f_fs.c 87.7 KB
Newer Older
1
/*
2
 * f_fs.c -- user mode file system API for USB composite function controllers
3 4
 *
 * Copyright (C) 2010 Samsung Electronics
5
 * Author: Michal Nazarewicz <mina86@mina86.com>
6
 *
7
 * Based on inode.c (GadgetFS) which was:
8 9 10 11 12 13 14 15 16 17 18 19 20 21
 * Copyright (C) 2003-2004 David Brownell
 * Copyright (C) 2003 Agilent Technologies
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */


/* #define DEBUG */
/* #define VERBOSE_DEBUG */

#include <linux/blkdev.h>
22
#include <linux/pagemap.h>
23
#include <linux/export.h>
24
#include <linux/hid.h>
25
#include <linux/module.h>
26
#include <linux/sched/signal.h>
27
#include <linux/uio.h>
28 29 30 31 32
#include <asm/unaligned.h>

#include <linux/usb/composite.h>
#include <linux/usb/functionfs.h>

33 34
#include <linux/aio.h>
#include <linux/mmu_context.h>
35
#include <linux/poll.h>
36
#include <linux/eventfd.h>
37

38
#include "u_fs.h"
39
#include "u_f.h"
40
#include "u_os_desc.h"
41
#include "configfs.h"
42 43 44 45 46 47 48 49 50 51 52 53 54

#define FUNCTIONFS_MAGIC	0xa647361 /* Chosen by a honest dice roll ;) */

/* Reference counter handling */
static void ffs_data_get(struct ffs_data *ffs);
static void ffs_data_put(struct ffs_data *ffs);
/* Creates new ffs_data object. */
static struct ffs_data *__must_check ffs_data_new(void) __attribute__((malloc));

/* Opened counter handling. */
static void ffs_data_opened(struct ffs_data *ffs);
static void ffs_data_closed(struct ffs_data *ffs);

55
/* Called with ffs->mutex held; take over ownership of data. */
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
static int __must_check
__ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
static int __must_check
__ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);


/* The function structure ***************************************************/

struct ffs_ep;

struct ffs_function {
	struct usb_configuration	*conf;
	struct usb_gadget		*gadget;
	struct ffs_data			*ffs;

	struct ffs_ep			*eps;
	u8				eps_revmap[16];
	short				*interfaces_nums;

	struct usb_function		function;
};


static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
{
	return container_of(f, struct ffs_function, function);
}


85 86 87 88 89 90 91 92
static inline enum ffs_setup_state
ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
{
	return (enum ffs_setup_state)
		cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
}


93 94 95 96 97 98 99 100 101
static void ffs_func_eps_disable(struct ffs_function *func);
static int __must_check ffs_func_eps_enable(struct ffs_function *func);

static int ffs_func_bind(struct usb_configuration *,
			 struct usb_function *);
static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
static void ffs_func_disable(struct usb_function *);
static int ffs_func_setup(struct usb_function *,
			  const struct usb_ctrlrequest *);
102
static bool ffs_func_req_match(struct usb_function *,
103 104
			       const struct usb_ctrlrequest *,
			       bool config0);
105 106 107 108 109 110 111 112 113 114 115 116 117 118
static void ffs_func_suspend(struct usb_function *);
static void ffs_func_resume(struct usb_function *);


static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);


/* The endpoints structures *************************************************/

struct ffs_ep {
	struct usb_ep			*ep;	/* P: ffs->eps_lock */
	struct usb_request		*req;	/* P: epfile->mutex */

119 120
	/* [0]: full speed, [1]: high speed, [2]: super speed */
	struct usb_endpoint_descriptor	*descs[3];
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136

	u8				num;

	int				status;	/* P: epfile->mutex */
};

struct ffs_epfile {
	/* Protects ep->ep and ep->req. */
	struct mutex			mutex;
	wait_queue_head_t		wait;

	struct ffs_data			*ffs;
	struct ffs_ep			*ep;	/* P: ffs->eps_lock */

	struct dentry			*dentry;

137 138 139
	/*
	 * Buffer for holding data from partial reads which may happen since
	 * we’re rounding user read requests to a multiple of a max packet size.
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
	 *
	 * The pointer is initialised with NULL value and may be set by
	 * __ffs_epfile_read_data function to point to a temporary buffer.
	 *
	 * In normal operation, calls to __ffs_epfile_read_buffered will consume
	 * data from said buffer and eventually free it.  Importantly, while the
	 * function is using the buffer, it sets the pointer to NULL.  This is
	 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
	 * can never run concurrently (they are synchronised by epfile->mutex)
	 * so the latter will not assign a new value to the pointer.
	 *
	 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
	 * valid) and sets the pointer to READ_BUFFER_DROP value.  This special
	 * value is crux of the synchronisation between ffs_func_eps_disable and
	 * __ffs_epfile_read_data.
	 *
	 * Once __ffs_epfile_read_data is about to finish it will try to set the
	 * pointer back to its old value (as described above), but seeing as the
	 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
	 * the buffer.
	 *
	 * == State transitions ==
	 *
	 * • ptr == NULL:  (initial state)
	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
	 *   ◦ __ffs_epfile_read_buffered:    nop
	 *   ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
	 * • ptr == DROP:
	 *   ◦ __ffs_epfile_read_buffer_free: nop
	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL
	 *   ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
	 * • ptr == buf:
	 *   ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL and reading
	 *   ◦ __ffs_epfile_read_data:        n/a, __ffs_epfile_read_buffered
	 *                                    is always called first
	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
	 * • ptr == NULL and reading:
	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
	 *   ◦ reading finishes and …
	 *     … all data read:               free buf, go to ptr == NULL
	 *     … otherwise:                   go to ptr == buf and reading
	 * • ptr == DROP and reading:
	 *   ◦ __ffs_epfile_read_buffer_free: nop
	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
	 *   ◦ reading finishes:              free buf, go to ptr == DROP
191
	 */
192 193
	struct ffs_buffer		*read_buffer;
#define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
194

195 196 197 198 199 200 201 202
	char				name[5];

	unsigned char			in;	/* P: ffs->eps_lock */
	unsigned char			isoc;	/* P: ffs->eps_lock */

	unsigned char			_pad;
};

203 204 205 206 207 208
struct ffs_buffer {
	size_t length;
	char *data;
	char storage[];
};

