kfd_process.c 47.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*
 * Copyright 2014 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 */

#include <linux/mutex.h>
#include <linux/log2.h>
#include <linux/sched.h>
26
#include <linux/sched/mm.h>
27
#include <linux/sched/task.h>
28
#include <linux/mmu_context.h>
29
#include <linux/slab.h>
30
#include <linux/amd-iommu.h>
31
#include <linux/notifier.h>
32
#include <linux/compat.h>
F
Felix Kuehling 已提交
33
#include <linux/mman.h>
34
#include <linux/file.h>
35
#include <linux/pm_runtime.h>
A
Amber Lin 已提交
36
#include "amdgpu_amdkfd.h"
37
#include "amdgpu.h"
P
Philip Yang 已提交
38
#include "kfd_svm.h"
39

40 41 42
struct mm_struct;

#include "kfd_priv.h"
43
#include "kfd_device_queue_manager.h"
44
#include "kfd_dbgmgr.h"
45
#include "kfd_iommu.h"
P
Philip Yang 已提交
46
#include "kfd_svm.h"
47 48 49 50 51

/*
 * List of struct kfd_process (field kfd_process).
 * Unique/indexed by mm_struct*
 */
52
DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
53 54
static DEFINE_MUTEX(kfd_processes_mutex);

55
DEFINE_SRCU(kfd_processes_srcu);
56

57
/* For process termination handling */
58 59
static struct workqueue_struct *kfd_process_wq;

60 61 62 63 64 65 66 67
/* Ordered, single-threaded workqueue for restoring evicted
 * processes. Restoring multiple processes concurrently under memory
 * pressure can lead to processes blocking each other from validating
 * their BOs and result in a live-lock situation where processes
 * remain evicted indefinitely.
 */
static struct workqueue_struct *kfd_restore_wq;

68
static struct kfd_process *find_process(const struct task_struct *thread);
69
static void kfd_process_ref_release(struct kref *ref);
70 71
static struct kfd_process *create_process(const struct task_struct *thread);
static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep);
F
Felix Kuehling 已提交
72

73 74 75
static void evict_process_worker(struct work_struct *work);
static void restore_process_worker(struct work_struct *work);

76 77 78 79 80 81
struct kfd_procfs_tree {
	struct kobject *kobj;
};

static struct kfd_procfs_tree procfs;

82 83 84 85 86 87 88 89 90
/*
 * Structure for SDMA activity tracking
 */
struct kfd_sdma_activity_handler_workarea {
	struct work_struct sdma_activity_work;
	struct kfd_process_device *pdd;
	uint64_t sdma_activity_counter;
};

91
struct temp_sdma_queue_list {
92
	uint64_t __user *rptr;
93 94 95 96 97
	uint64_t sdma_val;
	unsigned int queue_id;
	struct list_head list;
};

98 99 100 101 102 103 104 105 106 107
static void kfd_sdma_activity_worker(struct work_struct *work)
{
	struct kfd_sdma_activity_handler_workarea *workarea;
	struct kfd_process_device *pdd;
	uint64_t val;
	struct mm_struct *mm;
	struct queue *q;
	struct qcm_process_device *qpd;
	struct device_queue_manager *dqm;
	int ret = 0;
108 109
	struct temp_sdma_queue_list sdma_q_list;
	struct temp_sdma_queue_list *sdma_q, *next;
110 111 112 113 114 115 116

	workarea = container_of(work, struct kfd_sdma_activity_handler_workarea,
				sdma_activity_work);
	if (!workarea)
		return;

	pdd = workarea->pdd;
117 118
	if (!pdd)
		return;
119 120
	dqm = pdd->dev->dqm;
	qpd = &pdd->qpd;
121
	if (!dqm || !qpd)
122
		return;
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
	/*
	 * Total SDMA activity is current SDMA activity + past SDMA activity
	 * Past SDMA count is stored in pdd.
	 * To get the current activity counters for all active SDMA queues,
	 * we loop over all SDMA queues and get their counts from user-space.
	 *
	 * We cannot call get_user() with dqm_lock held as it can cause
	 * a circular lock dependency situation. To read the SDMA stats,
	 * we need to do the following:
	 *
	 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list,
	 *    with dqm_lock/dqm_unlock().
	 * 2. Call get_user() for each node in temporary list without dqm_lock.
	 *    Save the SDMA count for each node and also add the count to the total
	 *    SDMA count counter.
	 *    Its possible, during this step, a few SDMA queue nodes got deleted
	 *    from the qpd->queues_list.
	 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted.
	 *    If any node got deleted, its SDMA count would be captured in the sdma
	 *    past activity counter. So subtract the SDMA counter stored in step 2
	 *    for this node from the total SDMA count.
	 */
	INIT_LIST_HEAD(&sdma_q_list.list);
146

147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
	/*
	 * Create the temp list of all SDMA queues
	 */
	dqm_lock(dqm);

	list_for_each_entry(q, &qpd->queues_list, list) {
		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
			continue;

		sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL);
		if (!sdma_q) {
			dqm_unlock(dqm);
			goto cleanup;
		}

		INIT_LIST_HEAD(&sdma_q->list);
164
		sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr;
165 166
		sdma_q->queue_id = q->properties.queue_id;
		list_add_tail(&sdma_q->list, &sdma_q_list.list);
167 168
	}

169 170 171 172 173 174 175 176 177 178
	/*
	 * If the temp list is empty, then no SDMA queues nodes were found in
	 * qpd->queues_list. Return the past activity count as the total sdma
	 * count
	 */
	if (list_empty(&sdma_q_list.list)) {
		workarea->sdma_activity_counter = pdd->sdma_past_activity_counter;
		dqm_unlock(dqm);
		return;
	}
179

180
	dqm_unlock(dqm);
181 182

	/*
183
	 * Get the usage count for each SDMA queue in temp_list.
184
	 */
185 186 187 188
	mm = get_task_mm(pdd->process->lead_thread);
	if (!mm)
		goto cleanup;

189
	kthread_use_mm(mm);
190 191 192 193 194 195 196 197 198 199 200 201 202

	list_for_each_entry(sdma_q, &sdma_q_list.list, list) {
		val = 0;
		ret = read_sdma_queue_counter(sdma_q->rptr, &val);
		if (ret) {
			pr_debug("Failed to read SDMA queue active counter for queue id: %d",
				 sdma_q->queue_id);
		} else {
			sdma_q->sdma_val = val;
			workarea->sdma_activity_counter += val;
		}
	}

203
	kthread_unuse_mm(mm);
204
	mmput(mm);
205 206

	/*
207 208
	 * Do a second iteration over qpd_queues_list to check if any SDMA
	 * nodes got deleted while fetching SDMA counter.
209
	 */
210 211 212 213
	dqm_lock(dqm);

	workarea->sdma_activity_counter += pdd->sdma_past_activity_counter;

214
	list_for_each_entry(q, &qpd->queues_list, list) {
215 216 217 218 219 220 221 222
		if (list_empty(&sdma_q_list.list))
			break;

		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
			continue;

		list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
223
			if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) &&
224 225 226 227 228
			     (sdma_q->queue_id == q->properties.queue_id)) {
				list_del(&sdma_q->list);
				kfree(sdma_q);
				break;
			}
229 230 231 232
		}
	}

	dqm_unlock(dqm);
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251

	/*
	 * If temp list is not empty, it implies some queues got deleted
	 * from qpd->queues_list during SDMA usage read. Subtract the SDMA
	 * count for each node from the total SDMA count.
	 */
	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
		workarea->sdma_activity_counter -= sdma_q->sdma_val;
		list_del(&sdma_q->list);
		kfree(sdma_q);
	}

	return;

cleanup:
	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
		list_del(&sdma_q->list);
		kfree(sdma_q);
	}
252 253
}

