xc5000.c 23.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 *  Driver for Xceive XC5000 "QAM/8VSB single chip tuner"
 *
 *  Copyright (c) 2007 Xceive Corporation
 *  Copyright (c) 2007 Steven Toth <stoth@hauppauge.com>
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <linux/module.h>
#include <linux/moduleparam.h>
25
#include <linux/videodev2.h>
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
#include <linux/delay.h>
#include <linux/dvb/frontend.h>
#include <linux/i2c.h>

#include "dvb_frontend.h"

#include "xc5000.h"
#include "xc5000_priv.h"

static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");

#define dprintk(level,fmt, arg...) if (debug >= level) \
	printk(KERN_INFO "%s: " fmt, "xc5000", ## arg)

#define XC5000_DEFAULT_FIRMWARE "dvb-fe-xc5000-1.1.fw"
43
#define XC5000_DEFAULT_FIRMWARE_SIZE 12332
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

/* Misc Defines */
#define MAX_TV_STANDARD			23
#define XC_MAX_I2C_WRITE_LENGTH		64

/* Signal Types */
#define XC_RF_MODE_AIR			0
#define XC_RF_MODE_CABLE		1

/* Result codes */
#define XC_RESULT_SUCCESS		0
#define XC_RESULT_RESET_FAILURE		1
#define XC_RESULT_I2C_WRITE_FAILURE	2
#define XC_RESULT_I2C_READ_FAILURE	3
#define XC_RESULT_OUT_OF_RANGE		5

60 61 62 63
/* Product id */
#define XC_PRODUCT_ID_FW_NOT_LOADED	0x2000
#define XC_PRODUCT_ID_FW_LOADED 	0x1388

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
/* Registers */
#define XREG_INIT         0x00
#define XREG_VIDEO_MODE   0x01
#define XREG_AUDIO_MODE   0x02
#define XREG_RF_FREQ      0x03
#define XREG_D_CODE       0x04
#define XREG_IF_OUT       0x05
#define XREG_SEEK_MODE    0x07
#define XREG_POWER_DOWN   0x0A
#define XREG_SIGNALSOURCE 0x0D /* 0=Air, 1=Cable */
#define XREG_SMOOTHEDCVBS 0x0E
#define XREG_XTALFREQ     0x0F
#define XREG_FINERFFREQ   0x10
#define XREG_DDIMODE      0x11

#define XREG_ADC_ENV      0x00
#define XREG_QUALITY      0x01
#define XREG_FRAME_LINES  0x02
#define XREG_HSYNC_FREQ   0x03
#define XREG_LOCK         0x04
#define XREG_FREQ_ERROR   0x05
#define XREG_SNR          0x06
#define XREG_VERSION      0x07
#define XREG_PRODUCT_ID   0x08
#define XREG_BUSY         0x09

/*
   Basic firmware description. This will remain with
   the driver for documentation purposes.

   This represents an I2C firmware file encoded as a
   string of unsigned char. Format is as follows:

   char[0  ]=len0_MSB  -> len = len_MSB * 256 + len_LSB
   char[1  ]=len0_LSB  -> length of first write transaction
   char[2  ]=data0 -> first byte to be sent
   char[3  ]=data1
   char[4  ]=data2
   char[   ]=...
   char[M  ]=dataN  -> last byte to be sent
   char[M+1]=len1_MSB  -> len = len_MSB * 256 + len_LSB
   char[M+2]=len1_LSB  -> length of second write transaction
   char[M+3]=data0
   char[M+4]=data1
   ...
   etc.

   The [len] value should be interpreted as follows:

   len= len_MSB _ len_LSB
   len=1111_1111_1111_1111   : End of I2C_SEQUENCE
   len=0000_0000_0000_0000   : Reset command: Do hardware reset
   len=0NNN_NNNN_NNNN_NNNN   : Normal transaction: number of bytes = {1:32767)
   len=1WWW_WWWW_WWWW_WWWW   : Wait command: wait for {1:32767} ms

   For the RESET and WAIT commands, the two following bytes will contain
   immediately the length of the following transaction.

