abituguru.c 49.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
/*
    abituguru.c Copyright (c) 2005-2006 Hans de Goede <j.w.r.degoede@hhs.nl>

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
    This driver supports the sensor part of the custom Abit uGuru chip found
    on Abit uGuru motherboards. Note: because of lack of specs the CPU / RAM /
    etc voltage & frequency control is not supported!
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/jiffies.h>
#include <linux/mutex.h>
#include <linux/err.h>
#include <linux/platform_device.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <asm/io.h>

/* Banks */
#define ABIT_UGURU_ALARM_BANK			0x20 /* 1x 3 bytes */
#define ABIT_UGURU_SENSOR_BANK1			0x21 /* 16x volt and temp */
#define ABIT_UGURU_FAN_PWM			0x24 /* 3x 5 bytes */
#define ABIT_UGURU_SENSOR_BANK2			0x26 /* fans */
H
Hans de Goede 已提交
39 40 41 42
/* max nr of sensors in bank1, a bank1 sensor can be in, temp or nc */
#define ABIT_UGURU_MAX_BANK1_SENSORS		16
/* Warning if you increase one of the 2 MAX defines below to 10 or higher you
   should adjust the belonging _NAMES_LENGTH macro for the 2 digit number! */
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
/* max nr of sensors in bank2, currently mb's with max 6 fans are known */
#define ABIT_UGURU_MAX_BANK2_SENSORS		6
/* max nr of pwm outputs, currently mb's with max 5 pwm outputs are known */
#define ABIT_UGURU_MAX_PWMS			5
/* uGuru sensor bank 1 flags */			     /* Alarm if: */
#define ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE	0x01 /*  temp over warn */
#define ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE	0x02 /*  volt over max */
#define ABIT_UGURU_VOLT_LOW_ALARM_ENABLE	0x04 /*  volt under min */
#define ABIT_UGURU_TEMP_HIGH_ALARM_FLAG		0x10 /* temp is over warn */
#define ABIT_UGURU_VOLT_HIGH_ALARM_FLAG		0x20 /* volt is over max */
#define ABIT_UGURU_VOLT_LOW_ALARM_FLAG		0x40 /* volt is under min */
/* uGuru sensor bank 2 flags */			     /* Alarm if: */
#define ABIT_UGURU_FAN_LOW_ALARM_ENABLE		0x01 /*   fan under min */
/* uGuru sensor bank common flags */
#define ABIT_UGURU_BEEP_ENABLE			0x08 /* beep if alarm */
#define ABIT_UGURU_SHUTDOWN_ENABLE		0x80 /* shutdown if alarm */
/* uGuru fan PWM (speed control) flags */
#define ABIT_UGURU_FAN_PWM_ENABLE		0x80 /* enable speed control */
/* Values used for conversion */
#define ABIT_UGURU_FAN_MAX			15300 /* RPM */
/* Bank1 sensor types */
#define ABIT_UGURU_IN_SENSOR			0
#define ABIT_UGURU_TEMP_SENSOR			1
#define ABIT_UGURU_NC				2
/* Timeouts / Retries, if these turn out to need a lot of fiddling we could
   convert them to params. */
/* 250 was determined by trial and error, 200 works most of the time, but not
   always. I assume this is cpu-speed independent, since the ISA-bus and not
   the CPU should be the bottleneck. Note that 250 sometimes is still not
   enough (only reported on AN7 mb) this is handled by a higher layer. */
#define ABIT_UGURU_WAIT_TIMEOUT			250
/* Normally all expected status in abituguru_ready, are reported after the
   first read, but sometimes not and we need to poll, 5 polls was not enough
   50 sofar is. */
#define ABIT_UGURU_READY_TIMEOUT		50
/* Maximum 3 retries on timedout reads/writes, delay 200 ms before retrying */
#define ABIT_UGURU_MAX_RETRIES			3
#define ABIT_UGURU_RETRY_DELAY			(HZ/5)
H
Hans de Goede 已提交
81
/* Maximum 2 timeouts in abituguru_update_device, iow 3 in a row is an error */
82
#define ABIT_UGURU_MAX_TIMEOUTS			2
H
Hans de Goede 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
/* utility macros */
#define ABIT_UGURU_NAME				"abituguru"
#define ABIT_UGURU_DEBUG(level, format, arg...)				\
	if (level <= verbose)						\
		printk(KERN_DEBUG ABIT_UGURU_NAME ": "	format , ## arg)
/* Macros to help calculate the sysfs_names array length */
/* sum of strlen of: in??_input\0, in??_{min,max}\0, in??_{min,max}_alarm\0,
   in??_{min,max}_alarm_enable\0, in??_beep\0, in??_shutdown\0 */
#define ABITUGURU_IN_NAMES_LENGTH	(11 + 2 * 9 + 2 * 15 + 2 * 22 + 10 + 14)
/* sum of strlen of: temp??_input\0, temp??_max\0, temp??_crit\0,
   temp??_alarm\0, temp??_alarm_enable\0, temp??_beep\0, temp??_shutdown\0 */
#define ABITUGURU_TEMP_NAMES_LENGTH	(13 + 11 + 12 + 13 + 20 + 12 + 16)
/* sum of strlen of: fan?_input\0, fan?_min\0, fan?_alarm\0,
   fan?_alarm_enable\0, fan?_beep\0, fan?_shutdown\0 */
#define ABITUGURU_FAN_NAMES_LENGTH	(11 + 9 + 11 + 18 + 10 + 14)
/* sum of strlen of: pwm?_enable\0, pwm?_auto_channels_temp\0,
   pwm?_auto_point{1,2}_pwm\0, pwm?_auto_point{1,2}_temp\0 */
#define ABITUGURU_PWM_NAMES_LENGTH	(12 + 24 + 2 * 21 + 2 * 22)
/* IN_NAMES_LENGTH > TEMP_NAMES_LENGTH so assume all bank1 sensors are in */
#define ABITUGURU_SYSFS_NAMES_LENGTH	( \
	ABIT_UGURU_MAX_BANK1_SENSORS * ABITUGURU_IN_NAMES_LENGTH + \
	ABIT_UGURU_MAX_BANK2_SENSORS * ABITUGURU_FAN_NAMES_LENGTH + \
	ABIT_UGURU_MAX_PWMS * ABITUGURU_PWM_NAMES_LENGTH)

/* All the macros below are named identical to the oguru and oguru2 programs
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
   reverse engineered by Olle Sandberg, hence the names might not be 100%
   logical. I could come up with better names, but I prefer keeping the names
   identical so that this driver can be compared with his work more easily. */
/* Two i/o-ports are used by uGuru */
#define ABIT_UGURU_BASE				0x00E0
/* Used to tell uGuru what to read and to read the actual data */
#define ABIT_UGURU_CMD				0x00
/* Mostly used to check if uGuru is busy */
#define ABIT_UGURU_DATA				0x04
#define ABIT_UGURU_REGION_LENGTH		5
/* uGuru status' */
#define ABIT_UGURU_STATUS_WRITE			0x00 /* Ready to be written */
#define ABIT_UGURU_STATUS_READ			0x01 /* Ready to be read */
#define ABIT_UGURU_STATUS_INPUT			0x08 /* More input */
#define ABIT_UGURU_STATUS_READY			0x09 /* Ready to be written */

