cacheinfo.c 17.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7
/*
 * cacheinfo support - processor cache information via sysfs
 *
 * Based on arch/x86/kernel/cpu/intel_cacheinfo.c
 * Author: Sudeep Holla <sudeep.holla@arm.com>
 */
8 9
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

10
#include <linux/acpi.h>
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
#include <linux/bitops.h>
#include <linux/cacheinfo.h>
#include <linux/compiler.h>
#include <linux/cpu.h>
#include <linux/device.h>
#include <linux/init.h>
#include <linux/of.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/smp.h>
#include <linux/sysfs.h>

/* pointer to per cpu cacheinfo */
static DEFINE_PER_CPU(struct cpu_cacheinfo, ci_cpu_cacheinfo);
#define ci_cacheinfo(cpu)	(&per_cpu(ci_cpu_cacheinfo, cpu))
#define cache_leaves(cpu)	(ci_cacheinfo(cpu)->num_leaves)
#define per_cpu_cacheinfo(cpu)	(ci_cacheinfo(cpu)->info_list)

struct cpu_cacheinfo *get_cpu_cacheinfo(unsigned int cpu)
{
	return ci_cacheinfo(cpu);
}

#ifdef CONFIG_OF
static int cache_setup_of_node(unsigned int cpu)
{
	struct device_node *np;
	struct cacheinfo *this_leaf;
	struct device *cpu_dev = get_cpu_device(cpu);
	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
	unsigned int index = 0;

	/* skip if of_node is already populated */
	if (this_cpu_ci->info_list->of_node)
		return 0;

	if (!cpu_dev) {
		pr_err("No cpu device for CPU %d\n", cpu);
		return -ENODEV;
	}
	np = cpu_dev->of_node;
	if (!np) {
		pr_err("Failed to find cpu%d device node\n", cpu);
		return -ENOENT;
	}

57
	while (index < cache_leaves(cpu)) {
58 59 60 61 62
		this_leaf = this_cpu_ci->info_list + index;
		if (this_leaf->level != 1)
			np = of_find_next_cache_node(np);
		else
			np = of_node_get(np);/* cpu node itself */
63 64
		if (!np)
			break;
65 66 67
		this_leaf->of_node = np;
		index++;
	}
68 69 70 71

	if (index != cache_leaves(cpu)) /* not all OF nodes populated */
		return -ENOENT;

72 73 74 75 76 77 78 79
	return 0;
}

static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf,
					   struct cacheinfo *sib_leaf)
{
	return sib_leaf->of_node == this_leaf->of_node;
}
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177

/* OF properties to query for a given cache type */
struct cache_type_info {
	const char *size_prop;
	const char *line_size_props[2];
	const char *nr_sets_prop;
};

static const struct cache_type_info cache_type_info[] = {
	{
		.size_prop       = "cache-size",
		.line_size_props = { "cache-line-size",
				     "cache-block-size", },
		.nr_sets_prop    = "cache-sets",
	}, {
		.size_prop       = "i-cache-size",
		.line_size_props = { "i-cache-line-size",
				     "i-cache-block-size", },
		.nr_sets_prop    = "i-cache-sets",
	}, {
		.size_prop       = "d-cache-size",
		.line_size_props = { "d-cache-line-size",
				     "d-cache-block-size", },
		.nr_sets_prop    = "d-cache-sets",
	},
};

static inline int get_cacheinfo_idx(enum cache_type type)
{
	if (type == CACHE_TYPE_UNIFIED)
		return 0;
	return type;
}

static void cache_size(struct cacheinfo *this_leaf)
{
	const char *propname;
	const __be32 *cache_size;
	int ct_idx;

	ct_idx = get_cacheinfo_idx(this_leaf->type);
	propname = cache_type_info[ct_idx].size_prop;

	cache_size = of_get_property(this_leaf->of_node, propname, NULL);
	if (cache_size)
		this_leaf->size = of_read_number(cache_size, 1);
}