209 210 211 212 213 214 215
/*  ffs_io_data structure ***************************************************/

struct ffs_io_data {
	bool aio;
	bool read;

	struct kiocb *kiocb;
216 217 218
	struct iov_iter data;
	const void *to_free;
	char *buf;
219 220 221 222 223 224

	struct mm_struct *mm;
	struct work_struct work;

	struct usb_ep *ep;
	struct usb_request *req;
225 226

	struct ffs_data *ffs;
227 228
};

229 230 231 232 233 234
struct ffs_desc_helper {
	struct ffs_data *ffs;
	unsigned interfaces_count;
	unsigned eps_count;
};

235 236 237
static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);

A
Al Viro 已提交
238
static struct dentry *
239
ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
A
Al Viro 已提交
240
		   const struct file_operations *fops);
241

242 243 244
/* Devices management *******************************************************/

DEFINE_MUTEX(ffs_lock);
245
EXPORT_SYMBOL_GPL(ffs_lock);
246

247 248
static struct ffs_dev *_ffs_find_dev(const char *name);
static struct ffs_dev *_ffs_alloc_dev(void);
249
static int _ffs_name_dev(struct ffs_dev *dev, const char *name);
250
static void _ffs_free_dev(struct ffs_dev *dev);
251 252 253 254
static void *ffs_acquire_dev(const char *dev_name);
static void ffs_release_dev(struct ffs_data *ffs_data);
static int ffs_ready(struct ffs_data *ffs);
static void ffs_closed(struct ffs_data *ffs);
255 256 257 258 259

/* Misc helper functions ****************************************************/

static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
	__attribute__((warn_unused_result, nonnull));
A
Al Viro 已提交
260
static char *ffs_prepare_buffer(const char __user *buf, size_t len)
261 262 263 264 265 266 267 268 269
	__attribute__((warn_unused_result, nonnull));


/* Control file aka ep0 *****************************************************/

static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
{
	struct ffs_data *ffs = req->context;

270
	complete(&ffs->ep0req_completion);
271 272 273 274 275 276 277 278 279 280 281 282 283 284
}

static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
{
	struct usb_request *req = ffs->ep0req;
	int ret;

	req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);

	spin_unlock_irq(&ffs->ev.waitq.lock);

	req->buf      = data;
	req->length   = len;

285 286 287 288 289 290 291 292
	/*
	 * UDC layer requires to provide a buffer even for ZLP, but should
	 * not use it at all. Let's provide some poisoned pointer to catch
	 * possible bug in the driver.
	 */
	if (req->buf == NULL)
		req->buf = (void *)0xDEADBABE;

293
	reinit_completion(&ffs->ep0req_completion);
294 295 296 297 298 299 300 301 302 303 304 305

	ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
	if (unlikely(ret < 0))
		return ret;

	ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
	if (unlikely(ret)) {
		usb_ep_dequeue(ffs->gadget->ep0, req);
		return -EINTR;
	}

	ffs->setup_state = FFS_NO_SETUP;
306
	return req->status ? req->status : req->actual;
307 308 309 310 311
}

static int __ffs_ep0_stall(struct ffs_data *ffs)
{
	if (ffs->ev.can_stall) {
312
		pr_vdebug("ep0 stall\n");
313 314 315 316
		usb_ep_set_halt(ffs->gadget->ep0);
		ffs->setup_state = FFS_NO_SETUP;
		return -EL2HLT;
	} else {
317
		pr_debug("bogus ep0 stall!\n");
318 319 320 321 322 323 324 325 326 327 328 329 330 331
		return -ESRCH;
	}
}

static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
			     size_t len, loff_t *ptr)
{
	struct ffs_data *ffs = file->private_data;
	ssize_t ret;
	char *data;

	ENTER();

	/* Fast check if setup was canceled */
332
	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
		return -EIDRM;

	/* Acquire mutex */
	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
	if (unlikely(ret < 0))
		return ret;

	/* Check state */
	switch (ffs->state) {
	case FFS_READ_DESCRIPTORS:
	case FFS_READ_STRINGS:
		/* Copy data */
		if (unlikely(len < 16)) {
			ret = -EINVAL;
			break;
		}

		data = ffs_prepare_buffer(buf, len);
351
		if (IS_ERR(data)) {
352 353 354 355 356 357
			ret = PTR_ERR(data);
			break;
		}

		/* Handle data */
		if (ffs->state == FFS_READ_DESCRIPTORS) {
358
			pr_info("read descriptors\n");
359 360 361 362 363 364 365
			ret = __ffs_data_got_descs(ffs, data, len);
			if (unlikely(ret < 0))
				break;

			ffs->state = FFS_READ_STRINGS;
			ret = len;
		} else {
366
			pr_info("read strings\n");
367 368 369 370 371 372 373 374 375 376 377 378 379
			ret = __ffs_data_got_strings(ffs, data, len);
			if (unlikely(ret < 0))
				break;

			ret = ffs_epfiles_create(ffs);
			if (unlikely(ret)) {
				ffs->state = FFS_CLOSING;
				break;
			}

			ffs->state = FFS_ACTIVE;
			mutex_unlock(&ffs->mutex);

380
			ret = ffs_ready(ffs);
381 382 383 384 385 386 387 388 389 390 391
			if (unlikely(ret < 0)) {
				ffs->state = FFS_CLOSING;
				return ret;
			}

			return len;
		}
		break;

	case FFS_ACTIVE:
		data = NULL;
392 393 394 395
		/*
		 * We're called from user space, we can use _irq
		 * rather then _irqsave
		 */
396
		spin_lock_irq(&ffs->ev.waitq.lock);
397
		switch (ffs_setup_state_clear_cancelled(ffs)) {
398
		case FFS_SETUP_CANCELLED:
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
			ret = -EIDRM;
			goto done_spin;

		case FFS_NO_SETUP:
			ret = -ESRCH;
			goto done_spin;

		case FFS_SETUP_PENDING:
			break;
		}

		/* FFS_SETUP_PENDING */
		if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
			spin_unlock_irq(&ffs->ev.waitq.lock);
			ret = __ffs_ep0_stall(ffs);
			break;
		}

		/* FFS_SETUP_PENDING and not stall */
		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));

		spin_unlock_irq(&ffs->ev.waitq.lock);

		data = ffs_prepare_buffer(buf, len);
423
		if (IS_ERR(data)) {
424 425 426 427 428 429
			ret = PTR_ERR(data);
			break;
		}

		spin_lock_irq(&ffs->ev.waitq.lock);

