const struct i915_gem_engines *e = it->engines;
	struct intel_context *ctx;

	do {
		if (it->idx >= e->num_engines)
			return NULL;

		ctx = e->engines[it->idx++];
	} while (!ctx);

	return ctx;
}

2424 2425
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_context.c"
2426
#include "selftests/i915_gem_context.c"
2427
#endif
2428

2429
static void i915_global_gem_context_shrink(void)
2430
{
2431
	kmem_cache_shrink(global.slab_luts);
2432 2433
}

2434
static void i915_global_gem_context_exit(void)
2435
{
2436
	kmem_cache_destroy(global.slab_luts);
2437 2438
}

2439 2440 2441
static struct i915_global_gem_context global = { {
	.shrink = i915_global_gem_context_shrink,
	.exit = i915_global_gem_context_exit,
2442 2443
} };

2444
int __init i915_global_gem_context_init(void)
2445
{
2446 2447 2448 2449 2450 2451
	global.slab_luts = KMEM_CACHE(i915_lut_handle, 0);
	if (!global.slab_luts)
		return -ENOMEM;

	i915_global_register(&global.base);
	return 0;
2452
}