*/
typedef struct {
	char *Name;
125 126
	u16 AudioMode;
	u16 VideoMode;
127 128 129
} XC_TV_STANDARD;

/* Tuner standards */
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
#define MN_NTSC_PAL_BTSC	0
#define MN_NTSC_PAL_A2		1
#define MN_NTSC_PAL_EIAJ	2
#define MN_NTSC_PAL_Mono	3
#define BG_PAL_A2		4
#define BG_PAL_NICAM		5
#define BG_PAL_MONO		6
#define I_PAL_NICAM		7
#define I_PAL_NICAM_MONO	8
#define DK_PAL_A2		9
#define DK_PAL_NICAM		10
#define DK_PAL_MONO		11
#define DK_SECAM_A2DK1		12
#define DK_SECAM_A2LDK3 	13
#define DK_SECAM_A2MONO 	14
#define L_SECAM_NICAM		15
#define LC_SECAM_NICAM		16
#define DTV6			17
#define DTV8			18
#define DTV7_8			19
#define DTV7			20
#define FM_Radio_INPUT2 	21
#define FM_Radio_INPUT1 	22
153

154
static XC_TV_STANDARD XC5000_Standard[MAX_TV_STANDARD] = {
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
	{"M/N-NTSC/PAL-BTSC", 0x0400, 0x8020},
	{"M/N-NTSC/PAL-A2",   0x0600, 0x8020},
	{"M/N-NTSC/PAL-EIAJ", 0x0440, 0x8020},
	{"M/N-NTSC/PAL-Mono", 0x0478, 0x8020},
	{"B/G-PAL-A2",        0x0A00, 0x8049},
	{"B/G-PAL-NICAM",     0x0C04, 0x8049},
	{"B/G-PAL-MONO",      0x0878, 0x8059},
	{"I-PAL-NICAM",       0x1080, 0x8009},
	{"I-PAL-NICAM-MONO",  0x0E78, 0x8009},
	{"D/K-PAL-A2",        0x1600, 0x8009},
	{"D/K-PAL-NICAM",     0x0E80, 0x8009},
	{"D/K-PAL-MONO",      0x1478, 0x8009},
	{"D/K-SECAM-A2 DK1",  0x1200, 0x8009},
	{"D/K-SECAM-A2 L/DK3",0x0E00, 0x8009},
	{"D/K-SECAM-A2 MONO", 0x1478, 0x8009},
	{"L-SECAM-NICAM",     0x8E82, 0x0009},
	{"L'-SECAM-NICAM",    0x8E82, 0x4009},
	{"DTV6",              0x00C0, 0x8002},
	{"DTV8",              0x00C0, 0x800B},
	{"DTV7/8",            0x00C0, 0x801B},
	{"DTV7",              0x00C0, 0x8007},
	{"FM Radio-INPUT2",   0x9802, 0x9002},
	{"FM Radio-INPUT1",   0x0208, 0x9002}
};

static int  xc5000_writeregs(struct xc5000_priv *priv, u8 *buf, u8 len);
static int  xc5000_readregs(struct xc5000_priv *priv, u8 *buf, u8 len);
static void xc5000_TunerReset(struct dvb_frontend *fe);

184
static int xc_send_i2c_data(struct xc5000_priv *priv, u8 *buf, int len)
185
{
186
	return xc5000_writeregs(priv, buf, len)
187 188 189
		? XC_RESULT_I2C_WRITE_FAILURE : XC_RESULT_SUCCESS;
}

190
static int xc_read_i2c_data(struct xc5000_priv *priv, u8 *buf, int len)
191
{
192
	return xc5000_readregs(priv, buf, len)
193 194 195
		? XC_RESULT_I2C_READ_FAILURE : XC_RESULT_SUCCESS;
}

196
static int xc_reset(struct dvb_frontend *fe)
197 198 199 200 201
{
	xc5000_TunerReset(fe);
	return XC_RESULT_SUCCESS;
}

202
static void xc_wait(int wait_ms)
203
{
204
	msleep(wait_ms);
205 206 207 208 209 210 211
}

static void xc5000_TunerReset(struct dvb_frontend *fe)
{
	struct xc5000_priv *priv = fe->tuner_priv;
	int ret;

212
	dprintk(1, "%s()\n", __func__);
213

214
	if (priv->cfg->tuner_callback) {
215
		ret = priv->cfg->tuner_callback(priv->devptr,
216
						XC5000_TUNER_RESET, 0);
217 218 219
		if (ret)
			printk(KERN_ERR "xc5000: reset failed\n");
	} else
220
		printk(KERN_ERR "xc5000: no tuner reset callback function, fatal\n");
221 222
}

