vmm.c 38.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright 2017 Red Hat Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 */
#define NVKM_VMM_LEVELS_MAX 5
#include "vmm.h"

25 26
#include <subdev/fb.h>

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
static void
nvkm_vmm_pt_del(struct nvkm_vmm_pt **ppgt)
{
	struct nvkm_vmm_pt *pgt = *ppgt;
	if (pgt) {
		kvfree(pgt->pde);
		kfree(pgt);
		*ppgt = NULL;
	}
}


static struct nvkm_vmm_pt *
nvkm_vmm_pt_new(const struct nvkm_vmm_desc *desc, bool sparse,
		const struct nvkm_vmm_page *page)
{
	const u32 pten = 1 << desc->bits;
	struct nvkm_vmm_pt *pgt;
	u32 lpte = 0;

	if (desc->type > PGT) {
		if (desc->type == SPT) {
			const struct nvkm_vmm_desc *pair = page[-1].desc;
			lpte = pten >> (desc->bits - pair->bits);
		} else {
			lpte = pten;
		}
	}

	if (!(pgt = kzalloc(sizeof(*pgt) + lpte, GFP_KERNEL)))
		return NULL;
	pgt->page = page ? page->shift : 0;
	pgt->sparse = sparse;

	if (desc->type == PGD) {
		pgt->pde = kvzalloc(sizeof(*pgt->pde) * pten, GFP_KERNEL);
		if (!pgt->pde) {
			kfree(pgt);
			return NULL;
		}
	}

	return pgt;
}

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
struct nvkm_vmm_iter {
	const struct nvkm_vmm_page *page;
	const struct nvkm_vmm_desc *desc;
	struct nvkm_vmm *vmm;
	u64 cnt;
	u16 max, lvl;
	u32 pte[NVKM_VMM_LEVELS_MAX];
	struct nvkm_vmm_pt *pt[NVKM_VMM_LEVELS_MAX];
	int flush;
};

#ifdef CONFIG_NOUVEAU_DEBUG_MMU
static const char *
nvkm_vmm_desc_type(const struct nvkm_vmm_desc *desc)
{
	switch (desc->type) {
	case PGD: return "PGD";
	case PGT: return "PGT";
	case SPT: return "SPT";
	case LPT: return "LPT";
	default:
		return "UNKNOWN";
	}
}

static void
nvkm_vmm_trace(struct nvkm_vmm_iter *it, char *buf)
{
	int lvl;
	for (lvl = it->max; lvl >= 0; lvl--) {
		if (lvl >= it->lvl)
			buf += sprintf(buf,  "%05x:", it->pte[lvl]);
		else
			buf += sprintf(buf, "xxxxx:");
	}
}

#define TRA(i,f,a...) do {                                                     \
	char _buf[NVKM_VMM_LEVELS_MAX * 7];                                    \
	struct nvkm_vmm_iter *_it = (i);                                       \
	nvkm_vmm_trace(_it, _buf);                                             \
	VMM_TRACE(_it->vmm, "%s "f, _buf, ##a);                                \
} while(0)
#else
#define TRA(i,f,a...)
#endif

static inline void
nvkm_vmm_flush_mark(struct nvkm_vmm_iter *it)
{
	it->flush = min(it->flush, it->max - it->lvl);
}

static inline void
nvkm_vmm_flush(struct nvkm_vmm_iter *it)
{
	if (it->flush != NVKM_VMM_LEVELS_MAX) {
		if (it->vmm->func->flush) {
			TRA(it, "flush: %d", it->flush);
			it->vmm->func->flush(it->vmm, it->flush);
		}
		it->flush = NVKM_VMM_LEVELS_MAX;
	}
}

static void
nvkm_vmm_unref_pdes(struct nvkm_vmm_iter *it)
{
	const struct nvkm_vmm_desc *desc = it->desc;
	const int type = desc[it->lvl].type == SPT;
	struct nvkm_vmm_pt *pgd = it->pt[it->lvl + 1];
	struct nvkm_vmm_pt *pgt = it->pt[it->lvl];
	struct nvkm_mmu_pt *pt = pgt->pt[type];
	struct nvkm_vmm *vmm = it->vmm;
	u32 pdei = it->pte[it->lvl + 1];

	/* Recurse up the tree, unreferencing/destroying unneeded PDs. */
	it->lvl++;
	if (--pgd->refs[0]) {
		const struct nvkm_vmm_desc_func *func = desc[it->lvl].func;
		/* PD has other valid PDEs, so we need a proper update. */
		TRA(it, "PDE unmap %s", nvkm_vmm_desc_type(&desc[it->lvl - 1]));
		pgt->pt[type] = NULL;
		if (!pgt->refs[!type]) {
			/* PDE no longer required. */
			if (pgd->pt[0]) {
				if (pgt->sparse) {
					func->sparse(vmm, pgd->pt[0], pdei, 1);
					pgd->pde[pdei] = NVKM_VMM_PDE_SPARSE;
				} else {
					func->unmap(vmm, pgd->pt[0], pdei, 1);
					pgd->pde[pdei] = NULL;
				}
			} else {
				/* Special handling for Tesla-class GPUs,
				 * where there's no central PD, but each
				 * instance has its own embedded PD.
				 */
				func->pde(vmm, pgd, pdei);
				pgd->pde[pdei] = NULL;
			}
		} else {
			/* PDE was pointing at dual-PTs and we're removing
			 * one of them, leaving the other in place.
			 */
			func->pde(vmm, pgd, pdei);
		}

		/* GPU may have cached the PTs, flush before freeing. */
		nvkm_vmm_flush_mark(it);
		nvkm_vmm_flush(it);
	} else {
		/* PD has no valid PDEs left, so we can just destroy it. */
		nvkm_vmm_unref_pdes(it);
	}

	/* Destroy PD/PT. */
	TRA(it, "PDE free %s", nvkm_vmm_desc_type(&desc[it->lvl - 1]));
	nvkm_mmu_ptc_put(vmm->mmu, vmm->bootstrapped, &pt);
	if (!pgt->refs[!type])
		nvkm_vmm_pt_del(&pgt);
	it->lvl--;
}

static void
nvkm_vmm_unref_sptes(struct nvkm_vmm_iter *it, struct nvkm_vmm_pt *pgt,
		     const struct nvkm_vmm_desc *desc, u32 ptei, u32 ptes)
{
	const struct nvkm_vmm_desc *pair = it->page[-1].desc;
	const u32 sptb = desc->bits - pair->bits;
	const u32 sptn = 1 << sptb;
	struct nvkm_vmm *vmm = it->vmm;
	u32 spti = ptei & (sptn - 1), lpti, pteb;

