mmu-hash64.h 14.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
#ifndef _ASM_POWERPC_MMU_HASH64_H_
#define _ASM_POWERPC_MMU_HASH64_H_
/*
 * PowerPC64 memory management structures
 *
 * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
 *   PPC64 rework.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */

#include <asm/asm-compat.h>
#include <asm/page.h>

/*
 * Segment table
 */

#define STE_ESID_V	0x80
#define STE_ESID_KS	0x20
#define STE_ESID_KP	0x10
#define STE_ESID_N	0x08

#define STE_VSID_SHIFT	12

/* Location of cpu0's segment table */
#define STAB0_PAGE	0x6
#define STAB0_OFFSET	(STAB0_PAGE << 12)
#define STAB0_PHYS_ADDR	(STAB0_OFFSET + PHYSICAL_START)

#ifndef __ASSEMBLY__
extern char initial_stab[];
#endif /* ! __ASSEMBLY */

/*
 * SLB
 */

#define SLB_NUM_BOLTED		3
#define SLB_CACHE_ENTRIES	8
44
#define SLB_MIN_SIZE		32
45 46 47 48 49 50

/* Bits in the SLB ESID word */
#define SLB_ESID_V		ASM_CONST(0x0000000008000000) /* valid */

/* Bits in the SLB VSID word */
#define SLB_VSID_SHIFT		12
P
Paul Mackerras 已提交
51 52
#define SLB_VSID_SHIFT_1T	24
#define SLB_VSID_SSIZE_SHIFT	62
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
#define SLB_VSID_B		ASM_CONST(0xc000000000000000)
#define SLB_VSID_B_256M		ASM_CONST(0x0000000000000000)
#define SLB_VSID_B_1T		ASM_CONST(0x4000000000000000)
#define SLB_VSID_KS		ASM_CONST(0x0000000000000800)
#define SLB_VSID_KP		ASM_CONST(0x0000000000000400)
#define SLB_VSID_N		ASM_CONST(0x0000000000000200) /* no-execute */
#define SLB_VSID_L		ASM_CONST(0x0000000000000100)
#define SLB_VSID_C		ASM_CONST(0x0000000000000080) /* class */
#define SLB_VSID_LP		ASM_CONST(0x0000000000000030)
#define SLB_VSID_LP_00		ASM_CONST(0x0000000000000000)
#define SLB_VSID_LP_01		ASM_CONST(0x0000000000000010)
#define SLB_VSID_LP_10		ASM_CONST(0x0000000000000020)
#define SLB_VSID_LP_11		ASM_CONST(0x0000000000000030)
#define SLB_VSID_LLP		(SLB_VSID_L|SLB_VSID_LP)

#define SLB_VSID_KERNEL		(SLB_VSID_KP)
#define SLB_VSID_USER		(SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)

#define SLBIE_C			(0x08000000)
P
Paul Mackerras 已提交
72
#define SLBIE_SSIZE_SHIFT	25
73 74 75 76 77 78 79

/*
 * Hash table
 */

#define HPTES_PER_GROUP 8

80
#define HPTE_V_SSIZE_SHIFT	62
81
#define HPTE_V_AVPN_SHIFT	7
82
#define HPTE_V_AVPN		ASM_CONST(0x3fffffffffffff80)
83
#define HPTE_V_AVPN_VAL(x)	(((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
84
#define HPTE_V_COMPARE(x,y)	(!(((x) ^ (y)) & 0xffffffffffffff80UL))
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
#define HPTE_V_BOLTED		ASM_CONST(0x0000000000000010)
#define HPTE_V_LOCK		ASM_CONST(0x0000000000000008)
#define HPTE_V_LARGE		ASM_CONST(0x0000000000000004)
#define HPTE_V_SECONDARY	ASM_CONST(0x0000000000000002)
#define HPTE_V_VALID		ASM_CONST(0x0000000000000001)