/* not cache_line_size() because that's a macro in include/linux/cache.h */
static void cache_get_line_size(struct cacheinfo *this_leaf)
{
	const __be32 *line_size;
	int i, lim, ct_idx;

	ct_idx = get_cacheinfo_idx(this_leaf->type);
	lim = ARRAY_SIZE(cache_type_info[ct_idx].line_size_props);

	for (i = 0; i < lim; i++) {
		const char *propname;

		propname = cache_type_info[ct_idx].line_size_props[i];
		line_size = of_get_property(this_leaf->of_node, propname, NULL);
		if (line_size)
			break;
	}

	if (line_size)
		this_leaf->coherency_line_size = of_read_number(line_size, 1);
}

static void cache_nr_sets(struct cacheinfo *this_leaf)
{
	const char *propname;
	const __be32 *nr_sets;
	int ct_idx;

	ct_idx = get_cacheinfo_idx(this_leaf->type);
	propname = cache_type_info[ct_idx].nr_sets_prop;

	nr_sets = of_get_property(this_leaf->of_node, propname, NULL);
	if (nr_sets)
		this_leaf->number_of_sets = of_read_number(nr_sets, 1);
}

static void cache_associativity(struct cacheinfo *this_leaf)
{
	unsigned int line_size = this_leaf->coherency_line_size;
	unsigned int nr_sets = this_leaf->number_of_sets;
	unsigned int size = this_leaf->size;

	/*
	 * If the cache is fully associative, there is no need to
	 * check the other properties.
	 */
	if (!(nr_sets == 1) && (nr_sets > 0 && size > 0 && line_size > 0))
		this_leaf->ways_of_associativity = (size / nr_sets) / line_size;
}

178 179 180 181 182
static bool cache_node_is_unified(struct cacheinfo *this_leaf)
{
	return of_property_read_bool(this_leaf->of_node, "cache-unified");
}

183 184 185 186 187 188 189 190
static void cache_of_override_properties(unsigned int cpu)
{
	int index;
	struct cacheinfo *this_leaf;
	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);

	for (index = 0; index < cache_leaves(cpu); index++) {
		this_leaf = this_cpu_ci->info_list + index;
191 192 193 194 195 196 197 198
		/*
		 * init_cache_level must setup the cache level correctly
		 * overriding the architecturally specified levels, so
		 * if type is NONE at this stage, it should be unified
		 */
		if (this_leaf->type == CACHE_TYPE_NOCACHE &&
		    cache_node_is_unified(this_leaf))
			this_leaf->type = CACHE_TYPE_UNIFIED;
199 200 201 202 203 204
		cache_size(this_leaf);
		cache_get_line_size(this_leaf);
		cache_nr_sets(this_leaf);
		cache_associativity(this_leaf);
	}
}
205
#else
206
static void cache_of_override_properties(unsigned int cpu) { }
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
static inline int cache_setup_of_node(unsigned int cpu) { return 0; }
static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf,
					   struct cacheinfo *sib_leaf)
{
	/*
	 * For non-DT systems, assume unique level 1 cache, system-wide
	 * shared caches for all other levels. This will be used only if
	 * arch specific code has not populated shared_cpu_map
	 */
	return !(this_leaf->level == 1);
}
#endif

static int cache_shared_cpu_map_setup(unsigned int cpu)
{
	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
	struct cacheinfo *this_leaf, *sib_leaf;
	unsigned int index;
225
	int ret = 0;
226

227 228 229
	if (this_cpu_ci->cpu_map_populated)
		return 0;

230 231 232 233 234
	if (of_have_populated_dt())
		ret = cache_setup_of_node(cpu);
	else if (!acpi_disabled)
		/* No cache property/hierarchy support yet in ACPI */
		ret = -ENOTSUPP;
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
	if (ret)
		return ret;

	for (index = 0; index < cache_leaves(cpu); index++) {
		unsigned int i;

		this_leaf = this_cpu_ci->info_list + index;
		/* skip if shared_cpu_map is already populated */
		if (!cpumask_empty(&this_leaf->shared_cpu_map))
			continue;

		cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
		for_each_online_cpu(i) {
			struct cpu_cacheinfo *sib_cpu_ci = get_cpu_cacheinfo(i);

			if (i == cpu || !sib_cpu_ci->info_list)
				continue;/* skip if itself or no cacheinfo */
			sib_leaf = sib_cpu_ci->info_list + index;
			if (cache_leaves_are_shared(this_leaf, sib_leaf)) {
				cpumask_set_cpu(cpu, &sib_leaf->shared_cpu_map);
				cpumask_set_cpu(i, &this_leaf->shared_cpu_map);
			}
		}
	}

	return 0;
}

static void cache_shared_cpu_map_remove(unsigned int cpu)
{
	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
	struct cacheinfo *this_leaf, *sib_leaf;
	unsigned int sibling, index;

	for (index = 0; index < cache_leaves(cpu); index++) {
		this_leaf = this_cpu_ci->info_list + index;
		for_each_cpu(sibling, &this_leaf->shared_cpu_map) {
			struct cpu_cacheinfo *sib_cpu_ci;

			if (sibling == cpu) /* skip itself */
				continue;
276

277
			sib_cpu_ci = get_cpu_cacheinfo(sibling);
278 279 280
			if (!sib_cpu_ci->info_list)
				continue;