	/* Determine how many SPTEs are being touched under each LPTE,
	 * and drop reference counts.
	 */
	for (lpti = ptei >> sptb; ptes; spti = 0, lpti++) {
		const u32 pten = min(sptn - spti, ptes);
		pgt->pte[lpti] -= pten;
		ptes -= pten;
	}

	/* We're done here if there's no corresponding LPT. */
	if (!pgt->refs[0])
		return;

	for (ptei = pteb = ptei >> sptb; ptei < lpti; pteb = ptei) {
		/* Skip over any LPTEs that still have valid SPTEs. */
		if (pgt->pte[pteb] & NVKM_VMM_PTE_SPTES) {
			for (ptes = 1, ptei++; ptei < lpti; ptes++, ptei++) {
				if (!(pgt->pte[ptei] & NVKM_VMM_PTE_SPTES))
					break;
			}
			continue;
		}

		/* As there's no more non-UNMAPPED SPTEs left in the range
		 * covered by a number of LPTEs, the LPTEs once again take
		 * control over their address range.
		 *
		 * Determine how many LPTEs need to transition state.
		 */
		pgt->pte[ptei] &= ~NVKM_VMM_PTE_VALID;
		for (ptes = 1, ptei++; ptei < lpti; ptes++, ptei++) {
			if (pgt->pte[ptei] & NVKM_VMM_PTE_SPTES)
				break;
			pgt->pte[ptei] &= ~NVKM_VMM_PTE_VALID;
		}

		if (pgt->pte[pteb] & NVKM_VMM_PTE_SPARSE) {
			TRA(it, "LPTE %05x: U -> S %d PTEs", pteb, ptes);
			pair->func->sparse(vmm, pgt->pt[0], pteb, ptes);
		} else
		if (pair->func->invalid) {
			/* If the MMU supports it, restore the LPTE to the
			 * INVALID state to tell the MMU there is no point
			 * trying to fetch the corresponding SPTEs.
			 */
			TRA(it, "LPTE %05x: U -> I %d PTEs", pteb, ptes);
			pair->func->invalid(vmm, pgt->pt[0], pteb, ptes);
		}
	}
}

static bool
nvkm_vmm_unref_ptes(struct nvkm_vmm_iter *it, u32 ptei, u32 ptes)
{
	const struct nvkm_vmm_desc *desc = it->desc;
	const int type = desc->type == SPT;
	struct nvkm_vmm_pt *pgt = it->pt[0];

	/* Drop PTE references. */
	pgt->refs[type] -= ptes;

	/* Dual-PTs need special handling, unless PDE becoming invalid. */
	if (desc->type == SPT && (pgt->refs[0] || pgt->refs[1]))
		nvkm_vmm_unref_sptes(it, pgt, desc, ptei, ptes);

	/* PT no longer neeed?  Destroy it. */
	if (!pgt->refs[type]) {
		it->lvl++;
		TRA(it, "%s empty", nvkm_vmm_desc_type(desc));
		it->lvl--;
		nvkm_vmm_unref_pdes(it);
		return false; /* PTE writes for unmap() not necessary. */
	}

	return true;
}

static void
nvkm_vmm_ref_sptes(struct nvkm_vmm_iter *it, struct nvkm_vmm_pt *pgt,
		   const struct nvkm_vmm_desc *desc, u32 ptei, u32 ptes)
{
	const struct nvkm_vmm_desc *pair = it->page[-1].desc;
	const u32 sptb = desc->bits - pair->bits;
	const u32 sptn = 1 << sptb;
	struct nvkm_vmm *vmm = it->vmm;
	u32 spti = ptei & (sptn - 1), lpti, pteb;

	/* Determine how many SPTEs are being touched under each LPTE,
	 * and increase reference counts.
	 */
	for (lpti = ptei >> sptb; ptes; spti = 0, lpti++) {
		const u32 pten = min(sptn - spti, ptes);
		pgt->pte[lpti] += pten;
		ptes -= pten;
	}

	/* We're done here if there's no corresponding LPT. */
	if (!pgt->refs[0])
		return;

	for (ptei = pteb = ptei >> sptb; ptei < lpti; pteb = ptei) {
		/* Skip over any LPTEs that already have valid SPTEs. */
		if (pgt->pte[pteb] & NVKM_VMM_PTE_VALID) {
			for (ptes = 1, ptei++; ptei < lpti; ptes++, ptei++) {
				if (!(pgt->pte[ptei] & NVKM_VMM_PTE_VALID))
					break;
			}
			continue;
		}

		/* As there are now non-UNMAPPED SPTEs in the range covered
		 * by a number of LPTEs, we need to transfer control of the
		 * address range to the SPTEs.
		 *
		 * Determine how many LPTEs need to transition state.
		 */
		pgt->pte[ptei] |= NVKM_VMM_PTE_VALID;
		for (ptes = 1, ptei++; ptei < lpti; ptes++, ptei++) {
			if (pgt->pte[ptei] & NVKM_VMM_PTE_VALID)
				break;
			pgt->pte[ptei] |= NVKM_VMM_PTE_VALID;
		}

		if (pgt->pte[pteb] & NVKM_VMM_PTE_SPARSE) {
			const u32 spti = pteb * sptn;
			const u32 sptc = ptes * sptn;
			/* The entire LPTE is marked as sparse, we need
			 * to make sure that the SPTEs are too.
			 */
			TRA(it, "SPTE %05x: U -> S %d PTEs", spti, sptc);
			desc->func->sparse(vmm, pgt->pt[1], spti, sptc);
			/* Sparse LPTEs prevent SPTEs from being accessed. */
			TRA(it, "LPTE %05x: S -> U %d PTEs", pteb, ptes);
			pair->func->unmap(vmm, pgt->pt[0], pteb, ptes);
		} else
		if (pair->func->invalid) {
			/* MMU supports blocking SPTEs by marking an LPTE
			 * as INVALID.  We need to reverse that here.
			 */
			TRA(it, "LPTE %05x: I -> U %d PTEs", pteb, ptes);
			pair->func->unmap(vmm, pgt->pt[0], pteb, ptes);
		}
	}
}

static bool
nvkm_vmm_ref_ptes(struct nvkm_vmm_iter *it, u32 ptei, u32 ptes)
{
	const struct nvkm_vmm_desc *desc = it->desc;
	const int type = desc->type == SPT;
	struct nvkm_vmm_pt *pgt = it->pt[0];

	/* Take PTE references. */
	pgt->refs[type] += ptes;

