vfio_ap_ops.c 45.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// SPDX-License-Identifier: GPL-2.0+
/*
 * Adjunct processor matrix VFIO device driver callbacks.
 *
 * Copyright IBM Corp. 2018
 *
 * Author(s): Tony Krowiak <akrowiak@linux.ibm.com>
 *	      Halil Pasic <pasic@linux.ibm.com>
 *	      Pierre Morel <pmorel@linux.ibm.com>
 */
#include <linux/string.h>
#include <linux/vfio.h>
#include <linux/device.h>
#include <linux/list.h>
#include <linux/ctype.h>
16 17 18
#include <linux/bitops.h>
#include <linux/kvm_host.h>
#include <linux/module.h>
19
#include <linux/uuid.h>
20
#include <asm/kvm.h>
21 22 23
#include <asm/zcrypt.h>

#include "vfio_ap_private.h"
24
#include "vfio_ap_debug.h"
25 26 27 28

#define VFIO_AP_MDEV_TYPE_HWVIRT "passthrough"
#define VFIO_AP_MDEV_NAME_HWVIRT "VFIO AP Passthrough Device"

29 30 31 32
#define AP_QUEUE_ASSIGNED "assigned"
#define AP_QUEUE_UNASSIGNED "unassigned"
#define AP_QUEUE_IN_USE "in use"

33
static int vfio_ap_mdev_reset_queues(struct ap_matrix_mdev *matrix_mdev);
34
static struct vfio_ap_queue *vfio_ap_find_queue(int apqn);
35
static const struct vfio_device_ops vfio_ap_matrix_dev_ops;
36 37

/**
38 39 40 41
 * vfio_ap_mdev_get_queue - retrieve a queue with a specific APQN from a
 *			    hash table of queues assigned to a matrix mdev
 * @matrix_mdev: the matrix mdev
 * @apqn: The APQN of a queue device
42
 *
43 44
 * Return: the pointer to the vfio_ap_queue struct representing the queue or
 *	   NULL if the queue is not assigned to @matrix_mdev
45
 */
46
static struct vfio_ap_queue *vfio_ap_mdev_get_queue(
47 48 49 50 51
					struct ap_matrix_mdev *matrix_mdev,
					int apqn)
{
	struct vfio_ap_queue *q;

52 53 54 55 56
	hash_for_each_possible(matrix_mdev->qtable.queues, q, mdev_qnode,
			       apqn) {
		if (q && q->apqn == apqn)
			return q;
	}
57

58
	return NULL;
59 60 61
}

/**
62
 * vfio_ap_wait_for_irqclear - clears the IR bit or gives up after 5 tries
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
 * @apqn: The AP Queue number
 *
 * Checks the IRQ bit for the status of this APQN using ap_tapq.
 * Returns if the ap_tapq function succeeded and the bit is clear.
 * Returns if ap_tapq function failed with invalid, deconfigured or
 * checkstopped AP.
 * Otherwise retries up to 5 times after waiting 20ms.
 */
static void vfio_ap_wait_for_irqclear(int apqn)
{
	struct ap_queue_status status;
	int retry = 5;

	do {
		status = ap_tapq(apqn, NULL);
		switch (status.response_code) {
		case AP_RESPONSE_NORMAL:
		case AP_RESPONSE_RESET_IN_PROGRESS:
			if (!status.irq_enabled)
				return;
J
Joe Perches 已提交
83
			fallthrough;
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
		case AP_RESPONSE_BUSY:
			msleep(20);
			break;
		case AP_RESPONSE_Q_NOT_AVAIL:
		case AP_RESPONSE_DECONFIGURED:
		case AP_RESPONSE_CHECKSTOPPED:
		default:
			WARN_ONCE(1, "%s: tapq rc %02x: %04x\n", __func__,
				  status.response_code, apqn);
			return;
		}
	} while (--retry);

	WARN_ONCE(1, "%s: tapq rc %02x: %04x could not clear IR bit\n",
		  __func__, status.response_code, apqn);
}

/**
102
 * vfio_ap_free_aqic_resources - free vfio_ap_queue resources
103 104 105
 * @q: The vfio_ap_queue
 *
 * Unregisters the ISC in the GIB when the saved ISC not invalid.
106 107
 * Unpins the guest's page holding the NIB when it exists.
 * Resets the saved_pfn and saved_isc to invalid values.
108 109 110
 */
static void vfio_ap_free_aqic_resources(struct vfio_ap_queue *q)
{
111 112 113 114
	if (!q)
		return;
	if (q->saved_isc != VFIO_AP_ISC_INVALID &&
	    !WARN_ON(!(q->matrix_mdev && q->matrix_mdev->kvm))) {
115
		kvm_s390_gisc_unregister(q->matrix_mdev->kvm, q->saved_isc);
116 117 118
		q->saved_isc = VFIO_AP_ISC_INVALID;
	}
	if (q->saved_pfn && !WARN_ON(!q->matrix_mdev)) {
119
		vfio_unpin_pages(&q->matrix_mdev->vdev, &q->saved_pfn, 1);
120 121
		q->saved_pfn = 0;
	}
122 123 124
}

/**
125
 * vfio_ap_irq_disable - disables and clears an ap_queue interrupt
126 127 128 129 130 131 132 133 134 135 136 137 138
 * @q: The vfio_ap_queue
 *
 * Uses ap_aqic to disable the interruption and in case of success, reset
 * in progress or IRQ disable command already proceeded: calls
 * vfio_ap_wait_for_irqclear() to check for the IRQ bit to be clear
 * and calls vfio_ap_free_aqic_resources() to free the resources associated
 * with the AP interrupt handling.
 *
 * In the case the AP is busy, or a reset is in progress,
 * retries after 20ms, up to 5 times.
 *
 * Returns if ap_aqic function failed with invalid, deconfigured or
 * checkstopped AP.
139 140
 *
 * Return: &struct ap_queue_status
141
 */
142
static struct ap_queue_status vfio_ap_irq_disable(struct vfio_ap_queue *q)
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
{
	struct ap_qirq_ctrl aqic_gisa = {};
	struct ap_queue_status status;
	int retries = 5;

	do {
		status = ap_aqic(q->apqn, aqic_gisa, NULL);
		switch (status.response_code) {
		case AP_RESPONSE_OTHERWISE_CHANGED:
		case AP_RESPONSE_NORMAL:
			vfio_ap_wait_for_irqclear(q->apqn);
			goto end_free;
		case AP_RESPONSE_RESET_IN_PROGRESS:
		case AP_RESPONSE_BUSY:
			msleep(20);
			break;
		case AP_RESPONSE_Q_NOT_AVAIL:
		case AP_RESPONSE_DECONFIGURED:
		case AP_RESPONSE_CHECKSTOPPED:
		case AP_RESPONSE_INVALID_ADDRESS:
		default:
			/* All cases in default means AP not operational */
			WARN_ONCE(1, "%s: ap_aqic status %d\n", __func__,
				  status.response_code);
			goto end_free;
		}
	} while (retries--);

	WARN_ONCE(1, "%s: ap_aqic status %d\n", __func__,
		  status.response_code);
end_free:
	vfio_ap_free_aqic_resources(q);
	return status;
}