223
static int xc_write_reg(struct xc5000_priv *priv, u16 regAddr, u16 i2cData)
224
{
225
	u8 buf[4];
226 227 228 229 230 231 232 233
	int WatchDogTimer = 5;
	int result;

	buf[0] = (regAddr >> 8) & 0xFF;
	buf[1] = regAddr & 0xFF;
	buf[2] = (i2cData >> 8) & 0xFF;
	buf[3] = i2cData & 0xFF;
	result = xc_send_i2c_data(priv, buf, 4);
234
	if (result == XC_RESULT_SUCCESS) {
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
		/* wait for busy flag to clear */
		while ((WatchDogTimer > 0) && (result == XC_RESULT_SUCCESS)) {
			buf[0] = 0;
			buf[1] = XREG_BUSY;

			result = xc_send_i2c_data(priv, buf, 2);
			if (result == XC_RESULT_SUCCESS) {
				result = xc_read_i2c_data(priv, buf, 2);
				if (result == XC_RESULT_SUCCESS) {
					if ((buf[0] == 0) && (buf[1] == 0)) {
						/* busy flag cleared */
					break;
					} else {
						xc_wait(100); /* wait 5 ms */
						WatchDogTimer--;
					}
				}
			}
		}
	}
	if (WatchDogTimer < 0)
		result = XC_RESULT_I2C_WRITE_FAILURE;

	return result;
}

261
static int xc_read_reg(struct xc5000_priv *priv, u16 regAddr, u16 *i2cData)
262
{
263
	u8 buf[2];
264 265 266 267 268
	int result;

	buf[0] = (regAddr >> 8) & 0xFF;
	buf[1] = regAddr & 0xFF;
	result = xc_send_i2c_data(priv, buf, 2);
269
	if (result != XC_RESULT_SUCCESS)
270 271 272
		return result;

	result = xc_read_i2c_data(priv, buf, 2);
273
	if (result != XC_RESULT_SUCCESS)
274 275 276 277 278 279
		return result;

	*i2cData = buf[0] * 256 + buf[1];
	return result;
}

280
static int xc_load_i2c_sequence(struct dvb_frontend *fe, u8 i2c_sequence[])
281 282 283 284 285
{
	struct xc5000_priv *priv = fe->tuner_priv;

	int i, nbytes_to_send, result;
	unsigned int len, pos, index;
286
	u8 buf[XC_MAX_I2C_WRITE_LENGTH];
287 288 289 290

	index=0;
	while ((i2c_sequence[index]!=0xFF) || (i2c_sequence[index+1]!=0xFF)) {
		len = i2c_sequence[index]* 256 + i2c_sequence[index+1];
291
		if (len == 0x0000) {
292 293 294
			/* RESET command */
			result = xc_reset(fe);
			index += 2;
295
			if (result != XC_RESULT_SUCCESS)
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
				return result;
		} else if (len & 0x8000) {
			/* WAIT command */
			xc_wait(len & 0x7FFF);
			index += 2;
		} else {
			/* Send i2c data whilst ensuring individual transactions
			 * do not exceed XC_MAX_I2C_WRITE_LENGTH bytes.
			 */
			index += 2;
			buf[0] = i2c_sequence[index];
			buf[1] = i2c_sequence[index + 1];
			pos = 2;
			while (pos < len) {
				if ((len - pos) > XC_MAX_I2C_WRITE_LENGTH - 2) {
					nbytes_to_send = XC_MAX_I2C_WRITE_LENGTH;
				} else {
					nbytes_to_send = (len - pos + 2);
				}
				for (i=2; i<nbytes_to_send; i++) {
					buf[i] = i2c_sequence[index + pos + i - 2];
				}
				result = xc_send_i2c_data(priv, buf, nbytes_to_send);

320
				if (result != XC_RESULT_SUCCESS)
321 322 323 324 325 326 327 328 329 330
					return result;

				pos += nbytes_to_send - 2;
			}
			index += len;
		}
	}
	return XC_RESULT_SUCCESS;
}

331
static int xc_initialize(struct xc5000_priv *priv)
332
{
333
	dprintk(1, "%s()\n", __func__);
334 335 336
	return xc_write_reg(priv, XREG_INIT, 0);
}

337 338
static int xc_SetTVStandard(struct xc5000_priv *priv,
	u16 VideoMode, u16 AudioMode)
339 340
{
	int ret;
341
	dprintk(1, "%s(0x%04x,0x%04x)\n", __func__, VideoMode, AudioMode);
342
	dprintk(1, "%s() Standard = %s\n",
343
		__func__,
344 345 346 347 348 349 350 351 352
		XC5000_Standard[priv->video_standard].Name);

	ret = xc_write_reg(priv, XREG_VIDEO_MODE, VideoMode);
	if (ret == XC_RESULT_SUCCESS)
		ret = xc_write_reg(priv, XREG_AUDIO_MODE, AudioMode);

	return ret;
}

353
static int xc_shutdown(struct xc5000_priv *priv)
354
{
355 356 357 358 359
	return 0;
	/* Fixme: cannot bring tuner back alive once shutdown
	 *        without reloading the driver modules.
	 *    return xc_write_reg(priv, XREG_POWER_DOWN, 0);
	 */
360 361
}

