adv7604.c 88.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * adv7604 - Analog Devices ADV7604 video decoder driver
 *
 * Copyright 2012 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
 *
 * This program is free software; you may redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; version 2 of the License.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 *
 */

/*
 * References (c = chapter, p = page):
 * REF_01 - Analog devices, ADV7604, Register Settings Recommendations,
 *		Revision 2.5, June 2010
 * REF_02 - Analog devices, Register map documentation, Documentation of
 *		the register maps, Software manual, Rev. F, June 2010
 * REF_03 - Analog devices, ADV7604, Hardware Manual, Rev. F, August 2010
 */

30
#include <linux/delay.h>
31
#include <linux/gpio/consumer.h>
32
#include <linux/i2c.h>
33 34 35
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
36
#include <linux/v4l2-dv-timings.h>
37 38
#include <linux/videodev2.h>
#include <linux/workqueue.h>
39 40

#include <media/adv7604.h>
41
#include <media/v4l2-ctrls.h>
42
#include <media/v4l2-device.h>
43
#include <media/v4l2-dv-timings.h>
44
#include <media/v4l2-of.h>
45 46 47 48 49 50 51 52 53 54 55

static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "debug level (0-2)");

MODULE_DESCRIPTION("Analog Devices ADV7604 video decoder driver");
MODULE_AUTHOR("Hans Verkuil <hans.verkuil@cisco.com>");
MODULE_AUTHOR("Mats Randgaard <mats.randgaard@cisco.com>");
MODULE_LICENSE("GPL");

/* ADV7604 system clock frequency */
56
#define ADV76XX_FSC (28636360)
57

58
#define ADV76XX_RGB_OUT					(1 << 1)
59

60
#define ADV76XX_OP_FORMAT_SEL_8BIT			(0 << 0)
61
#define ADV7604_OP_FORMAT_SEL_10BIT			(1 << 0)
62
#define ADV76XX_OP_FORMAT_SEL_12BIT			(2 << 0)
63

64
#define ADV76XX_OP_MODE_SEL_SDR_422			(0 << 5)
65
#define ADV7604_OP_MODE_SEL_DDR_422			(1 << 5)
66
#define ADV76XX_OP_MODE_SEL_SDR_444			(2 << 5)
67
#define ADV7604_OP_MODE_SEL_DDR_444			(3 << 5)
68
#define ADV76XX_OP_MODE_SEL_SDR_422_2X			(4 << 5)
69 70
#define ADV7604_OP_MODE_SEL_ADI_CM			(5 << 5)

71 72 73 74 75 76
#define ADV76XX_OP_CH_SEL_GBR				(0 << 5)
#define ADV76XX_OP_CH_SEL_GRB				(1 << 5)
#define ADV76XX_OP_CH_SEL_BGR				(2 << 5)
#define ADV76XX_OP_CH_SEL_RGB				(3 << 5)
#define ADV76XX_OP_CH_SEL_BRG				(4 << 5)
#define ADV76XX_OP_CH_SEL_RBG				(5 << 5)
77

78
#define ADV76XX_OP_SWAP_CB_CR				(1 << 0)
79

80
enum adv76xx_type {
81 82 83 84
	ADV7604,
	ADV7611,
};

85
struct adv76xx_reg_seq {
86 87 88 89
	unsigned int reg;
	u8 val;
};

90
struct adv76xx_format_info {
91
	u32 code;
92 93 94 95 96 97
	u8 op_ch_sel;
	bool rgb_out;
	bool swap_cb_cr;
	u8 op_format_sel;
};

98 99
struct adv76xx_chip_info {
	enum adv76xx_type type;
100 101 102 103 104 105 106 107 108 109 110 111

	bool has_afe;
	unsigned int max_port;
	unsigned int num_dv_ports;

	unsigned int edid_enable_reg;
	unsigned int edid_status_reg;
	unsigned int lcf_reg;

	unsigned int cable_det_mask;
	unsigned int tdms_lock_mask;
	unsigned int fmt_change_digital_mask;
112
	unsigned int cp_csc;
113

114
	const struct adv76xx_format_info *formats;
115 116
	unsigned int nformats;

117 118 119 120 121 122
	void (*set_termination)(struct v4l2_subdev *sd, bool enable);
	void (*setup_irqs)(struct v4l2_subdev *sd);
	unsigned int (*read_hdmi_pixelclock)(struct v4l2_subdev *sd);
	unsigned int (*read_cable_det)(struct v4l2_subdev *sd);

	/* 0 = AFE, 1 = HDMI */
123
	const struct adv76xx_reg_seq *recommended_settings[2];
124 125 126
	unsigned int num_recommended_settings[2];

	unsigned long page_mask;
127 128 129 130 131 132 133 134 135 136 137 138 139 140

	/* Masks for timings */
	unsigned int linewidth_mask;
	unsigned int field0_height_mask;
	unsigned int field1_height_mask;
	unsigned int hfrontporch_mask;
	unsigned int hsync_mask;
	unsigned int hbackporch_mask;
	unsigned int field0_vfrontporch_mask;
	unsigned int field1_vfrontporch_mask;
	unsigned int field0_vsync_mask;
	unsigned int field1_vsync_mask;
	unsigned int field0_vbackporch_mask;
	unsigned int field1_vbackporch_mask;
141 142
};

143 144 145 146 147 148 149
/*
 **********************************************************************
 *
 *  Arrays with configuration parameters for the ADV7604
 *
 **********************************************************************
 */
150

151 152 153
struct adv76xx_state {
	const struct adv76xx_chip_info *info;
	struct adv76xx_platform_data pdata;
154

155 156
	struct gpio_desc *hpd_gpio[4];

157
	struct v4l2_subdev sd;
158
	struct media_pad pads[ADV76XX_PAD_MAX];
159
	unsigned int source_pad;
160

161
	struct v4l2_ctrl_handler hdl;
162

163
	enum adv76xx_pad selected_input;
164

165
	struct v4l2_dv_timings timings;
166
	const struct adv76xx_format_info *format;
167

168 169 170 171 172
	struct {
		u8 edid[256];
		u32 present;
		unsigned blocks;
	} edid;
173
	u16 spa_port_a[2];
174 175 176 177
	struct v4l2_fract aspect_ratio;
	u32 rgb_quantization_range;
	struct workqueue_struct *work_queues;
	struct delayed_work delayed_work_enable_hotplug;
178
	bool restart_stdi_once;
179 180

	/* i2c clients */
181
	struct i2c_client *i2c_clients[ADV76XX_PAGE_MAX];
182 183 184 185 186 187 188 189 190

	/* controls */
	struct v4l2_ctrl *detect_tx_5v_ctrl;
	struct v4l2_ctrl *analog_sampling_phase_ctrl;
	struct v4l2_ctrl *free_run_color_manual_ctrl;
	struct v4l2_ctrl *free_run_color_ctrl;
	struct v4l2_ctrl *rgb_quantization_range_ctrl;
};

191
static bool adv76xx_has_afe(struct adv76xx_state *state)
192 193 194 195
{
	return state->info->has_afe;
}

196
/* Supported CEA and DMT timings */
197
static const struct v4l2_dv_timings adv76xx_timings[] = {
198 199 200 201 202 203 204 205 206 207 208 209
	V4L2_DV_BT_CEA_720X480P59_94,
	V4L2_DV_BT_CEA_720X576P50,
	V4L2_DV_BT_CEA_1280X720P24,
	V4L2_DV_BT_CEA_1280X720P25,
	V4L2_DV_BT_CEA_1280X720P50,
	V4L2_DV_BT_CEA_1280X720P60,
	V4L2_DV_BT_CEA_1920X1080P24,
	V4L2_DV_BT_CEA_1920X1080P25,
	V4L2_DV_BT_CEA_1920X1080P30,
	V4L2_DV_BT_CEA_1920X1080P50,
	V4L2_DV_BT_CEA_1920X1080P60,

210
	/* sorted by DMT ID */
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
	V4L2_DV_BT_DMT_640X350P85,
	V4L2_DV_BT_DMT_640X400P85,
	V4L2_DV_BT_DMT_720X400P85,
	V4L2_DV_BT_DMT_640X480P60,
	V4L2_DV_BT_DMT_640X480P72,
	V4L2_DV_BT_DMT_640X480P75,
	V4L2_DV_BT_DMT_640X480P85,
	V4L2_DV_BT_DMT_800X600P56,
	V4L2_DV_BT_DMT_800X600P60,
	V4L2_DV_BT_DMT_800X600P72,
	V4L2_DV_BT_DMT_800X600P75,
	V4L2_DV_BT_DMT_800X600P85,
	V4L2_DV_BT_DMT_848X480P60,
	V4L2_DV_BT_DMT_1024X768P60,
	V4L2_DV_BT_DMT_1024X768P70,
	V4L2_DV_BT_DMT_1024X768P75,
	V4L2_DV_BT_DMT_1024X768P85,
	V4L2_DV_BT_DMT_1152X864P75,
	V4L2_DV_BT_DMT_1280X768P60_RB,
	V4L2_DV_BT_DMT_1280X768P60,
	V4L2_DV_BT_DMT_1280X768P75,
	V4L2_DV_BT_DMT_1280X768P85,
	V4L2_DV_BT_DMT_1280X800P60_RB,
	V4L2_DV_BT_DMT_1280X800P60,
	V4L2_DV_BT_DMT_1280X800P75,
	V4L2_DV_BT_DMT_1280X800P85,
	V4L2_DV_BT_DMT_1280X960P60,
	V4L2_DV_BT_DMT_1280X960P85,
	V4L2_DV_BT_DMT_1280X1024P60,
	V4L2_DV_BT_DMT_1280X1024P75,
	V4L2_DV_BT_DMT_1280X1024P85,
	V4L2_DV_BT_DMT_1360X768P60,
	V4L2_DV_BT_DMT_1400X1050P60_RB,
	V4L2_DV_BT_DMT_1400X1050P60,
	V4L2_DV_BT_DMT_1400X1050P75,
	V4L2_DV_BT_DMT_1400X1050P85,
	V4L2_DV_BT_DMT_1440X900P60_RB,
	V4L2_DV_BT_DMT_1440X900P60,
	V4L2_DV_BT_DMT_1600X1200P60,
	V4L2_DV_BT_DMT_1680X1050P60_RB,
	V4L2_DV_BT_DMT_1680X1050P60,
	V4L2_DV_BT_DMT_1792X1344P60,
	V4L2_DV_BT_DMT_1856X1392P60,
	V4L2_DV_BT_DMT_1920X1200P60_RB,
255
	V4L2_DV_BT_DMT_1366X768P60_RB,
256 257 258 259 260
	V4L2_DV_BT_DMT_1366X768P60,
	V4L2_DV_BT_DMT_1920X1080P60,
	{ },
};

261
struct adv76xx_video_standards {
262 263 264 265 266 267
	struct v4l2_dv_timings timings;
	u8 vid_std;
	u8 v_freq;
};

/* sorted by number of lines */
268
static const struct adv76xx_video_standards adv7604_prim_mode_comp[] = {
269 270 271 272 273 274 275 276 277 278 279 280 281 282
	/* { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 }, TODO flickering */
	{ V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
	{ V4L2_DV_BT_CEA_1280X720P50, 0x19, 0x01 },
	{ V4L2_DV_BT_CEA_1280X720P60, 0x19, 0x00 },
	{ V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
	{ V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
	{ V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
	{ V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
	{ V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
	/* TODO add 1920x1080P60_RB (CVT timing) */
	{ },
};

/* sorted by number of lines */
283
static const struct adv76xx_video_standards adv7604_prim_mode_gr[] = {
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
	{ V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
	{ V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
	{ V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
	{ V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
	{ V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
	{ V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
	{ V4L2_DV_BT_DMT_1360X768P60, 0x12, 0x00 },
	{ V4L2_DV_BT_DMT_1366X768P60, 0x13, 0x00 },
	{ V4L2_DV_BT_DMT_1400X1050P60, 0x14, 0x00 },
	{ V4L2_DV_BT_DMT_1400X1050P75, 0x15, 0x00 },
	{ V4L2_DV_BT_DMT_1600X1200P60, 0x16, 0x00 }, /* TODO not tested */
	/* TODO add 1600X1200P60_RB (not a DMT timing) */
	{ V4L2_DV_BT_DMT_1680X1050P60, 0x18, 0x00 },
	{ V4L2_DV_BT_DMT_1920X1200P60_RB, 0x19, 0x00 }, /* TODO not tested */
	{ },
};

/* sorted by number of lines */
311
static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_comp[] = {
312 313 314 315 316 317 318 319 320 321 322 323 324
	{ V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 },
	{ V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
	{ V4L2_DV_BT_CEA_1280X720P50, 0x13, 0x01 },
	{ V4L2_DV_BT_CEA_1280X720P60, 0x13, 0x00 },
	{ V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
	{ V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
	{ V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
	{ V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
	{ V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
	{ },
};

/* sorted by number of lines */
325
static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_gr[] = {
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
	{ V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
	{ V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
	{ V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
	{ V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
	{ V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
	{ V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
	{ },
};

344 345 346 347 348
static const struct v4l2_event adv76xx_ev_fmt = {
	.type = V4L2_EVENT_SOURCE_CHANGE,
	.u.src_change.changes = V4L2_EVENT_SRC_CH_RESOLUTION,
};

349 350
/* ----------------------------------------------------------------------- */

351
static inline struct adv76xx_state *to_state(struct v4l2_subdev *sd)
352
{
353
	return container_of(sd, struct adv76xx_state, sd);
354 355 356 357
}

static inline unsigned htotal(const struct v4l2_bt_timings *t)
{
358
	return V4L2_DV_BT_FRAME_WIDTH(t);
359 360 361 362
}

static inline unsigned vtotal(const struct v4l2_bt_timings *t)
{
363
	return V4L2_DV_BT_FRAME_HEIGHT(t);
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
}

/* ----------------------------------------------------------------------- */

static s32 adv_smbus_read_byte_data_check(struct i2c_client *client,
		u8 command, bool check)
{
	union i2c_smbus_data data;

	if (!i2c_smbus_xfer(client->adapter, client->addr, client->flags,
			I2C_SMBUS_READ, command,
			I2C_SMBUS_BYTE_DATA, &data))
		return data.byte;
	if (check)
		v4l_err(client, "error reading %02x, %02x\n",
				client->addr, command);
	return -EIO;
}

383 384
static s32 adv_smbus_read_byte_data(struct adv76xx_state *state,
				    enum adv76xx_page page, u8 command)
385
{
386 387
	return adv_smbus_read_byte_data_check(state->i2c_clients[page],
					      command, true);
388 389
}

390 391
static s32 adv_smbus_write_byte_data(struct adv76xx_state *state,
				     enum adv76xx_page page, u8 command,
392
				     u8 value)
393
{
394
	struct i2c_client *client = state->i2c_clients[page];
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
	union i2c_smbus_data data;
	int err;
	int i;

	data.byte = value;
	for (i = 0; i < 3; i++) {
		err = i2c_smbus_xfer(client->adapter, client->addr,
				client->flags,
				I2C_SMBUS_WRITE, command,
				I2C_SMBUS_BYTE_DATA, &data);
		if (!err)
			break;
	}
	if (err < 0)
		v4l_err(client, "error writing %02x, %02x, %02x\n",
				client->addr, command, value);
	return err;
}