/* Constants */
/* in (Volt) sensors go up to 3494 mV, temp to 255000 millidegrees Celsius */
static const int abituguru_bank1_max_value[2] = { 3494, 255000 };
/* Min / Max allowed values for sensor2 (fan) alarm threshold, these values
   correspond to 300-3000 RPM */
static const u8 abituguru_bank2_min_threshold = 5;
static const u8 abituguru_bank2_max_threshold = 50;
/* Register 0 is a bitfield, 1 and 2 are pwm settings (255 = 100%), 3 and 4
   are temperature trip points. */
static const int abituguru_pwm_settings_multiplier[5] = { 0, 1, 1, 1000, 1000 };
/* Min / Max allowed values for pwm_settings. Note: pwm1 (CPU fan) is a
   special case the minium allowed pwm% setting for this is 30% (77) on
   some MB's this special case is handled in the code! */
static const u8 abituguru_pwm_min[5] = { 0, 170, 170, 25, 25 };
static const u8 abituguru_pwm_max[5] = { 0, 255, 255, 75, 75 };


/* Insmod parameters */
static int force;
module_param(force, bool, 0);
MODULE_PARM_DESC(force, "Set to one to force detection.");
145 146 147 148 149 150 151 152
static int bank1_types[ABIT_UGURU_MAX_BANK1_SENSORS] = { -1, -1, -1, -1, -1,
	-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 };
module_param_array(bank1_types, int, NULL, 0);
MODULE_PARM_DESC(bank1_types, "Bank1 sensortype autodetection override:\n"
	"   -1 autodetect\n"
	"    0 volt sensor\n"
	"    1 temp sensor\n"
	"    2 not connected");
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
static int fan_sensors;
module_param(fan_sensors, int, 0);
MODULE_PARM_DESC(fan_sensors, "Number of fan sensors on the uGuru "
	"(0 = autodetect)");
static int pwms;
module_param(pwms, int, 0);
MODULE_PARM_DESC(pwms, "Number of PWMs on the uGuru "
	"(0 = autodetect)");

/* Default verbose is 2, since this driver is still in the testing phase */
static int verbose = 2;
module_param(verbose, int, 0644);
MODULE_PARM_DESC(verbose, "How verbose should the driver be? (0-3):\n"
	"   0 normal output\n"
	"   1 + verbose error reporting\n"
	"   2 + sensors type probing info\n"
	"   3 + retryable error reporting");


/* For the Abit uGuru, we need to keep some data in memory.
   The structure is dynamically allocated, at the same time when a new
   abituguru device is allocated. */
struct abituguru_data {
	struct class_device *class_dev; /* hwmon registered device */
	struct mutex update_lock;	/* protect access to data and uGuru */
	unsigned long last_updated;	/* In jiffies */
	unsigned short addr;		/* uguru base address */
	char uguru_ready;		/* is the uguru in ready state? */
	unsigned char update_timeouts;	/* number of update timeouts since last
					   successful update */

	/* The sysfs attr and their names are generated automatically, for bank1
	   we cannot use a predefined array because we don't know beforehand
	   of a sensor is a volt or a temp sensor, for bank2 and the pwms its
	   easier todo things the same way.  For in sensors we have 9 (temp 7)
	   sysfs entries per sensor, for bank2 and pwms 6. */
H
Hans de Goede 已提交
189 190
	struct sensor_device_attribute_2 sysfs_attr[
		ABIT_UGURU_MAX_BANK1_SENSORS * 9 +
191
		ABIT_UGURU_MAX_BANK2_SENSORS * 6 + ABIT_UGURU_MAX_PWMS * 6];
H
Hans de Goede 已提交
192 193
	/* Buffer to store the dynamically generated sysfs names */
	char sysfs_names[ABITUGURU_SYSFS_NAMES_LENGTH];
194 195

	/* Bank 1 data */
H
Hans de Goede 已提交
196 197 198 199 200
	/* number of and addresses of [0] in, [1] temp sensors */
	u8 bank1_sensors[2];
	u8 bank1_address[2][ABIT_UGURU_MAX_BANK1_SENSORS];
	u8 bank1_value[ABIT_UGURU_MAX_BANK1_SENSORS];
	/* This array holds 3 entries per sensor for the bank 1 sensor settings
201
	   (flags, min, max for voltage / flags, warn, shutdown for temp). */
H
Hans de Goede 已提交
202
	u8 bank1_settings[ABIT_UGURU_MAX_BANK1_SENSORS][3];
203 204
	/* Maximum value for each sensor used for scaling in mV/millidegrees
	   Celsius. */
H
Hans de Goede 已提交
205
	int bank1_max_value[ABIT_UGURU_MAX_BANK1_SENSORS];
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407

	/* Bank 2 data, ABIT_UGURU_MAX_BANK2_SENSORS entries for bank2 */
	u8 bank2_sensors; /* actual number of bank2 sensors found */
	u8 bank2_value[ABIT_UGURU_MAX_BANK2_SENSORS];
	u8 bank2_settings[ABIT_UGURU_MAX_BANK2_SENSORS][2]; /* flags, min */

	/* Alarms 2 bytes for bank1, 1 byte for bank2 */
	u8 alarms[3];

	/* Fan PWM (speed control) 5 bytes per PWM */
	u8 pwms; /* actual number of pwms found */
	u8 pwm_settings[ABIT_UGURU_MAX_PWMS][5];
};

/* wait till the uguru is in the specified state */
static int abituguru_wait(struct abituguru_data *data, u8 state)
{
	int timeout = ABIT_UGURU_WAIT_TIMEOUT;

	while (inb_p(data->addr + ABIT_UGURU_DATA) != state) {
		timeout--;
		if (timeout == 0)
			return -EBUSY;
	}
	return 0;
}

/* Put the uguru in ready for input state */
static int abituguru_ready(struct abituguru_data *data)
{
	int timeout = ABIT_UGURU_READY_TIMEOUT;

	if (data->uguru_ready)
		return 0;

	/* Reset? / Prepare for next read/write cycle */
	outb(0x00, data->addr + ABIT_UGURU_DATA);

	/* Wait till the uguru is ready */
	if (abituguru_wait(data, ABIT_UGURU_STATUS_READY)) {
		ABIT_UGURU_DEBUG(1,
			"timeout exceeded waiting for ready state\n");
		return -EIO;
	}

	/* Cmd port MUST be read now and should contain 0xAC */
	while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
		timeout--;
		if (timeout == 0) {
			ABIT_UGURU_DEBUG(1,
			   "CMD reg does not hold 0xAC after ready command\n");
			return -EIO;
		}
	}

	/* After this the ABIT_UGURU_DATA port should contain
	   ABIT_UGURU_STATUS_INPUT */
	timeout = ABIT_UGURU_READY_TIMEOUT;
	while (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT) {
		timeout--;
		if (timeout == 0) {
			ABIT_UGURU_DEBUG(1,
				"state != more input after ready command\n");
			return -EIO;
		}
	}

	data->uguru_ready = 1;
	return 0;
}

/* Send the bank and then sensor address to the uGuru for the next read/write
   cycle. This function gets called as the first part of a read/write by
   abituguru_read and abituguru_write. This function should never be
   called by any other function. */
static int abituguru_send_address(struct abituguru_data *data,
	u8 bank_addr, u8 sensor_addr, int retries)
{
	/* assume the caller does error handling itself if it has not requested
	   any retries, and thus be quiet. */
	int report_errors = retries;

	for (;;) {
		/* Make sure the uguru is ready and then send the bank address,
		   after this the uguru is no longer "ready". */
		if (abituguru_ready(data) != 0)
			return -EIO;
		outb(bank_addr, data->addr + ABIT_UGURU_DATA);
		data->uguru_ready = 0;