#define HPTE_R_PP0		ASM_CONST(0x8000000000000000)
#define HPTE_R_TS		ASM_CONST(0x4000000000000000)
#define HPTE_R_RPN_SHIFT	12
#define HPTE_R_RPN		ASM_CONST(0x3ffffffffffff000)
#define HPTE_R_FLAGS		ASM_CONST(0x00000000000003ff)
#define HPTE_R_PP		ASM_CONST(0x0000000000000003)
#define HPTE_R_N		ASM_CONST(0x0000000000000004)
#define HPTE_R_C		ASM_CONST(0x0000000000000080)
#define HPTE_R_R		ASM_CONST(0x0000000000000100)

101 102 103
#define HPTE_V_1TB_SEG		ASM_CONST(0x4000000000000000)
#define HPTE_V_VRMA_MASK	ASM_CONST(0x4001ffffff000000)

104 105 106 107 108 109 110 111 112
/* Values for PP (assumes Ks=0, Kp=1) */
/* pp0 will always be 0 for linux     */
#define PP_RWXX	0	/* Supervisor read/write, User none */
#define PP_RWRX 1	/* Supervisor read/write, User read */
#define PP_RWRW 2	/* Supervisor read/write, User read/write */
#define PP_RXRX 3	/* Supervisor read,       User read */

#ifndef __ASSEMBLY__

113
struct hash_pte {
114 115
	unsigned long v;
	unsigned long r;
116
};
117

118
extern struct hash_pte *htab_address;
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
extern unsigned long htab_size_bytes;
extern unsigned long htab_hash_mask;

/*
 * Page size definition
 *
 *    shift : is the "PAGE_SHIFT" value for that page size
 *    sllp  : is a bit mask with the value of SLB L || LP to be or'ed
 *            directly to a slbmte "vsid" value
 *    penc  : is the HPTE encoding mask for the "LP" field:
 *
 */
struct mmu_psize_def
{
	unsigned int	shift;	/* number of bits */
	unsigned int	penc;	/* HPTE encoding */
	unsigned int	tlbiel;	/* tlbiel supported for that page size */
	unsigned long	avpnm;	/* bits to mask out in AVPN in the HPTE */
	unsigned long	sllp;	/* SLB L||LP (exact mask to use in slbmte) */
};

#endif /* __ASSEMBLY__ */

142 143 144 145 146 147 148 149 150
/*
 * Segment sizes.
 * These are the values used by hardware in the B field of
 * SLB entries and the first dword of MMU hashtable entries.
 * The B field is 2 bits; the values 2 and 3 are unused and reserved.
 */
#define MMU_SEGSIZE_256M	0
#define MMU_SEGSIZE_1T		1

P
Paul Mackerras 已提交
151

152 153 154
#ifndef __ASSEMBLY__

/*
P
Paul Mackerras 已提交
155
 * The current system page and segment sizes
156 157 158 159 160
 */
extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
extern int mmu_linear_psize;
extern int mmu_virtual_psize;
extern int mmu_vmalloc_psize;
161
extern int mmu_vmemmap_psize;
162
extern int mmu_io_psize;
P
Paul Mackerras 已提交
163 164
extern int mmu_kernel_ssize;
extern int mmu_highuser_ssize;
165
extern u16 mmu_slb_size;
166
extern unsigned long tce_alloc_start, tce_alloc_end;
167 168 169 170 171 172 173 174 175 176 177

/*
 * If the processor supports 64k normal pages but not 64k cache
 * inhibited pages, we have to be prepared to switch processes
 * to use 4k pages when they create cache-inhibited mappings.
 * If this is the case, mmu_ci_restrictions will be set to 1.
 */
extern int mmu_ci_restrictions;

#ifdef CONFIG_HUGETLB_PAGE
/*
178
 * The page size indexes of the huge pages for use by hugetlbfs
179
 */
180
extern unsigned int mmu_huge_psizes[MMU_PAGE_COUNT];
181 182 183 184 185 186 187