414 415
static s32 adv_smbus_write_i2c_block_data(struct adv76xx_state *state,
					  enum adv76xx_page page, u8 command,
416
					  unsigned length, const u8 *values)
417
{
418
	struct i2c_client *client = state->i2c_clients[page];
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
	union i2c_smbus_data data;

	if (length > I2C_SMBUS_BLOCK_MAX)
		length = I2C_SMBUS_BLOCK_MAX;
	data.block[0] = length;
	memcpy(data.block + 1, values, length);
	return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
			      I2C_SMBUS_WRITE, command,
			      I2C_SMBUS_I2C_BLOCK_DATA, &data);
}

/* ----------------------------------------------------------------------- */

static inline int io_read(struct v4l2_subdev *sd, u8 reg)
{
434
	struct adv76xx_state *state = to_state(sd);
435

436
	return adv_smbus_read_byte_data(state, ADV76XX_PAGE_IO, reg);
437 438 439 440
}

static inline int io_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
441
	struct adv76xx_state *state = to_state(sd);
442

443
	return adv_smbus_write_byte_data(state, ADV76XX_PAGE_IO, reg, val);
444 445
}

446
static inline int io_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
447
{
448
	return io_write(sd, reg, (io_read(sd, reg) & ~mask) | val);
449 450 451 452
}

static inline int avlink_read(struct v4l2_subdev *sd, u8 reg)
{
453
	struct adv76xx_state *state = to_state(sd);
454

455
	return adv_smbus_read_byte_data(state, ADV7604_PAGE_AVLINK, reg);
456 457 458 459
}

static inline int avlink_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
460
	struct adv76xx_state *state = to_state(sd);
461

462
	return adv_smbus_write_byte_data(state, ADV7604_PAGE_AVLINK, reg, val);
463 464 465 466
}

static inline int cec_read(struct v4l2_subdev *sd, u8 reg)
{
467
	struct adv76xx_state *state = to_state(sd);
468

469
	return adv_smbus_read_byte_data(state, ADV76XX_PAGE_CEC, reg);
470 471 472 473
}

static inline int cec_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
474
	struct adv76xx_state *state = to_state(sd);
475

476
	return adv_smbus_write_byte_data(state, ADV76XX_PAGE_CEC, reg, val);
477 478 479 480
}

static inline int infoframe_read(struct v4l2_subdev *sd, u8 reg)
{
481
	struct adv76xx_state *state = to_state(sd);
482

483
	return adv_smbus_read_byte_data(state, ADV76XX_PAGE_INFOFRAME, reg);
484 485 486 487
}

static inline int infoframe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
488
	struct adv76xx_state *state = to_state(sd);
489

490
	return adv_smbus_write_byte_data(state, ADV76XX_PAGE_INFOFRAME,
491
					 reg, val);
492 493 494 495
}

static inline int afe_read(struct v4l2_subdev *sd, u8 reg)
{
496
	struct adv76xx_state *state = to_state(sd);
497

498
	return adv_smbus_read_byte_data(state, ADV76XX_PAGE_AFE, reg);
499 500 501 502
}

static inline int afe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
503
	struct adv76xx_state *state = to_state(sd);
504

505
	return adv_smbus_write_byte_data(state, ADV76XX_PAGE_AFE, reg, val);
506 507 508 509
}

static inline int rep_read(struct v4l2_subdev *sd, u8 reg)
{
510
	struct adv76xx_state *state = to_state(sd);
511

512
	return adv_smbus_read_byte_data(state, ADV76XX_PAGE_REP, reg);
513 514 515 516
}

static inline int rep_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
517
	struct adv76xx_state *state = to_state(sd);
518

519
	return adv_smbus_write_byte_data(state, ADV76XX_PAGE_REP, reg, val);
520 521
}

522
static inline int rep_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
523
{
524
	return rep_write(sd, reg, (rep_read(sd, reg) & ~mask) | val);
525 526 527 528
}

static inline int edid_read(struct v4l2_subdev *sd, u8 reg)
{
529
	struct adv76xx_state *state = to_state(sd);
530

531
	return adv_smbus_read_byte_data(state, ADV76XX_PAGE_EDID, reg);
532 533 534 535
}

static inline int edid_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
536
	struct adv76xx_state *state = to_state(sd);
537

538
	return adv_smbus_write_byte_data(state, ADV76XX_PAGE_EDID, reg, val);
539 540 541 542 543
}

static inline int edid_write_block(struct v4l2_subdev *sd,
					unsigned len, const u8 *val)
{
544
	struct adv76xx_state *state = to_state(sd);
545 546 547 548 549 550
	int err = 0;
	int i;

	v4l2_dbg(2, debug, sd, "%s: write EDID block (%d byte)\n", __func__, len);

	for (i = 0; !err && i < len; i += I2C_SMBUS_BLOCK_MAX)
551
		err = adv_smbus_write_i2c_block_data(state, ADV76XX_PAGE_EDID,
552
				i, I2C_SMBUS_BLOCK_MAX, val + i);
553 554
	return err;
}
555

556
static void adv76xx_set_hpd(struct adv76xx_state *state, unsigned int hpd)
557 558 559
{
	unsigned int i;

560
	for (i = 0; i < state->info->num_dv_ports; ++i)
561 562
		gpiod_set_value_cansleep(state->hpd_gpio[i], hpd & BIT(i));

563
	v4l2_subdev_notify(&state->sd, ADV76XX_HOTPLUG, &hpd);
564 565
}

566
static void adv76xx_delayed_work_enable_hotplug(struct work_struct *work)
567 568
{
	struct delayed_work *dwork = to_delayed_work(work);
569
	struct adv76xx_state *state = container_of(dwork, struct adv76xx_state,
570 571
						delayed_work_enable_hotplug);
	struct v4l2_subdev *sd = &state->sd;
572

573
	v4l2_dbg(2, debug, sd, "%s: enable hotplug\n", __func__);
574

575
	adv76xx_set_hpd(state, state->edid.present);
576 577 578 579
}

static inline int hdmi_read(struct v4l2_subdev *sd, u8 reg)
{
580
	struct adv76xx_state *state = to_state(sd);
581

582
	return adv_smbus_read_byte_data(state, ADV76XX_PAGE_HDMI, reg);
583 584
}

585 586 587 588 589
static u16 hdmi_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
{
	return ((hdmi_read(sd, reg) << 8) | hdmi_read(sd, reg + 1)) & mask;
}

590 591
static inline int hdmi_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
592
	struct adv76xx_state *state = to_state(sd);
593

594
	return adv_smbus_write_byte_data(state, ADV76XX_PAGE_HDMI, reg, val);
595 596
}

597
static inline int hdmi_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
598
{
599
	return hdmi_write(sd, reg, (hdmi_read(sd, reg) & ~mask) | val);
600 601
}

602 603
static inline int test_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
604
	struct adv76xx_state *state = to_state(sd);
605

606
	return adv_smbus_write_byte_data(state, ADV76XX_PAGE_TEST, reg, val);
607 608 609 610
}

static inline int cp_read(struct v4l2_subdev *sd, u8 reg)
{
611
	struct adv76xx_state *state = to_state(sd);
612

613
	return adv_smbus_read_byte_data(state, ADV76XX_PAGE_CP, reg);
614 615
}

616 617 618 619 620
static u16 cp_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
{
	return ((cp_read(sd, reg) << 8) | cp_read(sd, reg + 1)) & mask;
}

621 622
static inline int cp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
623
	struct adv76xx_state *state = to_state(sd);
624

625
	return adv_smbus_write_byte_data(state, ADV76XX_PAGE_CP, reg, val);
626 627
}

628
static inline int cp_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
629
{
630
	return cp_write(sd, reg, (cp_read(sd, reg) & ~mask) | val);
631 632 633 634
}

static inline int vdp_read(struct v4l2_subdev *sd, u8 reg)
{
635
	struct adv76xx_state *state = to_state(sd);
636

637
	return adv_smbus_read_byte_data(state, ADV7604_PAGE_VDP, reg);
638 639 640 641
}

static inline int vdp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
642
	struct adv76xx_state *state = to_state(sd);
643

644 645
	return adv_smbus_write_byte_data(state, ADV7604_PAGE_VDP, reg, val);
}
646

647 648
#define ADV76XX_REG(page, offset)	(((page) << 8) | (offset))
#define ADV76XX_REG_SEQ_TERM		0xffff
649 650

#ifdef CONFIG_VIDEO_ADV_DEBUG
651
static int adv76xx_read_reg(struct v4l2_subdev *sd, unsigned int reg)
652
{
653
	struct adv76xx_state *state = to_state(sd);
654 655 656 657 658 659 660
	unsigned int page = reg >> 8;

	if (!(BIT(page) & state->info->page_mask))
		return -EINVAL;

	reg &= 0xff;

661
	return adv_smbus_read_byte_data(state, page, reg);
662 663 664
}
#endif

665
static int adv76xx_write_reg(struct v4l2_subdev *sd, unsigned int reg, u8 val)
666
{
667
	struct adv76xx_state *state = to_state(sd);
668 669 670 671 672 673 674
	unsigned int page = reg >> 8;

	if (!(BIT(page) & state->info->page_mask))
		return -EINVAL;

	reg &= 0xff;

675
	return adv_smbus_write_byte_data(state, page, reg, val);
676 677
}

678 679
static void adv76xx_write_reg_seq(struct v4l2_subdev *sd,
				  const struct adv76xx_reg_seq *reg_seq)
680 681 682
{
	unsigned int i;

683 684
	for (i = 0; reg_seq[i].reg != ADV76XX_REG_SEQ_TERM; i++)
		adv76xx_write_reg(sd, reg_seq[i].reg, reg_seq[i].val);
685 686
}

687 688 689 690
/* -----------------------------------------------------------------------------
 * Format helpers
 */

691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
static const struct adv76xx_format_info adv7604_formats[] = {
	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YUYV10_2X10, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
	{ MEDIA_BUS_FMT_YVYU10_2X10, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
	{ MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_UYVY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
	{ MEDIA_BUS_FMT_VYUY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
	{ MEDIA_BUS_FMT_YUYV10_1X20, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
	{ MEDIA_BUS_FMT_YVYU10_1X20, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
	{ MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
730 731
};

732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
static const struct adv76xx_format_info adv7611_formats[] = {
	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
759 760
};

761 762
static const struct adv76xx_format_info *
adv76xx_format_info(struct adv76xx_state *state, u32 code)
763 764 765 766 767 768 769 770 771 772 773
{
	unsigned int i;

	for (i = 0; i < state->info->nformats; ++i) {
		if (state->info->formats[i].code == code)
			return &state->info->formats[i];
	}

	return NULL;
}

774 775
/* ----------------------------------------------------------------------- */

776 777
static inline bool is_analog_input(struct v4l2_subdev *sd)
{
778
	struct adv76xx_state *state = to_state(sd);
779

780 781
	return state->selected_input == ADV7604_PAD_VGA_RGB ||
	       state->selected_input == ADV7604_PAD_VGA_COMP;
782 783 784 785
}

static inline bool is_digital_input(struct v4l2_subdev *sd)
{
786
	struct adv76xx_state *state = to_state(sd);
787

788
	return state->selected_input == ADV76XX_PAD_HDMI_PORT_A ||
789 790 791
	       state->selected_input == ADV7604_PAD_HDMI_PORT_B ||
	       state->selected_input == ADV7604_PAD_HDMI_PORT_C ||
	       state->selected_input == ADV7604_PAD_HDMI_PORT_D;
792 793 794 795
}

/* ----------------------------------------------------------------------- */

796
#ifdef CONFIG_VIDEO_ADV_DEBUG
797
static void adv76xx_inv_register(struct v4l2_subdev *sd)
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
{
	v4l2_info(sd, "0x000-0x0ff: IO Map\n");
	v4l2_info(sd, "0x100-0x1ff: AVLink Map\n");
	v4l2_info(sd, "0x200-0x2ff: CEC Map\n");
	v4l2_info(sd, "0x300-0x3ff: InfoFrame Map\n");
	v4l2_info(sd, "0x400-0x4ff: ESDP Map\n");
	v4l2_info(sd, "0x500-0x5ff: DPP Map\n");
	v4l2_info(sd, "0x600-0x6ff: AFE Map\n");
	v4l2_info(sd, "0x700-0x7ff: Repeater Map\n");
	v4l2_info(sd, "0x800-0x8ff: EDID Map\n");
	v4l2_info(sd, "0x900-0x9ff: HDMI Map\n");
	v4l2_info(sd, "0xa00-0xaff: Test Map\n");
	v4l2_info(sd, "0xb00-0xbff: CP Map\n");
	v4l2_info(sd, "0xc00-0xcff: VDP Map\n");
}

814
static int adv76xx_g_register(struct v4l2_subdev *sd,
815 816
					struct v4l2_dbg_register *reg)
{
817 818
	int ret;

819
	ret = adv76xx_read_reg(sd, reg->reg);
820
	if (ret < 0) {
821
		v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
822
		adv76xx_inv_register(sd);
823
		return ret;
824
	}
825 826 827 828

	reg->size = 1;
	reg->val = ret;

829 830 831
	return 0;
}

832
static int adv76xx_s_register(struct v4l2_subdev *sd,
833
					const struct v4l2_dbg_register *reg)
834
{
835
	int ret;
836

837
	ret = adv76xx_write_reg(sd, reg->reg, reg->val);
838
	if (ret < 0) {
839
		v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
840
		adv76xx_inv_register(sd);
841
		return ret;
842
	}
843

844 845 846 847
	return 0;
}
#endif

848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
static unsigned int adv7604_read_cable_det(struct v4l2_subdev *sd)
{
	u8 value = io_read(sd, 0x6f);

	return ((value & 0x10) >> 4)
	     | ((value & 0x08) >> 2)
	     | ((value & 0x04) << 0)
	     | ((value & 0x02) << 2);
}

static unsigned int adv7611_read_cable_det(struct v4l2_subdev *sd)
{
	u8 value = io_read(sd, 0x6f);

	return value & 1;
}

865
static int adv76xx_s_detect_tx_5v_ctrl(struct v4l2_subdev *sd)
866
{
867 868
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
869 870

	return v4l2_ctrl_s_ctrl(state->detect_tx_5v_ctrl,
871
				info->read_cable_det(sd));
872 873
}