		/* Wait till the uguru is ABIT_UGURU_STATUS_INPUT state again
		   and send the sensor addr */
		if (abituguru_wait(data, ABIT_UGURU_STATUS_INPUT)) {
			if (retries) {
				ABIT_UGURU_DEBUG(3, "timeout exceeded "
					"waiting for more input state, %d "
					"tries remaining\n", retries);
				set_current_state(TASK_UNINTERRUPTIBLE);
				schedule_timeout(ABIT_UGURU_RETRY_DELAY);
				retries--;
				continue;
			}
			if (report_errors)
				ABIT_UGURU_DEBUG(1, "timeout exceeded "
					"waiting for more input state "
					"(bank: %d)\n", (int)bank_addr);
			return -EBUSY;
		}
		outb(sensor_addr, data->addr + ABIT_UGURU_CMD);
		return 0;
	}
}

/* Read count bytes from sensor sensor_addr in bank bank_addr and store the
   result in buf, retry the send address part of the read retries times. */
static int abituguru_read(struct abituguru_data *data,
	u8 bank_addr, u8 sensor_addr, u8 *buf, int count, int retries)
{
	int i;

	/* Send the address */
	i = abituguru_send_address(data, bank_addr, sensor_addr, retries);
	if (i)
		return i;

	/* And read the data */
	for (i = 0; i < count; i++) {
		if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
			ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for "
				"read state (bank: %d, sensor: %d)\n",
				(int)bank_addr, (int)sensor_addr);
			break;
		}
		buf[i] = inb(data->addr + ABIT_UGURU_CMD);
	}

	/* Last put the chip back in ready state */
	abituguru_ready(data);

	return i;
}

/* Write count bytes from buf to sensor sensor_addr in bank bank_addr, the send
   address part of the write is always retried ABIT_UGURU_MAX_RETRIES times. */
static int abituguru_write(struct abituguru_data *data,
	u8 bank_addr, u8 sensor_addr, u8 *buf, int count)
{
	int i;

	/* Send the address */
	i = abituguru_send_address(data, bank_addr, sensor_addr,
		ABIT_UGURU_MAX_RETRIES);
	if (i)
		return i;

	/* And write the data */
	for (i = 0; i < count; i++) {
		if (abituguru_wait(data, ABIT_UGURU_STATUS_WRITE)) {
			ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for "
				"write state (bank: %d, sensor: %d)\n",
				(int)bank_addr, (int)sensor_addr);
			break;
		}
		outb(buf[i], data->addr + ABIT_UGURU_CMD);
	}

	/* Now we need to wait till the chip is ready to be read again,
	   don't ask why */
	if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
		ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for read state "
			"after write (bank: %d, sensor: %d)\n", (int)bank_addr,
			(int)sensor_addr);
		return -EIO;
	}

	/* Cmd port MUST be read now and should contain 0xAC */
	if (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
		ABIT_UGURU_DEBUG(1, "CMD reg does not hold 0xAC after write "
			"(bank: %d, sensor: %d)\n", (int)bank_addr,
			(int)sensor_addr);
		return -EIO;
	}

	/* Last put the chip back in ready state */
	abituguru_ready(data);

	return i;
}

/* Detect sensor type. Temp and Volt sensors are enabled with
   different masks and will ignore enable masks not meant for them.
   This enables us to test what kind of sensor we're dealing with.
   By setting the alarm thresholds so that we will always get an
   alarm for sensor type X and then enabling the sensor as sensor type
   X, if we then get an alarm it is a sensor of type X. */
static int __devinit
abituguru_detect_bank1_sensor_type(struct abituguru_data *data,
				   u8 sensor_addr)
{
	u8 val, buf[3];
	int ret = ABIT_UGURU_NC;

408 409 410 411 412 413 414 415 416
	/* If overriden by the user return the user selected type */
	if (bank1_types[sensor_addr] >= ABIT_UGURU_IN_SENSOR &&
			bank1_types[sensor_addr] <= ABIT_UGURU_NC) {
		ABIT_UGURU_DEBUG(2, "assuming sensor type %d for bank1 sensor "
			"%d because of \"bank1_types\" module param\n",
			bank1_types[sensor_addr], (int)sensor_addr);
		return bank1_types[sensor_addr];
	}

417 418 419
	/* First read the sensor and the current settings */
	if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, sensor_addr, &val,
			1, ABIT_UGURU_MAX_RETRIES) != 1)
H
Hans de Goede 已提交
420
		return -ENODEV;
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441

	/* Test val is sane / usable for sensor type detection. */
	if ((val < 10u) || (val > 240u)) {
		printk(KERN_WARNING ABIT_UGURU_NAME
			": bank1-sensor: %d reading (%d) too close to limits, "
			"unable to determine sensor type, skipping sensor\n",
			(int)sensor_addr, (int)val);
		/* assume no sensor is there for sensors for which we can't
		   determine the sensor type because their reading is too close
		   to their limits, this usually means no sensor is there. */
		return ABIT_UGURU_NC;
	}

	ABIT_UGURU_DEBUG(2, "testing bank1 sensor %d\n", (int)sensor_addr);
	/* Volt sensor test, enable volt low alarm, set min value ridicously
	   high. If its a volt sensor this should always give us an alarm. */
	buf[0] = ABIT_UGURU_VOLT_LOW_ALARM_ENABLE;
	buf[1] = 245;
	buf[2] = 250;
	if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
			buf, 3) != 3)
H
Hans de Goede 已提交
442
		return -ENODEV;
443 444 445 446 447 448 449
	/* Now we need 20 ms to give the uguru time to read the sensors
	   and raise a voltage alarm */
	set_current_state(TASK_UNINTERRUPTIBLE);
	schedule_timeout(HZ/50);
	/* Check for alarm and check the alarm is a volt low alarm. */
	if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
			ABIT_UGURU_MAX_RETRIES) != 3)
H
Hans de Goede 已提交
450
		return -ENODEV;
451 452 453 454
	if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
				sensor_addr, buf, 3,
				ABIT_UGURU_MAX_RETRIES) != 3)
H
Hans de Goede 已提交
455
			return -ENODEV;
456 457 458 459 460 461
		if (buf[0] & ABIT_UGURU_VOLT_LOW_ALARM_FLAG) {
			/* Restore original settings */
			if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
					sensor_addr,
					data->bank1_settings[sensor_addr],
					3) != 3)
H
Hans de Goede 已提交
462
				return -ENODEV;
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
			ABIT_UGURU_DEBUG(2, "  found volt sensor\n");
			return ABIT_UGURU_IN_SENSOR;
		} else
			ABIT_UGURU_DEBUG(2, "  alarm raised during volt "
				"sensor test, but volt low flag not set\n");
	} else
		ABIT_UGURU_DEBUG(2, "  alarm not raised during volt sensor "
			"test\n");

	/* Temp sensor test, enable sensor as a temp sensor, set beep value
	   ridicously low (but not too low, otherwise uguru ignores it).
	   If its a temp sensor this should always give us an alarm. */
	buf[0] = ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE;
	buf[1] = 5;
	buf[2] = 10;
	if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
			buf, 3) != 3)
H
Hans de Goede 已提交
480
		return -ENODEV;
481 482 483 484 485 486 487
	/* Now we need 50 ms to give the uguru time to read the sensors
	   and raise a temp alarm */
	set_current_state(TASK_UNINTERRUPTIBLE);
	schedule_timeout(HZ/20);
	/* Check for alarm and check the alarm is a temp high alarm. */
	if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
			ABIT_UGURU_MAX_RETRIES) != 3)
H
Hans de Goede 已提交
488
		return -ENODEV;
489 490 491 492
	if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
				sensor_addr, buf, 3,
				ABIT_UGURU_MAX_RETRIES) != 3)
H
Hans de Goede 已提交
493
			return -ENODEV;
494 495 496 497 498 499 500 501 502 503 504 505 506
		if (buf[0] & ABIT_UGURU_TEMP_HIGH_ALARM_FLAG) {
			ret = ABIT_UGURU_TEMP_SENSOR;
			ABIT_UGURU_DEBUG(2, "  found temp sensor\n");
		} else
			ABIT_UGURU_DEBUG(2, "  alarm raised during temp "
				"sensor test, but temp high flag not set\n");
	} else
		ABIT_UGURU_DEBUG(2, "  alarm not raised during temp sensor "
			"test\n");