430 431
		/*
		 * We are guaranteed to be still in FFS_ACTIVE state
432
		 * but the state of setup could have changed from
433
		 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
434
		 * to check for that.  If that happened we copied data
435 436 437
		 * from user space in vain but it's unlikely.
		 *
		 * For sure we are not in FFS_NO_SETUP since this is
438 439
		 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
		 * transition can be performed and it's protected by
440 441
		 * mutex.
		 */
442 443
		if (ffs_setup_state_clear_cancelled(ffs) ==
		    FFS_SETUP_CANCELLED) {
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
			ret = -EIDRM;
done_spin:
			spin_unlock_irq(&ffs->ev.waitq.lock);
		} else {
			/* unlocks spinlock */
			ret = __ffs_ep0_queue_wait(ffs, data, len);
		}
		kfree(data);
		break;

	default:
		ret = -EBADFD;
		break;
	}

	mutex_unlock(&ffs->mutex);
	return ret;
}

463
/* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
464 465 466
static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
				     size_t n)
{
467
	/*
468 469 470
	 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
	 * size of ffs->ev.types array (which is four) so that's how much space
	 * we reserve.
471
	 */
472 473
	struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
	const size_t size = n * sizeof *events;
474 475
	unsigned i = 0;

476
	memset(events, 0, size);
477 478 479 480 481 482 483 484 485

	do {
		events[i].type = ffs->ev.types[i];
		if (events[i].type == FUNCTIONFS_SETUP) {
			events[i].u.setup = ffs->ev.setup;
			ffs->setup_state = FFS_SETUP_PENDING;
		}
	} while (++i < n);

486 487
	ffs->ev.count -= n;
	if (ffs->ev.count)
488 489 490 491 492 493
		memmove(ffs->ev.types, ffs->ev.types + n,
			ffs->ev.count * sizeof *ffs->ev.types);

	spin_unlock_irq(&ffs->ev.waitq.lock);
	mutex_unlock(&ffs->mutex);

494
	return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size;
495 496 497 498 499 500 501 502 503 504 505 506 507
}

static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
			    size_t len, loff_t *ptr)
{
	struct ffs_data *ffs = file->private_data;
	char *data = NULL;
	size_t n;
	int ret;

	ENTER();

	/* Fast check if setup was canceled */
508
	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
509 510 511 512 513 514 515 516 517 518 519 520 521
		return -EIDRM;

	/* Acquire mutex */
	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
	if (unlikely(ret < 0))
		return ret;

	/* Check state */
	if (ffs->state != FFS_ACTIVE) {
		ret = -EBADFD;
		goto done_mutex;
	}

522 523 524 525
	/*
	 * We're called from user space, we can use _irq rather then
	 * _irqsave
	 */
526 527
	spin_lock_irq(&ffs->ev.waitq.lock);

528
	switch (ffs_setup_state_clear_cancelled(ffs)) {
529
	case FFS_SETUP_CANCELLED:
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
		ret = -EIDRM;
		break;

	case FFS_NO_SETUP:
		n = len / sizeof(struct usb_functionfs_event);
		if (unlikely(!n)) {
			ret = -EINVAL;
			break;
		}

		if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
			ret = -EAGAIN;
			break;
		}

545 546
		if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
							ffs->ev.count)) {
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
			ret = -EINTR;
			break;
		}

		return __ffs_ep0_read_events(ffs, buf,
					     min(n, (size_t)ffs->ev.count));

	case FFS_SETUP_PENDING:
		if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
			spin_unlock_irq(&ffs->ev.waitq.lock);
			ret = __ffs_ep0_stall(ffs);
			goto done_mutex;
		}

		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));

		spin_unlock_irq(&ffs->ev.waitq.lock);

		if (likely(len)) {
			data = kmalloc(len, GFP_KERNEL);
			if (unlikely(!data)) {
				ret = -ENOMEM;
				goto done_mutex;
			}
		}

		spin_lock_irq(&ffs->ev.waitq.lock);

		/* See ffs_ep0_write() */
576 577
		if (ffs_setup_state_clear_cancelled(ffs) ==
		    FFS_SETUP_CANCELLED) {
578 579 580 581 582 583
			ret = -EIDRM;
			break;
		}

		/* unlocks spinlock */
		ret = __ffs_ep0_queue_wait(ffs, data, len);
584
		if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len)))
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
			ret = -EFAULT;
		goto done_mutex;

	default:
		ret = -EBADFD;
		break;
	}

	spin_unlock_irq(&ffs->ev.waitq.lock);
done_mutex:
	mutex_unlock(&ffs->mutex);
	kfree(data);
	return ret;
}

static int ffs_ep0_open(struct inode *inode, struct file *file)
{
	struct ffs_data *ffs = inode->i_private;

	ENTER();

	if (unlikely(ffs->state == FFS_CLOSING))
		return -EBUSY;

	file->private_data = ffs;
	ffs_data_opened(ffs);

	return 0;
}

static int ffs_ep0_release(struct inode *inode, struct file *file)
{
	struct ffs_data *ffs = file->private_data;

	ENTER();

	ffs_data_closed(ffs);

	return 0;
}

static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
{
	struct ffs_data *ffs = file->private_data;
	struct usb_gadget *gadget = ffs->gadget;
	long ret;

	ENTER();

	if (code == FUNCTIONFS_INTERFACE_REVMAP) {
		struct ffs_function *func = ffs->func;
		ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
637
	} else if (gadget && gadget->ops->ioctl) {
638 639 640 641 642 643 644 645
		ret = gadget->ops->ioctl(gadget, code, value);
	} else {
		ret = -ENOTTY;
	}

	return ret;
}

646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
static unsigned int ffs_ep0_poll(struct file *file, poll_table *wait)
{
	struct ffs_data *ffs = file->private_data;
	unsigned int mask = POLLWRNORM;
	int ret;

	poll_wait(file, &ffs->ev.waitq, wait);

	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
	if (unlikely(ret < 0))
		return mask;

	switch (ffs->state) {
	case FFS_READ_DESCRIPTORS:
	case FFS_READ_STRINGS:
		mask |= POLLOUT;
		break;

	case FFS_ACTIVE:
		switch (ffs->setup_state) {
		case FFS_NO_SETUP:
			if (ffs->ev.count)
				mask |= POLLIN;
			break;

		case FFS_SETUP_PENDING:
		case FFS_SETUP_CANCELLED:
			mask |= (POLLIN | POLLOUT);
			break;
		}
	case FFS_CLOSING:
		break;
678 679
	case FFS_DEACTIVATED:
		break;
680 681 682 683 684 685 686
	}

	mutex_unlock(&ffs->mutex);

	return mask;
}

687 688 689 690 691 692 693 694
static const struct file_operations ffs_ep0_operations = {
	.llseek =	no_llseek,