362
static int xc_SetSignalSource(struct xc5000_priv *priv, u16 rf_mode)
363
{
364
	dprintk(1, "%s(%d) Source = %s\n", __func__, rf_mode,
365 366
		rf_mode == XC_RF_MODE_AIR ? "ANTENNA" : "CABLE");

367
	if ((rf_mode != XC_RF_MODE_AIR) && (rf_mode != XC_RF_MODE_CABLE))
368 369 370 371
	{
		rf_mode = XC_RF_MODE_CABLE;
		printk(KERN_ERR
			"%s(), Invalid mode, defaulting to CABLE",
372
			__func__);
373 374 375 376
	}
	return xc_write_reg(priv, XREG_SIGNALSOURCE, rf_mode);
}

377
static const struct dvb_tuner_ops xc5000_tuner_ops;
378

379 380 381
static int xc_set_RF_frequency(struct xc5000_priv *priv, u32 freq_hz)
{
	u16 freq_code;
382

383
	dprintk(1, "%s(%u)\n", __func__, freq_hz);
384

385 386
	if ((freq_hz > xc5000_tuner_ops.info.frequency_max) ||
		(freq_hz < xc5000_tuner_ops.info.frequency_min))
387 388
		return XC_RESULT_OUT_OF_RANGE;

389 390 391
	freq_code = (u16)(freq_hz / 15625);

	return xc_write_reg(priv, XREG_RF_FREQ, freq_code);
392 393 394
}


395 396 397 398
static int xc_set_IF_frequency(struct xc5000_priv *priv, u32 freq_khz)
{
	u32 freq_code = (freq_khz * 1024)/1000;
	dprintk(1, "%s(freq_khz = %d) freq_code = 0x%x\n",
399
		__func__, freq_khz, freq_code);
400

401
	return xc_write_reg(priv, XREG_IF_OUT, freq_code);
402 403 404
}


405
static int xc_get_ADC_Envelope(struct xc5000_priv *priv, u16 *adc_envelope)
406 407 408 409
{
	return xc_read_reg(priv, XREG_ADC_ENV, adc_envelope);
}

410
static int xc_get_frequency_error(struct xc5000_priv *priv, u32 *freq_error_hz)
411 412
{
	int result;
413
	u16 regData;
414 415 416 417 418 419 420
	u32 tmp;

	result = xc_read_reg(priv, XREG_FREQ_ERROR, &regData);
	if (result)
		return result;

	tmp = (u32)regData;
421
	(*freq_error_hz) = (tmp * 15625) / 1000;
422 423 424
	return result;
}

425
static int xc_get_lock_status(struct xc5000_priv *priv, u16 *lock_status)
426 427 428 429
{
	return xc_read_reg(priv, XREG_LOCK, lock_status);
}

430 431 432
static int xc_get_version(struct xc5000_priv *priv,
	u8 *hw_majorversion, u8 *hw_minorversion,
	u8 *fw_majorversion, u8 *fw_minorversion)
433
{
434
	u16 data;
435 436 437 438 439 440
	int result;

	result = xc_read_reg(priv, XREG_VERSION, &data);
	if (result)
		return result;

441 442 443 444
	(*hw_majorversion) = (data >> 12) & 0x0F;
	(*hw_minorversion) = (data >>  8) & 0x0F;
	(*fw_majorversion) = (data >>  4) & 0x0F;
	(*fw_minorversion) = data & 0x0F;
445 446 447 448

	return 0;
}

449
static int xc_get_hsync_freq(struct xc5000_priv *priv, u32 *hsync_freq_hz)
450
{
451
	u16 regData;
452 453 454 455 456 457 458 459 460 461
	int result;

	result = xc_read_reg(priv, XREG_HSYNC_FREQ, &regData);
	if (result)
		return result;

	(*hsync_freq_hz) = ((regData & 0x0fff) * 763)/100;
	return result;
}

462
static int xc_get_frame_lines(struct xc5000_priv *priv, u16 *frame_lines)
463 464 465 466
{
	return xc_read_reg(priv, XREG_FRAME_LINES, frame_lines);
}