	/* Restore original settings */
	if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
			data->bank1_settings[sensor_addr], 3) != 3)
H
Hans de Goede 已提交
507
		return -ENODEV;
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533

	return ret;
}

/* These functions try to find out how many sensors there are in bank2 and how
   many pwms there are. The purpose of this is to make sure that we don't give
   the user the possibility to change settings for non-existent sensors / pwm.
   The uGuru will happily read / write whatever memory happens to be after the
   memory storing the PWM settings when reading/writing to a PWM which is not
   there. Notice even if we detect a PWM which doesn't exist we normally won't
   write to it, unless the user tries to change the settings.

   Although the uGuru allows reading (settings) from non existing bank2
   sensors, my version of the uGuru does seem to stop writing to them, the
   write function above aborts in this case with:
   "CMD reg does not hold 0xAC after write"

   Notice these 2 tests are non destructive iow read-only tests, otherwise
   they would defeat their purpose. Although for the bank2_sensors detection a
   read/write test would be feasible because of the reaction above, I've
   however opted to stay on the safe side. */
static void __devinit
abituguru_detect_no_bank2_sensors(struct abituguru_data *data)
{
	int i;

534
	if (fan_sensors > 0 && fan_sensors <= ABIT_UGURU_MAX_BANK2_SENSORS) {
535 536 537 538 539 540 541 542 543 544 545 546 547 548
		data->bank2_sensors = fan_sensors;
		ABIT_UGURU_DEBUG(2, "assuming %d fan sensors because of "
			"\"fan_sensors\" module param\n",
			(int)data->bank2_sensors);
		return;
	}

	ABIT_UGURU_DEBUG(2, "detecting number of fan sensors\n");
	for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
		/* 0x89 are the known used bits:
		   -0x80 enable shutdown
		   -0x08 enable beep
		   -0x01 enable alarm
		   All other bits should be 0, but on some motherboards
549 550
		   0x40 (bit 6) is also high for some of the fans?? */
		if (data->bank2_settings[i][0] & ~0xC9) {
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
			ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
				"to be a fan sensor: settings[0] = %02X\n",
				i, (unsigned int)data->bank2_settings[i][0]);
			break;
		}

		/* check if the threshold is within the allowed range */
		if (data->bank2_settings[i][1] <
				abituguru_bank2_min_threshold) {
			ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
				"to be a fan sensor: the threshold (%d) is "
				"below the minimum (%d)\n", i,
				(int)data->bank2_settings[i][1],
				(int)abituguru_bank2_min_threshold);
			break;
		}
		if (data->bank2_settings[i][1] >
				abituguru_bank2_max_threshold) {
			ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
				"to be a fan sensor: the threshold (%d) is "
				"above the maximum (%d)\n", i,
				(int)data->bank2_settings[i][1],
				(int)abituguru_bank2_max_threshold);
			break;
		}
	}

	data->bank2_sensors = i;
	ABIT_UGURU_DEBUG(2, " found: %d fan sensors\n",
		(int)data->bank2_sensors);
}

static void __devinit
abituguru_detect_no_pwms(struct abituguru_data *data)
{
	int i, j;

588
	if (pwms > 0 && pwms <= ABIT_UGURU_MAX_PWMS) {
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
		data->pwms = pwms;
		ABIT_UGURU_DEBUG(2, "assuming %d PWM outputs because of "
			"\"pwms\" module param\n", (int)data->pwms);
		return;
	}

	ABIT_UGURU_DEBUG(2, "detecting number of PWM outputs\n");
	for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
		/* 0x80 is the enable bit and the low
		   nibble is which temp sensor to use,
		   the other bits should be 0 */
		if (data->pwm_settings[i][0] & ~0x8F) {
			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
				"to be a pwm channel: settings[0] = %02X\n",
				i, (unsigned int)data->pwm_settings[i][0]);
			break;
		}

		/* the low nibble must correspond to one of the temp sensors
		   we've found */
		for (j = 0; j < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR];
				j++) {
			if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][j] ==
					(data->pwm_settings[i][0] & 0x0F))
				break;
		}
		if (j == data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) {
			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
				"to be a pwm channel: %d is not a valid temp "
				"sensor address\n", i,
				data->pwm_settings[i][0] & 0x0F);
			break;
		}

		/* check if all other settings are within the allowed range */
		for (j = 1; j < 5; j++) {
			u8 min;
			/* special case pwm1 min pwm% */
			if ((i == 0) && ((j == 1) || (j == 2)))
				min = 77;
			else
				min = abituguru_pwm_min[j];
			if (data->pwm_settings[i][j] < min) {
				ABIT_UGURU_DEBUG(2, "  pwm channel %d does "
					"not seem to be a pwm channel: "
					"setting %d (%d) is below the minimum "
					"value (%d)\n", i, j,
					(int)data->pwm_settings[i][j],
					(int)min);
				goto abituguru_detect_no_pwms_exit;
			}
			if (data->pwm_settings[i][j] > abituguru_pwm_max[j]) {
				ABIT_UGURU_DEBUG(2, "  pwm channel %d does "
					"not seem to be a pwm channel: "
					"setting %d (%d) is above the maximum "
					"value (%d)\n", i, j,
					(int)data->pwm_settings[i][j],
					(int)abituguru_pwm_max[j]);
				goto abituguru_detect_no_pwms_exit;
			}
		}

		/* check that min temp < max temp and min pwm < max pwm */
		if (data->pwm_settings[i][1] >= data->pwm_settings[i][2]) {
			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
				"to be a pwm channel: min pwm (%d) >= "
				"max pwm (%d)\n", i,
				(int)data->pwm_settings[i][1],
				(int)data->pwm_settings[i][2]);
			break;
		}
		if (data->pwm_settings[i][3] >= data->pwm_settings[i][4]) {
			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
				"to be a pwm channel: min temp (%d) >= "
				"max temp (%d)\n", i,
				(int)data->pwm_settings[i][3],
				(int)data->pwm_settings[i][4]);
			break;
		}
	}

abituguru_detect_no_pwms_exit:
	data->pwms = i;
	ABIT_UGURU_DEBUG(2, " found: %d PWM outputs\n", (int)data->pwms);
}