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
/**
 * vfio_ap_validate_nib - validate a notification indicator byte (nib) address.
 *
 * @vcpu: the object representing the vcpu executing the PQAP(AQIC) instruction.
 * @nib: the location for storing the nib address.
 * @g_pfn: the location for storing the page frame number of the page containing
 *	   the nib.
 *
 * When the PQAP(AQIC) instruction is executed, general register 2 contains the
 * address of the notification indicator byte (nib) used for IRQ notification.
 * This function parses the nib from gr2 and calculates the page frame
 * number for the guest of the page containing the nib. The values are
 * stored in @nib and @g_pfn respectively.
 *
 * The g_pfn of the nib is then validated to ensure the nib address is valid.
 *
 * Return: returns zero if the nib address is a valid; otherwise, returns
 *	   -EINVAL.
 */
static int vfio_ap_validate_nib(struct kvm_vcpu *vcpu, unsigned long *nib,
				unsigned long *g_pfn)
{
	*nib = vcpu->run->s.regs.gprs[2];
	*g_pfn = *nib >> PAGE_SHIFT;

	if (kvm_is_error_hva(gfn_to_hva(vcpu->kvm, *g_pfn)))
		return -EINVAL;

	return 0;
}

209
/**
210
 * vfio_ap_irq_enable - Enable Interruption for a APQN
211 212
 *
 * @q:	 the vfio_ap_queue holding AQIC parameters
213
 * @isc: the guest ISC to register with the GIB interface
214 215
 * @vcpu: the vcpu object containing the registers specifying the parameters
 *	  passed to the PQAP(AQIC) instruction.
216 217 218 219 220 221 222 223 224 225
 *
 * Pin the NIB saved in *q
 * Register the guest ISC to GIB interface and retrieve the
 * host ISC to issue the host side PQAP/AQIC
 *
 * Response.status may be set to AP_RESPONSE_INVALID_ADDRESS in case the
 * vfio_pin_pages failed.
 *
 * Otherwise return the ap_queue_status returned by the ap_aqic(),
 * all retry handling will be done by the guest.
226 227
 *
 * Return: &struct ap_queue_status
228 229 230
 */
static struct ap_queue_status vfio_ap_irq_enable(struct vfio_ap_queue *q,
						 int isc,
231
						 struct kvm_vcpu *vcpu)
232
{
233
	unsigned long nib;
234 235 236
	struct ap_qirq_ctrl aqic_gisa = {};
	struct ap_queue_status status = {};
	struct kvm_s390_gisa *gisa;
237
	int nisc;
238 239 240 241
	struct kvm *kvm;
	unsigned long h_nib, g_pfn, h_pfn;
	int ret;

242 243 244 245 246 247 248 249 250
	/* Verify that the notification indicator byte address is valid */
	if (vfio_ap_validate_nib(vcpu, &nib, &g_pfn)) {
		VFIO_AP_DBF_WARN("%s: invalid NIB address: nib=%#lx, g_pfn=%#lx, apqn=%#04x\n",
				 __func__, nib, g_pfn, q->apqn);

		status.response_code = AP_RESPONSE_INVALID_ADDRESS;
		return status;
	}

251
	ret = vfio_pin_pages(&q->matrix_mdev->vdev, &g_pfn, 1,
252 253 254 255 256
			     IOMMU_READ | IOMMU_WRITE, &h_pfn);
	switch (ret) {
	case 1:
		break;
	default:
257 258 259 260
		VFIO_AP_DBF_WARN("%s: vfio_pin_pages failed: rc=%d,"
				 "nib=%#lx, g_pfn=%#lx, apqn=%#04x\n",
				 __func__, ret, nib, g_pfn, q->apqn);

261 262 263 264 265 266 267 268 269
		status.response_code = AP_RESPONSE_INVALID_ADDRESS;
		return status;
	}

	kvm = q->matrix_mdev->kvm;
	gisa = kvm->arch.gisa_int.origin;

	h_nib = (h_pfn << PAGE_SHIFT) | (nib & ~PAGE_MASK);
	aqic_gisa.gisc = isc;
270 271 272 273 274 275 276 277 278 279 280

	nisc = kvm_s390_gisc_register(kvm, isc);
	if (nisc < 0) {
		VFIO_AP_DBF_WARN("%s: gisc registration failed: nisc=%d, isc=%d, apqn=%#04x\n",
				 __func__, nisc, isc, q->apqn);

		status.response_code = AP_RESPONSE_INVALID_GISA;
		return status;
	}

	aqic_gisa.isc = nisc;
281 282 283 284 285 286 287 288 289 290 291 292 293
	aqic_gisa.ir = 1;
	aqic_gisa.gisa = (uint64_t)gisa >> 4;

	status = ap_aqic(q->apqn, aqic_gisa, (void *)h_nib);
	switch (status.response_code) {
	case AP_RESPONSE_NORMAL:
		/* See if we did clear older IRQ configuration */
		vfio_ap_free_aqic_resources(q);
		q->saved_pfn = g_pfn;
		q->saved_isc = isc;
		break;
	case AP_RESPONSE_OTHERWISE_CHANGED:
		/* We could not modify IRQ setings: clear new configuration */
294
		vfio_unpin_pages(&q->matrix_mdev->vdev, &g_pfn, 1);
295 296 297 298 299 300 301 302 303
		kvm_s390_gisc_unregister(kvm, isc);
		break;
	default:
		pr_warn("%s: apqn %04x: response: %02x\n", __func__, q->apqn,
			status.response_code);
		vfio_ap_irq_disable(q);
		break;
	}

304 305 306 307 308 309 310 311 312 313
	if (status.response_code != AP_RESPONSE_NORMAL) {
		VFIO_AP_DBF_WARN("%s: PQAP(AQIC) failed with status=%#02x: "
				 "zone=%#x, ir=%#x, gisc=%#x, f=%#x,"
				 "gisa=%#x, isc=%#x, apqn=%#04x\n",
				 __func__, status.response_code,
				 aqic_gisa.zone, aqic_gisa.ir, aqic_gisa.gisc,
				 aqic_gisa.gf, aqic_gisa.gisa, aqic_gisa.isc,
				 q->apqn);
	}

314 315 316
	return status;
}

317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
/**
 * vfio_ap_le_guid_to_be_uuid - convert a little endian guid array into an array
 *				of big endian elements that can be passed by
 *				value to an s390dbf sprintf event function to
 *				format a UUID string.
 *
 * @guid: the object containing the little endian guid
 * @uuid: a six-element array of long values that can be passed by value as
 *	  arguments for a formatting string specifying a UUID.
 *
 * The S390 Debug Feature (s390dbf) allows the use of "%s" in the sprintf
 * event functions if the memory for the passed string is available as long as
 * the debug feature exists. Since a mediated device can be removed at any
 * time, it's name can not be used because %s passes the reference to the string
 * in memory and the reference will go stale once the device is removed .
 *
 * The s390dbf string formatting function allows a maximum of 9 arguments for a
 * message to be displayed in the 'sprintf' view. In order to use the bytes
 * comprising the mediated device's UUID to display the mediated device name,
 * they will have to be converted into an array whose elements can be passed by
 * value to sprintf. For example:
 *
 * guid array: { 83, 78, 17, 62, bb, f1, f0, 47, 91, 4d, 32, a2, 2e, 3a, 88, 04 }
 * mdev name: 62177883-f1bb-47f0-914d-32a22e3a8804
 * array returned: { 62177883, f1bb, 47f0, 914d, 32a2, 2e3a8804 }
 * formatting string: "%08lx-%04lx-%04lx-%04lx-%02lx%04lx"
 */
static void vfio_ap_le_guid_to_be_uuid(guid_t *guid, unsigned long *uuid)
{
	/*
	 * The input guid is ordered in little endian, so it needs to be
	 * reordered for displaying a UUID as a string. This specifies the
	 * guid indices in proper order.
	 */
	uuid[0] = le32_to_cpup((__le32 *)guid);
	uuid[1] = le16_to_cpup((__le16 *)&guid->b[4]);
	uuid[2] = le16_to_cpup((__le16 *)&guid->b[6]);
	uuid[3] = *((__u16 *)&guid->b[8]);
	uuid[4] = *((__u16 *)&guid->b[10]);
	uuid[5] = *((__u32 *)&guid->b[12]);
}

359
/**
360
 * handle_pqap - PQAP instruction callback
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
 *
 * @vcpu: The vcpu on which we received the PQAP instruction
 *
 * Get the general register contents to initialize internal variables.
 * REG[0]: APQN
 * REG[1]: IR and ISC
 * REG[2]: NIB
 *
 * Response.status may be set to following Response Code:
 * - AP_RESPONSE_Q_NOT_AVAIL: if the queue is not available
 * - AP_RESPONSE_DECONFIGURED: if the queue is not configured
 * - AP_RESPONSE_NORMAL (0) : in case of successs
 *   Check vfio_ap_setirq() and vfio_ap_clrirq() for other possible RC.
 * We take the matrix_dev lock to ensure serialization on queues and
 * mediated device access.
 *
377 378
 * Return: 0 if we could handle the request inside KVM.
 * Otherwise, returns -EOPNOTSUPP to let QEMU handle the fault.
379 380 381 382 383
 */
static int handle_pqap(struct kvm_vcpu *vcpu)
{
	uint64_t status;
	uint16_t apqn;
384
	unsigned long uuid[6];
385 386 387 388 389
	struct vfio_ap_queue *q;
	struct ap_queue_status qstatus = {
			       .response_code = AP_RESPONSE_Q_NOT_AVAIL, };
	struct ap_matrix_mdev *matrix_mdev;