874 875
static int find_and_set_predefined_video_timings(struct v4l2_subdev *sd,
		u8 prim_mode,
876
		const struct adv76xx_video_standards *predef_vid_timings,
877 878 879 880 881
		const struct v4l2_dv_timings *timings)
{
	int i;

	for (i = 0; predef_vid_timings[i].timings.bt.width; i++) {
882
		if (!v4l2_match_dv_timings(timings, &predef_vid_timings[i].timings,
883
					is_digital_input(sd) ? 250000 : 1000000))
884 885 886 887 888 889 890 891 892 893 894 895
			continue;
		io_write(sd, 0x00, predef_vid_timings[i].vid_std); /* video std */
		io_write(sd, 0x01, (predef_vid_timings[i].v_freq << 4) +
				prim_mode); /* v_freq and prim mode */
		return 0;
	}

	return -1;
}

static int configure_predefined_video_timings(struct v4l2_subdev *sd,
		struct v4l2_dv_timings *timings)
896
{
897
	struct adv76xx_state *state = to_state(sd);
898 899 900 901
	int err;

	v4l2_dbg(1, debug, sd, "%s", __func__);

902
	if (adv76xx_has_afe(state)) {
903 904 905 906
		/* reset to default values */
		io_write(sd, 0x16, 0x43);
		io_write(sd, 0x17, 0x5a);
	}
907
	/* disable embedded syncs for auto graphics mode */
908
	cp_write_clr_set(sd, 0x81, 0x10, 0x00);
909 910 911 912 913 914 915 916 917 918 919
	cp_write(sd, 0x8f, 0x00);
	cp_write(sd, 0x90, 0x00);
	cp_write(sd, 0xa2, 0x00);
	cp_write(sd, 0xa3, 0x00);
	cp_write(sd, 0xa4, 0x00);
	cp_write(sd, 0xa5, 0x00);
	cp_write(sd, 0xa6, 0x00);
	cp_write(sd, 0xa7, 0x00);
	cp_write(sd, 0xab, 0x00);
	cp_write(sd, 0xac, 0x00);

920
	if (is_analog_input(sd)) {
921 922 923 924 925
		err = find_and_set_predefined_video_timings(sd,
				0x01, adv7604_prim_mode_comp, timings);
		if (err)
			err = find_and_set_predefined_video_timings(sd,
					0x02, adv7604_prim_mode_gr, timings);
926
	} else if (is_digital_input(sd)) {
927
		err = find_and_set_predefined_video_timings(sd,
928
				0x05, adv76xx_prim_mode_hdmi_comp, timings);
929 930
		if (err)
			err = find_and_set_predefined_video_timings(sd,
931
					0x06, adv76xx_prim_mode_hdmi_gr, timings);
932 933 934
	} else {
		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
				__func__, state->selected_input);
935 936 937 938 939 940 941 942 943 944
		err = -1;
	}


	return err;
}

static void configure_custom_video_timings(struct v4l2_subdev *sd,
		const struct v4l2_bt_timings *bt)
{
945
	struct adv76xx_state *state = to_state(sd);
946 947 948 949 950 951 952
	u32 width = htotal(bt);
	u32 height = vtotal(bt);
	u16 cp_start_sav = bt->hsync + bt->hbackporch - 4;
	u16 cp_start_eav = width - bt->hfrontporch;
	u16 cp_start_vbi = height - bt->vfrontporch;
	u16 cp_end_vbi = bt->vsync + bt->vbackporch;
	u16 ch1_fr_ll = (((u32)bt->pixelclock / 100) > 0) ?
953
		((width * (ADV76XX_FSC / 100)) / ((u32)bt->pixelclock / 100)) : 0;
954 955 956 957
	const u8 pll[2] = {
		0xc0 | ((width >> 8) & 0x1f),
		width & 0xff
	};
958 959 960

	v4l2_dbg(2, debug, sd, "%s\n", __func__);

961
	if (is_analog_input(sd)) {
962 963 964 965
		/* auto graphics */
		io_write(sd, 0x00, 0x07); /* video std */
		io_write(sd, 0x01, 0x02); /* prim mode */
		/* enable embedded syncs for auto graphics mode */
966
		cp_write_clr_set(sd, 0x81, 0x10, 0x10);
967

968
		/* Should only be set in auto-graphics mode [REF_02, p. 91-92] */
969 970
		/* setup PLL_DIV_MAN_EN and PLL_DIV_RATIO */
		/* IO-map reg. 0x16 and 0x17 should be written in sequence */
971
		if (adv_smbus_write_i2c_block_data(state, ADV76XX_PAGE_IO,
972
						   0x16, 2, pll))
973 974 975 976
			v4l2_err(sd, "writing to reg 0x16 and 0x17 failed\n");

		/* active video - horizontal timing */
		cp_write(sd, 0xa2, (cp_start_sav >> 4) & 0xff);
977
		cp_write(sd, 0xa3, ((cp_start_sav & 0x0f) << 4) |
978
				   ((cp_start_eav >> 8) & 0x0f));
979 980 981 982
		cp_write(sd, 0xa4, cp_start_eav & 0xff);

		/* active video - vertical timing */
		cp_write(sd, 0xa5, (cp_start_vbi >> 4) & 0xff);
983
		cp_write(sd, 0xa6, ((cp_start_vbi & 0xf) << 4) |
984
				   ((cp_end_vbi >> 8) & 0xf));
985
		cp_write(sd, 0xa7, cp_end_vbi & 0xff);
986
	} else if (is_digital_input(sd)) {
987
		/* set default prim_mode/vid_std for HDMI
988
		   according to [REF_03, c. 4.2] */
989 990
		io_write(sd, 0x00, 0x02); /* video std */
		io_write(sd, 0x01, 0x06); /* prim mode */
991 992 993
	} else {
		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
				__func__, state->selected_input);
994 995
	}

996 997 998 999 1000
	cp_write(sd, 0x8f, (ch1_fr_ll >> 8) & 0x7);
	cp_write(sd, 0x90, ch1_fr_ll & 0xff);
	cp_write(sd, 0xab, (height >> 4) & 0xff);
	cp_write(sd, 0xac, (height & 0x0f) << 4);
}
1001

1002
static void adv76xx_set_offset(struct v4l2_subdev *sd, bool auto_offset, u16 offset_a, u16 offset_b, u16 offset_c)
1003
{
1004
	struct adv76xx_state *state = to_state(sd);
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
	u8 offset_buf[4];

	if (auto_offset) {
		offset_a = 0x3ff;
		offset_b = 0x3ff;
		offset_c = 0x3ff;
	}

	v4l2_dbg(2, debug, sd, "%s: %s offset: a = 0x%x, b = 0x%x, c = 0x%x\n",
			__func__, auto_offset ? "Auto" : "Manual",
			offset_a, offset_b, offset_c);

	offset_buf[0] = (cp_read(sd, 0x77) & 0xc0) | ((offset_a & 0x3f0) >> 4);
	offset_buf[1] = ((offset_a & 0x00f) << 4) | ((offset_b & 0x3c0) >> 6);
	offset_buf[2] = ((offset_b & 0x03f) << 2) | ((offset_c & 0x300) >> 8);
	offset_buf[3] = offset_c & 0x0ff;

	/* Registers must be written in this order with no i2c access in between */
1023
	if (adv_smbus_write_i2c_block_data(state, ADV76XX_PAGE_CP,
1024
					   0x77, 4, offset_buf))
1025 1026 1027
		v4l2_err(sd, "%s: i2c error writing to CP reg 0x77, 0x78, 0x79, 0x7a\n", __func__);
}

1028
static void adv76xx_set_gain(struct v4l2_subdev *sd, bool auto_gain, u16 gain_a, u16 gain_b, u16 gain_c)
1029
{
1030
	struct adv76xx_state *state = to_state(sd);
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
	u8 gain_buf[4];
	u8 gain_man = 1;
	u8 agc_mode_man = 1;

	if (auto_gain) {
		gain_man = 0;
		agc_mode_man = 0;
		gain_a = 0x100;
		gain_b = 0x100;
		gain_c = 0x100;
	}

	v4l2_dbg(2, debug, sd, "%s: %s gain: a = 0x%x, b = 0x%x, c = 0x%x\n",
			__func__, auto_gain ? "Auto" : "Manual",
			gain_a, gain_b, gain_c);

	gain_buf[0] = ((gain_man << 7) | (agc_mode_man << 6) | ((gain_a & 0x3f0) >> 4));
	gain_buf[1] = (((gain_a & 0x00f) << 4) | ((gain_b & 0x3c0) >> 6));
	gain_buf[2] = (((gain_b & 0x03f) << 2) | ((gain_c & 0x300) >> 8));
	gain_buf[3] = ((gain_c & 0x0ff));

	/* Registers must be written in this order with no i2c access in between */
1053
	if (adv_smbus_write_i2c_block_data(state, ADV76XX_PAGE_CP,
1054
					   0x73, 4, gain_buf))
1055 1056 1057
		v4l2_err(sd, "%s: i2c error writing to CP reg 0x73, 0x74, 0x75, 0x76\n", __func__);
}

1058 1059
static void set_rgb_quantization_range(struct v4l2_subdev *sd)
{
1060
	struct adv76xx_state *state = to_state(sd);
1061 1062 1063 1064 1065 1066
	bool rgb_output = io_read(sd, 0x02) & 0x02;
	bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80;

	v4l2_dbg(2, debug, sd, "%s: RGB quantization range: %d, RGB out: %d, HDMI: %d\n",
			__func__, state->rgb_quantization_range,
			rgb_output, hdmi_signal);
1067

1068 1069
	adv76xx_set_gain(sd, true, 0x0, 0x0, 0x0);
	adv76xx_set_offset(sd, true, 0x0, 0x0, 0x0);
1070

1071 1072
	switch (state->rgb_quantization_range) {
	case V4L2_DV_RGB_RANGE_AUTO:
1073
		if (state->selected_input == ADV7604_PAD_VGA_RGB) {
1074 1075
			/* Receiving analog RGB signal
			 * Set RGB full range (0-255) */
1076
			io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1077 1078 1079
			break;
		}

1080
		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1081 1082
			/* Receiving analog YPbPr signal
			 * Set automode */
1083
			io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1084 1085 1086
			break;
		}

1087
		if (hdmi_signal) {
1088 1089
			/* Receiving HDMI signal
			 * Set automode */
1090
			io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1091 1092 1093 1094 1095 1096
			break;
		}

		/* Receiving DVI-D signal
		 * ADV7604 selects RGB limited range regardless of
		 * input format (CE/IT) in automatic mode */
1097
		if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO) {
1098
			/* RGB limited range (16-235) */
1099
			io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1100 1101
		} else {
			/* RGB full range (0-255) */
1102
			io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1103 1104

			if (is_digital_input(sd) && rgb_output) {
1105
				adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1106
			} else {
1107 1108
				adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
				adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1109
			}
1110 1111 1112
		}
		break;
	case V4L2_DV_RGB_RANGE_LIMITED:
1113
		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1114
			/* YCrCb limited range (16-235) */
1115
			io_write_clr_set(sd, 0x02, 0xf0, 0x20);
1116
			break;
1117
		}
1118 1119

		/* RGB limited range (16-235) */
1120
		io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1121

1122 1123
		break;
	case V4L2_DV_RGB_RANGE_FULL:
1124
		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1125
			/* YCrCb full range (0-255) */
1126
			io_write_clr_set(sd, 0x02, 0xf0, 0x60);
1127 1128 1129 1130
			break;
		}

		/* RGB full range (0-255) */
1131
		io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1132 1133 1134 1135 1136 1137

		if (is_analog_input(sd) || hdmi_signal)
			break;

		/* Adjust gain/offset for DVI-D signals only */
		if (rgb_output) {
1138
			adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1139
		} else {
1140 1141
			adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
			adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1142
		}
1143 1144 1145 1146
		break;
	}
}

1147
static int adv76xx_s_ctrl(struct v4l2_ctrl *ctrl)
1148
{
1149
	struct v4l2_subdev *sd =
1150
		&container_of(ctrl->handler, struct adv76xx_state, hdl)->sd;
1151

1152
	struct adv76xx_state *state = to_state(sd);
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171

	switch (ctrl->id) {
	case V4L2_CID_BRIGHTNESS:
		cp_write(sd, 0x3c, ctrl->val);
		return 0;
	case V4L2_CID_CONTRAST:
		cp_write(sd, 0x3a, ctrl->val);
		return 0;
	case V4L2_CID_SATURATION:
		cp_write(sd, 0x3b, ctrl->val);
		return 0;
	case V4L2_CID_HUE:
		cp_write(sd, 0x3d, ctrl->val);
		return 0;
	case  V4L2_CID_DV_RX_RGB_RANGE:
		state->rgb_quantization_range = ctrl->val;
		set_rgb_quantization_range(sd);
		return 0;
	case V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE:
1172
		if (!adv76xx_has_afe(state))
1173
			return -EINVAL;
1174 1175 1176 1177 1178 1179 1180 1181 1182
		/* Set the analog sampling phase. This is needed to find the
		   best sampling phase for analog video: an application or
		   driver has to try a number of phases and analyze the picture
		   quality before settling on the best performing phase. */
		afe_write(sd, 0xc8, ctrl->val);
		return 0;
	case V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL:
		/* Use the default blue color for free running mode,
		   or supply your own. */
1183
		cp_write_clr_set(sd, 0xbf, 0x04, ctrl->val << 2);
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
		return 0;
	case V4L2_CID_ADV_RX_FREE_RUN_COLOR:
		cp_write(sd, 0xc0, (ctrl->val & 0xff0000) >> 16);
		cp_write(sd, 0xc1, (ctrl->val & 0x00ff00) >> 8);
		cp_write(sd, 0xc2, (u8)(ctrl->val & 0x0000ff));
		return 0;
	}
	return -EINVAL;
}

/* ----------------------------------------------------------------------- */

static inline bool no_power(struct v4l2_subdev *sd)
{
	/* Entire chip or CP powered off */
	return io_read(sd, 0x0c) & 0x24;
}

static inline bool no_signal_tmds(struct v4l2_subdev *sd)
{
1204
	struct adv76xx_state *state = to_state(sd);
1205 1206

	return !(io_read(sd, 0x6a) & (0x10 >> state->selected_input));
1207 1208 1209 1210
}

static inline bool no_lock_tmds(struct v4l2_subdev *sd)
{
1211 1212
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
1213 1214

	return (io_read(sd, 0x6a) & info->tdms_lock_mask) != info->tdms_lock_mask;
1215 1216
}

1217 1218 1219 1220 1221
static inline bool is_hdmi(struct v4l2_subdev *sd)
{
	return hdmi_read(sd, 0x05) & 0x80;
}

1222 1223
static inline bool no_lock_sspd(struct v4l2_subdev *sd)
{
1224
	struct adv76xx_state *state = to_state(sd);
1225 1226 1227 1228 1229

	/*
	 * Chips without a AFE don't expose registers for the SSPD, so just assume
	 * that we have a lock.
	 */
1230
	if (adv76xx_has_afe(state))
1231 1232
		return false;

1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
	/* TODO channel 2 */
	return ((cp_read(sd, 0xb5) & 0xd0) != 0xd0);
}

static inline bool no_lock_stdi(struct v4l2_subdev *sd)
{
	/* TODO channel 2 */
	return !(cp_read(sd, 0xb1) & 0x80);
}

static inline bool no_signal(struct v4l2_subdev *sd)
{
	bool ret;

	ret = no_power(sd);

	ret |= no_lock_stdi(sd);
	ret |= no_lock_sspd(sd);