/* Following are the sysfs callback functions. These functions expect:
   sensor_device_attribute_2->index:   sensor address/offset in the bank
   sensor_device_attribute_2->nr:      register offset, bitmask or NA. */
static struct abituguru_data *abituguru_update_device(struct device *dev);

static ssize_t show_bank1_value(struct device *dev,
	struct device_attribute *devattr, char *buf)
{
	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
	struct abituguru_data *data = abituguru_update_device(dev);
	if (!data)
		return -EIO;
	return sprintf(buf, "%d\n", (data->bank1_value[attr->index] *
		data->bank1_max_value[attr->index] + 128) / 255);
}

static ssize_t show_bank1_setting(struct device *dev,
	struct device_attribute *devattr, char *buf)
{
	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
	struct abituguru_data *data = dev_get_drvdata(dev);
	return sprintf(buf, "%d\n",
		(data->bank1_settings[attr->index][attr->nr] *
		data->bank1_max_value[attr->index] + 128) / 255);
}

static ssize_t show_bank2_value(struct device *dev,
	struct device_attribute *devattr, char *buf)
{
	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
	struct abituguru_data *data = abituguru_update_device(dev);
	if (!data)
		return -EIO;
	return sprintf(buf, "%d\n", (data->bank2_value[attr->index] *
		ABIT_UGURU_FAN_MAX + 128) / 255);
}

static ssize_t show_bank2_setting(struct device *dev,
	struct device_attribute *devattr, char *buf)
{
	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
	struct abituguru_data *data = dev_get_drvdata(dev);
	return sprintf(buf, "%d\n",
		(data->bank2_settings[attr->index][attr->nr] *
		ABIT_UGURU_FAN_MAX + 128) / 255);
}

static ssize_t store_bank1_setting(struct device *dev, struct device_attribute
	*devattr, const char *buf, size_t count)
{
	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
	struct abituguru_data *data = dev_get_drvdata(dev);
	u8 val = (simple_strtoul(buf, NULL, 10) * 255 +
		data->bank1_max_value[attr->index]/2) /
		data->bank1_max_value[attr->index];
	ssize_t ret = count;

	mutex_lock(&data->update_lock);
	if (data->bank1_settings[attr->index][attr->nr] != val) {
		u8 orig_val = data->bank1_settings[attr->index][attr->nr];
		data->bank1_settings[attr->index][attr->nr] = val;
		if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
				attr->index, data->bank1_settings[attr->index],
				3) <= attr->nr) {
			data->bank1_settings[attr->index][attr->nr] = orig_val;
			ret = -EIO;
		}
	}
	mutex_unlock(&data->update_lock);
	return ret;
}

static ssize_t store_bank2_setting(struct device *dev, struct device_attribute
	*devattr, const char *buf, size_t count)
{
	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
	struct abituguru_data *data = dev_get_drvdata(dev);
	u8 val = (simple_strtoul(buf, NULL, 10)*255 + ABIT_UGURU_FAN_MAX/2) /
		ABIT_UGURU_FAN_MAX;
	ssize_t ret = count;

	/* this check can be done before taking the lock */
	if ((val < abituguru_bank2_min_threshold) ||
			(val > abituguru_bank2_max_threshold))
		return -EINVAL;

	mutex_lock(&data->update_lock);
	if (data->bank2_settings[attr->index][attr->nr] != val) {
		u8 orig_val = data->bank2_settings[attr->index][attr->nr];
		data->bank2_settings[attr->index][attr->nr] = val;
		if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK2 + 2,
				attr->index, data->bank2_settings[attr->index],
				2) <= attr->nr) {
			data->bank2_settings[attr->index][attr->nr] = orig_val;
			ret = -EIO;
		}
	}
	mutex_unlock(&data->update_lock);
	return ret;
}

static ssize_t show_bank1_alarm(struct device *dev,
	struct device_attribute *devattr, char *buf)
{
	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
	struct abituguru_data *data = abituguru_update_device(dev);
	if (!data)
		return -EIO;
	/* See if the alarm bit for this sensor is set, and if the
	   alarm matches the type of alarm we're looking for (for volt
	   it can be either low or high). The type is stored in a few
	   readonly bits in the settings part of the relevant sensor.
	   The bitmask of the type is passed to us in attr->nr. */
	if ((data->alarms[attr->index / 8] & (0x01 << (attr->index % 8))) &&
			(data->bank1_settings[attr->index][0] & attr->nr))
		return sprintf(buf, "1\n");
	else
		return sprintf(buf, "0\n");
}

static ssize_t show_bank2_alarm(struct device *dev,
	struct device_attribute *devattr, char *buf)
{
	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
	struct abituguru_data *data = abituguru_update_device(dev);
	if (!data)
		return -EIO;
	if (data->alarms[2] & (0x01 << attr->index))
		return sprintf(buf, "1\n");
	else
		return sprintf(buf, "0\n");
}

static ssize_t show_bank1_mask(struct device *dev,
	struct device_attribute *devattr, char *buf)
{
	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
	struct abituguru_data *data = dev_get_drvdata(dev);
	if (data->bank1_settings[attr->index][0] & attr->nr)
		return sprintf(buf, "1\n");
	else
		return sprintf(buf, "0\n");
}

static ssize_t show_bank2_mask(struct device *dev,
	struct device_attribute *devattr, char *buf)
{
	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
	struct abituguru_data *data = dev_get_drvdata(dev);
	if (data->bank2_settings[attr->index][0] & attr->nr)
		return sprintf(buf, "1\n");
	else
		return sprintf(buf, "0\n");
}

static ssize_t store_bank1_mask(struct device *dev,
	struct device_attribute *devattr, const char *buf, size_t count)
{
	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
	struct abituguru_data *data = dev_get_drvdata(dev);
	int mask = simple_strtoul(buf, NULL, 10);
	ssize_t ret = count;
	u8 orig_val;

	mutex_lock(&data->update_lock);
	orig_val = data->bank1_settings[attr->index][0];

	if (mask)
		data->bank1_settings[attr->index][0] |= attr->nr;
	else
		data->bank1_settings[attr->index][0] &= ~attr->nr;

	if ((data->bank1_settings[attr->index][0] != orig_val) &&
			(abituguru_write(data,
			ABIT_UGURU_SENSOR_BANK1 + 2, attr->index,
			data->bank1_settings[attr->index], 3) < 1)) {
		data->bank1_settings[attr->index][0] = orig_val;
		ret = -EIO;
	}
	mutex_unlock(&data->update_lock);
	return ret;
}

static ssize_t store_bank2_mask(struct device *dev,
	struct device_attribute *devattr, const char *buf, size_t count)
{
	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
	struct abituguru_data *data = dev_get_drvdata(dev);
	int mask = simple_strtoul(buf, NULL, 10);
	ssize_t ret = count;
	u8 orig_val;

	mutex_lock(&data->update_lock);
	orig_val = data->bank2_settings[attr->index][0];

	if (mask)
		data->bank2_settings[attr->index][0] |= attr->nr;
	else
		data->bank2_settings[attr->index][0] &= ~attr->nr;

	if ((data->bank2_settings[attr->index][0] != orig_val) &&
			(abituguru_write(data,
			ABIT_UGURU_SENSOR_BANK2 + 2, attr->index,
			data->bank2_settings[attr->index], 2) < 1)) {
		data->bank2_settings[attr->index][0] = orig_val;
		ret = -EIO;
	}
	mutex_unlock(&data->update_lock);
	return ret;
}

/* Fan PWM (speed control) */
static ssize_t show_pwm_setting(struct device *dev,
	struct device_attribute *devattr, char *buf)
{
	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
	struct abituguru_data *data = dev_get_drvdata(dev);
	return sprintf(buf, "%d\n", data->pwm_settings[attr->index][attr->nr] *
		abituguru_pwm_settings_multiplier[attr->nr]);
}

static ssize_t store_pwm_setting(struct device *dev, struct device_attribute
	*devattr, const char *buf, size_t count)
{
	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
	struct abituguru_data *data = dev_get_drvdata(dev);
	u8 min, val = (simple_strtoul(buf, NULL, 10) +
		abituguru_pwm_settings_multiplier[attr->nr]/2) /
		abituguru_pwm_settings_multiplier[attr->nr];
	ssize_t ret = count;