390 391
	apqn = vcpu->run->s.regs.gprs[0] & 0xffff;

392
	/* If we do not use the AIV facility just go to userland */
393 394 395 396
	if (!(vcpu->arch.sie_block->eca & ECA_AIV)) {
		VFIO_AP_DBF_WARN("%s: AIV facility not installed: apqn=0x%04x, eca=0x%04x\n",
				 __func__, apqn, vcpu->arch.sie_block->eca);

397
		return -EOPNOTSUPP;
398
	}
399 400

	mutex_lock(&matrix_dev->lock);
401 402 403
	if (!vcpu->kvm->arch.crypto.pqap_hook) {
		VFIO_AP_DBF_WARN("%s: PQAP(AQIC) hook not registered with the vfio_ap driver: apqn=0x%04x\n",
				 __func__, apqn);
404
		goto out_unlock;
405 406
	}

407 408 409
	matrix_mdev = container_of(vcpu->kvm->arch.crypto.pqap_hook,
				   struct ap_matrix_mdev, pqap_hook);

410
	/* If the there is no guest using the mdev, there is nothing to do */
411 412 413 414 415
	if (!matrix_mdev->kvm) {
		vfio_ap_le_guid_to_be_uuid(&matrix_mdev->mdev->uuid, uuid);
		VFIO_AP_DBF_WARN("%s: mdev %08lx-%04lx-%04lx-%04lx-%04lx%08lx not in use: apqn=0x%04x\n",
				 __func__, uuid[0],  uuid[1], uuid[2],
				 uuid[3], uuid[4], uuid[5], apqn);
416
		goto out_unlock;
417
	}
418

419
	q = vfio_ap_mdev_get_queue(matrix_mdev, apqn);
420 421 422 423
	if (!q) {
		VFIO_AP_DBF_WARN("%s: Queue %02x.%04x not bound to the vfio_ap driver\n",
				 __func__, AP_QID_CARD(apqn),
				 AP_QID_QUEUE(apqn));
424
		goto out_unlock;
425
	}
426 427 428 429 430

	status = vcpu->run->s.regs.gprs[1];

	/* If IR bit(16) is set we enable the interrupt */
	if ((status >> (63 - 16)) & 0x01)
431
		qstatus = vfio_ap_irq_enable(q, status & 0x07, vcpu);
432 433 434 435 436 437 438 439 440 441
	else
		qstatus = vfio_ap_irq_disable(q);

out_unlock:
	memcpy(&vcpu->run->s.regs.gprs[1], &qstatus, sizeof(qstatus));
	vcpu->run->s.regs.gprs[1] >>= 32;
	mutex_unlock(&matrix_dev->lock);
	return 0;
}

442 443 444 445 446 447 448 449
static void vfio_ap_matrix_init(struct ap_config_info *info,
				struct ap_matrix *matrix)
{
	matrix->apm_max = info->apxa ? info->Na : 63;
	matrix->aqm_max = info->apxa ? info->Nd : 15;
	matrix->adm_max = info->apxa ? info->Nd : 15;
}

450
static int vfio_ap_mdev_probe(struct mdev_device *mdev)
451 452
{
	struct ap_matrix_mdev *matrix_mdev;
453
	int ret;
454 455 456 457 458 459

	if ((atomic_dec_if_positive(&matrix_dev->available_instances) < 0))
		return -EPERM;

	matrix_mdev = kzalloc(sizeof(*matrix_mdev), GFP_KERNEL);
	if (!matrix_mdev) {
460 461
		ret = -ENOMEM;
		goto err_dec_available;
462
	}
463 464
	vfio_init_group_dev(&matrix_mdev->vdev, &mdev->dev,
			    &vfio_ap_matrix_dev_ops);
465

466
	matrix_mdev->mdev = mdev;
467
	vfio_ap_matrix_init(&matrix_dev->info, &matrix_mdev->matrix);
468
	matrix_mdev->pqap_hook = handle_pqap;
469
	vfio_ap_matrix_init(&matrix_dev->info, &matrix_mdev->shadow_apcb);
470 471
	hash_init(matrix_mdev->qtable.queues);
	dev_set_drvdata(&mdev->dev, matrix_mdev);
472 473 474 475
	mutex_lock(&matrix_dev->lock);
	list_add(&matrix_mdev->node, &matrix_dev->mdev_list);
	mutex_unlock(&matrix_dev->lock);

476
	ret = vfio_register_emulated_iommu_dev(&matrix_mdev->vdev);
477 478 479
	if (ret)
		goto err_list;
	dev_set_drvdata(&mdev->dev, matrix_mdev);
480
	return 0;
481 482 483 484 485

err_list:
	mutex_lock(&matrix_dev->lock);
	list_del(&matrix_mdev->node);
	mutex_unlock(&matrix_dev->lock);
486
	vfio_uninit_group_dev(&matrix_mdev->vdev);
487 488 489 490
	kfree(matrix_mdev);
err_dec_available:
	atomic_inc(&matrix_dev->available_instances);
	return ret;
491 492
}

493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
static void vfio_ap_mdev_link_queue(struct ap_matrix_mdev *matrix_mdev,
				    struct vfio_ap_queue *q)
{
	if (q) {
		q->matrix_mdev = matrix_mdev;
		hash_add(matrix_mdev->qtable.queues, &q->mdev_qnode, q->apqn);
	}
}

static void vfio_ap_mdev_link_apqn(struct ap_matrix_mdev *matrix_mdev, int apqn)
{
	struct vfio_ap_queue *q;

	q = vfio_ap_find_queue(apqn);
	vfio_ap_mdev_link_queue(matrix_mdev, q);
}

static void vfio_ap_unlink_queue_fr_mdev(struct vfio_ap_queue *q)
{
	hash_del(&q->mdev_qnode);
}

static void vfio_ap_unlink_mdev_fr_queue(struct vfio_ap_queue *q)
{
	q->matrix_mdev = NULL;
}

static void vfio_ap_mdev_unlink_queue(struct vfio_ap_queue *q)
{
	vfio_ap_unlink_queue_fr_mdev(q);
	vfio_ap_unlink_mdev_fr_queue(q);
}

static void vfio_ap_mdev_unlink_fr_queues(struct ap_matrix_mdev *matrix_mdev)
{
	struct vfio_ap_queue *q;
	unsigned long apid, apqi;

	for_each_set_bit_inv(apid, matrix_mdev->matrix.apm, AP_DEVICES) {
		for_each_set_bit_inv(apqi, matrix_mdev->matrix.aqm,
				     AP_DOMAINS) {
			q = vfio_ap_mdev_get_queue(matrix_mdev,
						   AP_MKQID(apid, apqi));
			if (q)
				q->matrix_mdev = NULL;
		}
	}
}

542
static void vfio_ap_mdev_remove(struct mdev_device *mdev)
543
{
544 545 546
	struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(&mdev->dev);

	vfio_unregister_group_dev(&matrix_mdev->vdev);
547

548
	mutex_lock(&matrix_dev->lock);
549
	vfio_ap_mdev_reset_queues(matrix_mdev);
550
	vfio_ap_mdev_unlink_fr_queues(matrix_mdev);
551
	list_del(&matrix_mdev->node);
552 553
	mutex_unlock(&matrix_dev->lock);
	vfio_uninit_group_dev(&matrix_mdev->vdev);
554 555 556 557
	kfree(matrix_mdev);
	atomic_inc(&matrix_dev->available_instances);
}

558 559
static ssize_t name_show(struct mdev_type *mtype,
			 struct mdev_type_attribute *attr, char *buf)
560 561 562 563
{
	return sprintf(buf, "%s\n", VFIO_AP_MDEV_NAME_HWVIRT);
}

564
static MDEV_TYPE_ATTR_RO(name);
565

566 567 568
static ssize_t available_instances_show(struct mdev_type *mtype,
					struct mdev_type_attribute *attr,
					char *buf)
569 570 571 572 573
{
	return sprintf(buf, "%d\n",
		       atomic_read(&matrix_dev->available_instances));
}