1252
	if (is_digital_input(sd)) {
1253 1254 1255 1256 1257 1258 1259 1260 1261
		ret |= no_lock_tmds(sd);
		ret |= no_signal_tmds(sd);
	}

	return ret;
}

static inline bool no_lock_cp(struct v4l2_subdev *sd)
{
1262
	struct adv76xx_state *state = to_state(sd);
1263

1264
	if (!adv76xx_has_afe(state))
1265 1266
		return false;

1267 1268 1269 1270 1271
	/* CP has detected a non standard number of lines on the incoming
	   video compared to what it is configured to receive by s_dv_timings */
	return io_read(sd, 0x12) & 0x01;
}

1272 1273 1274 1275 1276
static inline bool in_free_run(struct v4l2_subdev *sd)
{
	return cp_read(sd, 0xff) & 0x10;
}

1277
static int adv76xx_g_input_status(struct v4l2_subdev *sd, u32 *status)
1278 1279 1280 1281
{
	*status = 0;
	*status |= no_power(sd) ? V4L2_IN_ST_NO_POWER : 0;
	*status |= no_signal(sd) ? V4L2_IN_ST_NO_SIGNAL : 0;
1282 1283 1284
	if (!in_free_run(sd) && no_lock_cp(sd))
		*status |= is_digital_input(sd) ?
			   V4L2_IN_ST_NO_SYNC : V4L2_IN_ST_NO_H_LOCK;
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302

	v4l2_dbg(1, debug, sd, "%s: status = 0x%x\n", __func__, *status);

	return 0;
}

/* ----------------------------------------------------------------------- */

struct stdi_readback {
	u16 bl, lcf, lcvs;
	u8 hs_pol, vs_pol;
	bool interlaced;
};

static int stdi2dv_timings(struct v4l2_subdev *sd,
		struct stdi_readback *stdi,
		struct v4l2_dv_timings *timings)
{
1303 1304
	struct adv76xx_state *state = to_state(sd);
	u32 hfreq = (ADV76XX_FSC * 8) / stdi->bl;
1305 1306 1307
	u32 pix_clk;
	int i;

1308 1309
	for (i = 0; adv76xx_timings[i].bt.height; i++) {
		if (vtotal(&adv76xx_timings[i].bt) != stdi->lcf + 1)
1310
			continue;
1311
		if (adv76xx_timings[i].bt.vsync != stdi->lcvs)
1312 1313
			continue;

1314
		pix_clk = hfreq * htotal(&adv76xx_timings[i].bt);
1315

1316 1317 1318
		if ((pix_clk < adv76xx_timings[i].bt.pixelclock + 1000000) &&
		    (pix_clk > adv76xx_timings[i].bt.pixelclock - 1000000)) {
			*timings = adv76xx_timings[i];
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
			return 0;
		}
	}

	if (v4l2_detect_cvt(stdi->lcf + 1, hfreq, stdi->lcvs,
			(stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
			(stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
			timings))
		return 0;
	if (v4l2_detect_gtf(stdi->lcf + 1, hfreq, stdi->lcvs,
			(stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
			(stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
			state->aspect_ratio, timings))
		return 0;

1334 1335 1336 1337
	v4l2_dbg(2, debug, sd,
		"%s: No format candidate found for lcvs = %d, lcf=%d, bl = %d, %chsync, %cvsync\n",
		__func__, stdi->lcvs, stdi->lcf, stdi->bl,
		stdi->hs_pol, stdi->vs_pol);
1338 1339 1340
	return -1;
}

1341

1342 1343
static int read_stdi(struct v4l2_subdev *sd, struct stdi_readback *stdi)
{
1344 1345
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
1346 1347
	u8 polarity;

1348 1349 1350 1351 1352 1353
	if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
		v4l2_dbg(2, debug, sd, "%s: STDI and/or SSPD not locked\n", __func__);
		return -1;
	}

	/* read STDI */
1354
	stdi->bl = cp_read16(sd, 0xb1, 0x3fff);
1355
	stdi->lcf = cp_read16(sd, info->lcf_reg, 0x7ff);
1356 1357 1358
	stdi->lcvs = cp_read(sd, 0xb3) >> 3;
	stdi->interlaced = io_read(sd, 0x12) & 0x10;

1359
	if (adv76xx_has_afe(state)) {
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
		/* read SSPD */
		polarity = cp_read(sd, 0xb5);
		if ((polarity & 0x03) == 0x01) {
			stdi->hs_pol = polarity & 0x10
				     ? (polarity & 0x08 ? '+' : '-') : 'x';
			stdi->vs_pol = polarity & 0x40
				     ? (polarity & 0x20 ? '+' : '-') : 'x';
		} else {
			stdi->hs_pol = 'x';
			stdi->vs_pol = 'x';
		}
1371
	} else {
1372 1373 1374
		polarity = hdmi_read(sd, 0x05);
		stdi->hs_pol = polarity & 0x20 ? '+' : '-';
		stdi->vs_pol = polarity & 0x10 ? '+' : '-';
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
	}

	if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
		v4l2_dbg(2, debug, sd,
			"%s: signal lost during readout of STDI/SSPD\n", __func__);
		return -1;
	}

	if (stdi->lcf < 239 || stdi->bl < 8 || stdi->bl == 0x3fff) {
		v4l2_dbg(2, debug, sd, "%s: invalid signal\n", __func__);
		memset(stdi, 0, sizeof(struct stdi_readback));
		return -1;
	}

	v4l2_dbg(2, debug, sd,
		"%s: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %chsync, %cvsync, %s\n",
		__func__, stdi->lcf, stdi->bl, stdi->lcvs,
		stdi->hs_pol, stdi->vs_pol,
		stdi->interlaced ? "interlaced" : "progressive");

	return 0;
}

1398
static int adv76xx_enum_dv_timings(struct v4l2_subdev *sd,
1399 1400
			struct v4l2_enum_dv_timings *timings)
{
1401
	struct adv76xx_state *state = to_state(sd);
1402

1403
	if (timings->index >= ARRAY_SIZE(adv76xx_timings) - 1)
1404
		return -EINVAL;
1405 1406 1407 1408

	if (timings->pad >= state->source_pad)
		return -EINVAL;

1409
	memset(timings->reserved, 0, sizeof(timings->reserved));
1410
	timings->timings = adv76xx_timings[timings->index];
1411 1412 1413
	return 0;
}

1414
static int adv76xx_dv_timings_cap(struct v4l2_subdev *sd,
1415
			struct v4l2_dv_timings_cap *cap)
1416
{
1417
	struct adv76xx_state *state = to_state(sd);
1418 1419 1420 1421

	if (cap->pad >= state->source_pad)
		return -EINVAL;

1422 1423 1424
	cap->type = V4L2_DV_BT_656_1120;
	cap->bt.max_width = 1920;
	cap->bt.max_height = 1200;
1425
	cap->bt.min_pixelclock = 25000000;
1426

1427
	switch (cap->pad) {
1428
	case ADV76XX_PAD_HDMI_PORT_A:
1429 1430 1431
	case ADV7604_PAD_HDMI_PORT_B:
	case ADV7604_PAD_HDMI_PORT_C:
	case ADV7604_PAD_HDMI_PORT_D:
1432
		cap->bt.max_pixelclock = 225000000;
1433 1434 1435 1436
		break;
	case ADV7604_PAD_VGA_RGB:
	case ADV7604_PAD_VGA_COMP:
	default:
1437
		cap->bt.max_pixelclock = 170000000;
1438 1439 1440
		break;
	}

1441 1442 1443 1444 1445 1446 1447 1448
	cap->bt.standards = V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
			 V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT;
	cap->bt.capabilities = V4L2_DV_BT_CAP_PROGRESSIVE |
		V4L2_DV_BT_CAP_REDUCED_BLANKING | V4L2_DV_BT_CAP_CUSTOM;
	return 0;
}

/* Fill the optional fields .standards and .flags in struct v4l2_dv_timings
1449 1450
   if the format is listed in adv76xx_timings[] */
static void adv76xx_fill_optional_dv_timings_fields(struct v4l2_subdev *sd,
1451 1452 1453 1454
		struct v4l2_dv_timings *timings)
{
	int i;

1455 1456
	for (i = 0; adv76xx_timings[i].bt.width; i++) {
		if (v4l2_match_dv_timings(timings, &adv76xx_timings[i],
1457
					is_digital_input(sd) ? 250000 : 1000000)) {
1458
			*timings = adv76xx_timings[i];
1459 1460 1461 1462 1463
			break;
		}
	}
}

1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
static unsigned int adv7604_read_hdmi_pixelclock(struct v4l2_subdev *sd)
{
	unsigned int freq;
	int a, b;

	a = hdmi_read(sd, 0x06);
	b = hdmi_read(sd, 0x3b);
	if (a < 0 || b < 0)
		return 0;
	freq =  a * 1000000 + ((b & 0x30) >> 4) * 250000;

	if (is_hdmi(sd)) {
		/* adjust for deep color mode */
		unsigned bits_per_channel = ((hdmi_read(sd, 0x0b) & 0x60) >> 4) + 8;

		freq = freq * 8 / bits_per_channel;
	}

	return freq;
}

static unsigned int adv7611_read_hdmi_pixelclock(struct v4l2_subdev *sd)
{
	int a, b;

	a = hdmi_read(sd, 0x51);
	b = hdmi_read(sd, 0x52);
	if (a < 0 || b < 0)
		return 0;
	return ((a << 1) | (b >> 7)) * 1000000 + (b & 0x7f) * 1000000 / 128;
}

1496
static int adv76xx_query_dv_timings(struct v4l2_subdev *sd,
1497 1498
			struct v4l2_dv_timings *timings)
{
1499 1500
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
1501 1502 1503 1504 1505 1506 1507 1508 1509
	struct v4l2_bt_timings *bt = &timings->bt;
	struct stdi_readback stdi;

	if (!timings)
		return -EINVAL;

	memset(timings, 0, sizeof(struct v4l2_dv_timings));

	if (no_signal(sd)) {
1510
		state->restart_stdi_once = true;
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
		v4l2_dbg(1, debug, sd, "%s: no valid signal\n", __func__);
		return -ENOLINK;
	}

	/* read STDI */
	if (read_stdi(sd, &stdi)) {
		v4l2_dbg(1, debug, sd, "%s: STDI/SSPD not locked\n", __func__);
		return -ENOLINK;
	}
	bt->interlaced = stdi.interlaced ?
		V4L2_DV_INTERLACED : V4L2_DV_PROGRESSIVE;

1523
	if (is_digital_input(sd)) {
1524 1525
		timings->type = V4L2_DV_BT_656_1120;

1526 1527
		bt->width = hdmi_read16(sd, 0x07, info->linewidth_mask);
		bt->height = hdmi_read16(sd, 0x09, info->field0_height_mask);
1528
		bt->pixelclock = info->read_hdmi_pixelclock(sd);
1529 1530 1531 1532 1533 1534 1535 1536
		bt->hfrontporch = hdmi_read16(sd, 0x20, info->hfrontporch_mask);
		bt->hsync = hdmi_read16(sd, 0x22, info->hsync_mask);
		bt->hbackporch = hdmi_read16(sd, 0x24, info->hbackporch_mask);
		bt->vfrontporch = hdmi_read16(sd, 0x2a,
			info->field0_vfrontporch_mask) / 2;
		bt->vsync = hdmi_read16(sd, 0x2e, info->field0_vsync_mask) / 2;
		bt->vbackporch = hdmi_read16(sd, 0x32,
			info->field0_vbackporch_mask) / 2;
1537 1538 1539
		bt->polarities = ((hdmi_read(sd, 0x05) & 0x10) ? V4L2_DV_VSYNC_POS_POL : 0) |
			((hdmi_read(sd, 0x05) & 0x20) ? V4L2_DV_HSYNC_POS_POL : 0);
		if (bt->interlaced == V4L2_DV_INTERLACED) {
1540 1541 1542 1543 1544 1545 1546 1547
			bt->height += hdmi_read16(sd, 0x0b,
				info->field1_height_mask);
			bt->il_vfrontporch = hdmi_read16(sd, 0x2c,
				info->field1_vfrontporch_mask) / 2;
			bt->il_vsync = hdmi_read16(sd, 0x30,
				info->field1_vsync_mask) / 2;
			bt->il_vbackporch = hdmi_read16(sd, 0x34,
				info->field1_vbackporch_mask) / 2;
1548
		}
1549
		adv76xx_fill_optional_dv_timings_fields(sd, timings);
1550 1551
	} else {
		/* find format
H
Hans Verkuil 已提交
1552
		 * Since LCVS values are inaccurate [REF_03, p. 275-276],
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
		 * stdi2dv_timings() is called with lcvs +-1 if the first attempt fails.
		 */
		if (!stdi2dv_timings(sd, &stdi, timings))
			goto found;
		stdi.lcvs += 1;
		v4l2_dbg(1, debug, sd, "%s: lcvs + 1 = %d\n", __func__, stdi.lcvs);
		if (!stdi2dv_timings(sd, &stdi, timings))
			goto found;
		stdi.lcvs -= 2;
		v4l2_dbg(1, debug, sd, "%s: lcvs - 1 = %d\n", __func__, stdi.lcvs);
		if (stdi2dv_timings(sd, &stdi, timings)) {
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
			/*
			 * The STDI block may measure wrong values, especially
			 * for lcvs and lcf. If the driver can not find any
			 * valid timing, the STDI block is restarted to measure
			 * the video timings again. The function will return an
			 * error, but the restart of STDI will generate a new
			 * STDI interrupt and the format detection process will
			 * restart.
			 */
			if (state->restart_stdi_once) {
				v4l2_dbg(1, debug, sd, "%s: restart STDI\n", __func__);
				/* TODO restart STDI for Sync Channel 2 */
				/* enter one-shot mode */
1577
				cp_write_clr_set(sd, 0x86, 0x06, 0x00);
1578
				/* trigger STDI restart */
1579
				cp_write_clr_set(sd, 0x86, 0x06, 0x04);
1580
				/* reset to continuous mode */
1581
				cp_write_clr_set(sd, 0x86, 0x06, 0x02);
1582 1583 1584
				state->restart_stdi_once = false;
				return -ENOLINK;
			}
1585 1586 1587
			v4l2_dbg(1, debug, sd, "%s: format not supported\n", __func__);
			return -ERANGE;
		}
1588
		state->restart_stdi_once = true;
1589 1590 1591 1592 1593 1594 1595 1596 1597
	}
found:

	if (no_signal(sd)) {
		v4l2_dbg(1, debug, sd, "%s: signal lost during readout\n", __func__);
		memset(timings, 0, sizeof(struct v4l2_dv_timings));
		return -ENOLINK;
	}