	/* Dual-PTs need special handling. */
	if (desc->type == SPT)
		nvkm_vmm_ref_sptes(it, pgt, desc, ptei, ptes);

	return true;
}

static void
nvkm_vmm_sparse_ptes(const struct nvkm_vmm_desc *desc,
		     struct nvkm_vmm_pt *pgt, u32 ptei, u32 ptes)
{
	if (desc->type == PGD) {
		while (ptes--)
			pgt->pde[ptei++] = NVKM_VMM_PDE_SPARSE;
	} else
	if (desc->type == LPT) {
		memset(&pgt->pte[ptei], NVKM_VMM_PTE_SPARSE, ptes);
	}
}

381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
static bool
nvkm_vmm_sparse_unref_ptes(struct nvkm_vmm_iter *it, u32 ptei, u32 ptes)
{
	struct nvkm_vmm_pt *pt = it->pt[0];
	if (it->desc->type == PGD)
		memset(&pt->pde[ptei], 0x00, sizeof(pt->pde[0]) * ptes);
	else
	if (it->desc->type == LPT)
		memset(&pt->pte[ptei], 0x00, sizeof(pt->pte[0]) * ptes);
	return nvkm_vmm_unref_ptes(it, ptei, ptes);
}

static bool
nvkm_vmm_sparse_ref_ptes(struct nvkm_vmm_iter *it, u32 ptei, u32 ptes)
{
	nvkm_vmm_sparse_ptes(it->desc, it->pt[0], ptei, ptes);
	return nvkm_vmm_ref_ptes(it, ptei, ptes);
}

400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
static bool
nvkm_vmm_ref_hwpt(struct nvkm_vmm_iter *it, struct nvkm_vmm_pt *pgd, u32 pdei)
{
	const struct nvkm_vmm_desc *desc = &it->desc[it->lvl - 1];
	const int type = desc->type == SPT;
	struct nvkm_vmm_pt *pgt = pgd->pde[pdei];
	const bool zero = !pgt->sparse && !desc->func->invalid;
	struct nvkm_vmm *vmm = it->vmm;
	struct nvkm_mmu *mmu = vmm->mmu;
	struct nvkm_mmu_pt *pt;
	u32 pten = 1 << desc->bits;
	u32 pteb, ptei, ptes;
	u32 size = desc->size * pten;

	pgd->refs[0]++;

	pgt->pt[type] = nvkm_mmu_ptc_get(mmu, size, desc->align, zero);
	if (!pgt->pt[type]) {
		it->lvl--;
		nvkm_vmm_unref_pdes(it);
		return false;
	}

	if (zero)
		goto done;

	pt = pgt->pt[type];

	if (desc->type == LPT && pgt->refs[1]) {
		/* SPT already exists covering the same range as this LPT,
		 * which means we need to be careful that any LPTEs which
		 * overlap valid SPTEs are unmapped as opposed to invalid
		 * or sparse, which would prevent the MMU from looking at
		 * the SPTEs on some GPUs.
		 */
		for (ptei = pteb = 0; ptei < pten; pteb = ptei) {
			bool spte = pgt->pte[ptei] & NVKM_VMM_PTE_SPTES;
			for (ptes = 1, ptei++; ptei < pten; ptes++, ptei++) {
				bool next = pgt->pte[ptei] & NVKM_VMM_PTE_SPTES;
				if (spte != next)
					break;
			}

			if (!spte) {
				if (pgt->sparse)
					desc->func->sparse(vmm, pt, pteb, ptes);
				else
					desc->func->invalid(vmm, pt, pteb, ptes);
				memset(&pgt->pte[pteb], 0x00, ptes);
			} else {
				desc->func->unmap(vmm, pt, pteb, ptes);
				while (ptes--)
					pgt->pte[pteb++] |= NVKM_VMM_PTE_VALID;
			}
		}
	} else {
		if (pgt->sparse) {
			nvkm_vmm_sparse_ptes(desc, pgt, 0, pten);
			desc->func->sparse(vmm, pt, 0, pten);
		} else {
			desc->func->invalid(vmm, pt, 0, pten);
		}
	}

done:
	TRA(it, "PDE write %s", nvkm_vmm_desc_type(desc));
	it->desc[it->lvl].func->pde(it->vmm, pgd, pdei);
	nvkm_vmm_flush_mark(it);
	return true;
}

static bool
nvkm_vmm_ref_swpt(struct nvkm_vmm_iter *it, struct nvkm_vmm_pt *pgd, u32 pdei)
{
	const struct nvkm_vmm_desc *desc = &it->desc[it->lvl - 1];
	struct nvkm_vmm_pt *pgt = pgd->pde[pdei];

	pgt = nvkm_vmm_pt_new(desc, NVKM_VMM_PDE_SPARSED(pgt), it->page);
	if (!pgt) {
		if (!pgd->refs[0])
			nvkm_vmm_unref_pdes(it);
		return false;
	}

	pgd->pde[pdei] = pgt;
	return true;
}

static inline u64
nvkm_vmm_iter(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
	      u64 addr, u64 size, const char *name, bool ref,
	      bool (*REF_PTES)(struct nvkm_vmm_iter *, u32, u32),
	      nvkm_vmm_pte_func MAP_PTES, struct nvkm_vmm_map *map,
	      nvkm_vmm_pxe_func CLR_PTES)
{
	const struct nvkm_vmm_desc *desc = page->desc;
	struct nvkm_vmm_iter it;
	u64 bits = addr >> page->shift;

	it.page = page;
	it.desc = desc;
	it.vmm = vmm;
	it.cnt = size >> page->shift;
	it.flush = NVKM_VMM_LEVELS_MAX;

	/* Deconstruct address into PTE indices for each mapping level. */
	for (it.lvl = 0; desc[it.lvl].bits; it.lvl++) {
		it.pte[it.lvl] = bits & ((1 << desc[it.lvl].bits) - 1);
		bits >>= desc[it.lvl].bits;
	}
	it.max = --it.lvl;
	it.pt[it.max] = vmm->pd;

	it.lvl = 0;
	TRA(&it, "%s: %016llx %016llx %d %lld PTEs", name,
	         addr, size, page->shift, it.cnt);
	it.lvl = it.max;

	/* Depth-first traversal of page tables. */
	while (it.cnt) {
		struct nvkm_vmm_pt *pgt = it.pt[it.lvl];
		const int type = desc->type == SPT;
		const u32 pten = 1 << desc->bits;
		const u32 ptei = it.pte[0];
		const u32 ptes = min_t(u64, it.cnt, pten - ptei);

		/* Walk down the tree, finding page tables for each level. */
		for (; it.lvl; it.lvl--) {
			const u32 pdei = it.pte[it.lvl];
			struct nvkm_vmm_pt *pgd = pgt;

			/* Software PT. */
			if (ref && NVKM_VMM_PDE_INVALID(pgd->pde[pdei])) {
				if (!nvkm_vmm_ref_swpt(&it, pgd, pdei))
					goto fail;
			}
			it.pt[it.lvl - 1] = pgt = pgd->pde[pdei];