574
static MDEV_TYPE_ATTR_RO(available_instances);
575

576 577
static ssize_t device_api_show(struct mdev_type *mtype,
			       struct mdev_type_attribute *attr, char *buf)
578 579 580 581
{
	return sprintf(buf, "%s\n", VFIO_DEVICE_API_AP_STRING);
}

582
static MDEV_TYPE_ATTR_RO(device_api);
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600

static struct attribute *vfio_ap_mdev_type_attrs[] = {
	&mdev_type_attr_name.attr,
	&mdev_type_attr_device_api.attr,
	&mdev_type_attr_available_instances.attr,
	NULL,
};

static struct attribute_group vfio_ap_mdev_hwvirt_type_group = {
	.name = VFIO_AP_MDEV_TYPE_HWVIRT,
	.attrs = vfio_ap_mdev_type_attrs,
};

static struct attribute_group *vfio_ap_mdev_type_groups[] = {
	&vfio_ap_mdev_hwvirt_type_group,
	NULL,
};

601 602 603 604 605 606 607
struct vfio_ap_queue_reserved {
	unsigned long *apid;
	unsigned long *apqi;
	bool reserved;
};

/**
608
 * vfio_ap_has_queue - determines if the AP queue containing the target in @data
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
 *
 * @dev: an AP queue device
 * @data: a struct vfio_ap_queue_reserved reference
 *
 * Flags whether the AP queue device (@dev) has a queue ID containing the APQN,
 * apid or apqi specified in @data:
 *
 * - If @data contains both an apid and apqi value, then @data will be flagged
 *   as reserved if the APID and APQI fields for the AP queue device matches
 *
 * - If @data contains only an apid value, @data will be flagged as
 *   reserved if the APID field in the AP queue device matches
 *
 * - If @data contains only an apqi value, @data will be flagged as
 *   reserved if the APQI field in the AP queue device matches
 *
625
 * Return: 0 to indicate the input to function succeeded. Returns -EINVAL if
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
 * @data does not contain either an apid or apqi.
 */
static int vfio_ap_has_queue(struct device *dev, void *data)
{
	struct vfio_ap_queue_reserved *qres = data;
	struct ap_queue *ap_queue = to_ap_queue(dev);
	ap_qid_t qid;
	unsigned long id;

	if (qres->apid && qres->apqi) {
		qid = AP_MKQID(*qres->apid, *qres->apqi);
		if (qid == ap_queue->qid)
			qres->reserved = true;
	} else if (qres->apid && !qres->apqi) {
		id = AP_QID_CARD(ap_queue->qid);
		if (id == *qres->apid)
			qres->reserved = true;
	} else if (!qres->apid && qres->apqi) {
		id = AP_QID_QUEUE(ap_queue->qid);
		if (id == *qres->apqi)
			qres->reserved = true;
	} else {
		return -EINVAL;
	}

	return 0;
}

/**
655 656
 * vfio_ap_verify_queue_reserved - verifies that the AP queue containing
 * @apid or @aqpi is reserved
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
 *
 * @apid: an AP adapter ID
 * @apqi: an AP queue index
 *
 * Verifies that the AP queue with @apid/@apqi is reserved by the VFIO AP device
 * driver according to the following rules:
 *
 * - If both @apid and @apqi are not NULL, then there must be an AP queue
 *   device bound to the vfio_ap driver with the APQN identified by @apid and
 *   @apqi
 *
 * - If only @apid is not NULL, then there must be an AP queue device bound
 *   to the vfio_ap driver with an APQN containing @apid
 *
 * - If only @apqi is not NULL, then there must be an AP queue device bound
 *   to the vfio_ap driver with an APQN containing @apqi
 *
674
 * Return: 0 if the AP queue is reserved; otherwise, returns -EADDRNOTAVAIL.
675 676 677 678 679 680 681 682 683 684 685
 */
static int vfio_ap_verify_queue_reserved(unsigned long *apid,
					 unsigned long *apqi)
{
	int ret;
	struct vfio_ap_queue_reserved qres;

	qres.apid = apid;
	qres.apqi = apqi;
	qres.reserved = false;

686 687
	ret = driver_for_each_device(&matrix_dev->vfio_ap_drv->driver, NULL,
				     &qres, vfio_ap_has_queue);
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
	if (ret)
		return ret;

	if (qres.reserved)
		return 0;

	return -EADDRNOTAVAIL;
}

static int
vfio_ap_mdev_verify_queues_reserved_for_apid(struct ap_matrix_mdev *matrix_mdev,
					     unsigned long apid)
{
	int ret;
	unsigned long apqi;
	unsigned long nbits = matrix_mdev->matrix.aqm_max + 1;

	if (find_first_bit_inv(matrix_mdev->matrix.aqm, nbits) >= nbits)
		return vfio_ap_verify_queue_reserved(&apid, NULL);

	for_each_set_bit_inv(apqi, matrix_mdev->matrix.aqm, nbits) {
		ret = vfio_ap_verify_queue_reserved(&apid, &apqi);
		if (ret)
			return ret;
	}

	return 0;
}

/**
718 719 720
 * vfio_ap_mdev_verify_no_sharing - verifies that the AP matrix is not configured
 *
 * @matrix_mdev: the mediated matrix device
721 722 723 724 725
 *
 * Verifies that the APQNs derived from the cross product of the AP adapter IDs
 * and AP queue indexes comprising the AP matrix are not configured for another
 * mediated device. AP queue sharing is not allowed.
 *
726
 * Return: 0 if the APQNs are not shared; otherwise returns -EADDRINUSE.
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
 */
static int vfio_ap_mdev_verify_no_sharing(struct ap_matrix_mdev *matrix_mdev)
{
	struct ap_matrix_mdev *lstdev;
	DECLARE_BITMAP(apm, AP_DEVICES);
	DECLARE_BITMAP(aqm, AP_DOMAINS);

	list_for_each_entry(lstdev, &matrix_dev->mdev_list, node) {
		if (matrix_mdev == lstdev)
			continue;

		memset(apm, 0, sizeof(apm));
		memset(aqm, 0, sizeof(aqm));

		/*
		 * We work on full longs, as we can only exclude the leftover
		 * bits in non-inverse order. The leftover is all zeros.
		 */
		if (!bitmap_and(apm, matrix_mdev->matrix.apm,
				lstdev->matrix.apm, AP_DEVICES))
			continue;

		if (!bitmap_and(aqm, matrix_mdev->matrix.aqm,
				lstdev->matrix.aqm, AP_DOMAINS))
			continue;

		return -EADDRINUSE;
	}

	return 0;
}

759 760 761 762 763 764 765 766 767 768
static void vfio_ap_mdev_link_adapter(struct ap_matrix_mdev *matrix_mdev,
				      unsigned long apid)
{
	unsigned long apqi;

	for_each_set_bit_inv(apqi, matrix_mdev->matrix.aqm, AP_DOMAINS)
		vfio_ap_mdev_link_apqn(matrix_mdev,
				       AP_MKQID(apid, apqi));
}

769
/**
770 771
 * assign_adapter_store - parses the APID from @buf and sets the
 * corresponding bit in the mediated matrix device's APM
772 773 774 775 776 777 778
 *
 * @dev:	the matrix device
 * @attr:	the mediated matrix device's assign_adapter attribute
 * @buf:	a buffer containing the AP adapter number (APID) to
 *		be assigned
 * @count:	the number of bytes in @buf
 *
779
 * Return: the number of bytes processed if the APID is valid; otherwise,
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
 * returns one of the following errors:
 *
 *	1. -EINVAL
 *	   The APID is not a valid number
 *
 *	2. -ENODEV
 *	   The APID exceeds the maximum value configured for the system
 *
 *	3. -EADDRNOTAVAIL
 *	   An APQN derived from the cross product of the APID being assigned
 *	   and the APQIs previously assigned is not bound to the vfio_ap device
 *	   driver; or, if no APQIs have yet been assigned, the APID is not
 *	   contained in an APQN bound to the vfio_ap device driver.
 *
 *	4. -EADDRINUSE
 *	   An APQN derived from the cross product of the APID being assigned
 *	   and the APQIs previously assigned is being used by another mediated
 *	   matrix device
 */
static ssize_t assign_adapter_store(struct device *dev,
				    struct device_attribute *attr,
				    const char *buf, size_t count)
{
	int ret;
	unsigned long apid;
805
	struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev);
806

807 808
	mutex_lock(&matrix_dev->lock);