254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
/**
 * @kfd_get_cu_occupancy() - Collect number of waves in-flight on this device
 * by current process. Translates acquired wave count into number of compute units
 * that are occupied.
 *
 * @atr: Handle of attribute that allows reporting of wave count. The attribute
 * handle encapsulates GPU device it is associated with, thereby allowing collection
 * of waves in flight, etc
 *
 * @buffer: Handle of user provided buffer updated with wave count
 *
 * Return: Number of bytes written to user buffer or an error value
 */
static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer)
{
	int cu_cnt;
	int wave_cnt;
	int max_waves_per_cu;
	struct kfd_dev *dev = NULL;
	struct kfd_process *proc = NULL;
	struct kfd_process_device *pdd = NULL;

	pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy);
	dev = pdd->dev;
	if (dev->kfd2kgd->get_cu_occupancy == NULL)
		return -EINVAL;

	cu_cnt = 0;
	proc = pdd->process;
	if (pdd->qpd.queue_count == 0) {
		pr_debug("Gpu-Id: %d has no active queues for process %d\n",
			 dev->id, proc->pasid);
		return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
	}

	/* Collect wave count from device if it supports */
	wave_cnt = 0;
	max_waves_per_cu = 0;
	dev->kfd2kgd->get_cu_occupancy(dev->kgd, proc->pasid, &wave_cnt,
			&max_waves_per_cu);

	/* Translate wave count to number of compute units */
	cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu;
	return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
}

300 301 302 303 304 305
static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr,
			       char *buffer)
{
	if (strcmp(attr->name, "pasid") == 0) {
		struct kfd_process *p = container_of(attr, struct kfd_process,
						     attr_pasid);
306 307 308 309 310

		return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid);
	} else if (strncmp(attr->name, "vram_", 5) == 0) {
		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
							      attr_vram);
311 312 313 314 315 316 317 318 319 320
		return snprintf(buffer, PAGE_SIZE, "%llu\n", READ_ONCE(pdd->vram_usage));
	} else if (strncmp(attr->name, "sdma_", 5) == 0) {
		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
							      attr_sdma);
		struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler;

		INIT_WORK(&sdma_activity_work_handler.sdma_activity_work,
					kfd_sdma_activity_worker);

		sdma_activity_work_handler.pdd = pdd;
321
		sdma_activity_work_handler.sdma_activity_counter = 0;
322 323 324 325 326 327 328 329

		schedule_work(&sdma_activity_work_handler.sdma_activity_work);

		flush_work(&sdma_activity_work_handler.sdma_activity_work);

		return snprintf(buffer, PAGE_SIZE, "%llu\n",
				(sdma_activity_work_handler.sdma_activity_counter)/
				 SDMA_ACTIVITY_DIVISOR);
330 331 332 333 334
	} else {
		pr_err("Invalid attribute");
		return -EINVAL;
	}

335
	return 0;
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
}

static void kfd_procfs_kobj_release(struct kobject *kobj)
{
	kfree(kobj);
}

static const struct sysfs_ops kfd_procfs_ops = {
	.show = kfd_procfs_show,
};

static struct kobj_type procfs_type = {
	.release = kfd_procfs_kobj_release,
	.sysfs_ops = &kfd_procfs_ops,
};

void kfd_procfs_init(void)
{
	int ret = 0;

	procfs.kobj = kfd_alloc_struct(procfs.kobj);
	if (!procfs.kobj)
		return;

	ret = kobject_init_and_add(procfs.kobj, &procfs_type,
				   &kfd_device->kobj, "proc");
	if (ret) {
		pr_warn("Could not create procfs proc folder");
		/* If we fail to create the procfs, clean up */
		kfd_procfs_shutdown();
	}
}

void kfd_procfs_shutdown(void)
{
	if (procfs.kobj) {
		kobject_del(procfs.kobj);
		kobject_put(procfs.kobj);
		procfs.kobj = NULL;
	}
}
377

378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
static ssize_t kfd_procfs_queue_show(struct kobject *kobj,
				     struct attribute *attr, char *buffer)
{
	struct queue *q = container_of(kobj, struct queue, kobj);

	if (!strcmp(attr->name, "size"))
		return snprintf(buffer, PAGE_SIZE, "%llu",
				q->properties.queue_size);
	else if (!strcmp(attr->name, "type"))
		return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type);
	else if (!strcmp(attr->name, "gpuid"))
		return snprintf(buffer, PAGE_SIZE, "%u", q->device->id);
	else
		pr_err("Invalid attribute");

	return 0;
}

396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
static ssize_t kfd_procfs_stats_show(struct kobject *kobj,
				     struct attribute *attr, char *buffer)
{
	if (strcmp(attr->name, "evicted_ms") == 0) {
		struct kfd_process_device *pdd = container_of(attr,
				struct kfd_process_device,
				attr_evict);
		uint64_t evict_jiffies;

		evict_jiffies = atomic64_read(&pdd->evict_duration_counter);

		return snprintf(buffer,
				PAGE_SIZE,
				"%llu\n",
				jiffies64_to_msecs(evict_jiffies));
411 412 413 414 415

	/* Sysfs handle that gets CU occupancy is per device */
	} else if (strcmp(attr->name, "cu_occupancy") == 0) {
		return kfd_get_cu_occupancy(attr, buffer);
	} else {
416
		pr_err("Invalid attribute");
417
	}
418 419 420

	return 0;
}
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452

static struct attribute attr_queue_size = {
	.name = "size",
	.mode = KFD_SYSFS_FILE_MODE
};

static struct attribute attr_queue_type = {
	.name = "type",
	.mode = KFD_SYSFS_FILE_MODE
};

static struct attribute attr_queue_gpuid = {
	.name = "gpuid",
	.mode = KFD_SYSFS_FILE_MODE
};

static struct attribute *procfs_queue_attrs[] = {
	&attr_queue_size,
	&attr_queue_type,
	&attr_queue_gpuid,
	NULL
};

static const struct sysfs_ops procfs_queue_ops = {
	.show = kfd_procfs_queue_show,
};

static struct kobj_type procfs_queue_type = {
	.sysfs_ops = &procfs_queue_ops,
	.default_attrs = procfs_queue_attrs,
};

453 454 455 456 457 458 459 460 461 462 463 464 465
static const struct sysfs_ops procfs_stats_ops = {
	.show = kfd_procfs_stats_show,
};

static struct attribute *procfs_stats_attrs[] = {
	NULL
};

static struct kobj_type procfs_stats_type = {
	.sysfs_ops = &procfs_stats_ops,
	.default_attrs = procfs_stats_attrs,
};

466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
int kfd_procfs_add_queue(struct queue *q)
{
	struct kfd_process *proc;
	int ret;

	if (!q || !q->process)
		return -EINVAL;
	proc = q->process;