281 282 283 284 285 286 287 288
			sib_leaf = sib_cpu_ci->info_list + index;
			cpumask_clear_cpu(cpu, &sib_leaf->shared_cpu_map);
			cpumask_clear_cpu(sibling, &this_leaf->shared_cpu_map);
		}
		of_node_put(this_leaf->of_node);
	}
}

289 290 291 292 293 294
static void cache_override_properties(unsigned int cpu)
{
	if (of_have_populated_dt())
		return cache_of_override_properties(cpu);
}

295 296
static void free_cache_attributes(unsigned int cpu)
{
297 298 299
	if (!per_cpu_cacheinfo(cpu))
		return;

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
	cache_shared_cpu_map_remove(cpu);

	kfree(per_cpu_cacheinfo(cpu));
	per_cpu_cacheinfo(cpu) = NULL;
}

int __weak init_cache_level(unsigned int cpu)
{
	return -ENOENT;
}

int __weak populate_cache_leaves(unsigned int cpu)
{
	return -ENOENT;
}

static int detect_cache_attributes(unsigned int cpu)
{
	int ret;

320
	if (init_cache_level(cpu) || !cache_leaves(cpu))
321 322 323 324 325 326 327 328 329 330 331
		return -ENOENT;

	per_cpu_cacheinfo(cpu) = kcalloc(cache_leaves(cpu),
					 sizeof(struct cacheinfo), GFP_KERNEL);
	if (per_cpu_cacheinfo(cpu) == NULL)
		return -ENOMEM;

	ret = populate_cache_leaves(cpu);
	if (ret)
		goto free_ci;
	/*
332
	 * For systems using DT for cache hierarchy, of_node and shared_cpu_map
333 334 335
	 * will be set up here only if they are not populated already
	 */
	ret = cache_shared_cpu_map_setup(cpu);
336
	if (ret) {
337
		pr_warn("Unable to detect cache hierarchy for CPU %d\n", cpu);
338
		goto free_ci;
339
	}
340 341

	cache_override_properties(cpu);
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
	return 0;

free_ci:
	free_cache_attributes(cpu);
	return ret;
}

/* pointer to cpuX/cache device */
static DEFINE_PER_CPU(struct device *, ci_cache_dev);
#define per_cpu_cache_dev(cpu)	(per_cpu(ci_cache_dev, cpu))

static cpumask_t cache_dev_map;

/* pointer to array of devices for cpuX/cache/indexY */
static DEFINE_PER_CPU(struct device **, ci_index_dev);
#define per_cpu_index_dev(cpu)	(per_cpu(ci_index_dev, cpu))
#define per_cache_index_dev(cpu, idx)	((per_cpu_index_dev(cpu))[idx])

#define show_one(file_name, object)				\
static ssize_t file_name##_show(struct device *dev,		\
		struct device_attribute *attr, char *buf)	\
{								\
	struct cacheinfo *this_leaf = dev_get_drvdata(dev);	\
	return sprintf(buf, "%u\n", this_leaf->object);		\
}

F
Fenghua Yu 已提交
368
show_one(id, id);
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
show_one(level, level);
show_one(coherency_line_size, coherency_line_size);
show_one(number_of_sets, number_of_sets);
show_one(physical_line_partition, physical_line_partition);
show_one(ways_of_associativity, ways_of_associativity);

static ssize_t size_show(struct device *dev,
			 struct device_attribute *attr, char *buf)
{
	struct cacheinfo *this_leaf = dev_get_drvdata(dev);

	return sprintf(buf, "%uK\n", this_leaf->size >> 10);
}

static ssize_t shared_cpumap_show_func(struct device *dev, bool list, char *buf)
{
	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
	const struct cpumask *mask = &this_leaf->shared_cpu_map;

	return cpumap_print_to_pagebuf(list, buf, mask);
}

static ssize_t shared_cpu_map_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	return shared_cpumap_show_func(dev, false, buf);
}

static ssize_t shared_cpu_list_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
	return shared_cpumap_show_func(dev, true, buf);
}

static ssize_t type_show(struct device *dev,
			 struct device_attribute *attr, char *buf)
{
	struct cacheinfo *this_leaf = dev_get_drvdata(dev);