809 810
	/* If the KVM guest is running, disallow assignment of adapter */
	if (matrix_mdev->kvm) {
811 812 813
		ret = -EBUSY;
		goto done;
	}
814

815 816
	ret = kstrtoul(buf, 0, &apid);
	if (ret)
817
		goto done;
818

819 820 821 822
	if (apid > matrix_mdev->matrix.apm_max) {
		ret = -ENODEV;
		goto done;
	}
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838

	/*
	 * Set the bit in the AP mask (APM) corresponding to the AP adapter
	 * number (APID). The bits in the mask, from most significant to least
	 * significant bit, correspond to APIDs 0-255.
	 */
	ret = vfio_ap_mdev_verify_queues_reserved_for_apid(matrix_mdev, apid);
	if (ret)
		goto done;

	set_bit_inv(apid, matrix_mdev->matrix.apm);

	ret = vfio_ap_mdev_verify_no_sharing(matrix_mdev);
	if (ret)
		goto share_err;

839
	vfio_ap_mdev_link_adapter(matrix_mdev, apid);
840 841 842 843 844 845 846 847 848 849 850 851
	ret = count;
	goto done;

share_err:
	clear_bit_inv(apid, matrix_mdev->matrix.apm);
done:
	mutex_unlock(&matrix_dev->lock);

	return ret;
}
static DEVICE_ATTR_WO(assign_adapter);

852 853 854 855 856 857 858 859 860 861 862 863 864 865
static void vfio_ap_mdev_unlink_adapter(struct ap_matrix_mdev *matrix_mdev,
					unsigned long apid)
{
	unsigned long apqi;
	struct vfio_ap_queue *q;

	for_each_set_bit_inv(apqi, matrix_mdev->matrix.aqm, AP_DOMAINS) {
		q = vfio_ap_mdev_get_queue(matrix_mdev, AP_MKQID(apid, apqi));

		if (q)
			vfio_ap_mdev_unlink_queue(q);
	}
}

866
/**
867 868
 * unassign_adapter_store - parses the APID from @buf and clears the
 * corresponding bit in the mediated matrix device's APM
869 870 871 872 873 874
 *
 * @dev:	the matrix device
 * @attr:	the mediated matrix device's unassign_adapter attribute
 * @buf:	a buffer containing the adapter number (APID) to be unassigned
 * @count:	the number of bytes in @buf
 *
875
 * Return: the number of bytes processed if the APID is valid; otherwise,
876 877 878 879 880 881 882 883 884 885 886
 * returns one of the following errors:
 *	-EINVAL if the APID is not a number
 *	-ENODEV if the APID it exceeds the maximum value configured for the
 *		system
 */
static ssize_t unassign_adapter_store(struct device *dev,
				      struct device_attribute *attr,
				      const char *buf, size_t count)
{
	int ret;
	unsigned long apid;
887
	struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev);
888

889 890
	mutex_lock(&matrix_dev->lock);

891 892
	/* If the KVM guest is running, disallow unassignment of adapter */
	if (matrix_mdev->kvm) {
893 894 895
		ret = -EBUSY;
		goto done;
	}
896

897 898
	ret = kstrtoul(buf, 0, &apid);
	if (ret)
899
		goto done;
900

901 902 903 904
	if (apid > matrix_mdev->matrix.apm_max) {
		ret = -ENODEV;
		goto done;
	}
905 906

	clear_bit_inv((unsigned long)apid, matrix_mdev->matrix.apm);
907
	vfio_ap_mdev_unlink_adapter(matrix_mdev, apid);
908 909
	ret = count;
done:
910
	mutex_unlock(&matrix_dev->lock);
911
	return ret;
912
}
913
static DEVICE_ATTR_WO(unassign_adapter);
914

915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
static int
vfio_ap_mdev_verify_queues_reserved_for_apqi(struct ap_matrix_mdev *matrix_mdev,
					     unsigned long apqi)
{
	int ret;
	unsigned long apid;
	unsigned long nbits = matrix_mdev->matrix.apm_max + 1;

	if (find_first_bit_inv(matrix_mdev->matrix.apm, nbits) >= nbits)
		return vfio_ap_verify_queue_reserved(NULL, &apqi);

	for_each_set_bit_inv(apid, matrix_mdev->matrix.apm, nbits) {
		ret = vfio_ap_verify_queue_reserved(&apid, &apqi);
		if (ret)
			return ret;
	}

	return 0;
}

935 936 937 938 939 940 941 942 943 944
static void vfio_ap_mdev_link_domain(struct ap_matrix_mdev *matrix_mdev,
				     unsigned long apqi)
{
	unsigned long apid;

	for_each_set_bit_inv(apid, matrix_mdev->matrix.apm, AP_DEVICES)
		vfio_ap_mdev_link_apqn(matrix_mdev,
				       AP_MKQID(apid, apqi));
}

945
/**
946 947 948
 * assign_domain_store - parses the APQI from @buf and sets the
 * corresponding bit in the mediated matrix device's AQM
 *
949 950 951 952 953 954
 * @dev:	the matrix device
 * @attr:	the mediated matrix device's assign_domain attribute
 * @buf:	a buffer containing the AP queue index (APQI) of the domain to
 *		be assigned
 * @count:	the number of bytes in @buf
 *
955
 * Return: the number of bytes processed if the APQI is valid; otherwise returns
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
 * one of the following errors:
 *
 *	1. -EINVAL
 *	   The APQI is not a valid number
 *
 *	2. -ENODEV
 *	   The APQI exceeds the maximum value configured for the system
 *
 *	3. -EADDRNOTAVAIL
 *	   An APQN derived from the cross product of the APQI being assigned
 *	   and the APIDs previously assigned is not bound to the vfio_ap device
 *	   driver; or, if no APIDs have yet been assigned, the APQI is not
 *	   contained in an APQN bound to the vfio_ap device driver.
 *
 *	4. -EADDRINUSE
 *	   An APQN derived from the cross product of the APQI being assigned
 *	   and the APIDs previously assigned is being used by another mediated
 *	   matrix device
 */
static ssize_t assign_domain_store(struct device *dev,
				   struct device_attribute *attr,
				   const char *buf, size_t count)
{
	int ret;
	unsigned long apqi;
981
	struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev);
982 983
	unsigned long max_apqi = matrix_mdev->matrix.aqm_max;

984 985
	mutex_lock(&matrix_dev->lock);

986 987
	/* If the KVM guest is running, disallow assignment of domain */
	if (matrix_mdev->kvm) {
988 989 990
		ret = -EBUSY;
		goto done;
	}
991

992 993
	ret = kstrtoul(buf, 0, &apqi);
	if (ret)
994 995 996 997 998
		goto done;
	if (apqi > max_apqi) {
		ret = -ENODEV;
		goto done;
	}
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009

	ret = vfio_ap_mdev_verify_queues_reserved_for_apqi(matrix_mdev, apqi);
	if (ret)
		goto done;

	set_bit_inv(apqi, matrix_mdev->matrix.aqm);

	ret = vfio_ap_mdev_verify_no_sharing(matrix_mdev);
	if (ret)
		goto share_err;

1010
	vfio_ap_mdev_link_domain(matrix_mdev, apqi);
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
	ret = count;
	goto done;

share_err:
	clear_bit_inv(apqi, matrix_mdev->matrix.aqm);
done:
	mutex_unlock(&matrix_dev->lock);

	return ret;
}
1021
static DEVICE_ATTR_WO(assign_domain);
1022

1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
static void vfio_ap_mdev_unlink_domain(struct ap_matrix_mdev *matrix_mdev,
				       unsigned long apqi)
{
	unsigned long apid;
	struct vfio_ap_queue *q;

	for_each_set_bit_inv(apid, matrix_mdev->matrix.apm, AP_DEVICES) {
		q = vfio_ap_mdev_get_queue(matrix_mdev, AP_MKQID(apid, apqi));

		if (q)
			vfio_ap_mdev_unlink_queue(q);
	}
}
1036 1037

/**
1038 1039
 * unassign_domain_store - parses the APQI from @buf and clears the
 * corresponding bit in the mediated matrix device's AQM
1040 1041 1042 1043 1044 1045 1046
 *
 * @dev:	the matrix device
 * @attr:	the mediated matrix device's unassign_domain attribute
 * @buf:	a buffer containing the AP queue index (APQI) of the domain to
 *		be unassigned
 * @count:	the number of bytes in @buf
 *
1047
 * Return: the number of bytes processed if the APQI is valid; otherwise,
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
 * returns one of the following errors:
 *	-EINVAL if the APQI is not a number
 *	-ENODEV if the APQI exceeds the maximum value configured for the system
 */
static ssize_t unassign_domain_store(struct device *dev,
				     struct device_attribute *attr,
				     const char *buf, size_t count)
{
	int ret;
	unsigned long apqi;
1058
	struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev);
1059