#endif /* CONFIG_HUGETLB_PAGE */

/*
 * This function sets the AVPN and L fields of the HPTE  appropriately
 * for the page size
 */
P
Paul Mackerras 已提交
188 189
static inline unsigned long hpte_encode_v(unsigned long va, int psize,
					  int ssize)
190
{
P
Paul Mackerras 已提交
191
	unsigned long v;
192 193 194 195
	v = (va >> 23) & ~(mmu_psize_defs[psize].avpnm);
	v <<= HPTE_V_AVPN_SHIFT;
	if (psize != MMU_PAGE_4K)
		v |= HPTE_V_LARGE;
P
Paul Mackerras 已提交
196
	v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
	return v;
}

/*
 * This function sets the ARPN, and LP fields of the HPTE appropriately
 * for the page size. We assume the pa is already "clean" that is properly
 * aligned for the requested page size
 */
static inline unsigned long hpte_encode_r(unsigned long pa, int psize)
{
	unsigned long r;

	/* A 4K page needs no special encoding */
	if (psize == MMU_PAGE_4K)
		return pa & HPTE_R_RPN;
	else {
		unsigned int penc = mmu_psize_defs[psize].penc;
		unsigned int shift = mmu_psize_defs[psize].shift;
		return (pa & ~((1ul << shift) - 1)) | (penc << 12);
	}
	return r;
}

/*
P
Paul Mackerras 已提交
221
 * Build a VA given VSID, EA and segment size
222
 */
P
Paul Mackerras 已提交
223 224 225 226 227 228 229
static inline unsigned long hpt_va(unsigned long ea, unsigned long vsid,
				   int ssize)
{
	if (ssize == MMU_SEGSIZE_256M)
		return (vsid << 28) | (ea & 0xfffffffUL);
	return (vsid << 40) | (ea & 0xffffffffffUL);
}
230

P
Paul Mackerras 已提交
231 232 233 234 235 236
/*
 * This hashes a virtual address
 */

static inline unsigned long hpt_hash(unsigned long va, unsigned int shift,
				     int ssize)
237
{
P
Paul Mackerras 已提交
238 239 240 241 242 243 244 245 246
	unsigned long hash, vsid;

	if (ssize == MMU_SEGSIZE_256M) {
		hash = (va >> 28) ^ ((va & 0x0fffffffUL) >> shift);
	} else {
		vsid = va >> 40;
		hash = vsid ^ (vsid << 25) ^ ((va & 0xffffffffffUL) >> shift);
	}
	return hash & 0x7fffffffffUL;
247 248 249 250
}

extern int __hash_page_4K(unsigned long ea, unsigned long access,
			  unsigned long vsid, pte_t *ptep, unsigned long trap,
251
			  unsigned int local, int ssize, int subpage_prot);
252 253
extern int __hash_page_64K(unsigned long ea, unsigned long access,
			   unsigned long vsid, pte_t *ptep, unsigned long trap,
P
Paul Mackerras 已提交
254
			   unsigned int local, int ssize);
255 256 257 258 259 260 261
struct mm_struct;
extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap);
extern int hash_huge_page(struct mm_struct *mm, unsigned long access,
			  unsigned long ea, unsigned long vsid, int local,
			  unsigned long trap);

extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
262
			     unsigned long pstart, unsigned long prot,
P
Paul Mackerras 已提交
263
			     int psize, int ssize);
264 265
extern void add_gpage(unsigned long addr, unsigned long page_size,
			  unsigned long number_of_pages);
266
extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);
267 268 269 270 271

extern void hpte_init_native(void);
extern void hpte_init_lpar(void);
extern void hpte_init_iSeries(void);
extern void hpte_init_beat(void);
272
extern void hpte_init_beat_v3(void);
273 274 275 276 277 278

extern void stabs_alloc(void);
extern void slb_initialize(void);
extern void slb_flush_and_rebolt(void);
extern void stab_initialize(unsigned long stab);

279
extern void slb_vmalloc_update(void);
280
extern void slb_set_size(u16 size);
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
#endif /* __ASSEMBLY__ */