			/* Hardware PT.
			 *
			 * This is a separate step from above due to GF100 and
			 * newer having dual page tables at some levels, which
			 * are refcounted independently.
			 */
			if (ref && !pgt->refs[desc[it.lvl - 1].type == SPT]) {
				if (!nvkm_vmm_ref_hwpt(&it, pgd, pdei))
					goto fail;
			}
		}

		/* Handle PTE updates. */
		if (!REF_PTES || REF_PTES(&it, ptei, ptes)) {
			struct nvkm_mmu_pt *pt = pgt->pt[type];
			if (MAP_PTES || CLR_PTES) {
				if (MAP_PTES)
					MAP_PTES(vmm, pt, ptei, ptes, map);
				else
					CLR_PTES(vmm, pt, ptei, ptes);
				nvkm_vmm_flush_mark(&it);
			}
		}

		/* Walk back up the tree to the next position. */
		it.pte[it.lvl] += ptes;
		it.cnt -= ptes;
		if (it.cnt) {
			while (it.pte[it.lvl] == (1 << desc[it.lvl].bits)) {
				it.pte[it.lvl++] = 0;
				it.pte[it.lvl]++;
			}
		}
	};

	nvkm_vmm_flush(&it);
	return ~0ULL;

fail:
	/* Reconstruct the failure address so the caller is able to
	 * reverse any partially completed operations.
	 */
	addr = it.pte[it.max--];
	do {
		addr  = addr << desc[it.max].bits;
		addr |= it.pte[it.max];
	} while (it.max--);

	return addr << page->shift;
}

589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
static void
nvkm_vmm_ptes_sparse_put(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
			 u64 addr, u64 size)
{
	nvkm_vmm_iter(vmm, page, addr, size, "sparse unref", false,
		      nvkm_vmm_sparse_unref_ptes, NULL, NULL,
		      page->desc->func->invalid ?
		      page->desc->func->invalid : page->desc->func->unmap);
}

static int
nvkm_vmm_ptes_sparse_get(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
			 u64 addr, u64 size)
{
	if ((page->type & NVKM_VMM_PAGE_SPARSE)) {
		u64 fail = nvkm_vmm_iter(vmm, page, addr, size, "sparse ref",
					 true, nvkm_vmm_sparse_ref_ptes, NULL,
					 NULL, page->desc->func->sparse);
		if (fail != ~0ULL) {
			if ((size = fail - addr))
				nvkm_vmm_ptes_sparse_put(vmm, page, addr, size);
			return -ENOMEM;
		}
		return 0;
	}
	return -EINVAL;
}

static int
nvkm_vmm_ptes_sparse(struct nvkm_vmm *vmm, u64 addr, u64 size, bool ref)
{
	const struct nvkm_vmm_page *page = vmm->func->page;
	int m = 0, i;
	u64 start = addr;
	u64 block;

	while (size) {
		/* Limit maximum page size based on remaining size. */
		while (size < (1ULL << page[m].shift))
			m++;
		i = m;

		/* Find largest page size suitable for alignment. */
		while (!IS_ALIGNED(addr, 1ULL << page[i].shift))
			i++;

		/* Determine number of PTEs at this page size. */
		if (i != m) {
			/* Limited to alignment boundary of next page size. */
			u64 next = 1ULL << page[i - 1].shift;
			u64 part = ALIGN(addr, next) - addr;
			if (size - part >= next)
				block = (part >> page[i].shift) << page[i].shift;
			else
				block = (size >> page[i].shift) << page[i].shift;
		} else {
			block = (size >> page[i].shift) << page[i].shift;;
		}

		/* Perform operation. */
		if (ref) {
			int ret = nvkm_vmm_ptes_sparse_get(vmm, &page[i], addr, block);
			if (ret) {
				if ((size = addr - start))
					nvkm_vmm_ptes_sparse(vmm, start, size, false);
				return ret;
			}
		} else {
			nvkm_vmm_ptes_sparse_put(vmm, &page[i], addr, block);
		}

		size -= block;
		addr += block;
	}

	return 0;
}

static void
nvkm_vmm_ptes_unmap_put(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
			u64 addr, u64 size, bool sparse)
{
	const struct nvkm_vmm_desc_func *func = page->desc->func;
	nvkm_vmm_iter(vmm, page, addr, size, "unmap + unref",
		      false, nvkm_vmm_unref_ptes, NULL, NULL,
		      sparse ? func->sparse : func->invalid ? func->invalid :
							      func->unmap);
}

static int
nvkm_vmm_ptes_get_map(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
		      u64 addr, u64 size, struct nvkm_vmm_map *map,
		      nvkm_vmm_pte_func func)
{
	u64 fail = nvkm_vmm_iter(vmm, page, addr, size, "ref + map", true,
				 nvkm_vmm_ref_ptes, func, map, NULL);
	if (fail != ~0ULL) {
		if ((size = fail - addr))
			nvkm_vmm_ptes_unmap_put(vmm, page, addr, size, false);
		return -ENOMEM;
	}
	return 0;
}

static void
694 695 696 697 698 699 700 701 702
nvkm_vmm_ptes_unmap(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
		    u64 addr, u64 size, bool sparse)
{
	const struct nvkm_vmm_desc_func *func = page->desc->func;
	nvkm_vmm_iter(vmm, page, addr, size, "unmap", false, NULL, NULL, NULL,
		      sparse ? func->sparse : func->invalid ? func->invalid :
							      func->unmap);
}

703
static void
704 705 706 707 708 709 710 711
nvkm_vmm_ptes_map(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
		  u64 addr, u64 size, struct nvkm_vmm_map *map,
		  nvkm_vmm_pte_func func)
{
	nvkm_vmm_iter(vmm, page, addr, size, "map", false,
		      NULL, func, map, NULL);
}

712
static void
713 714 715 716 717 718 719
nvkm_vmm_ptes_put(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
		  u64 addr, u64 size)
{
	nvkm_vmm_iter(vmm, page, addr, size, "unref", false,
		      nvkm_vmm_unref_ptes, NULL, NULL, NULL);
}

720
static int
721 722 723 724 725 726 727 728 729 730 731 732 733
nvkm_vmm_ptes_get(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
		  u64 addr, u64 size)
{
	u64 fail = nvkm_vmm_iter(vmm, page, addr, size, "ref", true,
				 nvkm_vmm_ref_ptes, NULL, NULL, NULL);
	if (fail != ~0ULL) {
		if (fail != addr)
			nvkm_vmm_ptes_put(vmm, page, addr, fail - addr);
		return -ENOMEM;
	}
	return 0;
}