	/* special case pwm1 min pwm% */
	if ((attr->index == 0) && ((attr->nr == 1) || (attr->nr == 2)))
		min = 77;
	else
		min = abituguru_pwm_min[attr->nr];

	/* this check can be done before taking the lock */
	if ((val < min) || (val > abituguru_pwm_max[attr->nr]))
		return -EINVAL;

	mutex_lock(&data->update_lock);
	/* this check needs to be done after taking the lock */
	if ((attr->nr & 1) &&
			(val >= data->pwm_settings[attr->index][attr->nr + 1]))
		ret = -EINVAL;
	else if (!(attr->nr & 1) &&
			(val <= data->pwm_settings[attr->index][attr->nr - 1]))
		ret = -EINVAL;
	else if (data->pwm_settings[attr->index][attr->nr] != val) {
		u8 orig_val = data->pwm_settings[attr->index][attr->nr];
		data->pwm_settings[attr->index][attr->nr] = val;
		if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
				attr->index, data->pwm_settings[attr->index],
				5) <= attr->nr) {
			data->pwm_settings[attr->index][attr->nr] =
				orig_val;
			ret = -EIO;
		}
	}
	mutex_unlock(&data->update_lock);
	return ret;
}

static ssize_t show_pwm_sensor(struct device *dev,
	struct device_attribute *devattr, char *buf)
{
	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
	struct abituguru_data *data = dev_get_drvdata(dev);
	int i;
	/* We need to walk to the temp sensor addresses to find what
	   the userspace id of the configured temp sensor is. */
	for (i = 0; i < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]; i++)
		if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][i] ==
				(data->pwm_settings[attr->index][0] & 0x0F))
			return sprintf(buf, "%d\n", i+1);

	return -ENXIO;
}

static ssize_t store_pwm_sensor(struct device *dev, struct device_attribute
	*devattr, const char *buf, size_t count)
{
	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
	struct abituguru_data *data = dev_get_drvdata(dev);
	unsigned long val = simple_strtoul(buf, NULL, 10) - 1;
	ssize_t ret = count;

	mutex_lock(&data->update_lock);
	if (val < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) {
		u8 orig_val = data->pwm_settings[attr->index][0];
		u8 address = data->bank1_address[ABIT_UGURU_TEMP_SENSOR][val];
		data->pwm_settings[attr->index][0] &= 0xF0;
		data->pwm_settings[attr->index][0] |= address;
		if (data->pwm_settings[attr->index][0] != orig_val) {
			if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
					attr->index,
					data->pwm_settings[attr->index],
					5) < 1) {
				data->pwm_settings[attr->index][0] = orig_val;
				ret = -EIO;
			}
		}
	}
	else
		ret = -EINVAL;
	mutex_unlock(&data->update_lock);
	return ret;
}

static ssize_t show_pwm_enable(struct device *dev,
	struct device_attribute *devattr, char *buf)
{
	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
	struct abituguru_data *data = dev_get_drvdata(dev);
	int res = 0;
	if (data->pwm_settings[attr->index][0] & ABIT_UGURU_FAN_PWM_ENABLE)
		res = 2;
	return sprintf(buf, "%d\n", res);
}

static ssize_t store_pwm_enable(struct device *dev, struct device_attribute
	*devattr, const char *buf, size_t count)
{
	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
	struct abituguru_data *data = dev_get_drvdata(dev);
	u8 orig_val, user_val = simple_strtoul(buf, NULL, 10);
	ssize_t ret = count;

	mutex_lock(&data->update_lock);
	orig_val = data->pwm_settings[attr->index][0];
	switch (user_val) {
		case 0:
			data->pwm_settings[attr->index][0] &=
				~ABIT_UGURU_FAN_PWM_ENABLE;
			break;
		case 2:
			data->pwm_settings[attr->index][0] |=
				ABIT_UGURU_FAN_PWM_ENABLE;
			break;
		default:
			ret = -EINVAL;
	}
	if ((data->pwm_settings[attr->index][0] != orig_val) &&
			(abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
			attr->index, data->pwm_settings[attr->index],
			5) < 1)) {
		data->pwm_settings[attr->index][0] = orig_val;
		ret = -EIO;
	}
	mutex_unlock(&data->update_lock);
	return ret;
}

static ssize_t show_name(struct device *dev,
	struct device_attribute *devattr, char *buf)
{
	return sprintf(buf, "%s\n", ABIT_UGURU_NAME);
}

/* Sysfs attr templates, the real entries are generated automatically. */
static const
struct sensor_device_attribute_2 abituguru_sysfs_bank1_templ[2][9] = {
	{
	SENSOR_ATTR_2(in%d_input, 0444, show_bank1_value, NULL, 0, 0),
	SENSOR_ATTR_2(in%d_min, 0644, show_bank1_setting,
		store_bank1_setting, 1, 0),
	SENSOR_ATTR_2(in%d_min_alarm, 0444, show_bank1_alarm, NULL,
		ABIT_UGURU_VOLT_LOW_ALARM_FLAG, 0),
	SENSOR_ATTR_2(in%d_max, 0644, show_bank1_setting,
		store_bank1_setting, 2, 0),
	SENSOR_ATTR_2(in%d_max_alarm, 0444, show_bank1_alarm, NULL,
		ABIT_UGURU_VOLT_HIGH_ALARM_FLAG, 0),
	SENSOR_ATTR_2(in%d_beep, 0644, show_bank1_mask,
		store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
	SENSOR_ATTR_2(in%d_shutdown, 0644, show_bank1_mask,
		store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
	SENSOR_ATTR_2(in%d_min_alarm_enable, 0644, show_bank1_mask,
		store_bank1_mask, ABIT_UGURU_VOLT_LOW_ALARM_ENABLE, 0),
	SENSOR_ATTR_2(in%d_max_alarm_enable, 0644, show_bank1_mask,
		store_bank1_mask, ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE, 0),
	}, {
	SENSOR_ATTR_2(temp%d_input, 0444, show_bank1_value, NULL, 0, 0),
	SENSOR_ATTR_2(temp%d_alarm, 0444, show_bank1_alarm, NULL,
		ABIT_UGURU_TEMP_HIGH_ALARM_FLAG, 0),
	SENSOR_ATTR_2(temp%d_max, 0644, show_bank1_setting,
		store_bank1_setting, 1, 0),
	SENSOR_ATTR_2(temp%d_crit, 0644, show_bank1_setting,
		store_bank1_setting, 2, 0),
	SENSOR_ATTR_2(temp%d_beep, 0644, show_bank1_mask,
		store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
	SENSOR_ATTR_2(temp%d_shutdown, 0644, show_bank1_mask,
		store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
	SENSOR_ATTR_2(temp%d_alarm_enable, 0644, show_bank1_mask,
		store_bank1_mask, ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE, 0),
	}
};

static const struct sensor_device_attribute_2 abituguru_sysfs_fan_templ[6] = {
	SENSOR_ATTR_2(fan%d_input, 0444, show_bank2_value, NULL, 0, 0),
	SENSOR_ATTR_2(fan%d_alarm, 0444, show_bank2_alarm, NULL, 0, 0),
	SENSOR_ATTR_2(fan%d_min, 0644, show_bank2_setting,
		store_bank2_setting, 1, 0),
	SENSOR_ATTR_2(fan%d_beep, 0644, show_bank2_mask,
		store_bank2_mask, ABIT_UGURU_BEEP_ENABLE, 0),
	SENSOR_ATTR_2(fan%d_shutdown, 0644, show_bank2_mask,
		store_bank2_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
	SENSOR_ATTR_2(fan%d_alarm_enable, 0644, show_bank2_mask,
		store_bank2_mask, ABIT_UGURU_FAN_LOW_ALARM_ENABLE, 0),
};

static const struct sensor_device_attribute_2 abituguru_sysfs_pwm_templ[6] = {
	SENSOR_ATTR_2(pwm%d_enable, 0644, show_pwm_enable,
		store_pwm_enable, 0, 0),
	SENSOR_ATTR_2(pwm%d_auto_channels_temp, 0644, show_pwm_sensor,
		store_pwm_sensor, 0, 0),
	SENSOR_ATTR_2(pwm%d_auto_point1_pwm, 0644, show_pwm_setting,
		store_pwm_setting, 1, 0),
	SENSOR_ATTR_2(pwm%d_auto_point2_pwm, 0644, show_pwm_setting,
		store_pwm_setting, 2, 0),
	SENSOR_ATTR_2(pwm%d_auto_point1_temp, 0644, show_pwm_setting,
		store_pwm_setting, 3, 0),
	SENSOR_ATTR_2(pwm%d_auto_point2_temp, 0644, show_pwm_setting,
		store_pwm_setting, 4, 0),
};