/*
 * VSID allocation
 *
 * We first generate a 36-bit "proto-VSID".  For kernel addresses this
 * is equal to the ESID, for user addresses it is:
 *	(context << 15) | (esid & 0x7fff)
 *
 * The two forms are distinguishable because the top bit is 0 for user
 * addresses, whereas the top two bits are 1 for kernel addresses.
 * Proto-VSIDs with the top two bits equal to 0b10 are reserved for
 * now.
 *
 * The proto-VSIDs are then scrambled into real VSIDs with the
 * multiplicative hash:
 *
 *	VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
 *	where	VSID_MULTIPLIER = 268435399 = 0xFFFFFC7
 *		VSID_MODULUS = 2^36-1 = 0xFFFFFFFFF
 *
 * This scramble is only well defined for proto-VSIDs below
 * 0xFFFFFFFFF, so both proto-VSID and actual VSID 0xFFFFFFFFF are
 * reserved.  VSID_MULTIPLIER is prime, so in particular it is
 * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
 * Because the modulus is 2^n-1 we can compute it efficiently without
 * a divide or extra multiply (see below).
 *
 * This scheme has several advantages over older methods:
 *
 * 	- We have VSIDs allocated for every kernel address
 * (i.e. everything above 0xC000000000000000), except the very top
 * segment, which simplifies several things.
 *
 * 	- We allow for 15 significant bits of ESID and 20 bits of
 * context for user addresses.  i.e. 8T (43 bits) of address space for
 * up to 1M contexts (although the page table structure and context
 * allocation will need changes to take advantage of this).
 *
 * 	- The scramble function gives robust scattering in the hash
 * table (at least based on some initial results).  The previous
 * method was more susceptible to pathological cases giving excessive
 * hash collisions.
 */
/*
 * WARNING - If you change these you must make sure the asm
 * implementations in slb_allocate (slb_low.S), do_stab_bolted
 * (head.S) and ASM_VSID_SCRAMBLE (below) are changed accordingly.
 *
 * You'll also need to change the precomputed VSID values in head.S
 * which are used by the iSeries firmware.
 */

P
Paul Mackerras 已提交
334 335 336
#define VSID_MULTIPLIER_256M	ASM_CONST(200730139)	/* 28-bit prime */
#define VSID_BITS_256M		36
#define VSID_MODULUS_256M	((1UL<<VSID_BITS_256M)-1)
337

P
Paul Mackerras 已提交
338 339 340 341 342 343 344
#define VSID_MULTIPLIER_1T	ASM_CONST(12538073)	/* 24-bit prime */
#define VSID_BITS_1T		24
#define VSID_MODULUS_1T		((1UL<<VSID_BITS_1T)-1)

#define CONTEXT_BITS		19
#define USER_ESID_BITS		16
#define USER_ESID_BITS_1T	4
345 346 347 348 349 350 351 352 353 354 355 356 357

#define USER_VSID_RANGE	(1UL << (USER_ESID_BITS + SID_SHIFT))

/*
 * This macro generates asm code to compute the VSID scramble
 * function.  Used in slb_allocate() and do_stab_bolted.  The function
 * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
 *
 *	rt = register continaing the proto-VSID and into which the
 *		VSID will be stored
 *	rx = scratch register (clobbered)
 *
 * 	- rt and rx must be different registers
P
Paul Mackerras 已提交
358
 * 	- The answer will end up in the low VSID_BITS bits of rt.  The higher
359 360 361
 * 	  bits may contain other garbage, so you may need to mask the
 * 	  result.
 */
P
Paul Mackerras 已提交
362 363 364
#define ASM_VSID_SCRAMBLE(rt, rx, size)					\
	lis	rx,VSID_MULTIPLIER_##size@h;				\
	ori	rx,rx,VSID_MULTIPLIER_##size@l;				\
365 366
	mulld	rt,rt,rx;		/* rt = rt * MULTIPLIER */	\
									\
P
Paul Mackerras 已提交
367 368
	srdi	rx,rt,VSID_BITS_##size;					\
	clrldi	rt,rt,(64-VSID_BITS_##size);				\
369 370 371 372 373 374 375 376
	add	rt,rt,rx;		/* add high and low bits */	\
	/* Now, r3 == VSID (mod 2^36-1), and lies between 0 and		\
	 * 2^36-1+2^28-1.  That in particular means that if r3 >=	\
	 * 2^36-1, then r3+1 has the 2^36 bit set.  So, if r3+1 has	\
	 * the bit clear, r3 already has the answer we want, if it	\
	 * doesn't, the answer is the low 36 bits of r3+1.  So in all	\
	 * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
	addi	rx,rt,1;						\
P
Paul Mackerras 已提交
377
	srdi	rx,rx,VSID_BITS_##size;	/* extract 2^VSID_BITS bit */	\
378 379 380 381 382 383 384 385 386
	add	rt,rt,rx