734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
static inline struct nvkm_vma *
nvkm_vma_new(u64 addr, u64 size)
{
	struct nvkm_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
	if (vma) {
		vma->addr = addr;
		vma->size = size;
		vma->page = NVKM_VMA_PAGE_NONE;
		vma->refd = NVKM_VMA_PAGE_NONE;
	}
	return vma;
}

struct nvkm_vma *
nvkm_vma_tail(struct nvkm_vma *vma, u64 tail)
{
	struct nvkm_vma *new;

	BUG_ON(vma->size == tail);

	if (!(new = nvkm_vma_new(vma->addr + (vma->size - tail), tail)))
		return NULL;
	vma->size -= tail;

	new->mapref = vma->mapref;
	new->sparse = vma->sparse;
	new->page = vma->page;
	new->refd = vma->refd;
	new->used = vma->used;
	new->part = vma->part;
	new->user = vma->user;
	new->busy = vma->busy;
	list_add(&new->head, &vma->head);
	return new;
}

static void
nvkm_vmm_free_insert(struct nvkm_vmm *vmm, struct nvkm_vma *vma)
{
	struct rb_node **ptr = &vmm->free.rb_node;
	struct rb_node *parent = NULL;

	while (*ptr) {
		struct nvkm_vma *this = rb_entry(*ptr, typeof(*this), tree);
		parent = *ptr;
		if (vma->size < this->size)
			ptr = &parent->rb_left;
		else
		if (vma->size > this->size)
			ptr = &parent->rb_right;
		else
		if (vma->addr < this->addr)
			ptr = &parent->rb_left;
		else
		if (vma->addr > this->addr)
			ptr = &parent->rb_right;
		else
			BUG();
	}

	rb_link_node(&vma->tree, parent, ptr);
	rb_insert_color(&vma->tree, &vmm->free);
}

798
void
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
nvkm_vmm_node_insert(struct nvkm_vmm *vmm, struct nvkm_vma *vma)
{
	struct rb_node **ptr = &vmm->root.rb_node;
	struct rb_node *parent = NULL;

	while (*ptr) {
		struct nvkm_vma *this = rb_entry(*ptr, typeof(*this), tree);
		parent = *ptr;
		if (vma->addr < this->addr)
			ptr = &parent->rb_left;
		else
		if (vma->addr > this->addr)
			ptr = &parent->rb_right;
		else
			BUG();
	}

	rb_link_node(&vma->tree, parent, ptr);
	rb_insert_color(&vma->tree, &vmm->root);
}

struct nvkm_vma *
nvkm_vmm_node_search(struct nvkm_vmm *vmm, u64 addr)
{
	struct rb_node *node = vmm->root.rb_node;
	while (node) {
		struct nvkm_vma *vma = rb_entry(node, typeof(*vma), tree);
		if (addr < vma->addr)
			node = node->rb_left;
		else
		if (addr >= vma->addr + vma->size)
			node = node->rb_right;
		else
			return vma;
	}
	return NULL;
}

static void
838 839
nvkm_vmm_dtor(struct nvkm_vmm *vmm)
{
840 841 842 843 844 845 846 847
	struct nvkm_vma *vma;
	struct rb_node *node;

	while ((node = rb_first(&vmm->root))) {
		struct nvkm_vma *vma = rb_entry(node, typeof(*vma), tree);
		nvkm_vmm_put(vmm, &vma);
	}

848 849 850 851 852 853 854 855 856 857 858
	if (vmm->bootstrapped) {
		const struct nvkm_vmm_page *page = vmm->func->page;
		const u64 limit = vmm->limit - vmm->start;

		while (page[1].shift)
			page++;

		nvkm_mmu_ptc_dump(vmm->mmu);
		nvkm_vmm_ptes_put(vmm, page, vmm->start, limit);
	}

859 860 861 862 863
	vma = list_first_entry(&vmm->list, typeof(*vma), head);
	list_del(&vma->head);
	kfree(vma);
	WARN_ON(!list_empty(&vmm->list));

864 865 866 867 868
	if (vmm->nullp) {
		dma_free_coherent(vmm->mmu->subdev.device->dev, 16 * 1024,
				  vmm->nullp, vmm->null);
	}

869 870 871 872 873 874 875 876 877 878 879 880 881 882
	if (vmm->pd) {
		nvkm_mmu_ptc_put(vmm->mmu, true, &vmm->pd->pt[0]);
		nvkm_vmm_pt_del(&vmm->pd);
	}
}

int
nvkm_vmm_ctor(const struct nvkm_vmm_func *func, struct nvkm_mmu *mmu,
	      u32 pd_header, u64 addr, u64 size, struct lock_class_key *key,
	      const char *name, struct nvkm_vmm *vmm)
{
	static struct lock_class_key _key;
	const struct nvkm_vmm_page *page = func->page;
	const struct nvkm_vmm_desc *desc;
883
	struct nvkm_vma *vma;
884 885 886 887 888
	int levels, bits = 0;

	vmm->func = func;
	vmm->mmu = mmu;
	vmm->name = name;
889
	vmm->debug = mmu->subdev.debug;
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
	kref_init(&vmm->kref);

	__mutex_init(&vmm->mutex, "&vmm->mutex", key ? key : &_key);

	/* Locate the smallest page size supported by the backend, it will
	 * have the the deepest nesting of page tables.
	 */
	while (page[1].shift)
		page++;

	/* Locate the structure that describes the layout of the top-level
	 * page table, and determine the number of valid bits in a virtual
	 * address.
	 */
	for (levels = 0, desc = page->desc; desc->bits; desc++, levels++)
		bits += desc->bits;
	bits += page->shift;
	desc--;

	if (WARN_ON(levels > NVKM_VMM_LEVELS_MAX))
		return -EINVAL;

	vmm->start = addr;
	vmm->limit = size ? (addr + size) : (1ULL << bits);
	if (vmm->start > vmm->limit || vmm->limit > (1ULL << bits))
		return -EINVAL;

	/* Allocate top-level page table. */
	vmm->pd = nvkm_vmm_pt_new(desc, false, NULL);
	if (!vmm->pd)
		return -ENOMEM;
	vmm->pd->refs[0] = 1;
	INIT_LIST_HEAD(&vmm->join);

	/* ... and the GPU storage for it, except on Tesla-class GPUs that
	 * have the PD embedded in the instance structure.
	 */
927
	if (desc->size) {
928 929 930 931 932 933
		const u32 size = pd_header + desc->size * (1 << desc->bits);
		vmm->pd->pt[0] = nvkm_mmu_ptc_get(mmu, size, desc->align, true);
		if (!vmm->pd->pt[0])
			return -ENOMEM;
	}