1060 1061
	mutex_lock(&matrix_dev->lock);

1062 1063
	/* If the KVM guest is running, disallow unassignment of domain */
	if (matrix_mdev->kvm) {
1064 1065 1066
		ret = -EBUSY;
		goto done;
	}
1067

1068 1069
	ret = kstrtoul(buf, 0, &apqi);
	if (ret)
1070
		goto done;
1071

1072 1073 1074 1075
	if (apqi > matrix_mdev->matrix.aqm_max) {
		ret = -ENODEV;
		goto done;
	}
1076 1077

	clear_bit_inv((unsigned long)apqi, matrix_mdev->matrix.aqm);
1078
	vfio_ap_mdev_unlink_domain(matrix_mdev, apqi);
1079
	ret = count;
1080

1081 1082 1083
done:
	mutex_unlock(&matrix_dev->lock);
	return ret;
1084
}
1085
static DEVICE_ATTR_WO(unassign_domain);
1086

1087
/**
1088 1089 1090
 * assign_control_domain_store - parses the domain ID from @buf and sets
 * the corresponding bit in the mediated matrix device's ADM
 *
1091 1092 1093 1094 1095
 * @dev:	the matrix device
 * @attr:	the mediated matrix device's assign_control_domain attribute
 * @buf:	a buffer containing the domain ID to be assigned
 * @count:	the number of bytes in @buf
 *
1096
 * Return: the number of bytes processed if the domain ID is valid; otherwise,
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
 * returns one of the following errors:
 *	-EINVAL if the ID is not a number
 *	-ENODEV if the ID exceeds the maximum value configured for the system
 */
static ssize_t assign_control_domain_store(struct device *dev,
					   struct device_attribute *attr,
					   const char *buf, size_t count)
{
	int ret;
	unsigned long id;
1107
	struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev);
1108

1109 1110
	mutex_lock(&matrix_dev->lock);

1111 1112
	/* If the KVM guest is running, disallow assignment of control domain */
	if (matrix_mdev->kvm) {
1113 1114 1115
		ret = -EBUSY;
		goto done;
	}
1116

1117 1118
	ret = kstrtoul(buf, 0, &id);
	if (ret)
1119
		goto done;
1120

1121 1122 1123 1124
	if (id > matrix_mdev->matrix.adm_max) {
		ret = -ENODEV;
		goto done;
	}
1125 1126 1127 1128 1129 1130 1131

	/* Set the bit in the ADM (bitmask) corresponding to the AP control
	 * domain number (id). The bits in the mask, from most significant to
	 * least significant, correspond to IDs 0 up to the one less than the
	 * number of control domains that can be assigned.
	 */
	set_bit_inv(id, matrix_mdev->matrix.adm);
1132 1133
	ret = count;
done:
1134
	mutex_unlock(&matrix_dev->lock);
1135
	return ret;
1136
}
1137
static DEVICE_ATTR_WO(assign_control_domain);
1138 1139

/**
1140 1141
 * unassign_control_domain_store - parses the domain ID from @buf and
 * clears the corresponding bit in the mediated matrix device's ADM
1142 1143 1144 1145 1146 1147
 *
 * @dev:	the matrix device
 * @attr:	the mediated matrix device's unassign_control_domain attribute
 * @buf:	a buffer containing the domain ID to be unassigned
 * @count:	the number of bytes in @buf
 *
1148
 * Return: the number of bytes processed if the domain ID is valid; otherwise,
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
 * returns one of the following errors:
 *	-EINVAL if the ID is not a number
 *	-ENODEV if the ID exceeds the maximum value configured for the system
 */
static ssize_t unassign_control_domain_store(struct device *dev,
					     struct device_attribute *attr,
					     const char *buf, size_t count)
{
	int ret;
	unsigned long domid;
1159
	struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev);
1160 1161
	unsigned long max_domid =  matrix_mdev->matrix.adm_max;

1162 1163
	mutex_lock(&matrix_dev->lock);

1164 1165
	/* If a KVM guest is running, disallow unassignment of control domain */
	if (matrix_mdev->kvm) {
1166 1167 1168
		ret = -EBUSY;
		goto done;
	}
1169

1170 1171
	ret = kstrtoul(buf, 0, &domid);
	if (ret)
1172 1173 1174 1175 1176
		goto done;
	if (domid > max_domid) {
		ret = -ENODEV;
		goto done;
	}
1177 1178

	clear_bit_inv(domid, matrix_mdev->matrix.adm);
1179 1180
	ret = count;
done:
1181
	mutex_unlock(&matrix_dev->lock);
1182
	return ret;
1183
}
1184
static DEVICE_ATTR_WO(unassign_control_domain);
1185 1186 1187 1188 1189 1190 1191 1192 1193

static ssize_t control_domains_show(struct device *dev,
				    struct device_attribute *dev_attr,
				    char *buf)
{
	unsigned long id;
	int nchars = 0;
	int n;
	char *bufpos = buf;
1194
	struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev);
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
	unsigned long max_domid = matrix_mdev->matrix.adm_max;

	mutex_lock(&matrix_dev->lock);
	for_each_set_bit_inv(id, matrix_mdev->matrix.adm, max_domid + 1) {
		n = sprintf(bufpos, "%04lx\n", id);
		bufpos += n;
		nchars += n;
	}
	mutex_unlock(&matrix_dev->lock);

	return nchars;
}
1207
static DEVICE_ATTR_RO(control_domains);
1208

1209 1210 1211
static ssize_t matrix_show(struct device *dev, struct device_attribute *attr,
			   char *buf)
{
1212
	struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev);
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
	char *bufpos = buf;
	unsigned long apid;
	unsigned long apqi;
	unsigned long apid1;
	unsigned long apqi1;
	unsigned long napm_bits = matrix_mdev->matrix.apm_max + 1;
	unsigned long naqm_bits = matrix_mdev->matrix.aqm_max + 1;
	int nchars = 0;
	int n;

	apid1 = find_first_bit_inv(matrix_mdev->matrix.apm, napm_bits);
	apqi1 = find_first_bit_inv(matrix_mdev->matrix.aqm, naqm_bits);

	mutex_lock(&matrix_dev->lock);

	if ((apid1 < napm_bits) && (apqi1 < naqm_bits)) {
		for_each_set_bit_inv(apid, matrix_mdev->matrix.apm, napm_bits) {
			for_each_set_bit_inv(apqi, matrix_mdev->matrix.aqm,
					     naqm_bits) {
				n = sprintf(bufpos, "%02lx.%04lx\n", apid,
					    apqi);
				bufpos += n;
				nchars += n;
			}
		}
	} else if (apid1 < napm_bits) {
		for_each_set_bit_inv(apid, matrix_mdev->matrix.apm, napm_bits) {
			n = sprintf(bufpos, "%02lx.\n", apid);
			bufpos += n;
			nchars += n;
		}
	} else if (apqi1 < naqm_bits) {
		for_each_set_bit_inv(apqi, matrix_mdev->matrix.aqm, naqm_bits) {
			n = sprintf(bufpos, ".%04lx\n", apqi);
			bufpos += n;
			nchars += n;
		}
	}

	mutex_unlock(&matrix_dev->lock);

	return nchars;
}
1256
static DEVICE_ATTR_RO(matrix);
1257

1258 1259 1260
static struct attribute *vfio_ap_mdev_attrs[] = {
	&dev_attr_assign_adapter.attr,
	&dev_attr_unassign_adapter.attr,
1261 1262
	&dev_attr_assign_domain.attr,
	&dev_attr_unassign_domain.attr,
1263 1264 1265
	&dev_attr_assign_control_domain.attr,
	&dev_attr_unassign_control_domain.attr,
	&dev_attr_control_domains.attr,
1266
	&dev_attr_matrix.attr,
1267
	NULL,
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
};

static struct attribute_group vfio_ap_mdev_attr_group = {
	.attrs = vfio_ap_mdev_attrs
};

static const struct attribute_group *vfio_ap_mdev_attr_groups[] = {
	&vfio_ap_mdev_attr_group,
	NULL
};