1598 1599
	if ((is_analog_input(sd) && bt->pixelclock > 170000000) ||
			(is_digital_input(sd) && bt->pixelclock > 225000000)) {
1600 1601 1602 1603 1604 1605
		v4l2_dbg(1, debug, sd, "%s: pixelclock out of range %d\n",
				__func__, (u32)bt->pixelclock);
		return -ERANGE;
	}

	if (debug > 1)
1606
		v4l2_print_dv_timings(sd->name, "adv76xx_query_dv_timings: ",
1607
				      timings, true);
1608 1609 1610 1611

	return 0;
}

1612
static int adv76xx_s_dv_timings(struct v4l2_subdev *sd,
1613 1614
		struct v4l2_dv_timings *timings)
{
1615
	struct adv76xx_state *state = to_state(sd);
1616
	struct v4l2_bt_timings *bt;
1617
	int err;
1618 1619 1620 1621

	if (!timings)
		return -EINVAL;

1622 1623 1624 1625 1626
	if (v4l2_match_dv_timings(&state->timings, timings, 0)) {
		v4l2_dbg(1, debug, sd, "%s: no change\n", __func__);
		return 0;
	}

1627 1628
	bt = &timings->bt;

1629 1630
	if ((is_analog_input(sd) && bt->pixelclock > 170000000) ||
			(is_digital_input(sd) && bt->pixelclock > 225000000)) {
1631 1632 1633 1634
		v4l2_dbg(1, debug, sd, "%s: pixelclock out of range %d\n",
				__func__, (u32)bt->pixelclock);
		return -ERANGE;
	}
1635

1636
	adv76xx_fill_optional_dv_timings_fields(sd, timings);
1637 1638 1639

	state->timings = *timings;

1640
	cp_write_clr_set(sd, 0x91, 0x40, bt->interlaced ? 0x40 : 0x00);
1641 1642 1643 1644 1645 1646 1647 1648

	/* Use prim_mode and vid_std when available */
	err = configure_predefined_video_timings(sd, timings);
	if (err) {
		/* custom settings when the video format
		 does not have prim_mode/vid_std */
		configure_custom_video_timings(sd, bt);
	}
1649 1650 1651 1652

	set_rgb_quantization_range(sd);

	if (debug > 1)
1653
		v4l2_print_dv_timings(sd->name, "adv76xx_s_dv_timings: ",
1654
				      timings, true);
1655 1656 1657
	return 0;
}

1658
static int adv76xx_g_dv_timings(struct v4l2_subdev *sd,
1659 1660
		struct v4l2_dv_timings *timings)
{
1661
	struct adv76xx_state *state = to_state(sd);
1662 1663 1664 1665 1666

	*timings = state->timings;
	return 0;
}

1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
static void adv7604_set_termination(struct v4l2_subdev *sd, bool enable)
{
	hdmi_write(sd, 0x01, enable ? 0x00 : 0x78);
}

static void adv7611_set_termination(struct v4l2_subdev *sd, bool enable)
{
	hdmi_write(sd, 0x83, enable ? 0xfe : 0xff);
}

1677
static void enable_input(struct v4l2_subdev *sd)
1678
{
1679
	struct adv76xx_state *state = to_state(sd);
1680

1681
	if (is_analog_input(sd)) {
1682
		io_write(sd, 0x15, 0xb0);   /* Disable Tristate of Pins (no audio) */
1683
	} else if (is_digital_input(sd)) {
1684
		hdmi_write_clr_set(sd, 0x00, 0x03, state->selected_input);
1685
		state->info->set_termination(sd, true);
1686
		io_write(sd, 0x15, 0xa0);   /* Disable Tristate of Pins */
1687
		hdmi_write_clr_set(sd, 0x1a, 0x10, 0x00); /* Unmute audio */
1688 1689 1690
	} else {
		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
				__func__, state->selected_input);
1691 1692 1693 1694 1695
	}
}

static void disable_input(struct v4l2_subdev *sd)
{
1696
	struct adv76xx_state *state = to_state(sd);
1697

1698
	hdmi_write_clr_set(sd, 0x1a, 0x10, 0x10); /* Mute audio */
1699
	msleep(16); /* 512 samples with >= 32 kHz sample rate [REF_03, c. 7.16.10] */
1700
	io_write(sd, 0x15, 0xbe);   /* Tristate all outputs from video core */
1701
	state->info->set_termination(sd, false);
1702 1703
}

1704
static void select_input(struct v4l2_subdev *sd)
1705
{
1706 1707
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
1708

1709
	if (is_analog_input(sd)) {
1710
		adv76xx_write_reg_seq(sd, info->recommended_settings[0]);
1711 1712 1713 1714

		afe_write(sd, 0x00, 0x08); /* power up ADC */
		afe_write(sd, 0x01, 0x06); /* power up Analog Front End */
		afe_write(sd, 0xc8, 0x00); /* phase control */
1715 1716
	} else if (is_digital_input(sd)) {
		hdmi_write(sd, 0x00, state->selected_input & 0x03);
1717

1718
		adv76xx_write_reg_seq(sd, info->recommended_settings[1]);
1719

1720
		if (adv76xx_has_afe(state)) {
1721 1722 1723 1724 1725
			afe_write(sd, 0x00, 0xff); /* power down ADC */
			afe_write(sd, 0x01, 0xfe); /* power down Analog Front End */
			afe_write(sd, 0xc8, 0x40); /* phase control */
		}

1726 1727 1728
		cp_write(sd, 0x3e, 0x00); /* CP core pre-gain control */
		cp_write(sd, 0xc3, 0x39); /* CP coast control. Graphics mode */
		cp_write(sd, 0x40, 0x80); /* CP core pre-gain control. Graphics mode */
1729 1730 1731
	} else {
		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
				__func__, state->selected_input);
1732 1733 1734
	}
}

1735
static int adv76xx_s_routing(struct v4l2_subdev *sd,
1736 1737
		u32 input, u32 output, u32 config)
{
1738
	struct adv76xx_state *state = to_state(sd);
1739

1740 1741 1742 1743 1744
	v4l2_dbg(2, debug, sd, "%s: input %d, selected input %d",
			__func__, input, state->selected_input);

	if (input == state->selected_input)
		return 0;
1745

1746 1747 1748
	if (input > state->info->max_port)
		return -EINVAL;

1749
	state->selected_input = input;
1750 1751

	disable_input(sd);
1752 1753
	select_input(sd);
	enable_input(sd);
1754

1755 1756
	v4l2_subdev_notify(sd, V4L2_DEVICE_NOTIFY_EVENT,
			   (void *)&adv76xx_ev_fmt);
1757 1758 1759
	return 0;
}

1760
static int adv76xx_enum_mbus_code(struct v4l2_subdev *sd,
1761
				  struct v4l2_subdev_pad_config *cfg,
1762
				  struct v4l2_subdev_mbus_code_enum *code)
1763
{
1764
	struct adv76xx_state *state = to_state(sd);
1765 1766

	if (code->index >= state->info->nformats)
1767
		return -EINVAL;
1768 1769 1770

	code->code = state->info->formats[code->index].code;

1771 1772 1773
	return 0;
}

1774
static void adv76xx_fill_format(struct adv76xx_state *state,
1775
				struct v4l2_mbus_framefmt *format)
1776
{
1777
	memset(format, 0, sizeof(*format));
1778

1779 1780 1781
	format->width = state->timings.bt.width;
	format->height = state->timings.bt.height;
	format->field = V4L2_FIELD_NONE;
1782
	format->colorspace = V4L2_COLORSPACE_SRGB;
1783

1784
	if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO)
1785
		format->colorspace = (state->timings.bt.height <= 576) ?
1786
			V4L2_COLORSPACE_SMPTE170M : V4L2_COLORSPACE_REC709;
1787 1788 1789 1790 1791 1792 1793 1794 1795
}

/*
 * Compute the op_ch_sel value required to obtain on the bus the component order
 * corresponding to the selected format taking into account bus reordering
 * applied by the board at the output of the device.
 *
 * The following table gives the op_ch_value from the format component order
 * (expressed as op_ch_sel value in column) and the bus reordering (expressed as
1796
 * adv76xx_bus_order value in row).
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
 *
 *           |	GBR(0)	GRB(1)	BGR(2)	RGB(3)	BRG(4)	RBG(5)
 * ----------+-------------------------------------------------
 * RGB (NOP) |	GBR	GRB	BGR	RGB	BRG	RBG
 * GRB (1-2) |	BGR	RGB	GBR	GRB	RBG	BRG
 * RBG (2-3) |	GRB	GBR	BRG	RBG	BGR	RGB
 * BGR (1-3) |	RBG	BRG	RGB	BGR	GRB	GBR
 * BRG (ROR) |	BRG	RBG	GRB	GBR	RGB	BGR
 * GBR (ROL) |	RGB	BGR	RBG	BRG	GBR	GRB
 */
1807
static unsigned int adv76xx_op_ch_sel(struct adv76xx_state *state)
1808 1809
{
#define _SEL(a,b,c,d,e,f)	{ \
1810 1811
	ADV76XX_OP_CH_SEL_##a, ADV76XX_OP_CH_SEL_##b, ADV76XX_OP_CH_SEL_##c, \
	ADV76XX_OP_CH_SEL_##d, ADV76XX_OP_CH_SEL_##e, ADV76XX_OP_CH_SEL_##f }
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
#define _BUS(x)			[ADV7604_BUS_ORDER_##x]

	static const unsigned int op_ch_sel[6][6] = {
		_BUS(RGB) /* NOP */ = _SEL(GBR, GRB, BGR, RGB, BRG, RBG),
		_BUS(GRB) /* 1-2 */ = _SEL(BGR, RGB, GBR, GRB, RBG, BRG),
		_BUS(RBG) /* 2-3 */ = _SEL(GRB, GBR, BRG, RBG, BGR, RGB),
		_BUS(BGR) /* 1-3 */ = _SEL(RBG, BRG, RGB, BGR, GRB, GBR),
		_BUS(BRG) /* ROR */ = _SEL(BRG, RBG, GRB, GBR, RGB, BGR),
		_BUS(GBR) /* ROL */ = _SEL(RGB, BGR, RBG, BRG, GBR, GRB),
	};

	return op_ch_sel[state->pdata.bus_order][state->format->op_ch_sel >> 5];
}

1826
static void adv76xx_setup_format(struct adv76xx_state *state)
1827 1828 1829
{
	struct v4l2_subdev *sd = &state->sd;

1830
	io_write_clr_set(sd, 0x02, 0x02,
1831
			state->format->rgb_out ? ADV76XX_RGB_OUT : 0);
1832 1833
	io_write(sd, 0x03, state->format->op_format_sel |
		 state->pdata.op_format_mode_sel);
1834
	io_write_clr_set(sd, 0x04, 0xe0, adv76xx_op_ch_sel(state));
1835
	io_write_clr_set(sd, 0x05, 0x01,
1836
			state->format->swap_cb_cr ? ADV76XX_OP_SWAP_CB_CR : 0);
1837 1838
}

1839 1840
static int adv76xx_get_format(struct v4l2_subdev *sd,
			      struct v4l2_subdev_pad_config *cfg,
1841 1842
			      struct v4l2_subdev_format *format)
{
1843
	struct adv76xx_state *state = to_state(sd);
1844 1845 1846 1847

	if (format->pad != state->source_pad)
		return -EINVAL;

1848
	adv76xx_fill_format(state, &format->format);
1849 1850 1851 1852

	if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
		struct v4l2_mbus_framefmt *fmt;

1853
		fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
1854 1855 1856
		format->format.code = fmt->code;
	} else {
		format->format.code = state->format->code;
1857
	}
1858 1859 1860 1861

	return 0;
}

1862 1863
static int adv76xx_set_format(struct v4l2_subdev *sd,
			      struct v4l2_subdev_pad_config *cfg,
1864 1865
			      struct v4l2_subdev_format *format)
{
1866 1867
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_format_info *info;
1868 1869 1870 1871

	if (format->pad != state->source_pad)
		return -EINVAL;

1872
	info = adv76xx_format_info(state, format->format.code);
1873
	if (info == NULL)
1874
		info = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
1875

1876
	adv76xx_fill_format(state, &format->format);
1877 1878 1879 1880 1881
	format->format.code = info->code;

	if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
		struct v4l2_mbus_framefmt *fmt;

1882
		fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
1883 1884 1885
		fmt->code = format->format.code;
	} else {
		state->format = info;
1886
		adv76xx_setup_format(state);
1887 1888
	}

1889 1890 1891
	return 0;
}

1892
static int adv76xx_isr(struct v4l2_subdev *sd, u32 status, bool *handled)
1893
{
1894 1895
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
	const u8 irq_reg_0x43 = io_read(sd, 0x43);
	const u8 irq_reg_0x6b = io_read(sd, 0x6b);
	const u8 irq_reg_0x70 = io_read(sd, 0x70);
	u8 fmt_change_digital;
	u8 fmt_change;
	u8 tx_5v;

	if (irq_reg_0x43)
		io_write(sd, 0x44, irq_reg_0x43);
	if (irq_reg_0x70)
		io_write(sd, 0x71, irq_reg_0x70);
	if (irq_reg_0x6b)
		io_write(sd, 0x6c, irq_reg_0x6b);
1909

1910 1911
	v4l2_dbg(2, debug, sd, "%s: ", __func__);

1912
	/* format change */
1913
	fmt_change = irq_reg_0x43 & 0x98;
1914 1915 1916
	fmt_change_digital = is_digital_input(sd)
			   ? irq_reg_0x6b & info->fmt_change_digital_mask
			   : 0;
1917

1918 1919
	if (fmt_change || fmt_change_digital) {
		v4l2_dbg(1, debug, sd,
1920
			"%s: fmt_change = 0x%x, fmt_change_digital = 0x%x\n",
1921
			__func__, fmt_change, fmt_change_digital);
1922

1923 1924
		v4l2_subdev_notify(sd, V4L2_DEVICE_NOTIFY_EVENT,
				   (void *)&adv76xx_ev_fmt);
1925

1926 1927 1928
		if (handled)
			*handled = true;
	}
1929 1930 1931 1932 1933 1934 1935 1936 1937
	/* HDMI/DVI mode */
	if (irq_reg_0x6b & 0x01) {
		v4l2_dbg(1, debug, sd, "%s: irq %s mode\n", __func__,
			(io_read(sd, 0x6a) & 0x01) ? "HDMI" : "DVI");
		set_rgb_quantization_range(sd);
		if (handled)
			*handled = true;
	}

1938
	/* tx 5v detect */
1939
	tx_5v = io_read(sd, 0x70) & info->cable_det_mask;
1940 1941 1942
	if (tx_5v) {
		v4l2_dbg(1, debug, sd, "%s: tx_5v: 0x%x\n", __func__, tx_5v);
		io_write(sd, 0x71, tx_5v);
1943
		adv76xx_s_detect_tx_5v_ctrl(sd);
1944 1945 1946 1947 1948 1949
		if (handled)
			*handled = true;
	}
	return 0;
}

1950
static int adv76xx_get_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
1951
{
1952
	struct adv76xx_state *state = to_state(sd);
1953
	u8 *data = NULL;
1954