	.open =		ffs_ep0_open,
	.write =	ffs_ep0_write,
	.read =		ffs_ep0_read,
	.release =	ffs_ep0_release,
	.unlocked_ioctl =	ffs_ep0_ioctl,
695
	.poll =		ffs_ep0_poll,
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
};


/* "Normal" endpoints operations ********************************************/

static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
{
	ENTER();
	if (likely(req->context)) {
		struct ffs_ep *ep = _ep->driver_data;
		ep->status = req->status ? req->status : req->actual;
		complete(req->context);
	}
}

711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
{
	ssize_t ret = copy_to_iter(data, data_len, iter);
	if (likely(ret == data_len))
		return ret;

	if (unlikely(iov_iter_count(iter)))
		return -EFAULT;

	/*
	 * Dear user space developer!
	 *
	 * TL;DR: To stop getting below error message in your kernel log, change
	 * user space code using functionfs to align read buffers to a max
	 * packet size.
	 *
	 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
	 * packet size.  When unaligned buffer is passed to functionfs, it
	 * internally uses a larger, aligned buffer so that such UDCs are happy.
	 *
	 * Unfortunately, this means that host may send more data than was
	 * requested in read(2) system call.  f_fs doesn’t know what to do with
	 * that excess data so it simply drops it.
	 *
	 * Was the buffer aligned in the first place, no such problem would
	 * happen.
	 *
738 739 740 741 742
	 * Data may be dropped only in AIO reads.  Synchronous reads are handled
	 * by splitting a request into multiple parts.  This splitting may still
	 * be a problem though so it’s likely best to align the buffer
	 * regardless of it being AIO or not..
	 *
743 744 745 746 747 748 749 750 751 752 753
	 * This only affects OUT endpoints, i.e. reading data with a read(2),
	 * aio_read(2) etc. system calls.  Writing data to an IN endpoint is not
	 * affected.
	 */
	pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
	       "Align read buffer size to max packet size to avoid the problem.\n",
	       data_len, ret);

	return ret;
}

754 755 756 757 758 759
static void ffs_user_copy_worker(struct work_struct *work)
{
	struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
						   work);
	int ret = io_data->req->status ? io_data->req->status :
					 io_data->req->actual;
760
	bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
761 762 763

	if (io_data->read && ret > 0) {
		use_mm(io_data->mm);
764
		ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
765 766 767
		unuse_mm(io_data->mm);
	}

768
	io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
769

770
	if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
771 772
		eventfd_signal(io_data->ffs->ffs_eventfd, 1);

773 774 775
	usb_ep_free_request(io_data->ep, io_data->req);

	if (io_data->read)
776
		kfree(io_data->to_free);
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
	kfree(io_data->buf);
	kfree(io_data);
}

static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
					 struct usb_request *req)
{
	struct ffs_io_data *io_data = req->context;

	ENTER();

	INIT_WORK(&io_data->work, ffs_user_copy_worker);
	schedule_work(&io_data->work);
}

792 793 794 795 796 797 798 799 800 801 802
static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
{
	/*
	 * See comment in struct ffs_epfile for full read_buffer pointer
	 * synchronisation story.
	 */
	struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
	if (buf && buf != READ_BUFFER_DROP)
		kfree(buf);
}

803 804 805 806
/* Assumes epfile->mutex is held. */
static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
					  struct iov_iter *iter)
{
807 808 809 810 811 812
	/*
	 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
	 * the buffer while we are using it.  See comment in struct ffs_epfile
	 * for full read_buffer pointer synchronisation story.
	 */
	struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
813
	ssize_t ret;
814
	if (!buf || buf == READ_BUFFER_DROP)
815 816 817 818 819
		return 0;

	ret = copy_to_iter(buf->data, buf->length, iter);
	if (buf->length == ret) {
		kfree(buf);
820 821 822 823
		return ret;
	}

	if (unlikely(iov_iter_count(iter))) {
824 825 826 827 828
		ret = -EFAULT;
	} else {
		buf->length -= ret;
		buf->data += ret;
	}
829 830 831 832

	if (cmpxchg(&epfile->read_buffer, NULL, buf))
		kfree(buf);

833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
	return ret;
}

/* Assumes epfile->mutex is held. */
static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
				      void *data, int data_len,
				      struct iov_iter *iter)
{
	struct ffs_buffer *buf;

	ssize_t ret = copy_to_iter(data, data_len, iter);
	if (likely(data_len == ret))
		return ret;

	if (unlikely(iov_iter_count(iter)))
		return -EFAULT;

	/* See ffs_copy_to_iter for more context. */
	pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
		data_len, ret);

	data_len -= ret;
	buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL);
856 857
	if (!buf)
		return -ENOMEM;
858 859 860
	buf->length = data_len;
	buf->data = buf->storage;
	memcpy(buf->storage, data + ret, data_len);
861 862 863 864 865 866 867 868 869

	/*
	 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
	 * ffs_func_eps_disable has been called in the meanwhile).  See comment
	 * in struct ffs_epfile for full read_buffer pointer synchronisation
	 * story.
	 */
	if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf)))
		kfree(buf);
870 871 872 873

	return ret;
}

874
static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
875 876
{
	struct ffs_epfile *epfile = file->private_data;
877
	struct usb_request *req;
878 879
	struct ffs_ep *ep;
	char *data = NULL;
880
	ssize_t ret, data_len = -EINVAL;
881 882
	int halt;

883
	/* Are we still active? */
884 885
	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
		return -ENODEV;
886

887 888 889
	/* Wait for endpoint to be enabled */
	ep = epfile->ep;
	if (!ep) {
890 891
		if (file->f_flags & O_NONBLOCK)
			return -EAGAIN;
892

893
		ret = wait_event_interruptible(epfile->wait, (ep = epfile->ep));
894 895
		if (ret)
			return -EINTR;
896
	}
897

898
	/* Do we halt? */
899
	halt = (!io_data->read == !epfile->in);
900 901
	if (halt && epfile->isoc)
		return -EINVAL;
902