467
static int xc_get_quality(struct xc5000_priv *priv, u16 *quality)
468 469 470 471
{
	return xc_read_reg(priv, XREG_QUALITY, quality);
}

472
static u16 WaitForLock(struct xc5000_priv *priv)
473
{
474
	u16 lockState = 0;
475
	int watchDogCount = 40;
476 477

	while ((lockState == 0) && (watchDogCount > 0)) {
478
		xc_get_lock_status(priv, &lockState);
479
		if (lockState != 1) {
480 481 482 483 484 485 486
			xc_wait(5);
			watchDogCount--;
		}
	}
	return lockState;
}

487
static int xc_tune_channel(struct xc5000_priv *priv, u32 freq_hz)
488 489 490
{
	int found = 0;

491
	dprintk(1, "%s(%u)\n", __func__, freq_hz);
492

493
	if (xc_set_RF_frequency(priv, freq_hz) != XC_RESULT_SUCCESS)
494 495
		return 0;

496
	if (WaitForLock(priv) == 1)
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
		found = 1;

	return found;
}

static int xc5000_readreg(struct xc5000_priv *priv, u16 reg, u16 *val)
{
	u8 buf[2] = { reg >> 8, reg & 0xff };
	u8 bval[2] = { 0, 0 };
	struct i2c_msg msg[2] = {
		{ .addr = priv->cfg->i2c_address,
			.flags = 0, .buf = &buf[0], .len = 2 },
		{ .addr = priv->cfg->i2c_address,
			.flags = I2C_M_RD, .buf = &bval[0], .len = 2 },
	};

	if (i2c_transfer(priv->i2c, msg, 2) != 2) {
514
		printk(KERN_WARNING "xc5000: I2C read failed\n");
515 516 517 518 519 520 521 522 523 524 525 526 527
		return -EREMOTEIO;
	}

	*val = (bval[0] << 8) | bval[1];
	return 0;
}

static int xc5000_writeregs(struct xc5000_priv *priv, u8 *buf, u8 len)
{
	struct i2c_msg msg = { .addr = priv->cfg->i2c_address,
		.flags = 0, .buf = buf, .len = len };

	if (i2c_transfer(priv->i2c, &msg, 1) != 1) {
528
		printk(KERN_ERR "xc5000: I2C write failed (len=%i)\n",
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
			(int)len);
		return -EREMOTEIO;
	}
	return 0;
}

static int xc5000_readregs(struct xc5000_priv *priv, u8 *buf, u8 len)
{
	struct i2c_msg msg = { .addr = priv->cfg->i2c_address,
		.flags = I2C_M_RD, .buf = buf, .len = len };

	if (i2c_transfer(priv->i2c, &msg, 1) != 1) {
		printk(KERN_ERR "xc5000 I2C read failed (len=%i)\n",(int)len);
		return -EREMOTEIO;
	}
	return 0;
}

static int xc5000_fwupload(struct dvb_frontend* fe)
{
	struct xc5000_priv *priv = fe->tuner_priv;
	const struct firmware *fw;
	int ret;

553 554 555 556
	/* request the firmware, this will block and timeout */
	printk(KERN_INFO "xc5000: waiting for firmware upload (%s)...\n",
		XC5000_DEFAULT_FIRMWARE);

557
	ret = request_firmware(&fw, XC5000_DEFAULT_FIRMWARE, &priv->i2c->dev);
558 559 560
	if (ret) {
		printk(KERN_ERR "xc5000: Upload failed. (file not found?)\n");
		ret = XC_RESULT_RESET_FAILURE;
561
		goto out;
562
	} else {
563 564
		printk(KERN_INFO "xc5000: firmware read %Zu bytes.\n",
		       fw->size);
565 566 567
		ret = XC_RESULT_SUCCESS;
	}

568
	if (fw->size != XC5000_DEFAULT_FIRMWARE_SIZE) {
569 570 571 572 573 574 575
		printk(KERN_ERR "xc5000: firmware incorrect size\n");
		ret = XC_RESULT_RESET_FAILURE;
	} else {
		printk(KERN_INFO "xc5000: firmware upload\n");
		ret = xc_load_i2c_sequence(fe,  fw->data );
	}

576
out:
577 578 579 580
	release_firmware(fw);
	return ret;
}

581
static void xc_debug_dump(struct xc5000_priv *priv)
582
{
583 584 585 586 587 588 589 590
	u16 adc_envelope;
	u32 freq_error_hz = 0;
	u16 lock_status;
	u32 hsync_freq_hz = 0;
	u16 frame_lines;
	u16 quality;
	u8 hw_majorversion = 0, hw_minorversion = 0;
	u8 fw_majorversion = 0, fw_minorversion = 0;
591 592 593 594 595