	/* Create proc/<pid>/queues/<queue id> folder */
	if (!proc->kobj_queues)
		return -EFAULT;
	ret = kobject_init_and_add(&q->kobj, &procfs_queue_type,
			proc->kobj_queues, "%u", q->properties.queue_id);
	if (ret < 0) {
		pr_warn("Creating proc/<pid>/queues/%u failed",
			q->properties.queue_id);
		kobject_put(&q->kobj);
		return ret;
	}

	return 0;
}

490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
static int kfd_sysfs_create_file(struct kfd_process *p, struct attribute *attr,
				 char *name)
{
	int ret = 0;

	if (!p || !attr || !name)
		return -EINVAL;

	attr->name = name;
	attr->mode = KFD_SYSFS_FILE_MODE;
	sysfs_attr_init(attr);

	ret = sysfs_create_file(p->kobj, attr);

	return ret;
}

507 508 509
static int kfd_procfs_add_sysfs_stats(struct kfd_process *p)
{
	int ret = 0;
510
	int i;
511 512 513 514 515 516 517 518 519 520 521 522
	char stats_dir_filename[MAX_SYSFS_FILENAME_LEN];

	if (!p)
		return -EINVAL;

	if (!p->kobj)
		return -EFAULT;

	/*
	 * Create sysfs files for each GPU:
	 * - proc/<pid>/stats_<gpuid>/
	 * - proc/<pid>/stats_<gpuid>/evicted_ms
523
	 * - proc/<pid>/stats_<gpuid>/cu_occupancy
524
	 */
525 526
	for (i = 0; i < p->n_pdds; i++) {
		struct kfd_process_device *pdd = p->pdds[i];
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
		struct kobject *kobj_stats;

		snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN,
				"stats_%u", pdd->dev->id);
		kobj_stats = kfd_alloc_struct(kobj_stats);
		if (!kobj_stats)
			return -ENOMEM;

		ret = kobject_init_and_add(kobj_stats,
						&procfs_stats_type,
						p->kobj,
						stats_dir_filename);

		if (ret) {
			pr_warn("Creating KFD proc/stats_%s folder failed",
					stats_dir_filename);
			kobject_put(kobj_stats);
			goto err;
		}

		pdd->kobj_stats = kobj_stats;
		pdd->attr_evict.name = "evicted_ms";
		pdd->attr_evict.mode = KFD_SYSFS_FILE_MODE;
		sysfs_attr_init(&pdd->attr_evict);
		ret = sysfs_create_file(kobj_stats, &pdd->attr_evict);
		if (ret)
			pr_warn("Creating eviction stats for gpuid %d failed",
					(int)pdd->dev->id);
555 556 557 558 559 560 561 562 563 564 565 566 567

		/* Add sysfs file to report compute unit occupancy */
		if (pdd->dev->kfd2kgd->get_cu_occupancy != NULL) {
			pdd->attr_cu_occupancy.name = "cu_occupancy";
			pdd->attr_cu_occupancy.mode = KFD_SYSFS_FILE_MODE;
			sysfs_attr_init(&pdd->attr_cu_occupancy);
			ret = sysfs_create_file(kobj_stats,
						&pdd->attr_cu_occupancy);
			if (ret)
				pr_warn("Creating %s failed for gpuid: %d",
					pdd->attr_cu_occupancy.name,
					(int)pdd->dev->id);
		}
568 569 570 571 572 573
	}
err:
	return ret;
}


574
static int kfd_procfs_add_sysfs_files(struct kfd_process *p)
575 576
{
	int ret = 0;
577
	int i;
578 579 580 581 582 583 584

	if (!p)
		return -EINVAL;

	if (!p->kobj)
		return -EFAULT;

585 586 587 588 589
	/*
	 * Create sysfs files for each GPU:
	 * - proc/<pid>/vram_<gpuid>
	 * - proc/<pid>/sdma_<gpuid>
	 */
590 591 592
	for (i = 0; i < p->n_pdds; i++) {
		struct kfd_process_device *pdd = p->pdds[i];

593
		snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u",
594
			 pdd->dev->id);
595
		ret = kfd_sysfs_create_file(p, &pdd->attr_vram, pdd->vram_filename);
596 597 598
		if (ret)
			pr_warn("Creating vram usage for gpu id %d failed",
				(int)pdd->dev->id);
599 600 601 602 603 604 605

		snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u",
			 pdd->dev->id);
		ret = kfd_sysfs_create_file(p, &pdd->attr_sdma, pdd->sdma_filename);
		if (ret)
			pr_warn("Creating sdma usage for gpu id %d failed",
				(int)pdd->dev->id);
606 607 608 609 610
	}

	return ret;
}

611 612 613 614 615 616 617 618 619
void kfd_procfs_del_queue(struct queue *q)
{
	if (!q)
		return;

	kobject_del(&q->kobj);
	kobject_put(&q->kobj);
}

620
int kfd_process_create_wq(void)
621 622
{
	if (!kfd_process_wq)
623
		kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
624 625 626 627 628 629 630 631 632
	if (!kfd_restore_wq)
		kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", 0);

	if (!kfd_process_wq || !kfd_restore_wq) {
		kfd_process_destroy_wq();
		return -ENOMEM;
	}

	return 0;
633 634 635 636 637 638 639 640
}

void kfd_process_destroy_wq(void)
{
	if (kfd_process_wq) {
		destroy_workqueue(kfd_process_wq);
		kfd_process_wq = NULL;
	}
641 642 643 644
	if (kfd_restore_wq) {
		destroy_workqueue(kfd_restore_wq);
		kfd_restore_wq = NULL;
	}
645 646
}

647 648 649 650 651
static void kfd_process_free_gpuvm(struct kgd_mem *mem,
			struct kfd_process_device *pdd)
{
	struct kfd_dev *dev = pdd->dev;

652
	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->kgd, mem, pdd->drm_priv);
653 654
	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd, mem, pdd->drm_priv,
					       NULL);
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
}

/* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
 *	This function should be only called right after the process
 *	is created and when kfd_processes_mutex is still being held
 *	to avoid concurrency. Because of that exclusiveness, we do
 *	not need to take p->mutex.
 */
static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
				   uint64_t gpu_va, uint32_t size,
				   uint32_t flags, void **kptr)
{
	struct kfd_dev *kdev = pdd->dev;
	struct kgd_mem *mem = NULL;
	int handle;
	int err;

A
Amber Lin 已提交
672
	err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->kgd, gpu_va, size,
673
						 pdd->drm_priv, &mem, NULL, flags);
674 675 676
	if (err)
		goto err_alloc_mem;

677
	err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->kgd, mem, pdd->drm_priv);
678 679 680
	if (err)
		goto err_map_mem;

A
Amber Lin 已提交
681
	err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->kgd, mem, true);
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
	if (err) {
		pr_debug("Sync memory failed, wait interrupted by user signal\n");
		goto sync_memory_failed;
	}

	/* Create an obj handle so kfd_process_device_remove_obj_handle
	 * will take care of the bo removal when the process finishes.
	 * We do not need to take p->mutex, because the process is just
	 * created and the ioctls have not had the chance to run.
	 */
	handle = kfd_process_device_create_obj_handle(pdd, mem);

	if (handle < 0) {
		err = handle;
		goto free_gpuvm;
	}

	if (kptr) {
A
Amber Lin 已提交
700
		err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(kdev->kgd,
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
				(struct kgd_mem *)mem, kptr, NULL);
		if (err) {
			pr_debug("Map GTT BO to kernel failed\n");
			goto free_obj_handle;
		}
	}

	return err;

free_obj_handle:
	kfd_process_device_remove_obj_handle(pdd, handle);
free_gpuvm:
sync_memory_failed:
	kfd_process_free_gpuvm(mem, pdd);
	return err;

err_map_mem:
718 719
	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->kgd, mem, pdd->drm_priv,
					       NULL);
720 721 722 723 724
err_alloc_mem:
	*kptr = NULL;
	return err;
}