1279
/**
1280 1281
 * vfio_ap_mdev_set_kvm - sets all data for @matrix_mdev that are needed
 * to manage AP resources for the guest whose state is represented by @kvm
1282 1283 1284 1285
 *
 * @matrix_mdev: a mediated matrix device
 * @kvm: reference to KVM instance
 *
1286
 * Return: 0 if no other mediated matrix device has a reference to @kvm;
1287 1288 1289 1290 1291 1292 1293
 * otherwise, returns an -EPERM.
 */
static int vfio_ap_mdev_set_kvm(struct ap_matrix_mdev *matrix_mdev,
				struct kvm *kvm)
{
	struct ap_matrix_mdev *m;

1294
	if (kvm->arch.crypto.crycbd) {
1295 1296 1297 1298 1299 1300 1301
		down_write(&kvm->arch.crypto.pqap_hook_rwsem);
		kvm->arch.crypto.pqap_hook = &matrix_mdev->pqap_hook;
		up_write(&kvm->arch.crypto.pqap_hook_rwsem);

		mutex_lock(&kvm->lock);
		mutex_lock(&matrix_dev->lock);

1302
		list_for_each_entry(m, &matrix_dev->mdev_list, node) {
1303 1304 1305
			if (m != matrix_mdev && m->kvm == kvm) {
				mutex_unlock(&kvm->lock);
				mutex_unlock(&matrix_dev->lock);
1306
				return -EPERM;
1307
			}
1308
		}
1309

1310
		kvm_get_kvm(kvm);
1311
		matrix_mdev->kvm = kvm;
1312 1313 1314 1315 1316
		memcpy(&matrix_mdev->shadow_apcb, &matrix_mdev->matrix,
		       sizeof(struct ap_matrix));
		kvm_arch_crypto_set_masks(kvm, matrix_mdev->shadow_apcb.apm,
					  matrix_mdev->shadow_apcb.aqm,
					  matrix_mdev->shadow_apcb.adm);
1317

1318 1319
		mutex_unlock(&kvm->lock);
		mutex_unlock(&matrix_dev->lock);
1320
	}
1321 1322 1323 1324

	return 0;
}

1325 1326
/**
 * vfio_ap_mdev_iommu_notifier - IOMMU notifier callback
1327 1328 1329 1330 1331 1332 1333 1334
 *
 * @nb: The notifier block
 * @action: Action to be taken
 * @data: data associated with the request
 *
 * For an UNMAP request, unpin the guest IOVA (the NIB guest address we
 * pinned before). Other requests are ignored.
 *
1335
 * Return: for an UNMAP request, NOFITY_OK; otherwise NOTIFY_DONE.
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
 */
static int vfio_ap_mdev_iommu_notifier(struct notifier_block *nb,
				       unsigned long action, void *data)
{
	struct ap_matrix_mdev *matrix_mdev;

	matrix_mdev = container_of(nb, struct ap_matrix_mdev, iommu_notifier);

	if (action == VFIO_IOMMU_NOTIFY_DMA_UNMAP) {
		struct vfio_iommu_type1_dma_unmap *unmap = data;
		unsigned long g_pfn = unmap->iova >> PAGE_SHIFT;

1348
		vfio_unpin_pages(&matrix_mdev->vdev, &g_pfn, 1);
1349 1350 1351 1352 1353 1354
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1355
/**
1356 1357
 * vfio_ap_mdev_unset_kvm - performs clean-up of resources no longer needed
 * by @matrix_mdev.
1358 1359 1360
 *
 * @matrix_mdev: a matrix mediated device
 */
1361
static void vfio_ap_mdev_unset_kvm(struct ap_matrix_mdev *matrix_mdev)
1362
{
1363 1364
	struct kvm *kvm = matrix_mdev->kvm;

1365 1366 1367 1368
	if (kvm && kvm->arch.crypto.crycbd) {
		down_write(&kvm->arch.crypto.pqap_hook_rwsem);
		kvm->arch.crypto.pqap_hook = NULL;
		up_write(&kvm->arch.crypto.pqap_hook_rwsem);
1369

1370
		mutex_lock(&kvm->lock);
1371
		mutex_lock(&matrix_dev->lock);
1372 1373

		kvm_arch_crypto_clear_masks(kvm);
1374
		vfio_ap_mdev_reset_queues(matrix_mdev);
1375
		kvm_put_kvm(kvm);
1376
		matrix_mdev->kvm = NULL;
1377 1378 1379

		mutex_unlock(&kvm->lock);
		mutex_unlock(&matrix_dev->lock);
1380
	}
1381 1382
}

1383
static struct vfio_ap_queue *vfio_ap_find_queue(int apqn)
1384
{
1385
	struct ap_queue *queue;
1386
	struct vfio_ap_queue *q = NULL;
1387

1388 1389 1390 1391 1392 1393 1394 1395
	queue = ap_get_qdev(apqn);
	if (!queue)
		return NULL;

	if (queue->ap_dev.device.driver == &matrix_dev->vfio_ap_drv->driver)
		q = dev_get_drvdata(&queue->ap_dev.device);

	put_device(&queue->ap_dev.device);
1396 1397

	return q;
1398 1399
}

1400 1401
static int vfio_ap_mdev_reset_queue(struct vfio_ap_queue *q,
				    unsigned int retry)
1402 1403
{
	struct ap_queue_status status;
1404
	int ret;
1405
	int retry2 = 2;
1406

1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
	if (!q)
		return 0;

retry_zapq:
	status = ap_zapq(q->apqn);
	switch (status.response_code) {
	case AP_RESPONSE_NORMAL:
		ret = 0;
		break;
	case AP_RESPONSE_RESET_IN_PROGRESS:
		if (retry--) {
1418
			msleep(20);
1419
			goto retry_zapq;
1420
		}
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
		ret = -EBUSY;
		break;
	case AP_RESPONSE_Q_NOT_AVAIL:
	case AP_RESPONSE_DECONFIGURED:
	case AP_RESPONSE_CHECKSTOPPED:
		WARN_ON_ONCE(status.irq_enabled);
		ret = -EBUSY;
		goto free_resources;
	default:
		/* things are really broken, give up */
		WARN(true, "PQAP/ZAPQ completed with invalid rc (%x)\n",
		     status.response_code);
		return -EIO;
	}

	/* wait for the reset to take effect */
	while (retry2--) {
		if (status.queue_empty && !status.irq_enabled)
			break;
		msleep(20);
		status = ap_tapq(q->apqn, NULL);
	}
	WARN_ON_ONCE(retry2 <= 0);
1444

1445 1446 1447 1448
free_resources:
	vfio_ap_free_aqic_resources(q);

	return ret;
1449 1450
}

1451
static int vfio_ap_mdev_reset_queues(struct ap_matrix_mdev *matrix_mdev)
1452
{
1453
	int ret, loop_cursor, rc = 0;
1454
	struct vfio_ap_queue *q;
1455

1456 1457 1458 1459 1460 1461 1462 1463 1464
	hash_for_each(matrix_mdev->qtable.queues, loop_cursor, q, mdev_qnode) {
		ret = vfio_ap_mdev_reset_queue(q, 1);
		/*
		 * Regardless whether a queue turns out to be busy, or
		 * is not operational, we need to continue resetting
		 * the remaining queues.
		 */
		if (ret)
			rc = ret;
1465 1466 1467 1468 1469
	}

	return rc;
}

1470
static int vfio_ap_mdev_open_device(struct vfio_device *vdev)
1471
{
1472 1473
	struct ap_matrix_mdev *matrix_mdev =
		container_of(vdev, struct ap_matrix_mdev, vdev);
1474 1475 1476
	unsigned long events;
	int ret;

1477 1478
	if (!vdev->kvm)
		return -EINVAL;
1479

1480
	ret = vfio_ap_mdev_set_kvm(matrix_mdev, vdev->kvm);
1481
	if (ret)
1482 1483
		return ret;