1955
	memset(edid->reserved, 0, sizeof(edid->reserved));
1956 1957

	switch (edid->pad) {
1958
	case ADV76XX_PAD_HDMI_PORT_A:
1959 1960 1961
	case ADV7604_PAD_HDMI_PORT_B:
	case ADV7604_PAD_HDMI_PORT_C:
	case ADV7604_PAD_HDMI_PORT_D:
1962 1963 1964 1965 1966 1967
		if (state->edid.present & (1 << edid->pad))
			data = state->edid.edid;
		break;
	default:
		return -EINVAL;
	}
1968 1969 1970 1971 1972 1973 1974

	if (edid->start_block == 0 && edid->blocks == 0) {
		edid->blocks = data ? state->edid.blocks : 0;
		return 0;
	}

	if (data == NULL)
1975 1976
		return -ENODATA;

1977 1978 1979 1980 1981 1982 1983 1984
	if (edid->start_block >= state->edid.blocks)
		return -EINVAL;

	if (edid->start_block + edid->blocks > state->edid.blocks)
		edid->blocks = state->edid.blocks - edid->start_block;

	memcpy(edid->edid, data + edid->start_block * 128, edid->blocks * 128);

1985 1986 1987
	return 0;
}

1988
static int get_edid_spa_location(const u8 *edid)
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
{
	u8 d;

	if ((edid[0x7e] != 1) ||
	    (edid[0x80] != 0x02) ||
	    (edid[0x81] != 0x03)) {
		return -1;
	}

	/* search Vendor Specific Data Block (tag 3) */
	d = edid[0x82] & 0x7f;
	if (d > 4) {
		int i = 0x84;
		int end = 0x80 + d;

		do {
			u8 tag = edid[i] >> 5;
			u8 len = edid[i] & 0x1f;

			if ((tag == 3) && (len >= 5))
				return i + 4;
			i += len + 1;
		} while (i < end);
	}
	return -1;
}

2016
static int adv76xx_set_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
2017
{
2018 2019
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
2020
	int spa_loc;
2021
	int err;
2022
	int i;
2023

2024 2025
	memset(edid->reserved, 0, sizeof(edid->reserved));

2026
	if (edid->pad > ADV7604_PAD_HDMI_PORT_D)
2027 2028 2029 2030
		return -EINVAL;
	if (edid->start_block != 0)
		return -EINVAL;
	if (edid->blocks == 0) {
2031
		/* Disable hotplug and I2C access to EDID RAM from DDC port */
2032
		state->edid.present &= ~(1 << edid->pad);
2033
		adv76xx_set_hpd(state, state->edid.present);
2034
		rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2035

2036 2037 2038
		/* Fall back to a 16:9 aspect ratio */
		state->aspect_ratio.numerator = 16;
		state->aspect_ratio.denominator = 9;
2039 2040 2041 2042 2043 2044

		if (!state->edid.present)
			state->edid.blocks = 0;

		v4l2_dbg(2, debug, sd, "%s: clear EDID pad %d, edid.present = 0x%x\n",
				__func__, edid->pad, state->edid.present);
2045 2046
		return 0;
	}
2047 2048
	if (edid->blocks > 2) {
		edid->blocks = 2;
2049
		return -E2BIG;
2050 2051
	}

2052 2053 2054
	v4l2_dbg(2, debug, sd, "%s: write EDID pad %d, edid.present = 0x%x\n",
			__func__, edid->pad, state->edid.present);

2055
	/* Disable hotplug and I2C access to EDID RAM from DDC port */
2056
	cancel_delayed_work_sync(&state->delayed_work_enable_hotplug);
2057
	adv76xx_set_hpd(state, 0);
2058
	rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, 0x00);
2059

2060 2061 2062 2063
	spa_loc = get_edid_spa_location(edid->edid);
	if (spa_loc < 0)
		spa_loc = 0xc0; /* Default value [REF_02, p. 116] */

2064
	switch (edid->pad) {
2065
	case ADV76XX_PAD_HDMI_PORT_A:
2066 2067
		state->spa_port_a[0] = edid->edid[spa_loc];
		state->spa_port_a[1] = edid->edid[spa_loc + 1];
2068
		break;
2069
	case ADV7604_PAD_HDMI_PORT_B:
2070 2071
		rep_write(sd, 0x70, edid->edid[spa_loc]);
		rep_write(sd, 0x71, edid->edid[spa_loc + 1]);
2072
		break;
2073
	case ADV7604_PAD_HDMI_PORT_C:
2074 2075
		rep_write(sd, 0x72, edid->edid[spa_loc]);
		rep_write(sd, 0x73, edid->edid[spa_loc + 1]);
2076
		break;
2077
	case ADV7604_PAD_HDMI_PORT_D:
2078 2079
		rep_write(sd, 0x74, edid->edid[spa_loc]);
		rep_write(sd, 0x75, edid->edid[spa_loc + 1]);
2080
		break;
2081 2082
	default:
		return -EINVAL;
2083
	}
2084 2085 2086

	if (info->type == ADV7604) {
		rep_write(sd, 0x76, spa_loc & 0xff);
2087
		rep_write_clr_set(sd, 0x77, 0x40, (spa_loc & 0x100) >> 2);
2088 2089
	} else {
		/* FIXME: Where is the SPA location LSB register ? */
2090
		rep_write_clr_set(sd, 0x71, 0x01, (spa_loc & 0x100) >> 8);
2091
	}
2092

2093 2094
	edid->edid[spa_loc] = state->spa_port_a[0];
	edid->edid[spa_loc + 1] = state->spa_port_a[1];
2095 2096 2097

	memcpy(state->edid.edid, edid->edid, 128 * edid->blocks);
	state->edid.blocks = edid->blocks;
2098 2099
	state->aspect_ratio = v4l2_calc_aspect_ratio(edid->edid[0x15],
			edid->edid[0x16]);
2100
	state->edid.present |= 1 << edid->pad;
2101 2102 2103

	err = edid_write_block(sd, 128 * edid->blocks, state->edid.edid);
	if (err < 0) {
2104
		v4l2_err(sd, "error %d writing edid pad %d\n", err, edid->pad);
2105 2106 2107
		return err;
	}

2108
	/* adv76xx calculates the checksums and enables I2C access to internal
2109
	   EDID RAM from DDC port. */
2110
	rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2111 2112

	for (i = 0; i < 1000; i++) {
2113
		if (rep_read(sd, info->edid_status_reg) & state->edid.present)
2114 2115 2116 2117 2118 2119 2120 2121
			break;
		mdelay(1);
	}
	if (i == 1000) {
		v4l2_err(sd, "error enabling edid (0x%x)\n", state->edid.present);
		return -EIO;
	}

2122 2123 2124 2125
	/* enable hotplug after 100 ms */
	queue_delayed_work(state->work_queues,
			&state->delayed_work_enable_hotplug, HZ / 10);
	return 0;
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
}

/*********** avi info frame CEA-861-E **************/

static void print_avi_infoframe(struct v4l2_subdev *sd)
{
	int i;
	u8 buf[14];
	u8 avi_len;
	u8 avi_ver;

2137
	if (!is_hdmi(sd)) {
2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
		v4l2_info(sd, "receive DVI-D signal (AVI infoframe not supported)\n");
		return;
	}
	if (!(io_read(sd, 0x60) & 0x01)) {
		v4l2_info(sd, "AVI infoframe not received\n");
		return;
	}

	if (io_read(sd, 0x83) & 0x01) {
		v4l2_info(sd, "AVI infoframe checksum error has occurred earlier\n");
		io_write(sd, 0x85, 0x01); /* clear AVI_INF_CKS_ERR_RAW */
		if (io_read(sd, 0x83) & 0x01) {
			v4l2_info(sd, "AVI infoframe checksum error still present\n");
			io_write(sd, 0x85, 0x01); /* clear AVI_INF_CKS_ERR_RAW */
		}
	}

	avi_len = infoframe_read(sd, 0xe2);
	avi_ver = infoframe_read(sd, 0xe1);
	v4l2_info(sd, "AVI infoframe version %d (%d byte)\n",
			avi_ver, avi_len);

	if (avi_ver != 0x02)
		return;

	for (i = 0; i < 14; i++)
		buf[i] = infoframe_read(sd, i);

	v4l2_info(sd,
		"\t%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x\n",
		buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], buf[7],
		buf[8], buf[9], buf[10], buf[11], buf[12], buf[13]);
}

2172
static int adv76xx_log_status(struct v4l2_subdev *sd)
2173
{
2174 2175
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
2176 2177 2178
	struct v4l2_dv_timings timings;
	struct stdi_readback stdi;
	u8 reg_io_0x02 = io_read(sd, 0x02);
2179 2180
	u8 edid_enabled;
	u8 cable_det;
2181

2182
	static const char * const csc_coeff_sel_rb[16] = {
2183 2184 2185 2186 2187
		"bypassed", "YPbPr601 -> RGB", "reserved", "YPbPr709 -> RGB",
		"reserved", "RGB -> YPbPr601", "reserved", "RGB -> YPbPr709",
		"reserved", "YPbPr709 -> YPbPr601", "YPbPr601 -> YPbPr709",
		"reserved", "reserved", "reserved", "reserved", "manual"
	};
2188
	static const char * const input_color_space_txt[16] = {
2189 2190
		"RGB limited range (16-235)", "RGB full range (0-255)",
		"YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
2191
		"xvYCC Bt.601", "xvYCC Bt.709",
2192 2193 2194 2195
		"YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
		"invalid", "invalid", "invalid", "invalid", "invalid",
		"invalid", "invalid", "automatic"
	};
2196
	static const char * const rgb_quantization_range_txt[] = {
2197 2198 2199 2200
		"Automatic",
		"RGB limited range (16-235)",
		"RGB full range (0-255)",
	};
2201
	static const char * const deep_color_mode_txt[4] = {
2202 2203 2204 2205 2206
		"8-bits per channel",
		"10-bits per channel",
		"12-bits per channel",
		"16-bits per channel (not supported)"
	};
2207 2208 2209

	v4l2_info(sd, "-----Chip status-----\n");
	v4l2_info(sd, "Chip power: %s\n", no_power(sd) ? "off" : "on");
2210
	edid_enabled = rep_read(sd, info->edid_status_reg);
2211
	v4l2_info(sd, "EDID enabled port A: %s, B: %s, C: %s, D: %s\n",
2212 2213 2214 2215
			((edid_enabled & 0x01) ? "Yes" : "No"),
			((edid_enabled & 0x02) ? "Yes" : "No"),
			((edid_enabled & 0x04) ? "Yes" : "No"),
			((edid_enabled & 0x08) ? "Yes" : "No"));
2216 2217 2218 2219
	v4l2_info(sd, "CEC: %s\n", !!(cec_read(sd, 0x2a) & 0x01) ?
			"enabled" : "disabled");

	v4l2_info(sd, "-----Signal status-----\n");
2220
	cable_det = info->read_cable_det(sd);
2221
	v4l2_info(sd, "Cable detected (+5V power) port A: %s, B: %s, C: %s, D: %s\n",
2222 2223
			((cable_det & 0x01) ? "Yes" : "No"),
			((cable_det & 0x02) ? "Yes" : "No"),
2224
			((cable_det & 0x04) ? "Yes" : "No"),
2225
			((cable_det & 0x08) ? "Yes" : "No"));
2226 2227 2228 2229 2230 2231 2232 2233
	v4l2_info(sd, "TMDS signal detected: %s\n",
			no_signal_tmds(sd) ? "false" : "true");
	v4l2_info(sd, "TMDS signal locked: %s\n",
			no_lock_tmds(sd) ? "false" : "true");
	v4l2_info(sd, "SSPD locked: %s\n", no_lock_sspd(sd) ? "false" : "true");
	v4l2_info(sd, "STDI locked: %s\n", no_lock_stdi(sd) ? "false" : "true");
	v4l2_info(sd, "CP locked: %s\n", no_lock_cp(sd) ? "false" : "true");
	v4l2_info(sd, "CP free run: %s\n",
2234
			(in_free_run(sd)) ? "on" : "off");
2235 2236 2237
	v4l2_info(sd, "Prim-mode = 0x%x, video std = 0x%x, v_freq = 0x%x\n",
			io_read(sd, 0x01) & 0x0f, io_read(sd, 0x00) & 0x3f,
			(io_read(sd, 0x01) & 0x70) >> 4);
2238 2239 2240 2241 2242 2243 2244 2245 2246

	v4l2_info(sd, "-----Video Timings-----\n");
	if (read_stdi(sd, &stdi))
		v4l2_info(sd, "STDI: not locked\n");
	else
		v4l2_info(sd, "STDI: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %s, %chsync, %cvsync\n",
				stdi.lcf, stdi.bl, stdi.lcvs,
				stdi.interlaced ? "interlaced" : "progressive",
				stdi.hs_pol, stdi.vs_pol);
2247
	if (adv76xx_query_dv_timings(sd, &timings))
2248 2249
		v4l2_info(sd, "No video detected\n");
	else
2250 2251 2252 2253
		v4l2_print_dv_timings(sd->name, "Detected format: ",
				      &timings, true);
	v4l2_print_dv_timings(sd->name, "Configured format: ",
			      &state->timings, true);
2254

2255 2256 2257
	if (no_signal(sd))
		return 0;

2258 2259 2260 2261 2262 2263 2264 2265 2266
	v4l2_info(sd, "-----Color space-----\n");
	v4l2_info(sd, "RGB quantization range ctrl: %s\n",
			rgb_quantization_range_txt[state->rgb_quantization_range]);
	v4l2_info(sd, "Input color space: %s\n",
			input_color_space_txt[reg_io_0x02 >> 4]);
	v4l2_info(sd, "Output color space: %s %s, saturator %s\n",
			(reg_io_0x02 & 0x02) ? "RGB" : "YCbCr",
			(reg_io_0x02 & 0x04) ? "(16-235)" : "(0-255)",
			((reg_io_0x02 & 0x04) ^ (reg_io_0x02 & 0x01)) ?
2267
				"enabled" : "disabled");
2268
	v4l2_info(sd, "Color space conversion: %s\n",
2269
			csc_coeff_sel_rb[cp_read(sd, info->cp_csc) >> 4]);
2270