903 904 905 906 907
	/* We will be using request and read_buffer */
	ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
	if (unlikely(ret))
		goto error;

908 909
	/* Allocate & copy */
	if (!halt) {
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
		struct usb_gadget *gadget;

		/*
		 * Do we have buffered data from previous partial read?  Check
		 * that for synchronous case only because we do not have
		 * facility to ‘wake up’ a pending asynchronous read and push
		 * buffered data to it which we would need to make things behave
		 * consistently.
		 */
		if (!io_data->aio && io_data->read) {
			ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
			if (ret)
				goto error_mutex;
		}

925 926
		/*
		 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
927 928
		 * before the waiting completes, so do not assign to 'gadget'
		 * earlier
929
		 */
930
		gadget = epfile->ffs->gadget;
931

932 933 934
		spin_lock_irq(&epfile->ffs->eps_lock);
		/* In the meantime, endpoint got disabled or changed. */
		if (epfile->ep != ep) {
935 936
			ret = -ESHUTDOWN;
			goto error_lock;
937
		}
938
		data_len = iov_iter_count(&io_data->data);
939 940 941 942
		/*
		 * Controller may require buffer size to be aligned to
		 * maxpacketsize of an out endpoint.
		 */
943 944
		if (io_data->read)
			data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
945
		spin_unlock_irq(&epfile->ffs->eps_lock);
946 947

		data = kmalloc(data_len, GFP_KERNEL);
948 949 950 951 952
		if (unlikely(!data)) {
			ret = -ENOMEM;
			goto error_mutex;
		}
		if (!io_data->read &&
953
		    !copy_from_iter_full(data, data_len, &io_data->data)) {
954 955
			ret = -EFAULT;
			goto error_mutex;
956 957
		}
	}
958

959
	spin_lock_irq(&epfile->ffs->eps_lock);
960

961 962 963 964 965
	if (epfile->ep != ep) {
		/* In the meantime, endpoint got disabled or changed. */
		ret = -ESHUTDOWN;
	} else if (halt) {
		/* Halt */
966 967 968
		if (likely(epfile->ep == ep) && !WARN_ON(!ep->ep))
			usb_ep_set_halt(ep->ep);
		ret = -EBADMSG;
969
	} else if (unlikely(data_len == -EINVAL)) {
970 971 972 973 974 975 976 977 978 979 980
		/*
		 * Sanity Check: even though data_len can't be used
		 * uninitialized at the time I write this comment, some
		 * compilers complain about this situation.
		 * In order to keep the code clean from warnings, data_len is
		 * being initialized to -EINVAL during its declaration, which
		 * means we can't rely on compiler anymore to warn no future
		 * changes won't result in data_len being used uninitialized.
		 * For such reason, we're adding this redundant sanity check
		 * here.
		 */
981 982 983 984
		WARN(1, "%s: data_len == -EINVAL\n", __func__);
		ret = -EINVAL;
	} else if (!io_data->aio) {
		DECLARE_COMPLETION_ONSTACK(done);
985
		bool interrupted = false;
986

987 988 989
		req = ep->req;
		req->buf      = data;
		req->length   = data_len;
990

991 992
		req->context  = &done;
		req->complete = ffs_epfile_io_complete;
993

994 995 996
		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
		if (unlikely(ret < 0))
			goto error_lock;
997

998
		spin_unlock_irq(&epfile->ffs->eps_lock);
999

1000
		if (unlikely(wait_for_completion_interruptible(&done))) {
1001 1002 1003 1004 1005 1006
			/*
			 * To avoid race condition with ffs_epfile_io_complete,
			 * dequeue the request first then check
			 * status. usb_ep_dequeue API should guarantee no race
			 * condition with req->complete callback.
			 */
1007
			usb_ep_dequeue(ep->ep, req);
1008
			interrupted = ep->status < 0;
1009
		}
1010

1011 1012 1013
		if (interrupted)
			ret = -EINTR;
		else if (io_data->read && ep->status > 0)
1014 1015
			ret = __ffs_epfile_read_data(epfile, data, ep->status,
						     &io_data->data);
1016 1017
		else
			ret = ep->status;
1018 1019 1020 1021 1022 1023
		goto error_mutex;
	} else if (!(req = usb_ep_alloc_request(ep->ep, GFP_KERNEL))) {
		ret = -ENOMEM;
	} else {
		req->buf      = data;
		req->length   = data_len;
1024

1025 1026 1027 1028
		io_data->buf = data;
		io_data->ep = ep->ep;
		io_data->req = req;
		io_data->ffs = epfile->ffs;
1029

1030 1031
		req->context  = io_data;
		req->complete = ffs_epfile_async_io_complete;
1032

1033 1034 1035 1036
		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
		if (unlikely(ret)) {
			usb_ep_free_request(ep->ep, req);
			goto error_lock;
1037 1038
		}

1039 1040 1041 1042 1043 1044 1045
		ret = -EIOCBQUEUED;
		/*
		 * Do not kfree the buffer in this function.  It will be freed
		 * by ffs_user_copy_worker.
		 */
		data = NULL;
	}
1046 1047 1048

error_lock:
	spin_unlock_irq(&epfile->ffs->eps_lock);
1049
error_mutex:
1050
	mutex_unlock(&epfile->mutex);
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
error:
	kfree(data);
	return ret;
}

static int
ffs_epfile_open(struct inode *inode, struct file *file)
{
	struct ffs_epfile *epfile = inode->i_private;

	ENTER();

	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
		return -ENODEV;

	file->private_data = epfile;
	ffs_data_opened(epfile->ffs);

	return 0;
}

1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
static int ffs_aio_cancel(struct kiocb *kiocb)
{
	struct ffs_io_data *io_data = kiocb->private;
	struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
	int value;

	ENTER();

	spin_lock_irq(&epfile->ffs->eps_lock);

	if (likely(io_data && io_data->ep && io_data->req))
		value = usb_ep_dequeue(io_data->ep, io_data->req);
	else
		value = -EINVAL;

	spin_unlock_irq(&epfile->ffs->eps_lock);

	return value;
}

1092
static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1093
{
1094
	struct ffs_io_data io_data, *p = &io_data;
A
Al Viro 已提交
1095
	ssize_t res;
1096 1097 1098

	ENTER();

1099 1100 1101 1102 1103 1104 1105 1106
	if (!is_sync_kiocb(kiocb)) {
		p = kmalloc(sizeof(io_data), GFP_KERNEL);
		if (unlikely(!p))
			return -ENOMEM;
		p->aio = true;
	} else {
		p->aio = false;
	}
1107