725 726 727 728 729 730 731 732 733
/* kfd_process_device_reserve_ib_mem - Reserve memory inside the
 *	process for IB usage The memory reserved is for KFD to submit
 *	IB to AMDGPU from kernel.  If the memory is reserved
 *	successfully, ib_kaddr will have the CPU/kernel
 *	address. Check ib_kaddr before accessing the memory.
 */
static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
{
	struct qcm_process_device *qpd = &pdd->qpd;
734 735 736 737
	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
			KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
			KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE |
			KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
	void *kaddr;
	int ret;

	if (qpd->ib_kaddr || !qpd->ib_base)
		return 0;

	/* ib_base is only set for dGPU */
	ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
				      &kaddr);
	if (ret)
		return ret;

	qpd->ib_kaddr = kaddr;

	return 0;
}

F
Felix Kuehling 已提交
755
struct kfd_process *kfd_create_process(struct file *filep)
756 757
{
	struct kfd_process *process;
F
Felix Kuehling 已提交
758
	struct task_struct *thread = current;
759
	int ret;
760

761
	if (!thread->mm)
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
		return ERR_PTR(-EINVAL);

	/* Only the pthreads threading model is supported. */
	if (thread->group_leader->mm != thread->mm)
		return ERR_PTR(-EINVAL);

	/*
	 * take kfd processes mutex before starting of process creation
	 * so there won't be a case where two threads of the same process
	 * create two kfd_process structures
	 */
	mutex_lock(&kfd_processes_mutex);

	/* A prior open of /dev/kfd could have already created the process. */
	process = find_process(thread);
777
	if (process) {
778
		pr_debug("Process already found\n");
779
	} else {
780 781 782 783 784
		process = create_process(thread);
		if (IS_ERR(process))
			goto out;

		ret = kfd_process_init_cwsr_apu(process, filep);
785 786
		if (ret)
			goto out_destroy;
787

788 789 790 791 792 793 794 795 796 797 798 799 800
		if (!procfs.kobj)
			goto out;

		process->kobj = kfd_alloc_struct(process->kobj);
		if (!process->kobj) {
			pr_warn("Creating procfs kobject failed");
			goto out;
		}
		ret = kobject_init_and_add(process->kobj, &procfs_type,
					   procfs.kobj, "%d",
					   (int)process->lead_thread->pid);
		if (ret) {
			pr_warn("Creating procfs pid directory failed");
801
			kobject_put(process->kobj);
802 803 804 805 806 807 808 809 810 811
			goto out;
		}

		process->attr_pasid.name = "pasid";
		process->attr_pasid.mode = KFD_SYSFS_FILE_MODE;
		sysfs_attr_init(&process->attr_pasid);
		ret = sysfs_create_file(process->kobj, &process->attr_pasid);
		if (ret)
			pr_warn("Creating pasid for pid %d failed",
					(int)process->lead_thread->pid);
812 813 814 815 816

		process->kobj_queues = kobject_create_and_add("queues",
							process->kobj);
		if (!process->kobj_queues)
			pr_warn("Creating KFD proc/queues folder failed");
817

818 819 820 821 822
		ret = kfd_procfs_add_sysfs_stats(process);
		if (ret)
			pr_warn("Creating sysfs stats dir for pid %d failed",
				(int)process->lead_thread->pid);

823
		ret = kfd_procfs_add_sysfs_files(process);
824
		if (ret)
825
			pr_warn("Creating sysfs usage file for pid %d failed",
826
				(int)process->lead_thread->pid);
827 828
	}
out:
829 830
	if (!IS_ERR(process))
		kref_get(&process->ref);
831 832 833
	mutex_unlock(&kfd_processes_mutex);

	return process;
834 835 836 837 838 839 840 841

out_destroy:
	hash_del_rcu(&process->kfd_processes);
	mutex_unlock(&kfd_processes_mutex);
	synchronize_srcu(&kfd_processes_srcu);
	/* kfd_process_free_notifier will trigger the cleanup */
	mmu_notifier_put(&process->mmu_notifier);
	return ERR_PTR(ret);
842 843 844 845 846 847
}

struct kfd_process *kfd_get_process(const struct task_struct *thread)
{
	struct kfd_process *process;

848
	if (!thread->mm)
849 850 851 852 853 854 855
		return ERR_PTR(-EINVAL);

	/* Only the pthreads threading model is supported. */
	if (thread->group_leader->mm != thread->mm)
		return ERR_PTR(-EINVAL);

	process = find_process(thread);
856 857
	if (!process)
		return ERR_PTR(-EINVAL);
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885

	return process;
}

static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
{
	struct kfd_process *process;

	hash_for_each_possible_rcu(kfd_processes_table, process,
					kfd_processes, (uintptr_t)mm)
		if (process->mm == mm)
			return process;

	return NULL;
}

static struct kfd_process *find_process(const struct task_struct *thread)
{
	struct kfd_process *p;
	int idx;

	idx = srcu_read_lock(&kfd_processes_srcu);
	p = find_process_by_mm(thread->mm);
	srcu_read_unlock(&kfd_processes_srcu, idx);

	return p;
}

886 887 888 889 890
void kfd_unref_process(struct kfd_process *p)
{
	kref_put(&p->ref, kfd_process_ref_release);
}

891

892 893 894 895 896
static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
{
	struct kfd_process *p = pdd->process;
	void *mem;
	int id;
897
	int i;
898 899 900 901 902 903 904

	/*
	 * Remove all handles from idr and release appropriate
	 * local memory object
	 */
	idr_for_each_entry(&pdd->alloc_idr, mem, id) {

905 906 907
		for (i = 0; i < p->n_pdds; i++) {
			struct kfd_process_device *peer_pdd = p->pdds[i];

908
			if (!peer_pdd->drm_priv)
909
				continue;
A
Amber Lin 已提交
910
			amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
911
				peer_pdd->dev->kgd, mem, peer_pdd->drm_priv);
912 913
		}

914 915
		amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->kgd, mem,
						       pdd->drm_priv, NULL);
916 917 918 919 920 921
		kfd_process_device_remove_obj_handle(pdd, id);
	}
}

static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
{
922
	int i;
923

924 925
	for (i = 0; i < p->n_pdds; i++)
		kfd_process_device_free_bos(p->pdds[i]);
926 927
}

928
static void kfd_process_destroy_pdds(struct kfd_process *p)
929
{
930 931 932 933
	int i;

	for (i = 0; i < p->n_pdds; i++) {
		struct kfd_process_device *pdd = p->pdds[i];
934

935
		pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n",
936 937
				pdd->dev->id, p->pasid);

938
		if (pdd->drm_file) {
A
Amber Lin 已提交
939
			amdgpu_amdkfd_gpuvm_release_process_vm(
940
					pdd->dev->kgd, pdd->drm_priv);
941
			fput(pdd->drm_file);
942
		}
943

944
		if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
F
Felix Kuehling 已提交
945 946 947
			free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
				get_order(KFD_CWSR_TBA_TMA_SIZE));

948
		kfree(pdd->qpd.doorbell_bitmap);
949 950
		idr_destroy(&pdd->alloc_idr);

951 952
		kfd_free_process_doorbells(pdd->dev, pdd->doorbell_index);

953 954 955 956 957 958 959 960 961 962
		/*
		 * before destroying pdd, make sure to report availability
		 * for auto suspend
		 */
		if (pdd->runtime_inuse) {
			pm_runtime_mark_last_busy(pdd->dev->ddev->dev);
			pm_runtime_put_autosuspend(pdd->dev->ddev->dev);
			pdd->runtime_inuse = false;
		}