1484 1485
	matrix_mdev->iommu_notifier.notifier_call = vfio_ap_mdev_iommu_notifier;
	events = VFIO_IOMMU_NOTIFY_DMA_UNMAP;
1486 1487
	ret = vfio_register_notifier(vdev, VFIO_IOMMU_NOTIFY, &events,
				     &matrix_mdev->iommu_notifier);
1488
	if (ret)
1489
		goto err_kvm;
1490
	return 0;
1491

1492 1493
err_kvm:
	vfio_ap_mdev_unset_kvm(matrix_mdev);
1494
	return ret;
1495 1496
}

1497
static void vfio_ap_mdev_close_device(struct vfio_device *vdev)
1498
{
1499 1500
	struct ap_matrix_mdev *matrix_mdev =
		container_of(vdev, struct ap_matrix_mdev, vdev);
1501

1502
	vfio_unregister_notifier(vdev, VFIO_IOMMU_NOTIFY,
1503
				 &matrix_mdev->iommu_notifier);
1504
	vfio_ap_mdev_unset_kvm(matrix_mdev);
1505 1506
}

1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
static int vfio_ap_mdev_get_device_info(unsigned long arg)
{
	unsigned long minsz;
	struct vfio_device_info info;

	minsz = offsetofend(struct vfio_device_info, num_irqs);

	if (copy_from_user(&info, (void __user *)arg, minsz))
		return -EFAULT;

	if (info.argsz < minsz)
		return -EINVAL;

1520
	info.flags = VFIO_DEVICE_FLAGS_AP | VFIO_DEVICE_FLAGS_RESET;
1521 1522 1523
	info.num_regions = 0;
	info.num_irqs = 0;

1524
	return copy_to_user((void __user *)arg, &info, minsz) ? -EFAULT : 0;
1525 1526
}

1527
static ssize_t vfio_ap_mdev_ioctl(struct vfio_device *vdev,
1528 1529
				    unsigned int cmd, unsigned long arg)
{
1530 1531
	struct ap_matrix_mdev *matrix_mdev =
		container_of(vdev, struct ap_matrix_mdev, vdev);
1532 1533
	int ret;

1534
	mutex_lock(&matrix_dev->lock);
1535 1536 1537 1538
	switch (cmd) {
	case VFIO_DEVICE_GET_INFO:
		ret = vfio_ap_mdev_get_device_info(arg);
		break;
1539
	case VFIO_DEVICE_RESET:
1540
		ret = vfio_ap_mdev_reset_queues(matrix_mdev);
1541
		break;
1542 1543 1544 1545
	default:
		ret = -EOPNOTSUPP;
		break;
	}
1546
	mutex_unlock(&matrix_dev->lock);
1547 1548 1549 1550

	return ret;
}

1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
static struct ap_matrix_mdev *vfio_ap_mdev_for_queue(struct vfio_ap_queue *q)
{
	struct ap_matrix_mdev *matrix_mdev;
	unsigned long apid = AP_QID_CARD(q->apqn);
	unsigned long apqi = AP_QID_QUEUE(q->apqn);

	list_for_each_entry(matrix_mdev, &matrix_dev->mdev_list, node) {
		if (test_bit_inv(apid, matrix_mdev->matrix.apm) &&
		    test_bit_inv(apqi, matrix_mdev->matrix.aqm))
			return matrix_mdev;
	}

	return NULL;
}

static ssize_t status_show(struct device *dev,
			   struct device_attribute *attr,
			   char *buf)
{
	ssize_t nchars = 0;
	struct vfio_ap_queue *q;
	struct ap_matrix_mdev *matrix_mdev;
	struct ap_device *apdev = to_ap_dev(dev);

	mutex_lock(&matrix_dev->lock);
	q = dev_get_drvdata(&apdev->device);
	matrix_mdev = vfio_ap_mdev_for_queue(q);

	if (matrix_mdev) {
		if (matrix_mdev->kvm)
			nchars = scnprintf(buf, PAGE_SIZE, "%s\n",
					   AP_QUEUE_IN_USE);
		else
			nchars = scnprintf(buf, PAGE_SIZE, "%s\n",
					   AP_QUEUE_ASSIGNED);
	} else {
		nchars = scnprintf(buf, PAGE_SIZE, "%s\n",
				   AP_QUEUE_UNASSIGNED);
	}

	mutex_unlock(&matrix_dev->lock);

	return nchars;
}

static DEVICE_ATTR_RO(status);

static struct attribute *vfio_queue_attrs[] = {
	&dev_attr_status.attr,
	NULL,
};

static const struct attribute_group vfio_queue_attr_group = {
	.attrs = vfio_queue_attrs,
};

1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
static const struct vfio_device_ops vfio_ap_matrix_dev_ops = {
	.open_device = vfio_ap_mdev_open_device,
	.close_device = vfio_ap_mdev_close_device,
	.ioctl = vfio_ap_mdev_ioctl,
};

static struct mdev_driver vfio_ap_matrix_driver = {
	.driver = {
		.name = "vfio_ap_mdev",
		.owner = THIS_MODULE,
		.mod_name = KBUILD_MODNAME,
		.dev_groups = vfio_ap_mdev_attr_groups,
	},
	.probe = vfio_ap_mdev_probe,
	.remove = vfio_ap_mdev_remove,
1622
	.supported_type_groups = vfio_ap_mdev_type_groups,
1623 1624 1625 1626
};

int vfio_ap_mdev_register(void)
{
1627 1628
	int ret;

1629 1630
	atomic_set(&matrix_dev->available_instances, MAX_ZDEV_ENTRIES_EXT);

1631 1632 1633 1634
	ret = mdev_register_driver(&vfio_ap_matrix_driver);
	if (ret)
		return ret;

1635
	ret = mdev_register_device(&matrix_dev->device, &vfio_ap_matrix_driver);
1636 1637 1638 1639 1640 1641 1642
	if (ret)
		goto err_driver;
	return 0;

err_driver:
	mdev_unregister_driver(&vfio_ap_matrix_driver);
	return ret;
1643 1644 1645 1646 1647
}

void vfio_ap_mdev_unregister(void)
{
	mdev_unregister_device(&matrix_dev->device);
1648
	mdev_unregister_driver(&vfio_ap_matrix_driver);
1649
}
1650

1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
/*
 * vfio_ap_queue_link_mdev
 *
 * @q: The queue to link with the matrix mdev.
 *
 * Links @q with the matrix mdev to which the queue's APQN is assigned.
 */
static void vfio_ap_queue_link_mdev(struct vfio_ap_queue *q)
{
	unsigned long apid = AP_QID_CARD(q->apqn);
	unsigned long apqi = AP_QID_QUEUE(q->apqn);
	struct ap_matrix_mdev *matrix_mdev;

	list_for_each_entry(matrix_mdev, &matrix_dev->mdev_list, node) {
		if (test_bit_inv(apid, matrix_mdev->matrix.apm) &&
		    test_bit_inv(apqi, matrix_mdev->matrix.aqm)) {
			vfio_ap_mdev_link_queue(matrix_mdev, q);
			break;
		}
	}
}

1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
int vfio_ap_mdev_probe_queue(struct ap_device *apdev)
{
	int ret;
	struct vfio_ap_queue *q;

	ret = sysfs_create_group(&apdev->device.kobj, &vfio_queue_attr_group);
	if (ret)
		return ret;

	q = kzalloc(sizeof(*q), GFP_KERNEL);
	if (!q)
		return -ENOMEM;

	mutex_lock(&matrix_dev->lock);
	q->apqn = to_ap_queue(&apdev->device)->qid;
	q->saved_isc = VFIO_AP_ISC_INVALID;
1689
	vfio_ap_queue_link_mdev(q);
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
	dev_set_drvdata(&apdev->device, q);
	mutex_unlock(&matrix_dev->lock);

	return 0;
}

void vfio_ap_mdev_remove_queue(struct ap_device *apdev)
{
	struct vfio_ap_queue *q;

	mutex_lock(&matrix_dev->lock);
	sysfs_remove_group(&apdev->device.kobj, &vfio_queue_attr_group);
	q = dev_get_drvdata(&apdev->device);
1703 1704 1705 1706

	if (q->matrix_mdev)
		vfio_ap_unlink_queue_fr_mdev(q);

1707 1708 1709 1710 1711
	vfio_ap_mdev_reset_queue(q, 1);
	dev_set_drvdata(&apdev->device, NULL);
	kfree(q);
	mutex_unlock(&matrix_dev->lock);
}