934 935 936 937 938 939 940 941 942 943
	/* Initialise address-space MM. */
	INIT_LIST_HEAD(&vmm->list);
	vmm->free = RB_ROOT;
	vmm->root = RB_ROOT;

	if (!(vma = nvkm_vma_new(vmm->start, vmm->limit - vmm->start)))
		return -ENOMEM;

	nvkm_vmm_free_insert(vmm, vma);
	list_add(&vma->head, &vmm->list);
944 945 946 947 948 949 950 951 952 953 954 955
	return 0;
}

int
nvkm_vmm_new_(const struct nvkm_vmm_func *func, struct nvkm_mmu *mmu,
	      u32 hdr, u64 addr, u64 size, struct lock_class_key *key,
	      const char *name, struct nvkm_vmm **pvmm)
{
	if (!(*pvmm = kzalloc(sizeof(**pvmm), GFP_KERNEL)))
		return -ENOMEM;
	return nvkm_vmm_ctor(func, mmu, hdr, addr, size, key, name, *pvmm);
}
956

957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
#define node(root, dir) ((root)->head.dir == &vmm->list) ? NULL :              \
	list_entry((root)->head.dir, struct nvkm_vma, head)

void
nvkm_vmm_unmap_region(struct nvkm_vmm *vmm, struct nvkm_vma *vma)
{
	struct nvkm_vma *next;

	nvkm_memory_tags_put(vma->memory, vmm->mmu->subdev.device, &vma->tags);
	nvkm_memory_unref(&vma->memory);

	if (vma->part) {
		struct nvkm_vma *prev = node(vma, prev);
		if (!prev->memory) {
			prev->size += vma->size;
			rb_erase(&vma->tree, &vmm->root);
			list_del(&vma->head);
			kfree(vma);
			vma = prev;
		}
	}

	next = node(vma, next);
	if (next && next->part) {
		if (!next->memory) {
			vma->size += next->size;
			rb_erase(&next->tree, &vmm->root);
			list_del(&next->head);
			kfree(next);
		}
	}
}

void
nvkm_vmm_unmap_locked(struct nvkm_vmm *vmm, struct nvkm_vma *vma)
{
	const struct nvkm_vmm_page *page = &vmm->func->page[vma->refd];

	if (vma->mapref) {
		nvkm_vmm_ptes_unmap_put(vmm, page, vma->addr, vma->size, vma->sparse);
		vma->refd = NVKM_VMA_PAGE_NONE;
	} else {
		nvkm_vmm_ptes_unmap(vmm, page, vma->addr, vma->size, vma->sparse);
	}

	nvkm_vmm_unmap_region(vmm, vma);
}

void
nvkm_vmm_unmap(struct nvkm_vmm *vmm, struct nvkm_vma *vma)
{
	if (vma->memory) {
		mutex_lock(&vmm->mutex);
		nvkm_vmm_unmap_locked(vmm, vma);
		mutex_unlock(&vmm->mutex);
	}
}

static int
nvkm_vmm_map_valid(struct nvkm_vmm *vmm, struct nvkm_vma *vma,
		   void *argv, u32 argc, struct nvkm_vmm_map *map)
{
	switch (nvkm_memory_target(map->memory)) {
	case NVKM_MEM_TARGET_VRAM:
		if (!(map->page->type & NVKM_VMM_PAGE_VRAM)) {
			VMM_DEBUG(vmm, "%d !VRAM", map->page->shift);
			return -EINVAL;
		}
		break;
	case NVKM_MEM_TARGET_HOST:
	case NVKM_MEM_TARGET_NCOH:
		if (!(map->page->type & NVKM_VMM_PAGE_HOST)) {
			VMM_DEBUG(vmm, "%d !HOST", map->page->shift);
			return -EINVAL;
		}
		break;
	default:
		WARN_ON(1);
		return -ENOSYS;
	}

	if (!IS_ALIGNED(     vma->addr, 1ULL << map->page->shift) ||
	    !IS_ALIGNED((u64)vma->size, 1ULL << map->page->shift) ||
	    !IS_ALIGNED(   map->offset, 1ULL << map->page->shift) ||
	    nvkm_memory_page(map->memory) < map->page->shift) {
		VMM_DEBUG(vmm, "alignment %016llx %016llx %016llx %d %d",
		    vma->addr, (u64)vma->size, map->offset, map->page->shift,
		    nvkm_memory_page(map->memory));
		return -EINVAL;
	}

	return vmm->func->valid(vmm, argv, argc, map);
}

static int
nvkm_vmm_map_choose(struct nvkm_vmm *vmm, struct nvkm_vma *vma,
		    void *argv, u32 argc, struct nvkm_vmm_map *map)
{
	for (map->page = vmm->func->page; map->page->shift; map->page++) {
		VMM_DEBUG(vmm, "trying %d", map->page->shift);
		if (!nvkm_vmm_map_valid(vmm, vma, argv, argc, map))
			return 0;
	}
	return -EINVAL;
}

static int
nvkm_vmm_map_locked(struct nvkm_vmm *vmm, struct nvkm_vma *vma,
		    void *argv, u32 argc, struct nvkm_vmm_map *map)
{
	nvkm_vmm_pte_func func;
	int ret;

	/* Make sure we won't overrun the end of the memory object. */
	if (unlikely(nvkm_memory_size(map->memory) < map->offset + vma->size)) {
		VMM_DEBUG(vmm, "overrun %016llx %016llx %016llx",
			  nvkm_memory_size(map->memory),
			  map->offset, (u64)vma->size);
		return -EINVAL;
	}

	/* Check remaining arguments for validity. */
	if (vma->page == NVKM_VMA_PAGE_NONE &&
	    vma->refd == NVKM_VMA_PAGE_NONE) {
		/* Find the largest page size we can perform the mapping at. */
		const u32 debug = vmm->debug;
		vmm->debug = 0;
		ret = nvkm_vmm_map_choose(vmm, vma, argv, argc, map);
		vmm->debug = debug;
		if (ret) {
			VMM_DEBUG(vmm, "invalid at any page size");
			nvkm_vmm_map_choose(vmm, vma, argv, argc, map);
			return -EINVAL;
		}
	} else {
		/* Page size of the VMA is already pre-determined. */
		if (vma->refd != NVKM_VMA_PAGE_NONE)
			map->page = &vmm->func->page[vma->refd];
		else
			map->page = &vmm->func->page[vma->page];

		ret = nvkm_vmm_map_valid(vmm, vma, argv, argc, map);
		if (ret) {
			VMM_DEBUG(vmm, "invalid %d\n", ret);
			return ret;
		}
	}