	/* Wait for stats to stabilize.
	 * Frame Lines needs two frame times after initial lock
	 * before it is valid.
	 */
596
	xc_wait(100);
597

598 599
	xc_get_ADC_Envelope(priv,  &adc_envelope);
	dprintk(1, "*** ADC envelope (0-1023) = %d\n", adc_envelope);
600

601 602
	xc_get_frequency_error(priv, &freq_error_hz);
	dprintk(1, "*** Frequency error = %d Hz\n", freq_error_hz);
603

604 605
	xc_get_lock_status(priv,  &lock_status);
	dprintk(1, "*** Lock status (0-Wait, 1-Locked, 2-No-signal) = %d\n",
606 607 608
		lock_status);

	xc_get_version(priv,  &hw_majorversion, &hw_minorversion,
609
		&fw_majorversion, &fw_minorversion);
610 611 612 613
	dprintk(1, "*** HW: V%02x.%02x, FW: V%02x.%02x\n",
		hw_majorversion, hw_minorversion,
		fw_majorversion, fw_minorversion);

614 615
	xc_get_hsync_freq(priv,  &hsync_freq_hz);
	dprintk(1, "*** Horizontal sync frequency = %d Hz\n", hsync_freq_hz);
616

617 618
	xc_get_frame_lines(priv,  &frame_lines);
	dprintk(1, "*** Frame lines = %d\n", frame_lines);
619

620 621
	xc_get_quality(priv,  &quality);
	dprintk(1, "*** Quality (0:<8dB, 7:>56dB) = %d\n", quality);
622 623 624 625 626 627
}

static int xc5000_set_params(struct dvb_frontend *fe,
	struct dvb_frontend_parameters *params)
{
	struct xc5000_priv *priv = fe->tuner_priv;
628
	int ret;
629

630
	dprintk(1, "%s() frequency=%d (Hz)\n", __func__, params->frequency);
631 632 633 634

	switch(params->u.vsb.modulation) {
	case VSB_8:
	case VSB_16:
635
		dprintk(1, "%s() VSB modulation\n", __func__);
636
		priv->rf_mode = XC_RF_MODE_AIR;
637 638 639
		priv->freq_hz = params->frequency - 1750000;
		priv->bandwidth = BANDWIDTH_6_MHZ;
		priv->video_standard = DTV6;
640 641 642 643
		break;
	case QAM_64:
	case QAM_256:
	case QAM_AUTO:
644
		dprintk(1, "%s() QAM modulation\n", __func__);
645
		priv->rf_mode = XC_RF_MODE_CABLE;
646 647 648
		priv->freq_hz = params->frequency - 1750000;
		priv->bandwidth = BANDWIDTH_6_MHZ;
		priv->video_standard = DTV6;
649 650 651 652 653 654
		break;
	default:
		return -EINVAL;
	}

	dprintk(1, "%s() frequency=%d (compensated)\n",
655
		__func__, priv->freq_hz);
656

657 658 659 660 661 662 663
	ret = xc_SetSignalSource(priv, priv->rf_mode);
	if (ret != XC_RESULT_SUCCESS) {
		printk(KERN_ERR
			"xc5000: xc_SetSignalSource(%d) failed\n",
			priv->rf_mode);
		return -EREMOTEIO;
	}
664

665
	ret = xc_SetTVStandard(priv,
666 667
		XC5000_Standard[priv->video_standard].VideoMode,
		XC5000_Standard[priv->video_standard].AudioMode);
668 669 670 671 672 673 674 675 676 677 678 679 680
	if (ret != XC_RESULT_SUCCESS) {
		printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n");
		return -EREMOTEIO;
	}

	ret = xc_set_IF_frequency(priv, priv->cfg->if_khz);
	if (ret != XC_RESULT_SUCCESS) {
		printk(KERN_ERR "xc5000: xc_Set_IF_frequency(%d) failed\n",
			priv->cfg->if_khz);
		return -EIO;
	}

	xc_tune_channel(priv, priv->freq_hz);
681

682 683
	if (debug)
		xc_debug_dump(priv);
684 685 686 687

	return 0;
}

688 689 690 691 692 693 694 695 696 697 698 699
static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe);

static int xc5000_set_analog_params(struct dvb_frontend *fe,
	struct analog_parameters *params)
{
	struct xc5000_priv *priv = fe->tuner_priv;
	int ret;

	if(priv->fwloaded == 0)
		xc_load_fw_and_init_tuner(fe);

	dprintk(1, "%s() frequency=%d (in units of 62.5khz)\n",
700
		__func__, params->frequency);
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774

	priv->rf_mode = XC_RF_MODE_CABLE; /* Fix me: it could be air. */

	/* params->frequency is in units of 62.5khz */
	priv->freq_hz = params->frequency * 62500;