	switch (this_leaf->type) {
	case CACHE_TYPE_DATA:
		return sprintf(buf, "Data\n");
	case CACHE_TYPE_INST:
		return sprintf(buf, "Instruction\n");
	case CACHE_TYPE_UNIFIED:
		return sprintf(buf, "Unified\n");
	default:
		return -EINVAL;
	}
}

static ssize_t allocation_policy_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
	unsigned int ci_attr = this_leaf->attributes;
	int n = 0;

	if ((ci_attr & CACHE_READ_ALLOCATE) && (ci_attr & CACHE_WRITE_ALLOCATE))
		n = sprintf(buf, "ReadWriteAllocate\n");
	else if (ci_attr & CACHE_READ_ALLOCATE)
		n = sprintf(buf, "ReadAllocate\n");
	else if (ci_attr & CACHE_WRITE_ALLOCATE)
		n = sprintf(buf, "WriteAllocate\n");
	return n;
}

static ssize_t write_policy_show(struct device *dev,
				 struct device_attribute *attr, char *buf)
{
	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
	unsigned int ci_attr = this_leaf->attributes;
	int n = 0;

	if (ci_attr & CACHE_WRITE_THROUGH)
		n = sprintf(buf, "WriteThrough\n");
	else if (ci_attr & CACHE_WRITE_BACK)
		n = sprintf(buf, "WriteBack\n");
	return n;
}

F
Fenghua Yu 已提交
450
static DEVICE_ATTR_RO(id);
451 452 453 454 455 456 457 458 459 460 461 462 463
static DEVICE_ATTR_RO(level);
static DEVICE_ATTR_RO(type);
static DEVICE_ATTR_RO(coherency_line_size);
static DEVICE_ATTR_RO(ways_of_associativity);
static DEVICE_ATTR_RO(number_of_sets);
static DEVICE_ATTR_RO(size);
static DEVICE_ATTR_RO(allocation_policy);
static DEVICE_ATTR_RO(write_policy);
static DEVICE_ATTR_RO(shared_cpu_map);
static DEVICE_ATTR_RO(shared_cpu_list);
static DEVICE_ATTR_RO(physical_line_partition);

static struct attribute *cache_default_attrs[] = {
F
Fenghua Yu 已提交
464
	&dev_attr_id.attr,
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
	&dev_attr_type.attr,
	&dev_attr_level.attr,
	&dev_attr_shared_cpu_map.attr,
	&dev_attr_shared_cpu_list.attr,
	&dev_attr_coherency_line_size.attr,
	&dev_attr_ways_of_associativity.attr,
	&dev_attr_number_of_sets.attr,
	&dev_attr_size.attr,
	&dev_attr_allocation_policy.attr,
	&dev_attr_write_policy.attr,
	&dev_attr_physical_line_partition.attr,
	NULL
};

static umode_t
cache_default_attrs_is_visible(struct kobject *kobj,
			       struct attribute *attr, int unused)
{
	struct device *dev = kobj_to_dev(kobj);
	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
	const struct cpumask *mask = &this_leaf->shared_cpu_map;
	umode_t mode = attr->mode;

F
Fenghua Yu 已提交
488 489
	if ((attr == &dev_attr_id.attr) && (this_leaf->attributes & CACHE_ID))
		return mode;
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
	if ((attr == &dev_attr_type.attr) && this_leaf->type)
		return mode;
	if ((attr == &dev_attr_level.attr) && this_leaf->level)
		return mode;
	if ((attr == &dev_attr_shared_cpu_map.attr) && !cpumask_empty(mask))
		return mode;
	if ((attr == &dev_attr_shared_cpu_list.attr) && !cpumask_empty(mask))
		return mode;
	if ((attr == &dev_attr_coherency_line_size.attr) &&
	    this_leaf->coherency_line_size)
		return mode;
	if ((attr == &dev_attr_ways_of_associativity.attr) &&
	    this_leaf->size) /* allow 0 = full associativity */
		return mode;
	if ((attr == &dev_attr_number_of_sets.attr) &&
	    this_leaf->number_of_sets)
		return mode;
	if ((attr == &dev_attr_size.attr) && this_leaf->size)
		return mode;
	if ((attr == &dev_attr_write_policy.attr) &&
	    (this_leaf->attributes & CACHE_WRITE_POLICY_MASK))
		return mode;
	if ((attr == &dev_attr_allocation_policy.attr) &&
	    (this_leaf->attributes & CACHE_ALLOCATE_POLICY_MASK))
		return mode;
	if ((attr == &dev_attr_physical_line_partition.attr) &&
	    this_leaf->physical_line_partition)
		return mode;