	/* Deal with the 'offset' argument, and fetch the backend function. */
	map->off = map->offset;
	if (map->mem) {
		for (; map->off; map->mem = map->mem->next) {
			u64 size = (u64)map->mem->length << NVKM_RAM_MM_SHIFT;
			if (size > map->off)
				break;
			map->off -= size;
		}
		func = map->page->desc->func->mem;
	} else
	if (map->sgl) {
		for (; map->off; map->sgl = sg_next(map->sgl)) {
			u64 size = sg_dma_len(map->sgl);
			if (size > map->off)
				break;
			map->off -= size;
		}
		func = map->page->desc->func->sgl;
	} else {
		map->dma += map->offset >> PAGE_SHIFT;
		map->off  = map->offset & PAGE_MASK;
		func = map->page->desc->func->dma;
	}

	/* Perform the map. */
	if (vma->refd == NVKM_VMA_PAGE_NONE) {
		ret = nvkm_vmm_ptes_get_map(vmm, map->page, vma->addr, vma->size, map, func);
		if (ret)
			return ret;

		vma->refd = map->page - vmm->func->page;
	} else {
		nvkm_vmm_ptes_map(vmm, map->page, vma->addr, vma->size, map, func);
	}

	nvkm_memory_tags_put(vma->memory, vmm->mmu->subdev.device, &vma->tags);
	nvkm_memory_unref(&vma->memory);
	vma->memory = nvkm_memory_ref(map->memory);
	vma->tags = map->tags;
	return 0;
}

int
nvkm_vmm_map(struct nvkm_vmm *vmm, struct nvkm_vma *vma, void *argv, u32 argc,
	     struct nvkm_vmm_map *map)
{
	int ret;
	mutex_lock(&vmm->mutex);
	ret = nvkm_vmm_map_locked(vmm, vma, argv, argc, map);
	vma->busy = false;
	mutex_unlock(&vmm->mutex);
	return ret;
}

static void
nvkm_vmm_put_region(struct nvkm_vmm *vmm, struct nvkm_vma *vma)
{
	struct nvkm_vma *prev, *next;

	if ((prev = node(vma, prev)) && !prev->used) {
		rb_erase(&prev->tree, &vmm->free);
		list_del(&prev->head);
		vma->addr  = prev->addr;
		vma->size += prev->size;
		kfree(prev);
	}

	if ((next = node(vma, next)) && !next->used) {
		rb_erase(&next->tree, &vmm->free);
		list_del(&next->head);
		vma->size += next->size;
		kfree(next);
	}

	nvkm_vmm_free_insert(vmm, vma);
}

void
nvkm_vmm_put_locked(struct nvkm_vmm *vmm, struct nvkm_vma *vma)
{
	const struct nvkm_vmm_page *page = vmm->func->page;
	struct nvkm_vma *next = vma;

	BUG_ON(vma->part);

	if (vma->mapref || !vma->sparse) {
		do {
			const bool map = next->memory != NULL;
			const u8  refd = next->refd;
			const u64 addr = next->addr;
			u64 size = next->size;

			/* Merge regions that are in the same state. */
			while ((next = node(next, next)) && next->part &&
			       (next->memory != NULL) == map &&
			       (next->refd == refd))
				size += next->size;

			if (map) {
				/* Region(s) are mapped, merge the unmap
				 * and dereference into a single walk of
				 * the page tree.
				 */
				nvkm_vmm_ptes_unmap_put(vmm, &page[refd], addr,
							size, vma->sparse);
			} else
			if (refd != NVKM_VMA_PAGE_NONE) {
				/* Drop allocation-time PTE references. */
				nvkm_vmm_ptes_put(vmm, &page[refd], addr, size);
			}
		} while (next && next->part);
	}

	/* Merge any mapped regions that were split from the initial
	 * address-space allocation back into the allocated VMA, and
	 * release memory/compression resources.
	 */
	next = vma;
	do {
		if (next->memory)
			nvkm_vmm_unmap_region(vmm, next);
	} while ((next = node(vma, next)) && next->part);

	if (vma->sparse && !vma->mapref) {
		/* Sparse region that was allocated with a fixed page size,
		 * meaning all relevant PTEs were referenced once when the
		 * region was allocated, and remained that way, regardless
		 * of whether memory was mapped into it afterwards.
		 *
		 * The process of unmapping, unsparsing, and dereferencing
		 * PTEs can be done in a single page tree walk.
		 */
		nvkm_vmm_ptes_sparse_put(vmm, &page[vma->refd], vma->addr, vma->size);
	} else
	if (vma->sparse) {
		/* Sparse region that wasn't allocated with a fixed page size,
		 * PTE references were taken both at allocation time (to make
		 * the GPU see the region as sparse), and when mapping memory
		 * into the region.
		 *
		 * The latter was handled above, and the remaining references
		 * are dealt with here.
		 */
		nvkm_vmm_ptes_sparse(vmm, vma->addr, vma->size, false);
	}

	/* Remove VMA from the list of allocated nodes. */
	rb_erase(&vma->tree, &vmm->root);

	/* Merge VMA back into the free list. */
	vma->page = NVKM_VMA_PAGE_NONE;
	vma->refd = NVKM_VMA_PAGE_NONE;
	vma->used = false;
	vma->user = false;
	nvkm_vmm_put_region(vmm, vma);
}

void
nvkm_vmm_put(struct nvkm_vmm *vmm, struct nvkm_vma **pvma)
{
	struct nvkm_vma *vma = *pvma;
	if (vma) {
		mutex_lock(&vmm->mutex);
		nvkm_vmm_put_locked(vmm, vma);
		mutex_unlock(&vmm->mutex);
		*pvma = NULL;
	}
}

int
nvkm_vmm_get_locked(struct nvkm_vmm *vmm, bool getref, bool mapref, bool sparse,
		    u8 shift, u8 align, u64 size, struct nvkm_vma **pvma)
{
	const struct nvkm_vmm_page *page = &vmm->func->page[NVKM_VMA_PAGE_NONE];
	struct rb_node *node = NULL, *temp;
	struct nvkm_vma *vma = NULL, *tmp;
	u64 addr, tail;
	int ret;

	VMM_TRACE(vmm, "getref %d mapref %d sparse %d "
		       "shift: %d align: %d size: %016llx",
		  getref, mapref, sparse, shift, align, size);

	/* Zero-sized, or lazily-allocated sparse VMAs, make no sense. */
	if (unlikely(!size || (!getref && !mapref && sparse))) {
		VMM_DEBUG(vmm, "args %016llx %d %d %d",
			  size, getref, mapref, sparse);
		return -EINVAL;
	}

	/* Tesla-class GPUs can only select page size per-PDE, which means
	 * we're required to know the mapping granularity up-front to find
	 * a suitable region of address-space.
	 *
	 * The same goes if we're requesting up-front allocation of PTES.
	 */
	if (unlikely((getref || vmm->func->page_block) && !shift)) {
		VMM_DEBUG(vmm, "page size required: %d %016llx",
			  getref, vmm->func->page_block);
		return -EINVAL;
	}