H
Hans de Goede 已提交
1101
static struct sensor_device_attribute_2 abituguru_sysfs_attr[] = {
1102 1103 1104 1105 1106 1107
	SENSOR_ATTR_2(name, 0444, show_name, NULL, 0, 0),
};

static int __devinit abituguru_probe(struct platform_device *pdev)
{
	struct abituguru_data *data;
H
Hans de Goede 已提交
1108
	int i, j, used, sysfs_names_free, sysfs_attr_i, res = -ENODEV;
1109 1110 1111 1112
	char *sysfs_filename;

	/* El weirdo probe order, to keep the sysfs order identical to the
	   BIOS and window-appliction listing order. */
H
Hans de Goede 已提交
1113 1114 1115
	const u8 probe_order[ABIT_UGURU_MAX_BANK1_SENSORS] = {
		0x00, 0x01, 0x03, 0x04, 0x0A, 0x08, 0x0E, 0x02,
		0x09, 0x06, 0x05, 0x0B, 0x0F, 0x0D, 0x07, 0x0C };
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131

	if (!(data = kzalloc(sizeof(struct abituguru_data), GFP_KERNEL)))
		return -ENOMEM;

	data->addr = platform_get_resource(pdev, IORESOURCE_IO, 0)->start;
	mutex_init(&data->update_lock);
	platform_set_drvdata(pdev, data);

	/* See if the uGuru is ready */
	if (inb_p(data->addr + ABIT_UGURU_DATA) == ABIT_UGURU_STATUS_INPUT)
		data->uguru_ready = 1;

	/* Completely read the uGuru this has 2 purposes:
	   - testread / see if one really is there.
	   - make an in memory copy of all the uguru settings for future use. */
	if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
H
Hans de Goede 已提交
1132 1133
			data->alarms, 3, ABIT_UGURU_MAX_RETRIES) != 3)
		goto abituguru_probe_error;
1134

H
Hans de Goede 已提交
1135
	for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1136 1137
		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, i,
				&data->bank1_value[i], 1,
H
Hans de Goede 已提交
1138 1139
				ABIT_UGURU_MAX_RETRIES) != 1)
			goto abituguru_probe_error;
1140 1141
		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1+1, i,
				data->bank1_settings[i], 3,
H
Hans de Goede 已提交
1142 1143
				ABIT_UGURU_MAX_RETRIES) != 3)
			goto abituguru_probe_error;
1144 1145 1146 1147 1148 1149 1150 1151 1152
	}
	/* Note: We don't know how many bank2 sensors / pwms there really are,
	   but in order to "detect" this we need to read the maximum amount
	   anyways. If we read sensors/pwms not there we'll just read crap
	   this can't hurt. We need the detection because we don't want
	   unwanted writes, which will hurt! */
	for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i,
				&data->bank2_value[i], 1,
H
Hans de Goede 已提交
1153 1154
				ABIT_UGURU_MAX_RETRIES) != 1)
			goto abituguru_probe_error;
1155 1156
		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2+1, i,
				data->bank2_settings[i], 2,
H
Hans de Goede 已提交
1157 1158
				ABIT_UGURU_MAX_RETRIES) != 2)
			goto abituguru_probe_error;
1159 1160 1161 1162
	}
	for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
		if (abituguru_read(data, ABIT_UGURU_FAN_PWM, i,
				data->pwm_settings[i], 5,
H
Hans de Goede 已提交
1163 1164
				ABIT_UGURU_MAX_RETRIES) != 5)
			goto abituguru_probe_error;
1165 1166 1167 1168
	}
	data->last_updated = jiffies;

	/* Detect sensor types and fill the sysfs attr for bank1 */
H
Hans de Goede 已提交
1169 1170 1171 1172
	sysfs_attr_i = 0;
	sysfs_filename = data->sysfs_names;
	sysfs_names_free = ABITUGURU_SYSFS_NAMES_LENGTH;
	for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1173
		res = abituguru_detect_bank1_sensor_type(data, probe_order[i]);
H
Hans de Goede 已提交
1174 1175
		if (res < 0)
			goto abituguru_probe_error;
1176 1177 1178
		if (res == ABIT_UGURU_NC)
			continue;

H
Hans de Goede 已提交
1179
		/* res 1 (temp) sensors have 7 sysfs entries, 0 (in) 9 */
1180
		for (j = 0; j < (res ? 7 : 9); j++) {
H
Hans de Goede 已提交
1181 1182 1183 1184
			used = snprintf(sysfs_filename, sysfs_names_free,
				abituguru_sysfs_bank1_templ[res][j].dev_attr.
				attr.name, data->bank1_sensors[res] + res)
				+ 1;
1185 1186 1187 1188 1189
			data->sysfs_attr[sysfs_attr_i] =
				abituguru_sysfs_bank1_templ[res][j];
			data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
				sysfs_filename;
			data->sysfs_attr[sysfs_attr_i].index = probe_order[i];
H
Hans de Goede 已提交
1190 1191
			sysfs_filename += used;
			sysfs_names_free -= used;
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
			sysfs_attr_i++;
		}
		data->bank1_max_value[probe_order[i]] =
			abituguru_bank1_max_value[res];
		data->bank1_address[res][data->bank1_sensors[res]] =
			probe_order[i];
		data->bank1_sensors[res]++;
	}
	/* Detect number of sensors and fill the sysfs attr for bank2 (fans) */
	abituguru_detect_no_bank2_sensors(data);
	for (i = 0; i < data->bank2_sensors; i++) {
H
Hans de Goede 已提交
1203 1204 1205 1206
		for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_fan_templ); j++) {
			used = snprintf(sysfs_filename, sysfs_names_free,
				abituguru_sysfs_fan_templ[j].dev_attr.attr.name,
				i + 1) + 1;
1207 1208 1209 1210 1211
			data->sysfs_attr[sysfs_attr_i] =
				abituguru_sysfs_fan_templ[j];
			data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
				sysfs_filename;
			data->sysfs_attr[sysfs_attr_i].index = i;
H
Hans de Goede 已提交
1212 1213
			sysfs_filename += used;
			sysfs_names_free -= used;
1214 1215 1216 1217 1218 1219
			sysfs_attr_i++;
		}
	}
	/* Detect number of sensors and fill the sysfs attr for pwms */
	abituguru_detect_no_pwms(data);
	for (i = 0; i < data->pwms; i++) {
H
Hans de Goede 已提交
1220 1221 1222 1223
		for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_pwm_templ); j++) {
			used = snprintf(sysfs_filename, sysfs_names_free,
				abituguru_sysfs_pwm_templ[j].dev_attr.attr.name,
				i + 1) + 1;
1224 1225 1226 1227 1228
			data->sysfs_attr[sysfs_attr_i] =
				abituguru_sysfs_pwm_templ[j];
			data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
				sysfs_filename;
			data->sysfs_attr[sysfs_attr_i].index = i;
H
Hans de Goede 已提交
1229 1230
			sysfs_filename += used;
			sysfs_names_free -= used;
1231 1232 1233
			sysfs_attr_i++;
		}
	}
H
Hans de Goede 已提交
1234 1235 1236 1237 1238 1239 1240 1241
	/* Fail safe check, this should never happen! */
	if (sysfs_names_free < 0) {
		printk(KERN_ERR ABIT_UGURU_NAME ": Fatal error ran out of "
		       "space for sysfs attr names. This should never "
		       "happen please report to the abituguru maintainer "
		       "(see MAINTAINERS)\n");
		res = -ENAMETOOLONG;
		goto abituguru_probe_error;
1242 1243 1244 1245 1246 1247
	}
	printk(KERN_INFO ABIT_UGURU_NAME ": found Abit uGuru\n");