1108 1109 1110 1111
	p->read = false;
	p->kiocb = kiocb;
	p->data = *from;
	p->mm = current->mm;
1112

1113
	kiocb->private = p;
1114

1115 1116
	if (p->aio)
		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1117

1118 1119 1120 1121 1122 1123 1124
	res = ffs_epfile_io(kiocb->ki_filp, p);
	if (res == -EIOCBQUEUED)
		return res;
	if (p->aio)
		kfree(p);
	else
		*from = p->data;
A
Al Viro 已提交
1125
	return res;
1126 1127
}

1128
static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1129
{
1130
	struct ffs_io_data io_data, *p = &io_data;
A
Al Viro 已提交
1131
	ssize_t res;
1132 1133 1134

	ENTER();

1135 1136 1137 1138 1139 1140 1141
	if (!is_sync_kiocb(kiocb)) {
		p = kmalloc(sizeof(io_data), GFP_KERNEL);
		if (unlikely(!p))
			return -ENOMEM;
		p->aio = true;
	} else {
		p->aio = false;
1142 1143
	}

1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
	p->read = true;
	p->kiocb = kiocb;
	if (p->aio) {
		p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
		if (!p->to_free) {
			kfree(p);
			return -ENOMEM;
		}
	} else {
		p->data = *to;
		p->to_free = NULL;
	}
	p->mm = current->mm;
1157

1158
	kiocb->private = p;
1159

1160 1161
	if (p->aio)
		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1162

1163 1164 1165 1166 1167 1168 1169 1170 1171
	res = ffs_epfile_io(kiocb->ki_filp, p);
	if (res == -EIOCBQUEUED)
		return res;

	if (p->aio) {
		kfree(p->to_free);
		kfree(p);
	} else {
		*to = p->data;
A
Al Viro 已提交
1172 1173
	}
	return res;
1174 1175
}

1176 1177 1178 1179 1180 1181 1182
static int
ffs_epfile_release(struct inode *inode, struct file *file)
{
	struct ffs_epfile *epfile = inode->i_private;

	ENTER();

1183
	__ffs_epfile_read_buffer_free(epfile);
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
	ffs_data_closed(epfile->ffs);

	return 0;
}

static long ffs_epfile_ioctl(struct file *file, unsigned code,
			     unsigned long value)
{
	struct ffs_epfile *epfile = file->private_data;
	int ret;

	ENTER();

	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
		return -ENODEV;

	spin_lock_irq(&epfile->ffs->eps_lock);
	if (likely(epfile->ep)) {
		switch (code) {
		case FUNCTIONFS_FIFO_STATUS:
			ret = usb_ep_fifo_status(epfile->ep->ep);
			break;
		case FUNCTIONFS_FIFO_FLUSH:
			usb_ep_fifo_flush(epfile->ep->ep);
			ret = 0;
			break;
		case FUNCTIONFS_CLEAR_HALT:
			ret = usb_ep_clear_halt(epfile->ep->ep);
			break;
		case FUNCTIONFS_ENDPOINT_REVMAP:
			ret = epfile->ep->num;
			break;
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
		case FUNCTIONFS_ENDPOINT_DESC:
		{
			int desc_idx;
			struct usb_endpoint_descriptor *desc;

			switch (epfile->ffs->gadget->speed) {
			case USB_SPEED_SUPER:
				desc_idx = 2;
				break;
			case USB_SPEED_HIGH:
				desc_idx = 1;
				break;
			default:
				desc_idx = 0;
			}
			desc = epfile->ep->descs[desc_idx];

			spin_unlock_irq(&epfile->ffs->eps_lock);
1234
			ret = copy_to_user((void *)value, desc, desc->bLength);
1235 1236 1237 1238
			if (ret)
				ret = -EFAULT;
			return ret;
		}
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
		default:
			ret = -ENOTTY;
		}
	} else {
		ret = -ENODEV;
	}
	spin_unlock_irq(&epfile->ffs->eps_lock);

	return ret;
}

static const struct file_operations ffs_epfile_operations = {
	.llseek =	no_llseek,

	.open =		ffs_epfile_open,
1254 1255
	.write_iter =	ffs_epfile_write_iter,
	.read_iter =	ffs_epfile_read_iter,
1256 1257 1258 1259 1260 1261 1262 1263
	.release =	ffs_epfile_release,
	.unlocked_ioctl =	ffs_epfile_ioctl,
};


/* File system and super block operations ***********************************/

/*
1264
 * Mounting the file system creates a controller file, used first for
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
 * function configuration then later for event monitoring.
 */

static struct inode *__must_check
ffs_sb_make_inode(struct super_block *sb, void *data,
		  const struct file_operations *fops,
		  const struct inode_operations *iops,
		  struct ffs_file_perms *perms)
{
	struct inode *inode;

	ENTER();

	inode = new_inode(sb);

	if (likely(inode)) {
1281
		struct timespec ts = current_time(inode);
1282

1283
		inode->i_ino	 = get_next_ino();
1284 1285 1286
		inode->i_mode    = perms->mode;
		inode->i_uid     = perms->uid;
		inode->i_gid     = perms->gid;
1287 1288 1289
		inode->i_atime   = ts;
		inode->i_mtime   = ts;
		inode->i_ctime   = ts;
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
		inode->i_private = data;
		if (fops)
			inode->i_fop = fops;
		if (iops)
			inode->i_op  = iops;
	}

	return inode;
}

/* Create "regular" file */
A
Al Viro 已提交
1301
static struct dentry *ffs_sb_create_file(struct super_block *sb,
1302
					const char *name, void *data,
A
Al Viro 已提交
1303
					const struct file_operations *fops)
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
{
	struct ffs_data	*ffs = sb->s_fs_info;
	struct dentry	*dentry;
	struct inode	*inode;

	ENTER();

	dentry = d_alloc_name(sb->s_root, name);
	if (unlikely(!dentry))
		return NULL;

	inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
	if (unlikely(!inode)) {
		dput(dentry);
		return NULL;
	}

	d_add(dentry, inode);
A
Al Viro 已提交
1322
	return dentry;
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
}