	/* If a specific page size was requested, determine its index and
	 * make sure the requested size is a multiple of the page size.
	 */
	if (shift) {
		for (page = vmm->func->page; page->shift; page++) {
			if (shift == page->shift)
				break;
		}

		if (!page->shift || !IS_ALIGNED(size, 1ULL << page->shift)) {
			VMM_DEBUG(vmm, "page %d %016llx", shift, size);
			return -EINVAL;
		}
		align = max_t(u8, align, shift);
	} else {
		align = max_t(u8, align, 12);
	}

	/* Locate smallest block that can possibly satisfy the allocation. */
	temp = vmm->free.rb_node;
	while (temp) {
		struct nvkm_vma *this = rb_entry(temp, typeof(*this), tree);
		if (this->size < size) {
			temp = temp->rb_right;
		} else {
			node = temp;
			temp = temp->rb_left;
		}
	}

	if (unlikely(!node))
		return -ENOSPC;

	/* Take into account alignment restrictions, trying larger blocks
	 * in turn until we find a suitable free block.
	 */
	do {
		struct nvkm_vma *this = rb_entry(node, typeof(*this), tree);
		struct nvkm_vma *prev = node(this, prev);
		struct nvkm_vma *next = node(this, next);
		const int p = page - vmm->func->page;

		addr = this->addr;
		if (vmm->func->page_block && prev && prev->page != p)
			addr = roundup(addr, vmm->func->page_block);
		addr = ALIGN(addr, 1ULL << align);

		tail = this->addr + this->size;
		if (vmm->func->page_block && next && next->page != p)
			tail = rounddown(tail, vmm->func->page_block);

		if (addr <= tail && tail - addr >= size) {
			rb_erase(&this->tree, &vmm->free);
			vma = this;
			break;
		}
	} while ((node = rb_next(node)));

	if (unlikely(!vma))
		return -ENOSPC;

	/* If the VMA we found isn't already exactly the requested size,
	 * it needs to be split, and the remaining free blocks returned.
	 */
	if (addr != vma->addr) {
		if (!(tmp = nvkm_vma_tail(vma, vma->size + vma->addr - addr))) {
			nvkm_vmm_put_region(vmm, vma);
			return -ENOMEM;
		}
		nvkm_vmm_free_insert(vmm, vma);
		vma = tmp;
	}

	if (size != vma->size) {
		if (!(tmp = nvkm_vma_tail(vma, vma->size - size))) {
			nvkm_vmm_put_region(vmm, vma);
			return -ENOMEM;
		}
		nvkm_vmm_free_insert(vmm, tmp);
	}

	/* Pre-allocate page tables and/or setup sparse mappings. */
	if (sparse && getref)
		ret = nvkm_vmm_ptes_sparse_get(vmm, page, vma->addr, vma->size);
	else if (sparse)
		ret = nvkm_vmm_ptes_sparse(vmm, vma->addr, vma->size, true);
	else if (getref)
		ret = nvkm_vmm_ptes_get(vmm, page, vma->addr, vma->size);
	else
		ret = 0;
	if (ret) {
		nvkm_vmm_put_region(vmm, vma);
		return ret;
	}

	vma->mapref = mapref && !getref;
	vma->sparse = sparse;
	vma->page = page - vmm->func->page;
	vma->refd = getref ? vma->page : NVKM_VMA_PAGE_NONE;
	vma->used = true;
	nvkm_vmm_node_insert(vmm, vma);
	*pvma = vma;
	return 0;
}

int
nvkm_vmm_get(struct nvkm_vmm *vmm, u8 page, u64 size, struct nvkm_vma **pvma)
{
	int ret;
	mutex_lock(&vmm->mutex);
	ret = nvkm_vmm_get_locked(vmm, false, true, false, page, 0, size, pvma);
	mutex_unlock(&vmm->mutex);
	return ret;
}

void
nvkm_vmm_part(struct nvkm_vmm *vmm, struct nvkm_memory *inst)
{
	if (vmm->func->part && inst) {
		mutex_lock(&vmm->mutex);
		vmm->func->part(vmm, inst);
		mutex_unlock(&vmm->mutex);
	}
}

int
nvkm_vmm_join(struct nvkm_vmm *vmm, struct nvkm_memory *inst)
{
	int ret = 0;
	if (vmm->func->join) {
		mutex_lock(&vmm->mutex);
		ret = vmm->func->join(vmm, inst);
		mutex_unlock(&vmm->mutex);
	}
	return ret;
}

1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
static bool
nvkm_vmm_boot_ptes(struct nvkm_vmm_iter *it, u32 ptei, u32 ptes)
{
	const struct nvkm_vmm_desc *desc = it->desc;
	const int type = desc->type == SPT;
	nvkm_memory_boot(it->pt[0]->pt[type]->memory, it->vmm);
	return false;
}

int
nvkm_vmm_boot(struct nvkm_vmm *vmm)
{
	const struct nvkm_vmm_page *page = vmm->func->page;
	const u64 limit = vmm->limit - vmm->start;
	int ret;

	while (page[1].shift)
		page++;

	ret = nvkm_vmm_ptes_get(vmm, page, vmm->start, limit);
	if (ret)
		return ret;

	nvkm_vmm_iter(vmm, page, vmm->start, limit, "bootstrap", false,
		      nvkm_vmm_boot_ptes, NULL, NULL, NULL);
	vmm->bootstrapped = true;
	return 0;
}
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513

static void
nvkm_vmm_del(struct kref *kref)
{
	struct nvkm_vmm *vmm = container_of(kref, typeof(*vmm), kref);
	nvkm_vmm_dtor(vmm);
	kfree(vmm);
}

void
nvkm_vmm_unref(struct nvkm_vmm **pvmm)
{
	struct nvkm_vmm *vmm = *pvmm;
	if (vmm) {
		kref_put(&vmm->kref, nvkm_vmm_del);
		*pvmm = NULL;
	}
}

struct nvkm_vmm *
nvkm_vmm_ref(struct nvkm_vmm *vmm)
{
	if (vmm)
		kref_get(&vmm->kref);
	return vmm;
}

int
nvkm_vmm_new(struct nvkm_device *device, u64 addr, u64 size, void *argv,
	     u32 argc, struct lock_class_key *key, const char *name,
	     struct nvkm_vmm **pvmm)
{
	struct nvkm_mmu *mmu = device->mmu;
	struct nvkm_vmm *vmm = NULL;
	int ret;
	ret = mmu->func->vmm.ctor(mmu, addr, size, argv, argc, key, name, &vmm);
	if (ret)
		nvkm_vmm_unref(&vmm);
	*pvmm = vmm;
	return ret;
}