	return 0;
}

static const struct attribute_group cache_default_group = {
	.attrs = cache_default_attrs,
	.is_visible = cache_default_attrs_is_visible,
};

static const struct attribute_group *cache_default_groups[] = {
	&cache_default_group,
	NULL,
};

static const struct attribute_group *cache_private_groups[] = {
	&cache_default_group,
	NULL, /* Place holder for private group */
	NULL,
};

const struct attribute_group *
__weak cache_get_priv_group(struct cacheinfo *this_leaf)
{
	return NULL;
}

static const struct attribute_group **
cache_get_attribute_groups(struct cacheinfo *this_leaf)
{
	const struct attribute_group *priv_group =
			cache_get_priv_group(this_leaf);

	if (!priv_group)
		return cache_default_groups;

	if (!cache_private_groups[1])
		cache_private_groups[1] = priv_group;

	return cache_private_groups;
}

/* Add/Remove cache interface for CPU device */
static void cpu_cache_sysfs_exit(unsigned int cpu)
{
	int i;
	struct device *ci_dev;

	if (per_cpu_index_dev(cpu)) {
		for (i = 0; i < cache_leaves(cpu); i++) {
			ci_dev = per_cache_index_dev(cpu, i);
			if (!ci_dev)
				continue;
			device_unregister(ci_dev);
		}
		kfree(per_cpu_index_dev(cpu));
		per_cpu_index_dev(cpu) = NULL;
	}
	device_unregister(per_cpu_cache_dev(cpu));
	per_cpu_cache_dev(cpu) = NULL;
}

static int cpu_cache_sysfs_init(unsigned int cpu)
{
	struct device *dev = get_cpu_device(cpu);

	if (per_cpu_cacheinfo(cpu) == NULL)
		return -ENOENT;

	per_cpu_cache_dev(cpu) = cpu_device_create(dev, NULL, NULL, "cache");
	if (IS_ERR(per_cpu_cache_dev(cpu)))
		return PTR_ERR(per_cpu_cache_dev(cpu));

	/* Allocate all required memory */
	per_cpu_index_dev(cpu) = kcalloc(cache_leaves(cpu),
					 sizeof(struct device *), GFP_KERNEL);
	if (unlikely(per_cpu_index_dev(cpu) == NULL))
		goto err_out;

	return 0;

err_out:
	cpu_cache_sysfs_exit(cpu);
	return -ENOMEM;
}

static int cache_add_dev(unsigned int cpu)
{
	unsigned int i;
	int rc;
	struct device *ci_dev, *parent;
	struct cacheinfo *this_leaf;
	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
	const struct attribute_group **cache_groups;

	rc = cpu_cache_sysfs_init(cpu);
	if (unlikely(rc < 0))
		return rc;

	parent = per_cpu_cache_dev(cpu);
	for (i = 0; i < cache_leaves(cpu); i++) {
		this_leaf = this_cpu_ci->info_list + i;
		if (this_leaf->disable_sysfs)
			continue;
		cache_groups = cache_get_attribute_groups(this_leaf);
		ci_dev = cpu_device_create(parent, this_leaf, cache_groups,
					   "index%1u", i);
		if (IS_ERR(ci_dev)) {
			rc = PTR_ERR(ci_dev);
			goto err;
		}
		per_cache_index_dev(cpu, i) = ci_dev;
	}
	cpumask_set_cpu(cpu, &cache_dev_map);

	return 0;
err:
	cpu_cache_sysfs_exit(cpu);
	return rc;
}

638
static int cacheinfo_cpu_online(unsigned int cpu)
639
{
640
	int rc = detect_cache_attributes(cpu);
641

642 643 644 645 646 647
	if (rc)
		return rc;
	rc = cache_add_dev(cpu);
	if (rc)
		free_cache_attributes(cpu);
	return rc;
648 649
}

650
static int cacheinfo_cpu_pre_down(unsigned int cpu)
651
{
652 653 654 655 656
	if (cpumask_test_and_clear_cpu(cpu, &cache_dev_map))
		cpu_cache_sysfs_exit(cpu);

	free_cache_attributes(cpu);
	return 0;
657 658 659 660
}

static int __init cacheinfo_sysfs_init(void)
{
661 662
	return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "base/cacheinfo:online",
				 cacheinfo_cpu_online, cacheinfo_cpu_pre_down);
663 664
}
device_initcall(cacheinfo_sysfs_init);