/* Super block */
static const struct super_operations ffs_sb_operations = {
	.statfs =	simple_statfs,
	.drop_inode =	generic_delete_inode,
};

struct ffs_sb_fill_data {
	struct ffs_file_perms perms;
	umode_t root_mode;
	const char *dev_name;
1335
	bool no_disconnect;
A
Al Viro 已提交
1336
	struct ffs_data *ffs_data;
1337 1338 1339 1340 1341 1342
};

static int ffs_sb_fill(struct super_block *sb, void *_data, int silent)
{
	struct ffs_sb_fill_data *data = _data;
	struct inode	*inode;
A
Al Viro 已提交
1343
	struct ffs_data	*ffs = data->ffs_data;
1344 1345 1346 1347

	ENTER();

	ffs->sb              = sb;
A
Al Viro 已提交
1348
	data->ffs_data       = NULL;
1349
	sb->s_fs_info        = ffs;
1350 1351
	sb->s_blocksize      = PAGE_SIZE;
	sb->s_blocksize_bits = PAGE_SHIFT;
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
	sb->s_magic          = FUNCTIONFS_MAGIC;
	sb->s_op             = &ffs_sb_operations;
	sb->s_time_gran      = 1;

	/* Root inode */
	data->perms.mode = data->root_mode;
	inode = ffs_sb_make_inode(sb, NULL,
				  &simple_dir_operations,
				  &simple_dir_inode_operations,
				  &data->perms);
1362 1363
	sb->s_root = d_make_root(inode);
	if (unlikely(!sb->s_root))
A
Al Viro 已提交
1364
		return -ENOMEM;
1365 1366 1367

	/* EP0 file */
	if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
A
Al Viro 已提交
1368
					 &ffs_ep0_operations)))
A
Al Viro 已提交
1369
		return -ENOMEM;
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382

	return 0;
}

static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts)
{
	ENTER();

	if (!opts || !*opts)
		return 0;

	for (;;) {
		unsigned long value;
1383
		char *eq, *comma;
1384 1385 1386 1387 1388 1389 1390 1391 1392

		/* Option limit */
		comma = strchr(opts, ',');
		if (comma)
			*comma = 0;

		/* Value limit */
		eq = strchr(opts, '=');
		if (unlikely(!eq)) {
1393
			pr_err("'=' missing in %s\n", opts);
1394 1395 1396 1397 1398
			return -EINVAL;
		}
		*eq = 0;

		/* Parse value */
1399
		if (kstrtoul(eq + 1, 0, &value)) {
1400
			pr_err("%s: invalid value: %s\n", opts, eq + 1);
1401 1402 1403 1404 1405
			return -EINVAL;
		}

		/* Interpret option */
		switch (eq - opts) {
1406 1407 1408 1409 1410 1411
		case 13:
			if (!memcmp(opts, "no_disconnect", 13))
				data->no_disconnect = !!value;
			else
				goto invalid;
			break;
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
		case 5:
			if (!memcmp(opts, "rmode", 5))
				data->root_mode  = (value & 0555) | S_IFDIR;
			else if (!memcmp(opts, "fmode", 5))
				data->perms.mode = (value & 0666) | S_IFREG;
			else
				goto invalid;
			break;

		case 4:
			if (!memcmp(opts, "mode", 4)) {
				data->root_mode  = (value & 0555) | S_IFDIR;
				data->perms.mode = (value & 0666) | S_IFREG;
			} else {
				goto invalid;
			}
			break;

		case 3:
1431 1432 1433 1434 1435 1436
			if (!memcmp(opts, "uid", 3)) {
				data->perms.uid = make_kuid(current_user_ns(), value);
				if (!uid_valid(data->perms.uid)) {
					pr_err("%s: unmapped value: %lu\n", opts, value);
					return -EINVAL;
				}
1437
			} else if (!memcmp(opts, "gid", 3)) {
1438 1439 1440 1441 1442
				data->perms.gid = make_kgid(current_user_ns(), value);
				if (!gid_valid(data->perms.gid)) {
					pr_err("%s: unmapped value: %lu\n", opts, value);
					return -EINVAL;
				}
1443
			} else {
1444
				goto invalid;
1445
			}
1446 1447 1448 1449
			break;

		default:
invalid:
1450
			pr_err("%s: invalid option\n", opts);
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
			return -EINVAL;
		}

		/* Next iteration */
		if (!comma)
			break;
		opts = comma + 1;
	}

	return 0;
}

/* "mount -t functionfs dev_name /dev/function" ends up here */

A
Al Viro 已提交
1465 1466 1467
static struct dentry *
ffs_fs_mount(struct file_system_type *t, int flags,
	      const char *dev_name, void *opts)
1468 1469 1470 1471
{
	struct ffs_sb_fill_data data = {
		.perms = {
			.mode = S_IFREG | 0600,
1472 1473
			.uid = GLOBAL_ROOT_UID,
			.gid = GLOBAL_ROOT_GID,
1474 1475
		},
		.root_mode = S_IFDIR | 0500,
1476
		.no_disconnect = false,
1477
	};
1478
	struct dentry *rv;
1479
	int ret;
1480
	void *ffs_dev;
A
Al Viro 已提交
1481
	struct ffs_data	*ffs;
1482 1483 1484 1485 1486

	ENTER();

	ret = ffs_fs_parse_opts(&data, opts);
	if (unlikely(ret < 0))
A
Al Viro 已提交
1487
		return ERR_PTR(ret);
1488

A
Al Viro 已提交
1489 1490 1491 1492
	ffs = ffs_data_new();
	if (unlikely(!ffs))
		return ERR_PTR(-ENOMEM);
	ffs->file_perms = data.perms;
1493
	ffs->no_disconnect = data.no_disconnect;
A
Al Viro 已提交
1494 1495 1496 1497 1498 1499 1500

	ffs->dev_name = kstrdup(dev_name, GFP_KERNEL);
	if (unlikely(!ffs->dev_name)) {
		ffs_data_put(ffs);
		return ERR_PTR(-ENOMEM);
	}