	/* FIX ME: Some video standards may have several possible audio
		   standards. We simply default to one of them here.
	 */
	if(params->std & V4L2_STD_MN) {
		/* default to BTSC audio standard */
		priv->video_standard = MN_NTSC_PAL_BTSC;
		goto tune_channel;
	}

	if(params->std & V4L2_STD_PAL_BG) {
		/* default to NICAM audio standard */
		priv->video_standard = BG_PAL_NICAM;
		goto tune_channel;
	}

	if(params->std & V4L2_STD_PAL_I) {
		/* default to NICAM audio standard */
		priv->video_standard = I_PAL_NICAM;
		goto tune_channel;
	}

	if(params->std & V4L2_STD_PAL_DK) {
		/* default to NICAM audio standard */
		priv->video_standard = DK_PAL_NICAM;
		goto tune_channel;
	}

	if(params->std & V4L2_STD_SECAM_DK) {
		/* default to A2 DK1 audio standard */
		priv->video_standard = DK_SECAM_A2DK1;
		goto tune_channel;
	}

	if(params->std & V4L2_STD_SECAM_L) {
		priv->video_standard = L_SECAM_NICAM;
		goto tune_channel;
	}

	if(params->std & V4L2_STD_SECAM_LC) {
		priv->video_standard = LC_SECAM_NICAM;
		goto tune_channel;
	}

tune_channel:
	ret = xc_SetSignalSource(priv, priv->rf_mode);
	if (ret != XC_RESULT_SUCCESS) {
	printk(KERN_ERR
			"xc5000: xc_SetSignalSource(%d) failed\n",
			priv->rf_mode);
		return -EREMOTEIO;
	}

	ret = xc_SetTVStandard(priv,
		XC5000_Standard[priv->video_standard].VideoMode,
		XC5000_Standard[priv->video_standard].AudioMode);
	if (ret != XC_RESULT_SUCCESS) {
		printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n");
		return -EREMOTEIO;
	}

	xc_tune_channel(priv, priv->freq_hz);

	if (debug)
		xc_debug_dump(priv);

	return 0;
}

775 776 777
static int xc5000_get_frequency(struct dvb_frontend *fe, u32 *freq)
{
	struct xc5000_priv *priv = fe->tuner_priv;
778
	dprintk(1, "%s()\n", __func__);
779
	*freq = priv->freq_hz;
780 781 782 783 784 785
	return 0;
}

static int xc5000_get_bandwidth(struct dvb_frontend *fe, u32 *bw)
{
	struct xc5000_priv *priv = fe->tuner_priv;
786
	dprintk(1, "%s()\n", __func__);
787

788 789 790 791 792 793 794
	*bw = priv->bandwidth;
	return 0;
}

static int xc5000_get_status(struct dvb_frontend *fe, u32 *status)
{
	struct xc5000_priv *priv = fe->tuner_priv;
795
	u16 lock_status = 0;
796 797 798

	xc_get_lock_status(priv, &lock_status);

799
	dprintk(1, "%s() lock_status = 0x%08x\n", __func__, lock_status);
800 801 802 803 804 805

	*status = lock_status;

	return 0;
}

806
static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe)
807 808
{
	struct xc5000_priv *priv = fe->tuner_priv;
809
	int ret = 0;
810

811
	if (priv->fwloaded == 0) {
812
		ret = xc5000_fwupload(fe);
813 814
		if (ret != XC_RESULT_SUCCESS)
			return ret;
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
		priv->fwloaded = 1;
	}

	/* Start the tuner self-calibration process */
	ret |= xc_initialize(priv);

	/* Wait for calibration to complete.
	 * We could continue but XC5000 will clock stretch subsequent
	 * I2C transactions until calibration is complete.  This way we
	 * don't have to rely on clock stretching working.
	 */
	xc_wait( 100 );

	/* Default to "CABLE" mode */
	ret |= xc_write_reg(priv, XREG_SIGNALSOURCE, XC_RF_MODE_CABLE);

	return ret;
}

834 835 836
static int xc5000_sleep(struct dvb_frontend *fe)
{
	struct xc5000_priv *priv = fe->tuner_priv;
837 838
	int ret;