2271
	if (!is_digital_input(sd))
2272 2273 2274
		return 0;

	v4l2_info(sd, "-----%s status-----\n", is_hdmi(sd) ? "HDMI" : "DVI-D");
2275 2276 2277 2278
	v4l2_info(sd, "Digital video port selected: %c\n",
			(hdmi_read(sd, 0x00) & 0x03) + 'A');
	v4l2_info(sd, "HDCP encrypted content: %s\n",
			(hdmi_read(sd, 0x05) & 0x40) ? "true" : "false");
2279 2280 2281
	v4l2_info(sd, "HDCP keys read: %s%s\n",
			(hdmi_read(sd, 0x04) & 0x20) ? "yes" : "no",
			(hdmi_read(sd, 0x04) & 0x10) ? "ERROR" : "");
2282
	if (is_hdmi(sd)) {
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
		bool audio_pll_locked = hdmi_read(sd, 0x04) & 0x01;
		bool audio_sample_packet_detect = hdmi_read(sd, 0x18) & 0x01;
		bool audio_mute = io_read(sd, 0x65) & 0x40;

		v4l2_info(sd, "Audio: pll %s, samples %s, %s\n",
				audio_pll_locked ? "locked" : "not locked",
				audio_sample_packet_detect ? "detected" : "not detected",
				audio_mute ? "muted" : "enabled");
		if (audio_pll_locked && audio_sample_packet_detect) {
			v4l2_info(sd, "Audio format: %s\n",
					(hdmi_read(sd, 0x07) & 0x20) ? "multi-channel" : "stereo");
		}
		v4l2_info(sd, "Audio CTS: %u\n", (hdmi_read(sd, 0x5b) << 12) +
				(hdmi_read(sd, 0x5c) << 8) +
				(hdmi_read(sd, 0x5d) & 0xf0));
		v4l2_info(sd, "Audio N: %u\n", ((hdmi_read(sd, 0x5d) & 0x0f) << 16) +
				(hdmi_read(sd, 0x5e) << 8) +
				hdmi_read(sd, 0x5f));
		v4l2_info(sd, "AV Mute: %s\n", (hdmi_read(sd, 0x04) & 0x40) ? "on" : "off");

		v4l2_info(sd, "Deep color mode: %s\n", deep_color_mode_txt[(hdmi_read(sd, 0x0b) & 0x60) >> 5]);

2305 2306 2307 2308 2309 2310 2311 2312
		print_avi_infoframe(sd);
	}

	return 0;
}

/* ----------------------------------------------------------------------- */

2313 2314
static const struct v4l2_ctrl_ops adv76xx_ctrl_ops = {
	.s_ctrl = adv76xx_s_ctrl,
2315 2316
};

2317 2318 2319
static const struct v4l2_subdev_core_ops adv76xx_core_ops = {
	.log_status = adv76xx_log_status,
	.interrupt_service_routine = adv76xx_isr,
2320
#ifdef CONFIG_VIDEO_ADV_DEBUG
2321 2322
	.g_register = adv76xx_g_register,
	.s_register = adv76xx_s_register,
2323 2324 2325
#endif
};

2326 2327 2328 2329 2330 2331
static const struct v4l2_subdev_video_ops adv76xx_video_ops = {
	.s_routing = adv76xx_s_routing,
	.g_input_status = adv76xx_g_input_status,
	.s_dv_timings = adv76xx_s_dv_timings,
	.g_dv_timings = adv76xx_g_dv_timings,
	.query_dv_timings = adv76xx_query_dv_timings,
2332 2333
};

2334 2335 2336 2337 2338 2339 2340 2341
static const struct v4l2_subdev_pad_ops adv76xx_pad_ops = {
	.enum_mbus_code = adv76xx_enum_mbus_code,
	.get_fmt = adv76xx_get_format,
	.set_fmt = adv76xx_set_format,
	.get_edid = adv76xx_get_edid,
	.set_edid = adv76xx_set_edid,
	.dv_timings_cap = adv76xx_dv_timings_cap,
	.enum_dv_timings = adv76xx_enum_dv_timings,
2342 2343
};

2344 2345 2346 2347
static const struct v4l2_subdev_ops adv76xx_ops = {
	.core = &adv76xx_core_ops,
	.video = &adv76xx_video_ops,
	.pad = &adv76xx_pad_ops,
2348 2349 2350 2351 2352
};

/* -------------------------- custom ctrls ---------------------------------- */

static const struct v4l2_ctrl_config adv7604_ctrl_analog_sampling_phase = {
2353
	.ops = &adv76xx_ctrl_ops,
2354 2355 2356 2357 2358 2359 2360 2361 2362
	.id = V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE,
	.name = "Analog Sampling Phase",
	.type = V4L2_CTRL_TYPE_INTEGER,
	.min = 0,
	.max = 0x1f,
	.step = 1,
	.def = 0,
};

2363 2364
static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color_manual = {
	.ops = &adv76xx_ctrl_ops,
2365 2366 2367 2368 2369 2370 2371 2372 2373
	.id = V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL,
	.name = "Free Running Color, Manual",
	.type = V4L2_CTRL_TYPE_BOOLEAN,
	.min = false,
	.max = true,
	.step = 1,
	.def = false,
};

2374 2375
static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color = {
	.ops = &adv76xx_ctrl_ops,
2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
	.id = V4L2_CID_ADV_RX_FREE_RUN_COLOR,
	.name = "Free Running Color",
	.type = V4L2_CTRL_TYPE_INTEGER,
	.min = 0x0,
	.max = 0xffffff,
	.step = 0x1,
	.def = 0x0,
};

/* ----------------------------------------------------------------------- */

2387
static int adv76xx_core_init(struct v4l2_subdev *sd)
2388
{
2389 2390 2391
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
	struct adv76xx_platform_data *pdata = &state->pdata;
2392 2393 2394 2395 2396 2397 2398

	hdmi_write(sd, 0x48,
		(pdata->disable_pwrdnb ? 0x80 : 0) |
		(pdata->disable_cable_det_rst ? 0x40 : 0));

	disable_input(sd);

2399 2400 2401 2402 2403 2404 2405
	if (pdata->default_input >= 0 &&
	    pdata->default_input < state->source_pad) {
		state->selected_input = pdata->default_input;
		select_input(sd);
		enable_input(sd);
	}

2406 2407 2408 2409 2410 2411
	/* power */
	io_write(sd, 0x0c, 0x42);   /* Power up part and power down VDP */
	io_write(sd, 0x0b, 0x44);   /* Power down ESDP block */
	cp_write(sd, 0xcf, 0x01);   /* Power down macrovision */

	/* video format */
2412
	io_write_clr_set(sd, 0x02, 0x0f,
2413 2414 2415
			pdata->alt_gamma << 3 |
			pdata->op_656_range << 2 |
			pdata->alt_data_sat << 0);
2416
	io_write_clr_set(sd, 0x05, 0x0e, pdata->blank_data << 3 |
2417 2418
			pdata->insert_av_codes << 2 |
			pdata->replicate_av_codes << 1);
2419
	adv76xx_setup_format(state);
2420 2421

	cp_write(sd, 0x69, 0x30);   /* Enable CP CSC */
2422 2423

	/* VS, HS polarities */
2424 2425
	io_write(sd, 0x06, 0xa0 | pdata->inv_vs_pol << 2 |
		 pdata->inv_hs_pol << 1 | pdata->inv_llc_pol);
2426 2427 2428 2429 2430 2431

	/* Adjust drive strength */
	io_write(sd, 0x14, 0x40 | pdata->dr_str_data << 4 |
				pdata->dr_str_clk << 2 |
				pdata->dr_str_sync);

2432 2433 2434
	cp_write(sd, 0xba, (pdata->hdmi_free_run_mode << 1) | 0x01); /* HDMI free run */
	cp_write(sd, 0xf3, 0xdc); /* Low threshold to enter/exit free run mode */
	cp_write(sd, 0xf9, 0x23); /*  STDI ch. 1 - LCVS change threshold -
H
Hans Verkuil 已提交
2435
				      ADI recommended setting [REF_01, c. 2.3.3] */
2436
	cp_write(sd, 0x45, 0x23); /*  STDI ch. 2 - LCVS change threshold -
H
Hans Verkuil 已提交
2437
				      ADI recommended setting [REF_01, c. 2.3.3] */
2438 2439 2440
	cp_write(sd, 0xc9, 0x2d); /* use prim_mode and vid_std as free run resolution
				     for digital formats */

2441
	/* HDMI audio */
2442 2443 2444
	hdmi_write_clr_set(sd, 0x15, 0x03, 0x03); /* Mute on FIFO over-/underflow [REF_01, c. 1.2.18] */
	hdmi_write_clr_set(sd, 0x1a, 0x0e, 0x08); /* Wait 1 s before unmute */
	hdmi_write_clr_set(sd, 0x68, 0x06, 0x06); /* FIFO reset on over-/underflow [REF_01, c. 1.2.19] */
2445

2446 2447 2448
	/* TODO from platform data */
	afe_write(sd, 0xb5, 0x01);  /* Setting MCLK to 256Fs */

2449
	if (adv76xx_has_afe(state)) {
2450
		afe_write(sd, 0x02, pdata->ain_sel); /* Select analog input muxing mode */
2451
		io_write_clr_set(sd, 0x30, 1 << 4, pdata->output_bus_lsb_to_msb << 4);
2452
	}
2453 2454

	/* interrupts */
2455
	io_write(sd, 0x40, 0xc0 | pdata->int1_config); /* Configure INT1 */
2456
	io_write(sd, 0x46, 0x98); /* Enable SSPD, STDI and CP unlocked interrupts */
2457 2458 2459
	io_write(sd, 0x6e, info->fmt_change_digital_mask); /* Enable V_LOCKED and DE_REGEN_LCK interrupts */
	io_write(sd, 0x73, info->cable_det_mask); /* Enable cable detection (+5v) interrupts */
	info->setup_irqs(sd);
2460 2461 2462 2463

	return v4l2_ctrl_handler_setup(sd->ctrl_handler);
}

2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
static void adv7604_setup_irqs(struct v4l2_subdev *sd)
{
	io_write(sd, 0x41, 0xd7); /* STDI irq for any change, disable INT2 */
}

static void adv7611_setup_irqs(struct v4l2_subdev *sd)
{
	io_write(sd, 0x41, 0xd0); /* STDI irq for any change, disable INT2 */
}

2474
static void adv76xx_unregister_clients(struct adv76xx_state *state)
2475
{
2476 2477 2478 2479 2480 2481
	unsigned int i;

	for (i = 1; i < ARRAY_SIZE(state->i2c_clients); ++i) {
		if (state->i2c_clients[i])
			i2c_unregister_device(state->i2c_clients[i]);
	}
2482 2483
}

2484
static struct i2c_client *adv76xx_dummy_client(struct v4l2_subdev *sd,
2485 2486 2487 2488 2489 2490 2491 2492 2493
							u8 addr, u8 io_reg)
{
	struct i2c_client *client = v4l2_get_subdevdata(sd);

	if (addr)
		io_write(sd, io_reg, addr << 1);
	return i2c_new_dummy(client->adapter, io_read(sd, io_reg) >> 1);
}

2494
static const struct adv76xx_reg_seq adv7604_recommended_settings_afe[] = {
2495 2496
	/* reset ADI recommended settings for HDMI: */
	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x00 }, /* DDC bus active pull-up control */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x74 }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0x74 }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x63 }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x88 }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2e }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x00 }, /* enable automatic EQ changing */
2509 2510 2511

	/* set ADI recommended settings for digitizer */
	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2512 2513 2514 2515 2516
	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0x7b }, /* ADC noise shaping filter controls */
	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x1f }, /* CP core gain controls */
	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x3e), 0x04 }, /* CP core pre-gain control */
	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0xc3), 0x39 }, /* CP coast control. Graphics mode */
	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x40), 0x5c }, /* CP core pre-gain control. Graphics mode */
2517

2518
	{ ADV76XX_REG_SEQ_TERM, 0 },
2519 2520
};

2521
static const struct adv76xx_reg_seq adv7604_recommended_settings_hdmi[] = {
2522 2523
	/* set ADI recommended settings for HDMI: */
	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x84 }, /* HDMI filter optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x10 }, /* DDC bus active pull-up control */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x39 }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xb6 }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x03 }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x8b }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2d }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x01 }, /* enable automatic EQ changing */
2535 2536 2537

	/* reset ADI recommended settings for digitizer */
	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2538 2539
	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0xfb }, /* ADC noise shaping filter controls */
	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x0d }, /* CP core gain controls */
2540

2541
	{ ADV76XX_REG_SEQ_TERM, 0 },
2542 2543
};

2544
static const struct adv76xx_reg_seq adv7611_recommended_settings_hdmi[] = {
2545
	/* ADV7611 Register Settings Recommendations Rev 1.5, May 2014 */
2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x04 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x1e },

	{ ADV76XX_REG_SEQ_TERM, 0 },
2559 2560
};

2561
static const struct adv76xx_chip_info adv76xx_chip_info[] = {
2562 2563 2564
	[ADV7604] = {
		.type = ADV7604,
		.has_afe = true,
2565
		.max_port = ADV7604_PAD_VGA_COMP,
2566 2567 2568 2569 2570 2571 2572
		.num_dv_ports = 4,
		.edid_enable_reg = 0x77,
		.edid_status_reg = 0x7d,
		.lcf_reg = 0xb3,
		.tdms_lock_mask = 0xe0,
		.cable_det_mask = 0x1e,
		.fmt_change_digital_mask = 0xc1,
2573
		.cp_csc = 0xfc,
2574 2575
		.formats = adv7604_formats,
		.nformats = ARRAY_SIZE(adv7604_formats),
2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
		.set_termination = adv7604_set_termination,
		.setup_irqs = adv7604_setup_irqs,
		.read_hdmi_pixelclock = adv7604_read_hdmi_pixelclock,
		.read_cable_det = adv7604_read_cable_det,
		.recommended_settings = {
		    [0] = adv7604_recommended_settings_afe,
		    [1] = adv7604_recommended_settings_hdmi,
		},
		.num_recommended_settings = {
		    [0] = ARRAY_SIZE(adv7604_recommended_settings_afe),
		    [1] = ARRAY_SIZE(adv7604_recommended_settings_hdmi),
		},
2588 2589
		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV7604_PAGE_AVLINK) |
			BIT(ADV76XX_PAGE_CEC) | BIT(ADV76XX_PAGE_INFOFRAME) |
2590
			BIT(ADV7604_PAGE_ESDP) | BIT(ADV7604_PAGE_DPP) |
2591 2592 2593
			BIT(ADV76XX_PAGE_AFE) | BIT(ADV76XX_PAGE_REP) |
			BIT(ADV76XX_PAGE_EDID) | BIT(ADV76XX_PAGE_HDMI) |
			BIT(ADV76XX_PAGE_TEST) | BIT(ADV76XX_PAGE_CP) |
2594
			BIT(ADV7604_PAGE_VDP),
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606
		.linewidth_mask = 0xfff,
		.field0_height_mask = 0xfff,
		.field1_height_mask = 0xfff,
		.hfrontporch_mask = 0x3ff,
		.hsync_mask = 0x3ff,
		.hbackporch_mask = 0x3ff,
		.field0_vfrontporch_mask = 0x1fff,
		.field0_vsync_mask = 0x1fff,
		.field0_vbackporch_mask = 0x1fff,
		.field1_vfrontporch_mask = 0x1fff,
		.field1_vsync_mask = 0x1fff,
		.field1_vbackporch_mask = 0x1fff,
2607 2608 2609 2610
	},
	[ADV7611] = {
		.type = ADV7611,
		.has_afe = false,
2611
		.max_port = ADV76XX_PAD_HDMI_PORT_A,
2612 2613 2614 2615 2616 2617 2618
		.num_dv_ports = 1,
		.edid_enable_reg = 0x74,
		.edid_status_reg = 0x76,
		.lcf_reg = 0xa3,
		.tdms_lock_mask = 0x43,
		.cable_det_mask = 0x01,
		.fmt_change_digital_mask = 0x03,
2619
		.cp_csc = 0xf4,
2620 2621
		.formats = adv7611_formats,
		.nformats = ARRAY_SIZE(adv7611_formats),
2622 2623 2624 2625 2626 2627 2628 2629 2630 2631
		.set_termination = adv7611_set_termination,
		.setup_irqs = adv7611_setup_irqs,
		.read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock,
		.read_cable_det = adv7611_read_cable_det,
		.recommended_settings = {
		    [1] = adv7611_recommended_settings_hdmi,
		},
		.num_recommended_settings = {
		    [1] = ARRAY_SIZE(adv7611_recommended_settings_hdmi),
		},
2632 2633 2634 2635
		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) |
			BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) |
			BIT(ADV76XX_PAGE_REP) |  BIT(ADV76XX_PAGE_EDID) |
			BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP),
2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
		.linewidth_mask = 0x1fff,
		.field0_height_mask = 0x1fff,
		.field1_height_mask = 0x1fff,
		.hfrontporch_mask = 0x1fff,
		.hsync_mask = 0x1fff,
		.hbackporch_mask = 0x1fff,
		.field0_vfrontporch_mask = 0x3fff,
		.field0_vsync_mask = 0x3fff,
		.field0_vbackporch_mask = 0x3fff,
		.field1_vfrontporch_mask = 0x3fff,
		.field1_vsync_mask = 0x3fff,
		.field1_vbackporch_mask = 0x3fff,
2648 2649 2650
	},
};