963
		kfree(pdd);
964
		p->pdds[i] = NULL;
965
	}
966
	p->n_pdds = 0;
967 968 969 970 971 972 973 974 975 976 977
}

/* No process locking is needed in this function, because the process
 * is not findable any more. We must assume that no other thread is
 * using it any more, otherwise we couldn't safely free the process
 * structure in the end.
 */
static void kfd_process_wq_release(struct work_struct *work)
{
	struct kfd_process *p = container_of(work, struct kfd_process,
					     release_work);
978
	int i;
979

980 981 982
	/* Remove the procfs files */
	if (p->kobj) {
		sysfs_remove_file(p->kobj, &p->attr_pasid);
983 984 985
		kobject_del(p->kobj_queues);
		kobject_put(p->kobj_queues);
		p->kobj_queues = NULL;
986

987 988 989
		for (i = 0; i < p->n_pdds; i++) {
			struct kfd_process_device *pdd = p->pdds[i];

990
			sysfs_remove_file(p->kobj, &pdd->attr_vram);
991
			sysfs_remove_file(p->kobj, &pdd->attr_sdma);
992
			sysfs_remove_file(p->kobj, &pdd->attr_evict);
993 994
			if (pdd->dev->kfd2kgd->get_cu_occupancy != NULL)
				sysfs_remove_file(p->kobj, &pdd->attr_cu_occupancy);
995 996 997
			kobject_del(pdd->kobj_stats);
			kobject_put(pdd->kobj_stats);
			pdd->kobj_stats = NULL;
998
		}
999

1000 1001 1002 1003 1004
		kobject_del(p->kobj);
		kobject_put(p->kobj);
		p->kobj = NULL;
	}

1005
	kfd_iommu_unbind_process(p);
1006

1007
	kfd_process_free_outstanding_kfd_bos(p);
P
Philip Yang 已提交
1008
	svm_range_list_fini(p);
1009

1010
	kfd_process_destroy_pdds(p);
1011
	dma_fence_put(p->ef);
1012

1013 1014
	kfd_event_free_process(p);

1015 1016 1017
	kfd_pasid_free(p->pasid);
	mutex_destroy(&p->mutex);

1018 1019
	put_task_struct(p->lead_thread);

1020 1021 1022
	kfree(p);
}

1023
static void kfd_process_ref_release(struct kref *ref)
1024
{
1025
	struct kfd_process *p = container_of(ref, struct kfd_process, ref);
1026

1027 1028 1029
	INIT_WORK(&p->release_work, kfd_process_wq_release);
	queue_work(kfd_process_wq, &p->release_work);
}
1030

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm)
{
	int idx = srcu_read_lock(&kfd_processes_srcu);
	struct kfd_process *p = find_process_by_mm(mm);

	srcu_read_unlock(&kfd_processes_srcu, idx);

	return p ? &p->mmu_notifier : ERR_PTR(-ESRCH);
}

1041
static void kfd_process_free_notifier(struct mmu_notifier *mn)
1042
{
1043
	kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier));
1044 1045 1046 1047 1048 1049
}

static void kfd_process_notifier_release(struct mmu_notifier *mn,
					struct mm_struct *mm)
{
	struct kfd_process *p;
1050
	int i;
1051 1052 1053 1054 1055 1056

	/*
	 * The kfd_process structure can not be free because the
	 * mmu_notifier srcu is read locked
	 */
	p = container_of(mn, struct kfd_process, mmu_notifier);
1057 1058
	if (WARN_ON(p->mm != mm))
		return;
1059 1060 1061 1062 1063 1064

	mutex_lock(&kfd_processes_mutex);
	hash_del_rcu(&p->kfd_processes);
	mutex_unlock(&kfd_processes_mutex);
	synchronize_srcu(&kfd_processes_srcu);

1065 1066
	cancel_delayed_work_sync(&p->eviction_work);
	cancel_delayed_work_sync(&p->restore_work);
1067
	cancel_delayed_work_sync(&p->svms.restore_work);
1068

1069 1070
	mutex_lock(&p->mutex);

1071 1072 1073 1074
	/* Iterate over all process device data structures and if the
	 * pdd is in debug mode, we should first force unregistration,
	 * then we will be able to destroy the queues
	 */
1075 1076
	for (i = 0; i < p->n_pdds; i++) {
		struct kfd_dev *dev = p->pdds[i]->dev;
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087

		mutex_lock(kfd_get_dbgmgr_mutex());
		if (dev && dev->dbgmgr && dev->dbgmgr->pasid == p->pasid) {
			if (!kfd_dbgmgr_unregister(dev->dbgmgr, p)) {
				kfd_dbgmgr_destroy(dev->dbgmgr);
				dev->dbgmgr = NULL;
			}
		}
		mutex_unlock(kfd_get_dbgmgr_mutex());
	}

1088
	kfd_process_dequeue_from_all_devices(p);
1089 1090
	pqm_uninit(&p->pqm);

1091 1092
	/* Indicate to other users that MM is no longer valid */
	p->mm = NULL;
1093 1094 1095 1096 1097
	/* Signal the eviction fence after user mode queues are
	 * destroyed. This allows any BOs to be freed without
	 * triggering pointless evictions or waiting for fences.
	 */
	dma_fence_signal(p->ef);
1098

1099 1100
	mutex_unlock(&p->mutex);

1101
	mmu_notifier_put(&p->mmu_notifier);
1102 1103 1104 1105
}

static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
	.release = kfd_process_notifier_release,
1106
	.alloc_notifier = kfd_process_alloc_notifier,
1107
	.free_notifier = kfd_process_free_notifier,
1108 1109
};

1110
static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
F
Felix Kuehling 已提交
1111 1112
{
	unsigned long  offset;
1113
	int i;
F
Felix Kuehling 已提交
1114

1115 1116 1117
	for (i = 0; i < p->n_pdds; i++) {
		struct kfd_dev *dev = p->pdds[i]->dev;
		struct qcm_process_device *qpd = &p->pdds[i]->qpd;
1118 1119

		if (!dev->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
F
Felix Kuehling 已提交
1120
			continue;
1121

1122
		offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id);
F
Felix Kuehling 已提交
1123 1124 1125 1126 1127
		qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
			KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
			MAP_SHARED, offset);

		if (IS_ERR_VALUE(qpd->tba_addr)) {
1128 1129 1130
			int err = qpd->tba_addr;

			pr_err("Failure to set tba address. error %d.\n", err);
F
Felix Kuehling 已提交
1131 1132
			qpd->tba_addr = 0;
			qpd->cwsr_kaddr = NULL;
1133
			return err;
F
Felix Kuehling 已提交
1134 1135 1136 1137 1138 1139 1140 1141
		}

		memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);

		qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
		pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
			qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
	}
1142 1143

	return 0;
F
Felix Kuehling 已提交
1144 1145
}

1146 1147 1148 1149
static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
{
	struct kfd_dev *dev = pdd->dev;
	struct qcm_process_device *qpd = &pdd->qpd;
1150 1151 1152
	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT
			| KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE
			| KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
	void *kaddr;
	int ret;

	if (!dev->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
		return 0;