#ifndef __ASSEMBLY__

typedef unsigned long mm_context_id_t;

typedef struct {
	mm_context_id_t id;
387 388 389 390 391 392 393
	u16 user_psize;		/* page size index */

#ifdef CONFIG_PPC_MM_SLICES
	u64 low_slices_psize;	/* SLB page size encodings */
	u64 high_slices_psize;  /* 4 bits per slice for now */
#else
	u16 sllp;		/* SLB page size encoding */
394 395 396 397 398 399
#endif
	unsigned long vdso_base;
} mm_context_t;


#if 0
P
Paul Mackerras 已提交
400 401 402 403 404 405 406 407
/*
 * The code below is equivalent to this function for arguments
 * < 2^VSID_BITS, which is all this should ever be called
 * with.  However gcc is not clever enough to compute the
 * modulus (2^n-1) without a second multiply.
 */
#define vsid_scrample(protovsid, size) \
	((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
408

P
Paul Mackerras 已提交
409 410 411 412 413 414 415 416
#else /* 1 */
#define vsid_scramble(protovsid, size) \
	({								 \
		unsigned long x;					 \
		x = (protovsid) * VSID_MULTIPLIER_##size;		 \
		x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
		(x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
	})
417 418
#endif /* 1 */

419
/* This is only valid for addresses >= PAGE_OFFSET */
P
Paul Mackerras 已提交
420
static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
421
{
P
Paul Mackerras 已提交
422 423 424
	if (ssize == MMU_SEGSIZE_256M)
		return vsid_scramble(ea >> SID_SHIFT, 256M);
	return vsid_scramble(ea >> SID_SHIFT_1T, 1T);
425 426
}

P
Paul Mackerras 已提交
427 428
/* Returns the segment size indicator for a user address */
static inline int user_segment_size(unsigned long addr)
429
{
P
Paul Mackerras 已提交
430 431 432 433
	/* Use 1T segments if possible for addresses >= 1T */
	if (addr >= (1UL << SID_SHIFT_1T))
		return mmu_highuser_ssize;
	return MMU_SEGSIZE_256M;
434 435
}

P
Paul Mackerras 已提交
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
/* This is only valid for user addresses (which are below 2^44) */
static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
				     int ssize)
{
	if (ssize == MMU_SEGSIZE_256M)
		return vsid_scramble((context << USER_ESID_BITS)
				     | (ea >> SID_SHIFT), 256M);
	return vsid_scramble((context << USER_ESID_BITS_1T)
			     | (ea >> SID_SHIFT_1T), 1T);
}

/*
 * This is only used on legacy iSeries in lparmap.c,
 * hence the 256MB segment assumption.
 */
#define VSID_SCRAMBLE(pvsid)	(((pvsid) * VSID_MULTIPLIER_256M) %	\
				 VSID_MODULUS_256M)
453 454 455 456 457
#define KERNEL_VSID(ea)		VSID_SCRAMBLE(GET_ESID(ea))

#endif /* __ASSEMBLY__ */

#endif /* _ASM_POWERPC_MMU_HASH64_H_ */