	/* Register sysfs hooks */
	data->class_dev = hwmon_device_register(&pdev->dev);
	if (IS_ERR(data->class_dev)) {
H
Hans de Goede 已提交
1248 1249
		res = PTR_ERR(data->class_dev);
		goto abituguru_probe_error;
1250 1251 1252
	}
	for (i = 0; i < sysfs_attr_i; i++)
		device_create_file(&pdev->dev, &data->sysfs_attr[i].dev_attr);
H
Hans de Goede 已提交
1253 1254 1255
	for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
		device_create_file(&pdev->dev,
			&abituguru_sysfs_attr[i].dev_attr);
1256 1257

	return 0;
H
Hans de Goede 已提交
1258 1259 1260 1261

abituguru_probe_error:
	kfree(data);
	return res;
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
}

static int __devexit abituguru_remove(struct platform_device *pdev)
{
	struct abituguru_data *data = platform_get_drvdata(pdev);

	platform_set_drvdata(pdev, NULL);
	hwmon_device_unregister(data->class_dev);
	kfree(data);

	return 0;
}

static struct abituguru_data *abituguru_update_device(struct device *dev)
{
	int i, err;
	struct abituguru_data *data = dev_get_drvdata(dev);
	/* fake a complete successful read if no update necessary. */
	char success = 1;

	mutex_lock(&data->update_lock);
	if (time_after(jiffies, data->last_updated + HZ)) {
		success = 0;
		if ((err = abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
				data->alarms, 3, 0)) != 3)
			goto LEAVE_UPDATE;
H
Hans de Goede 已提交
1288
		for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
			if ((err = abituguru_read(data,
					ABIT_UGURU_SENSOR_BANK1, i,
					&data->bank1_value[i], 1, 0)) != 1)
				goto LEAVE_UPDATE;
			if ((err = abituguru_read(data,
					ABIT_UGURU_SENSOR_BANK1 + 1, i,
					data->bank1_settings[i], 3, 0)) != 3)
				goto LEAVE_UPDATE;
		}
		for (i = 0; i < data->bank2_sensors; i++)
			if ((err = abituguru_read(data,
					ABIT_UGURU_SENSOR_BANK2, i,
					&data->bank2_value[i], 1, 0)) != 1)
				goto LEAVE_UPDATE;
		/* success! */
		success = 1;
		data->update_timeouts = 0;
LEAVE_UPDATE:
		/* handle timeout condition */
		if (err == -EBUSY) {
			/* No overflow please */
			if (data->update_timeouts < 255u)
				data->update_timeouts++;
			if (data->update_timeouts <= ABIT_UGURU_MAX_TIMEOUTS) {
				ABIT_UGURU_DEBUG(3, "timeout exceeded, will "
					"try again next update\n");
				/* Just a timeout, fake a successful read */
				success = 1;
			} else
				ABIT_UGURU_DEBUG(1, "timeout exceeded %d "
					"times waiting for more input state\n",
					(int)data->update_timeouts);
		}
		/* On success set last_updated */
		if (success)
			data->last_updated = jiffies;
	}
	mutex_unlock(&data->update_lock);

	if (success)
		return data;
	else
		return NULL;
}

static struct platform_driver abituguru_driver = {
	.driver = {
		.owner	= THIS_MODULE,
		.name	= ABIT_UGURU_NAME,
	},
	.probe	= abituguru_probe,
	.remove	= __devexit_p(abituguru_remove),
};

static int __init abituguru_detect(void)
{
	/* See if there is an uguru there. After a reboot uGuru will hold 0x00
	   at DATA and 0xAC, when this driver has already been loaded once
	   DATA will hold 0x08. For most uGuru's CMD will hold 0xAC in either
	   scenario but some will hold 0x00.
	   Some uGuru's initally hold 0x09 at DATA and will only hold 0x08
	   after reading CMD first, so CMD must be read first! */
	u8 cmd_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_CMD);
	u8 data_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_DATA);
	if (((data_val == 0x00) || (data_val == 0x08)) &&
	    ((cmd_val == 0x00) || (cmd_val == 0xAC)))
		return ABIT_UGURU_BASE;

	ABIT_UGURU_DEBUG(2, "no Abit uGuru found, data = 0x%02X, cmd = "
		"0x%02X\n", (unsigned int)data_val, (unsigned int)cmd_val);

	if (force) {
		printk(KERN_INFO ABIT_UGURU_NAME ": Assuming Abit uGuru is "
				"present because of \"force\" parameter\n");
		return ABIT_UGURU_BASE;
	}

	/* No uGuru found */
	return -ENODEV;
}

static struct platform_device *abituguru_pdev;

static int __init abituguru_init(void)
{
	int address, err;
	struct resource res = { .flags = IORESOURCE_IO };

	address = abituguru_detect();
	if (address < 0)
		return address;

	err = platform_driver_register(&abituguru_driver);
	if (err)
		goto exit;

	abituguru_pdev = platform_device_alloc(ABIT_UGURU_NAME, address);
	if (!abituguru_pdev) {
		printk(KERN_ERR ABIT_UGURU_NAME
			": Device allocation failed\n");
		err = -ENOMEM;
		goto exit_driver_unregister;
	}

	res.start = address;
	res.end = address + ABIT_UGURU_REGION_LENGTH - 1;
	res.name = ABIT_UGURU_NAME;

	err = platform_device_add_resources(abituguru_pdev, &res, 1);
	if (err) {
		printk(KERN_ERR ABIT_UGURU_NAME
			": Device resource addition failed (%d)\n", err);
		goto exit_device_put;
	}

	err = platform_device_add(abituguru_pdev);
	if (err) {
		printk(KERN_ERR ABIT_UGURU_NAME
			": Device addition failed (%d)\n", err);
		goto exit_device_put;
	}

	return 0;

exit_device_put:
	platform_device_put(abituguru_pdev);
exit_driver_unregister:
	platform_driver_unregister(&abituguru_driver);
exit:
	return err;
}

static void __exit abituguru_exit(void)
{
	platform_device_unregister(abituguru_pdev);
	platform_driver_unregister(&abituguru_driver);
}

MODULE_AUTHOR("Hans de Goede <j.w.r.degoede@hhs.nl>");
MODULE_DESCRIPTION("Abit uGuru Sensor device");
MODULE_LICENSE("GPL");

module_init(abituguru_init);
module_exit(abituguru_exit);