	/* cwsr_base is only set for dGPU */
	ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
				      KFD_CWSR_TBA_TMA_SIZE, flags, &kaddr);
	if (ret)
		return ret;

	qpd->cwsr_kaddr = kaddr;
	qpd->tba_addr = qpd->cwsr_base;

	memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);

	qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
	pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
		 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);

	return 0;
}

1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
				  uint64_t tba_addr,
				  uint64_t tma_addr)
{
	if (qpd->cwsr_kaddr) {
		/* KFD trap handler is bound, record as second-level TBA/TMA
		 * in first-level TMA. First-level trap will jump to second.
		 */
		uint64_t *tma =
			(uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
		tma[0] = tba_addr;
		tma[1] = tma_addr;
	} else {
		/* No trap handler bound, bind as first-level TBA/TMA. */
		qpd->tba_addr = tba_addr;
		qpd->tma_addr = tma_addr;
	}
}

1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
bool kfd_process_xnack_mode(struct kfd_process *p, bool supported)
{
	int i;

	/* On most GFXv9 GPUs, the retry mode in the SQ must match the
	 * boot time retry setting. Mixing processes with different
	 * XNACK/retry settings can hang the GPU.
	 *
	 * Different GPUs can have different noretry settings depending
	 * on HW bugs or limitations. We need to find at least one
	 * XNACK mode for this process that's compatible with all GPUs.
	 * Fortunately GPUs with retry enabled (noretry=0) can run code
	 * built for XNACK-off. On GFXv9 it may perform slower.
	 *
	 * Therefore applications built for XNACK-off can always be
	 * supported and will be our fallback if any GPU does not
	 * support retry.
	 */
	for (i = 0; i < p->n_pdds; i++) {
		struct kfd_dev *dev = p->pdds[i]->dev;

		/* Only consider GFXv9 and higher GPUs. Older GPUs don't
		 * support the SVM APIs and don't need to be considered
		 * for the XNACK mode selection.
		 */
		if (dev->device_info->asic_family < CHIP_VEGA10)
			continue;
		/* Aldebaran can always support XNACK because it can support
		 * per-process XNACK mode selection. But let the dev->noretry
		 * setting still influence the default XNACK mode.
		 */
		if (supported &&
		    dev->device_info->asic_family == CHIP_ALDEBARAN)
			continue;

		/* GFXv10 and later GPUs do not support shader preemption
		 * during page faults. This can lead to poor QoS for queue
		 * management and memory-manager-related preemptions or
		 * even deadlocks.
		 */
		if (dev->device_info->asic_family >= CHIP_NAVI10)
			return false;

		if (dev->noretry)
			return false;
	}

	return true;
}

1246 1247 1248 1249 1250
/*
 * On return the kfd_process is fully operational and will be freed when the
 * mm is released
 */
static struct kfd_process *create_process(const struct task_struct *thread)
1251 1252
{
	struct kfd_process *process;
1253
	struct mmu_notifier *mn;
1254 1255 1256 1257 1258 1259
	int err = -ENOMEM;

	process = kzalloc(sizeof(*process), GFP_KERNEL);
	if (!process)
		goto err_alloc_process;

1260
	kref_init(&process->ref);
1261 1262 1263
	mutex_init(&process->mutex);
	process->mm = thread->mm;
	process->lead_thread = thread->group_leader;
1264
	process->n_pdds = 0;
P
Philip Yang 已提交
1265
	process->svm_disabled = false;
1266 1267 1268
	INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
	INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
	process->last_restore_timestamp = get_jiffies_64();
1269
	kfd_event_init_process(process);
1270 1271 1272 1273 1274 1275
	process->is_32bit_user_mode = in_compat_syscall();

	process->pasid = kfd_pasid_alloc();
	if (process->pasid == 0)
		goto err_alloc_pasid;

1276 1277 1278 1279
	err = pqm_init(&process->pqm, process);
	if (err != 0)
		goto err_process_pqm_init;

1280
	/* init process apertures*/
1281 1282
	err = kfd_init_apertures(process);
	if (err != 0)
1283
		goto err_init_apertures;
1284

1285 1286 1287
	/* Check XNACK support after PDDs are created in kfd_init_apertures */
	process->xnack_enabled = kfd_process_xnack_mode(process, false);

P
Philip Yang 已提交
1288 1289 1290 1291
	err = svm_range_list_init(process);
	if (err)
		goto err_init_svm_range_list;

1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
	/* alloc_notifier needs to find the process in the hash table */
	hash_add_rcu(kfd_processes_table, &process->kfd_processes,
			(uintptr_t)process->mm);

	/* MMU notifier registration must be the last call that can fail
	 * because after this point we cannot unwind the process creation.
	 * After this point, mmu_notifier_put will trigger the cleanup by
	 * dropping the last process reference in the free_notifier.
	 */
	mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm);
	if (IS_ERR(mn)) {
		err = PTR_ERR(mn);
1304
		goto err_register_notifier;
1305 1306
	}
	BUG_ON(mn != &process->mmu_notifier);
1307 1308

	get_task_struct(process->lead_thread);
1309

1310 1311
	return process;

1312
err_register_notifier:
1313
	hash_del_rcu(&process->kfd_processes);
P
Philip Yang 已提交
1314 1315
	svm_range_list_fini(process);
err_init_svm_range_list:
1316
	kfd_process_free_outstanding_kfd_bos(process);
1317
	kfd_process_destroy_pdds(process);
1318
err_init_apertures:
1319
	pqm_uninit(&process->pqm);
1320
err_process_pqm_init:
1321 1322
	kfd_pasid_free(process->pasid);
err_alloc_pasid:
1323
	mutex_destroy(&process->mutex);
1324 1325 1326 1327 1328
	kfree(process);
err_alloc_process:
	return ERR_PTR(err);
}

1329 1330 1331 1332
static int init_doorbell_bitmap(struct qcm_process_device *qpd,
			struct kfd_dev *dev)
{
	unsigned int i;
1333 1334
	int range_start = dev->shared_resources.non_cp_doorbells_start;
	int range_end = dev->shared_resources.non_cp_doorbells_end;
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344

	if (!KFD_IS_SOC15(dev->device_info->asic_family))
		return 0;

	qpd->doorbell_bitmap =
		kzalloc(DIV_ROUND_UP(KFD_MAX_NUM_OF_QUEUES_PER_PROCESS,
				     BITS_PER_BYTE), GFP_KERNEL);
	if (!qpd->doorbell_bitmap)
		return -ENOMEM;

1345
	/* Mask out doorbells reserved for SDMA, IH, and VCN on SOC15. */
1346 1347 1348 1349 1350
	pr_debug("reserved doorbell 0x%03x - 0x%03x\n", range_start, range_end);
	pr_debug("reserved doorbell 0x%03x - 0x%03x\n",
			range_start + KFD_QUEUE_DOORBELL_MIRROR_OFFSET,
			range_end + KFD_QUEUE_DOORBELL_MIRROR_OFFSET);

1351
	for (i = 0; i < KFD_MAX_NUM_OF_QUEUES_PER_PROCESS / 2; i++) {
1352
		if (i >= range_start && i <= range_end) {
1353
			set_bit(i, qpd->doorbell_bitmap);
1354 1355
			set_bit(i + KFD_QUEUE_DOORBELL_MIRROR_OFFSET,
				qpd->doorbell_bitmap);
1356
		}
1357
	}
1358 1359 1360 1361

	return 0;
}

1362
struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
1363
							struct kfd_process *p)
1364
{
1365
	int i;
1366

1367 1368 1369
	for (i = 0; i < p->n_pdds; i++)
		if (p->pdds[i]->dev == dev)
			return p->pdds[i];
1370

1371
	return NULL;
1372 1373 1374 1375 1376 1377 1378
}

struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
							struct kfd_process *p)
{
	struct kfd_process_device *pdd = NULL;