2651
static const struct i2c_device_id adv76xx_i2c_id[] = {
2652 2653
	{ "adv7604", (kernel_ulong_t)&adv76xx_chip_info[ADV7604] },
	{ "adv7611", (kernel_ulong_t)&adv76xx_chip_info[ADV7611] },
2654 2655
	{ }
};
2656
MODULE_DEVICE_TABLE(i2c, adv76xx_i2c_id);
2657

2658
static const struct of_device_id adv76xx_of_id[] __maybe_unused = {
2659
	{ .compatible = "adi,adv7611", .data = &adv76xx_chip_info[ADV7611] },
2660 2661
	{ }
};
2662
MODULE_DEVICE_TABLE(of, adv76xx_of_id);
2663

2664
static int adv76xx_parse_dt(struct adv76xx_state *state)
2665
{
2666 2667 2668 2669 2670
	struct v4l2_of_endpoint bus_cfg;
	struct device_node *endpoint;
	struct device_node *np;
	unsigned int flags;

2671
	np = state->i2c_clients[ADV76XX_PAGE_IO]->dev.of_node;
2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696

	/* Parse the endpoint. */
	endpoint = of_graph_get_next_endpoint(np, NULL);
	if (!endpoint)
		return -EINVAL;

	v4l2_of_parse_endpoint(endpoint, &bus_cfg);
	of_node_put(endpoint);

	flags = bus_cfg.bus.parallel.flags;

	if (flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH)
		state->pdata.inv_hs_pol = 1;

	if (flags & V4L2_MBUS_VSYNC_ACTIVE_HIGH)
		state->pdata.inv_vs_pol = 1;

	if (flags & V4L2_MBUS_PCLK_SAMPLE_RISING)
		state->pdata.inv_llc_pol = 1;

	if (bus_cfg.bus_type == V4L2_MBUS_BT656) {
		state->pdata.insert_av_codes = 1;
		state->pdata.op_656_range = 1;
	}

2697
	/* Disable the interrupt for now as no DT-based board uses it. */
2698
	state->pdata.int1_config = ADV76XX_INT1_CONFIG_DISABLED;
2699 2700 2701

	/* Use the default I2C addresses. */
	state->pdata.i2c_addresses[ADV7604_PAGE_AVLINK] = 0x42;
2702 2703
	state->pdata.i2c_addresses[ADV76XX_PAGE_CEC] = 0x40;
	state->pdata.i2c_addresses[ADV76XX_PAGE_INFOFRAME] = 0x3e;
2704 2705
	state->pdata.i2c_addresses[ADV7604_PAGE_ESDP] = 0x38;
	state->pdata.i2c_addresses[ADV7604_PAGE_DPP] = 0x3c;
2706 2707 2708 2709 2710 2711
	state->pdata.i2c_addresses[ADV76XX_PAGE_AFE] = 0x26;
	state->pdata.i2c_addresses[ADV76XX_PAGE_REP] = 0x32;
	state->pdata.i2c_addresses[ADV76XX_PAGE_EDID] = 0x36;
	state->pdata.i2c_addresses[ADV76XX_PAGE_HDMI] = 0x34;
	state->pdata.i2c_addresses[ADV76XX_PAGE_TEST] = 0x30;
	state->pdata.i2c_addresses[ADV76XX_PAGE_CP] = 0x22;
2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
	state->pdata.i2c_addresses[ADV7604_PAGE_VDP] = 0x24;

	/* Hardcode the remaining platform data fields. */
	state->pdata.disable_pwrdnb = 0;
	state->pdata.disable_cable_det_rst = 0;
	state->pdata.default_input = -1;
	state->pdata.blank_data = 1;
	state->pdata.alt_data_sat = 1;
	state->pdata.op_format_mode_sel = ADV7604_OP_FORMAT_MODE0;
	state->pdata.bus_order = ADV7604_BUS_ORDER_RGB;

	return 0;
}

2726
static int adv76xx_probe(struct i2c_client *client,
2727 2728
			 const struct i2c_device_id *id)
{
2729 2730
	static const struct v4l2_dv_timings cea640x480 =
		V4L2_DV_BT_CEA_640X480P59_94;
2731
	struct adv76xx_state *state;
2732 2733
	struct v4l2_ctrl_handler *hdl;
	struct v4l2_subdev *sd;
2734
	unsigned int i;
2735
	u16 val;
2736 2737 2738 2739 2740
	int err;

	/* Check if the adapter supports the needed features */
	if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
		return -EIO;
2741
	v4l_dbg(1, debug, client, "detecting adv76xx client on address 0x%x\n",
2742 2743
			client->addr << 1);

2744
	state = devm_kzalloc(&client->dev, sizeof(*state), GFP_KERNEL);
2745
	if (!state) {
2746
		v4l_err(client, "Could not allocate adv76xx_state memory!\n");
2747 2748 2749
		return -ENOMEM;
	}

2750
	state->i2c_clients[ADV76XX_PAGE_IO] = client;
2751

2752 2753
	/* initialize variables */
	state->restart_stdi_once = true;
2754
	state->selected_input = ~0;
2755

2756 2757 2758
	if (IS_ENABLED(CONFIG_OF) && client->dev.of_node) {
		const struct of_device_id *oid;

2759
		oid = of_match_node(adv76xx_of_id, client->dev.of_node);
2760 2761
		state->info = oid->data;

2762
		err = adv76xx_parse_dt(state);
2763 2764 2765 2766 2767
		if (err < 0) {
			v4l_err(client, "DT parsing error\n");
			return err;
		}
	} else if (client->dev.platform_data) {
2768
		struct adv76xx_platform_data *pdata = client->dev.platform_data;
2769

2770
		state->info = (const struct adv76xx_chip_info *)id->driver_data;
2771 2772
		state->pdata = *pdata;
	} else {
2773
		v4l_err(client, "No platform data!\n");
2774
		return -ENODEV;
2775
	}
2776 2777 2778 2779

	/* Request GPIOs. */
	for (i = 0; i < state->info->num_dv_ports; ++i) {
		state->hpd_gpio[i] =
2780 2781
			devm_gpiod_get_index_optional(&client->dev, "hpd", i,
						      GPIOD_OUT_LOW);
2782
		if (IS_ERR(state->hpd_gpio[i]))
2783
			return PTR_ERR(state->hpd_gpio[i]);
2784

2785 2786
		if (state->hpd_gpio[i])
			v4l_info(client, "Handling HPD %u GPIO\n", i);
2787 2788
	}

2789
	state->timings = cea640x480;
2790
	state->format = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
2791 2792

	sd = &state->sd;
2793
	v4l2_i2c_subdev_init(sd, client, &adv76xx_ops);
2794 2795 2796
	snprintf(sd->name, sizeof(sd->name), "%s %d-%04x",
		id->name, i2c_adapter_id(client->adapter),
		client->addr);
2797 2798
	sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;

2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
	/*
	 * Verify that the chip is present. On ADV7604 the RD_INFO register only
	 * identifies the revision, while on ADV7611 it identifies the model as
	 * well. Use the HDMI slave address on ADV7604 and RD_INFO on ADV7611.
	 */
	if (state->info->type == ADV7604) {
		val = adv_smbus_read_byte_data_check(client, 0xfb, false);
		if (val != 0x68) {
			v4l2_info(sd, "not an adv7604 on address 0x%x\n",
					client->addr << 1);
			return -ENODEV;
		}
	} else {
		val = (adv_smbus_read_byte_data_check(client, 0xea, false) << 8)
		    | (adv_smbus_read_byte_data_check(client, 0xeb, false) << 0);
		if (val != 0x2051) {
			v4l2_info(sd, "not an adv7611 on address 0x%x\n",
					client->addr << 1);
			return -ENODEV;
		}
2819 2820 2821 2822
	}

	/* control handlers */
	hdl = &state->hdl;
2823
	v4l2_ctrl_handler_init(hdl, adv76xx_has_afe(state) ? 9 : 8);
2824

2825
	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
2826
			V4L2_CID_BRIGHTNESS, -128, 127, 1, 0);
2827
	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
2828
			V4L2_CID_CONTRAST, 0, 255, 1, 128);
2829
	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
2830
			V4L2_CID_SATURATION, 0, 255, 1, 128);
2831
	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
2832 2833 2834 2835
			V4L2_CID_HUE, 0, 128, 1, 0);

	/* private controls */
	state->detect_tx_5v_ctrl = v4l2_ctrl_new_std(hdl, NULL,
2836 2837
			V4L2_CID_DV_RX_POWER_PRESENT, 0,
			(1 << state->info->num_dv_ports) - 1, 0, 0);
2838
	state->rgb_quantization_range_ctrl =
2839
		v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops,
2840 2841 2842 2843
			V4L2_CID_DV_RX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL,
			0, V4L2_DV_RGB_RANGE_AUTO);

	/* custom controls */
2844
	if (adv76xx_has_afe(state))
2845 2846
		state->analog_sampling_phase_ctrl =
			v4l2_ctrl_new_custom(hdl, &adv7604_ctrl_analog_sampling_phase, NULL);
2847
	state->free_run_color_manual_ctrl =
2848
		v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color_manual, NULL);
2849
	state->free_run_color_ctrl =
2850
		v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color, NULL);
2851 2852 2853 2854 2855 2856

	sd->ctrl_handler = hdl;
	if (hdl->error) {
		err = hdl->error;
		goto err_hdl;
	}
2857 2858
	state->detect_tx_5v_ctrl->is_private = true;
	state->rgb_quantization_range_ctrl->is_private = true;
2859
	if (adv76xx_has_afe(state))
2860
		state->analog_sampling_phase_ctrl->is_private = true;
2861 2862 2863
	state->free_run_color_manual_ctrl->is_private = true;
	state->free_run_color_ctrl->is_private = true;

2864
	if (adv76xx_s_detect_tx_5v_ctrl(sd)) {
2865 2866 2867 2868
		err = -ENODEV;
		goto err_hdl;
	}

2869
	for (i = 1; i < ADV76XX_PAGE_MAX; ++i) {
2870 2871
		if (!(BIT(i) & state->info->page_mask))
			continue;
2872

2873
		state->i2c_clients[i] =
2874
			adv76xx_dummy_client(sd, state->pdata.i2c_addresses[i],
2875 2876
					     0xf2 + i);
		if (state->i2c_clients[i] == NULL) {
2877
			err = -ENOMEM;
2878
			v4l2_err(sd, "failed to create i2c client %u\n", i);
2879 2880 2881
			goto err_i2c;
		}
	}
2882

2883 2884 2885 2886 2887 2888 2889 2890 2891
	/* work queues */
	state->work_queues = create_singlethread_workqueue(client->name);
	if (!state->work_queues) {
		v4l2_err(sd, "Could not create work queue\n");
		err = -ENOMEM;
		goto err_i2c;
	}

	INIT_DELAYED_WORK(&state->delayed_work_enable_hotplug,
2892
			adv76xx_delayed_work_enable_hotplug);
2893

2894 2895 2896 2897 2898 2899 2900 2901
	state->source_pad = state->info->num_dv_ports
			  + (state->info->has_afe ? 2 : 0);
	for (i = 0; i < state->source_pad; ++i)
		state->pads[i].flags = MEDIA_PAD_FL_SINK;
	state->pads[state->source_pad].flags = MEDIA_PAD_FL_SOURCE;

	err = media_entity_init(&sd->entity, state->source_pad + 1,
				state->pads, 0);
2902 2903 2904
	if (err)
		goto err_work_queues;

2905
	err = adv76xx_core_init(sd);
2906 2907 2908 2909
	if (err)
		goto err_entity;
	v4l2_info(sd, "%s found @ 0x%x (%s)\n", client->name,
			client->addr << 1, client->adapter->name);
2910 2911 2912 2913 2914

	err = v4l2_async_register_subdev(sd);
	if (err)
		goto err_entity;

2915 2916 2917 2918 2919 2920 2921 2922
	return 0;

err_entity:
	media_entity_cleanup(&sd->entity);
err_work_queues:
	cancel_delayed_work(&state->delayed_work_enable_hotplug);
	destroy_workqueue(state->work_queues);
err_i2c:
2923
	adv76xx_unregister_clients(state);
2924 2925 2926 2927 2928 2929 2930
err_hdl:
	v4l2_ctrl_handler_free(hdl);
	return err;
}

/* ----------------------------------------------------------------------- */

2931
static int adv76xx_remove(struct i2c_client *client)
2932 2933
{
	struct v4l2_subdev *sd = i2c_get_clientdata(client);
2934
	struct adv76xx_state *state = to_state(sd);
2935 2936 2937

	cancel_delayed_work(&state->delayed_work_enable_hotplug);
	destroy_workqueue(state->work_queues);
2938
	v4l2_async_unregister_subdev(sd);
2939
	media_entity_cleanup(&sd->entity);
2940
	adv76xx_unregister_clients(to_state(sd));
2941 2942 2943 2944 2945 2946
	v4l2_ctrl_handler_free(sd->ctrl_handler);
	return 0;
}

/* ----------------------------------------------------------------------- */

2947
static struct i2c_driver adv76xx_driver = {
2948 2949 2950
	.driver = {
		.owner = THIS_MODULE,
		.name = "adv7604",
2951
		.of_match_table = of_match_ptr(adv76xx_of_id),
2952
	},
2953 2954 2955
	.probe = adv76xx_probe,
	.remove = adv76xx_remove,
	.id_table = adv76xx_i2c_id,
2956 2957
};

2958
module_i2c_driver(adv76xx_driver);