839
	dprintk(1, "%s()\n", __func__);
840

841 842 843 844 845 846 847 848 849 850
	/* On Pinnacle PCTV HD 800i, the tuner cannot be reinitialized
	 * once shutdown without reloading the driver. Maybe I am not
	 * doing something right.
	 *
	 */

	ret = xc_shutdown(priv);
	if(ret != XC_RESULT_SUCCESS) {
		printk(KERN_ERR
			"xc5000: %s() unable to shutdown tuner\n",
851
			__func__);
852 853 854 855 856 857
		return -EREMOTEIO;
	}
	else {
		/* priv->fwloaded = 0; */
		return XC_RESULT_SUCCESS;
	}
858 859
}

860 861 862
static int xc5000_init(struct dvb_frontend *fe)
{
	struct xc5000_priv *priv = fe->tuner_priv;
863
	dprintk(1, "%s()\n", __func__);
864

865 866 867 868 869 870 871
	if (xc_load_fw_and_init_tuner(fe) != XC_RESULT_SUCCESS) {
		printk(KERN_ERR "xc5000: Unable to initialise tuner\n");
		return -EREMOTEIO;
	}

	if (debug)
		xc_debug_dump(priv);
872 873 874 875 876 877

	return 0;
}

static int xc5000_release(struct dvb_frontend *fe)
{
878
	dprintk(1, "%s()\n", __func__);
879 880 881 882 883 884 885 886 887 888 889 890 891
	kfree(fe->tuner_priv);
	fe->tuner_priv = NULL;
	return 0;
}

static const struct dvb_tuner_ops xc5000_tuner_ops = {
	.info = {
		.name           = "Xceive XC5000",
		.frequency_min  =    1000000,
		.frequency_max  = 1023000000,
		.frequency_step =      50000,
	},

892 893 894
	.release	   = xc5000_release,
	.init		   = xc5000_init,
	.sleep		   = xc5000_sleep,
895

896 897 898 899 900
	.set_params	   = xc5000_set_params,
	.set_analog_params = xc5000_set_analog_params,
	.get_frequency	   = xc5000_get_frequency,
	.get_bandwidth	   = xc5000_get_bandwidth,
	.get_status	   = xc5000_get_status
901 902
};

903 904 905
struct dvb_frontend *xc5000_attach(struct dvb_frontend *fe,
				   struct i2c_adapter *i2c,
				   struct xc5000_config *cfg, void *devptr)
906 907 908 909
{
	struct xc5000_priv *priv = NULL;
	u16 id = 0;

910
	dprintk(1, "%s()\n", __func__);
911 912 913 914 915 916

	priv = kzalloc(sizeof(struct xc5000_priv), GFP_KERNEL);
	if (priv == NULL)
		return NULL;

	priv->cfg = cfg;
917
	priv->bandwidth = BANDWIDTH_6_MHZ;
918
	priv->i2c = i2c;
919
	priv->devptr = devptr;
920

921 922 923
	/* Check if firmware has been loaded. It is possible that another
	   instance of the driver has loaded the firmware.
	 */
924 925 926 927 928
	if (xc5000_readreg(priv, XREG_PRODUCT_ID, &id) != 0) {
		kfree(priv);
		return NULL;
	}

929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
	switch(id) {
	case XC_PRODUCT_ID_FW_LOADED:
		printk(KERN_INFO
			"xc5000: Successfully identified at address 0x%02x\n",
			cfg->i2c_address);
		printk(KERN_INFO
			"xc5000: Firmware has been loaded previously\n");
		priv->fwloaded = 1;
		break;
	case XC_PRODUCT_ID_FW_NOT_LOADED:
		printk(KERN_INFO
			"xc5000: Successfully identified at address 0x%02x\n",
			cfg->i2c_address);
		printk(KERN_INFO
			"xc5000: Firmware has not been loaded previously\n");
		priv->fwloaded = 0;
		break;
	default:
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
		printk(KERN_ERR
			"xc5000: Device not found at addr 0x%02x (0x%x)\n",
			cfg->i2c_address, id);
		kfree(priv);
		return NULL;
	}

	memcpy(&fe->ops.tuner_ops, &xc5000_tuner_ops,
		sizeof(struct dvb_tuner_ops));

	fe->tuner_priv = priv;

	return fe;
}
EXPORT_SYMBOL(xc5000_attach);

MODULE_AUTHOR("Steven Toth");
964
MODULE_DESCRIPTION("Xceive xc5000 silicon tuner driver");
965
MODULE_LICENSE("GPL");