1379 1380
	if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE))
		return NULL;
1381
	pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
1382 1383 1384
	if (!pdd)
		return NULL;

1385 1386 1387 1388 1389
	if (kfd_alloc_process_doorbells(dev, &pdd->doorbell_index) < 0) {
		pr_err("Failed to alloc doorbell for pdd\n");
		goto err_free_pdd;
	}

1390 1391
	if (init_doorbell_bitmap(&pdd->qpd, dev)) {
		pr_err("Failed to init doorbell for process\n");
1392
		goto err_free_pdd;
1393 1394
	}

1395 1396 1397 1398 1399
	pdd->dev = dev;
	INIT_LIST_HEAD(&pdd->qpd.queues_list);
	INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
	pdd->qpd.dqm = dev->dqm;
	pdd->qpd.pqm = &p->pqm;
1400
	pdd->qpd.evicted = 0;
1401
	pdd->qpd.mapped_gws_queue = false;
1402 1403 1404
	pdd->process = p;
	pdd->bound = PDD_UNBOUND;
	pdd->already_dequeued = false;
1405
	pdd->runtime_inuse = false;
1406
	pdd->vram_usage = 0;
1407
	pdd->sdma_past_activity_counter = 0;
1408
	atomic64_set(&pdd->evict_duration_counter, 0);
1409
	p->pdds[p->n_pdds++] = pdd;
1410

1411 1412 1413
	/* Init idr used for memory handle translation */
	idr_init(&pdd->alloc_idr);

1414
	return pdd;
1415 1416 1417 1418

err_free_pdd:
	kfree(pdd);
	return NULL;
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
}

/**
 * kfd_process_device_init_vm - Initialize a VM for a process-device
 *
 * @pdd: The process-device
 * @drm_file: Optional pointer to a DRM file descriptor
 *
 * If @drm_file is specified, it will be used to acquire the VM from
 * that file descriptor. If successful, the @pdd takes ownership of
 * the file descriptor.
 *
 * If @drm_file is NULL, a new VM is created.
 *
 * Returns 0 on success, -errno on failure.
 */
int kfd_process_device_init_vm(struct kfd_process_device *pdd,
			       struct file *drm_file)
{
	struct kfd_process *p;
	struct kfd_dev *dev;
	int ret;

1442 1443 1444
	if (!drm_file)
		return -EINVAL;

1445
	if (pdd->drm_priv)
1446
		return -EBUSY;
1447 1448 1449 1450

	p = pdd->process;
	dev = pdd->dev;

1451 1452
	ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(
		dev->kgd, drm_file, p->pasid,
1453
		&p->kgd_process_info, &p->ef);
1454
	if (ret) {
1455
		pr_err("Failed to create process VM object\n");
1456
		return ret;
1457
	}
1458
	pdd->drm_priv = drm_file->private_data;
1459

1460 1461 1462
	ret = kfd_process_device_reserve_ib_mem(pdd);
	if (ret)
		goto err_reserve_ib_mem;
1463 1464 1465 1466
	ret = kfd_process_device_init_cwsr_dgpu(pdd);
	if (ret)
		goto err_init_cwsr;

1467 1468 1469
	pdd->drm_file = drm_file;

	return 0;
1470 1471

err_init_cwsr:
1472
err_reserve_ib_mem:
1473
	kfd_process_device_free_bos(pdd);
1474
	pdd->drm_priv = NULL;
1475 1476

	return ret;
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
}

/*
 * Direct the IOMMU to bind the process (specifically the pasid->mm)
 * to the device.
 * Unbinding occurs when the process dies or the device is removed.
 *
 * Assumes that the process lock is held.
 */
struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
							struct kfd_process *p)
{
1489
	struct kfd_process_device *pdd;
1490
	int err;
1491

1492 1493 1494
	pdd = kfd_get_process_device_data(dev, p);
	if (!pdd) {
		pr_err("Process device data doesn't exist\n");
1495
		return ERR_PTR(-ENOMEM);
1496
	}
1497

1498
	if (!pdd->drm_priv)
1499 1500
		return ERR_PTR(-ENODEV);

1501 1502 1503 1504 1505 1506 1507
	/*
	 * signal runtime-pm system to auto resume and prevent
	 * further runtime suspend once device pdd is created until
	 * pdd is destroyed.
	 */
	if (!pdd->runtime_inuse) {
		err = pm_runtime_get_sync(dev->ddev->dev);
1508 1509
		if (err < 0) {
			pm_runtime_put_autosuspend(dev->ddev->dev);
1510
			return ERR_PTR(err);
1511
		}
1512 1513
	}

1514 1515
	err = kfd_iommu_bind_process_to_device(pdd);
	if (err)
1516
		goto out;
1517

1518 1519 1520 1521 1522
	/*
	 * make sure that runtime_usage counter is incremented just once
	 * per pdd
	 */
	pdd->runtime_inuse = true;
1523

1524
	return pdd;
1525 1526 1527 1528 1529 1530 1531 1532 1533

out:
	/* balance runpm reference count and exit with error */
	if (!pdd->runtime_inuse) {
		pm_runtime_mark_last_busy(dev->ddev->dev);
		pm_runtime_put_autosuspend(dev->ddev->dev);
	}

	return ERR_PTR(err);
1534 1535
}

1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
/* Create specific handle mapped to mem from process local memory idr
 * Assumes that the process lock is held.
 */
int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
					void *mem)
{
	return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
}

/* Translate specific handle from process local memory idr
 * Assumes that the process lock is held.
 */
void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
					int handle)
{
	if (handle < 0)
		return NULL;

	return idr_find(&pdd->alloc_idr, handle);
}

/* Remove specific handle from process local memory idr
 * Assumes that the process lock is held.
 */
void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
					int handle)
{
	if (handle >= 0)
		idr_remove(&pdd->alloc_idr, handle);
}

1567
/* This increments the process->ref counter. */
1568
struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid)
1569
{
1570
	struct kfd_process *p, *ret_p = NULL;
1571 1572 1573 1574 1575 1576
	unsigned int temp;

	int idx = srcu_read_lock(&kfd_processes_srcu);

	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
		if (p->pasid == pasid) {
1577
			kref_get(&p->ref);
1578
			ret_p = p;
1579 1580 1581 1582 1583 1584
			break;
		}
	}

	srcu_read_unlock(&kfd_processes_srcu, idx);

1585
	return ret_p;
1586
}
F
Felix Kuehling 已提交
1587

1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
/* This increments the process->ref counter. */
struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
{
	struct kfd_process *p;

	int idx = srcu_read_lock(&kfd_processes_srcu);

	p = find_process_by_mm(mm);
	if (p)
		kref_get(&p->ref);

	srcu_read_unlock(&kfd_processes_srcu, idx);

	return p;
}

1604
/* kfd_process_evict_queues - Evict all user queues of a process
1605 1606 1607 1608
 *
 * Eviction is reference-counted per process-device. This means multiple
 * evictions from different sources can be nested safely.
 */
1609
int kfd_process_evict_queues(struct kfd_process *p)
1610 1611
{
	int r = 0;
1612
	int i;
1613 1614
	unsigned int n_evicted = 0;

1615 1616 1617
	for (i = 0; i < p->n_pdds; i++) {
		struct kfd_process_device *pdd = p->pdds[i];

1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
		r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
							    &pdd->qpd);
		if (r) {
			pr_err("Failed to evict process queues\n");
			goto fail;
		}
		n_evicted++;
	}

	return r;

fail:
	/* To keep state consistent, roll back partial eviction by
	 * restoring queues
	 */
1633 1634 1635
	for (i = 0; i < p->n_pdds; i++) {
		struct kfd_process_device *pdd = p->pdds[i];

1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
		if (n_evicted == 0)
			break;
		if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
							      &pdd->qpd))
			pr_err("Failed to restore queues\n");

		n_evicted--;
	}

	return r;
}

1648
/* kfd_process_restore_queues - Restore all user queues of a process */
1649
int kfd_process_restore_queues(struct kfd_process *p)
1650 1651
{
	int r, ret = 0;
1652 1653 1654 1655
	int i;

	for (i = 0; i < p->n_pdds; i++) {
		struct kfd_process_device *pdd = p->pdds[i];
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668

		r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
							      &pdd->qpd);
		if (r) {
			pr_err("Failed to restore process queues\n");
			if (!ret)
				ret = r;
		}
	}

	return ret;
}

1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id)
{
	int i;

	for (i = 0; i < p->n_pdds; i++)
		if (p->pdds[i] && gpu_id == p->pdds[i]->dev->id)
			return i;
	return -EINVAL;
}

1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
static void evict_process_worker(struct work_struct *work)
{
	int ret;
	struct kfd_process *p;
	struct delayed_work *dwork;

	dwork = to_delayed_work(work);

	/* Process termination destroys this worker thread. So during the
	 * lifetime of this thread, kfd_process p will be valid
	 */
	p = container_of(dwork, struct kfd_process, eviction_work);
	WARN_ONCE(p->last_eviction_seqno != p->ef->seqno,
		  "Eviction fence mismatch\n");

	/* Narrow window of overlap between restore and evict work
	 * item is possible. Once amdgpu_amdkfd_gpuvm_restore_process_bos
	 * unreserves KFD BOs, it is possible to evicted again. But
	 * restore has few more steps of finish. So lets wait for any
	 * previous restore work to complete
	 */
	flush_delayed_work(&p->restore_work);

1702
	pr_debug("Started evicting pasid 0x%x\n", p->pasid);
1703
	ret = kfd_process_evict_queues(p);
1704 1705 1706 1707
	if (!ret) {
		dma_fence_signal(p->ef);
		dma_fence_put(p->ef);
		p->ef = NULL;
1708
		queue_delayed_work(kfd_restore_wq, &p->restore_work,
1709 1710
				msecs_to_jiffies(PROCESS_RESTORE_TIME_MS));

1711
		pr_debug("Finished evicting pasid 0x%x\n", p->pasid);
1712
	} else
1713
		pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid);
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
}

static void restore_process_worker(struct work_struct *work)
{
	struct delayed_work *dwork;
	struct kfd_process *p;
	int ret = 0;

	dwork = to_delayed_work(work);

	/* Process termination destroys this worker thread. So during the
	 * lifetime of this thread, kfd_process p will be valid
	 */
	p = container_of(dwork, struct kfd_process, restore_work);
1728
	pr_debug("Started restoring pasid 0x%x\n", p->pasid);
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740

	/* Setting last_restore_timestamp before successful restoration.
	 * Otherwise this would have to be set by KGD (restore_process_bos)
	 * before KFD BOs are unreserved. If not, the process can be evicted
	 * again before the timestamp is set.
	 * If restore fails, the timestamp will be set again in the next
	 * attempt. This would mean that the minimum GPU quanta would be
	 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two
	 * functions)
	 */

	p->last_restore_timestamp = get_jiffies_64();
A
Amber Lin 已提交
1741
	ret = amdgpu_amdkfd_gpuvm_restore_process_bos(p->kgd_process_info,
1742 1743
						     &p->ef);
	if (ret) {
1744
		pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n",
1745
			 p->pasid, PROCESS_BACK_OFF_TIME_MS);
1746
		ret = queue_delayed_work(kfd_restore_wq, &p->restore_work,
1747 1748 1749 1750 1751
				msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS));
		WARN(!ret, "reschedule restore work failed\n");
		return;
	}

1752
	ret = kfd_process_restore_queues(p);
1753
	if (!ret)
1754
		pr_debug("Finished restoring pasid 0x%x\n", p->pasid);
1755
	else
1756
		pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid);
1757 1758 1759 1760 1761 1762 1763 1764
}

void kfd_suspend_all_processes(void)
{
	struct kfd_process *p;
	unsigned int temp;
	int idx = srcu_read_lock(&kfd_processes_srcu);

1765
	WARN(debug_evictions, "Evicting all processes");
1766 1767 1768 1769
	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
		cancel_delayed_work_sync(&p->eviction_work);
		cancel_delayed_work_sync(&p->restore_work);

1770
		if (kfd_process_evict_queues(p))
1771
			pr_err("Failed to suspend process 0x%x\n", p->pasid);
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
		dma_fence_signal(p->ef);
		dma_fence_put(p->ef);
		p->ef = NULL;
	}
	srcu_read_unlock(&kfd_processes_srcu, idx);
}

int kfd_resume_all_processes(void)
{
	struct kfd_process *p;
	unsigned int temp;
	int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);

	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1786
		if (!queue_delayed_work(kfd_restore_wq, &p->restore_work, 0)) {
1787 1788 1789 1790 1791 1792 1793 1794 1795
			pr_err("Restore process %d failed during resume\n",
			       p->pasid);
			ret = -EFAULT;
		}
	}
	srcu_read_unlock(&kfd_processes_srcu, idx);
	return ret;
}

1796
int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process,
F
Felix Kuehling 已提交
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
			  struct vm_area_struct *vma)
{
	struct kfd_process_device *pdd;
	struct qcm_process_device *qpd;

	if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
		pr_err("Incorrect CWSR mapping size.\n");
		return -EINVAL;
	}

	pdd = kfd_get_process_device_data(dev, process);
	if (!pdd)
		return -EINVAL;
	qpd = &pdd->qpd;

	qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
					get_order(KFD_CWSR_TBA_TMA_SIZE));
	if (!qpd->cwsr_kaddr) {
		pr_err("Error allocating per process CWSR buffer.\n");
		return -ENOMEM;
	}

	vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND
		| VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP;
	/* Mapping pages to user process */
	return remap_pfn_range(vma, vma->vm_start,
			       PFN_DOWN(__pa(qpd->cwsr_kaddr)),
			       KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
}
1826

1827 1828 1829 1830 1831 1832 1833 1834 1835
void kfd_flush_tlb(struct kfd_process_device *pdd)
{
	struct kfd_dev *dev = pdd->dev;

	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
		/* Nothing to flush until a VMID is assigned, which
		 * only happens when the first queue is created.
		 */
		if (pdd->qpd.vmid)
1836 1837
			amdgpu_amdkfd_flush_gpu_tlb_vmid(dev->kgd,
							pdd->qpd.vmid);
1838
	} else {
1839 1840
		amdgpu_amdkfd_flush_gpu_tlb_pasid(dev->kgd,
						pdd->process->pasid);
1841 1842 1843
	}
}

1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
#if defined(CONFIG_DEBUG_FS)

int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
{
	struct kfd_process *p;
	unsigned int temp;
	int r = 0;

	int idx = srcu_read_lock(&kfd_processes_srcu);

	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1855
		seq_printf(m, "Process %d PASID 0x%x:\n",
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
			   p->lead_thread->tgid, p->pasid);

		mutex_lock(&p->mutex);
		r = pqm_debugfs_mqds(m, &p->pqm);
		mutex_unlock(&p->mutex);

		if (r)
			break;
	}

	srcu_read_unlock(&kfd_processes_srcu, idx);

	return r;
}

#endif
1872