1501
	ffs_dev = ffs_acquire_dev(dev_name);
A
Al Viro 已提交
1502 1503 1504 1505 1506 1507
	if (IS_ERR(ffs_dev)) {
		ffs_data_put(ffs);
		return ERR_CAST(ffs_dev);
	}
	ffs->private_data = ffs_dev;
	data.ffs_data = ffs;
1508 1509

	rv = mount_nodev(t, flags, &data, ffs_sb_fill);
A
Al Viro 已提交
1510
	if (IS_ERR(rv) && data.ffs_data) {
1511
		ffs_release_dev(data.ffs_data);
A
Al Viro 已提交
1512 1513
		ffs_data_put(data.ffs_data);
	}
1514
	return rv;
1515 1516 1517 1518 1519 1520 1521 1522
}

static void
ffs_fs_kill_sb(struct super_block *sb)
{
	ENTER();

	kill_litter_super(sb);
1523
	if (sb->s_fs_info) {
1524
		ffs_release_dev(sb->s_fs_info);
1525
		ffs_data_closed(sb->s_fs_info);
1526
		ffs_data_put(sb->s_fs_info);
1527
	}
1528 1529 1530 1531 1532
}

static struct file_system_type ffs_fs_type = {
	.owner		= THIS_MODULE,
	.name		= "functionfs",
A
Al Viro 已提交
1533
	.mount		= ffs_fs_mount,
1534 1535
	.kill_sb	= ffs_fs_kill_sb,
};
1536
MODULE_ALIAS_FS("functionfs");
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548


/* Driver's main init/cleanup functions *************************************/

static int functionfs_init(void)
{
	int ret;

	ENTER();

	ret = register_filesystem(&ffs_fs_type);
	if (likely(!ret))
1549
		pr_info("file system registered\n");
1550
	else
1551
		pr_err("failed registering file system (%d)\n", ret);
1552 1553 1554 1555 1556 1557 1558 1559

	return ret;
}

static void functionfs_cleanup(void)
{
	ENTER();

1560
	pr_info("unloading\n");
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
	unregister_filesystem(&ffs_fs_type);
}


/* ffs_data and ffs_function construction and destruction code **************/

static void ffs_data_clear(struct ffs_data *ffs);
static void ffs_data_reset(struct ffs_data *ffs);

static void ffs_data_get(struct ffs_data *ffs)
{
	ENTER();

	atomic_inc(&ffs->ref);
}

static void ffs_data_opened(struct ffs_data *ffs)
{
	ENTER();

	atomic_inc(&ffs->ref);
1582 1583 1584 1585 1586
	if (atomic_add_return(1, &ffs->opened) == 1 &&
			ffs->state == FFS_DEACTIVATED) {
		ffs->state = FFS_CLOSING;
		ffs_data_reset(ffs);
	}
1587 1588 1589 1590 1591 1592 1593
}

static void ffs_data_put(struct ffs_data *ffs)
{
	ENTER();

	if (unlikely(atomic_dec_and_test(&ffs->ref))) {
1594
		pr_info("%s(): freeing\n", __func__);
1595
		ffs_data_clear(ffs);
1596
		BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1597
		       waitqueue_active(&ffs->ep0req_completion.wait));
1598
		kfree(ffs->dev_name);
1599 1600 1601 1602 1603 1604 1605 1606 1607
		kfree(ffs);
	}
}

static void ffs_data_closed(struct ffs_data *ffs)
{
	ENTER();

	if (atomic_dec_and_test(&ffs->opened)) {
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
		if (ffs->no_disconnect) {
			ffs->state = FFS_DEACTIVATED;
			if (ffs->epfiles) {
				ffs_epfiles_destroy(ffs->epfiles,
						   ffs->eps_count);
				ffs->epfiles = NULL;
			}
			if (ffs->setup_state == FFS_SETUP_PENDING)
				__ffs_ep0_stall(ffs);
		} else {
			ffs->state = FFS_CLOSING;
			ffs_data_reset(ffs);
		}
	}
	if (atomic_read(&ffs->opened) < 0) {
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
		ffs->state = FFS_CLOSING;
		ffs_data_reset(ffs);
	}

	ffs_data_put(ffs);
}

static struct ffs_data *ffs_data_new(void)
{
	struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
	if (unlikely(!ffs))
1634
		return NULL;
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655

	ENTER();

	atomic_set(&ffs->ref, 1);
	atomic_set(&ffs->opened, 0);
	ffs->state = FFS_READ_DESCRIPTORS;
	mutex_init(&ffs->mutex);
	spin_lock_init(&ffs->eps_lock);
	init_waitqueue_head(&ffs->ev.waitq);
	init_completion(&ffs->ep0req_completion);

	/* XXX REVISIT need to update it in some places, or do we? */
	ffs->ev.can_stall = 1;

	return ffs;
}

static void ffs_data_clear(struct ffs_data *ffs)
{
	ENTER();

1656
	ffs_closed(ffs);
1657 1658 1659 1660 1661 1662

	BUG_ON(ffs->gadget);

	if (ffs->epfiles)
		ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);

1663 1664 1665
	if (ffs->ffs_eventfd)
		eventfd_ctx_put(ffs->ffs_eventfd);

1666
	kfree(ffs->raw_descs_data);
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
	kfree(ffs->raw_strings);
	kfree(ffs->stringtabs);
}

static void ffs_data_reset(struct ffs_data *ffs)
{
	ENTER();

	ffs_data_clear(ffs);

	ffs->epfiles = NULL;
1678
	ffs->raw_descs_data = NULL;
1679 1680 1681 1682 1683 1684 1685
	ffs->raw_descs = NULL;
	ffs->raw_strings = NULL;
	ffs->stringtabs = NULL;

	ffs->raw_descs_length = 0;
	ffs->fs_descs_count = 0;
	ffs->hs_descs_count = 0;
1686
	ffs->ss_descs_count = 0;
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701

	ffs->strings_count = 0;
	ffs->interfaces_count = 0;
	ffs->eps_count = 0;

	ffs->ev.count = 0;

	ffs->state = FFS_READ_DESCRIPTORS;
	ffs->setup_state = FFS_NO_SETUP;
	ffs->flags = 0;
}


static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
{
1702 1703
	struct usb_gadget_strings **lang;
	int first_id;
1704 1705 1706 1707 1708 1709 1710

	ENTER();

	if (WARN_ON(ffs->state != FFS_ACTIVE
		 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
		return -EBADFD;

1711 1712 1713
	first_id = usb_string_ids_n(cdev, ffs->strings_count);
	if (unlikely(first_id < 0))
		return first_id;
1714 1715 1716 1717 1718 1719 1720

	ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
	if (unlikely(!ffs->ep0req))
		return -ENOMEM;
	ffs->ep0req->complete = ffs_ep0_complete;
	ffs->ep0req->context = ffs;

1721
	lang = ffs->stringtabs;
1722 1723 1724 1725 1726 1727 1728
	if (lang) {
		for (; *lang; ++lang) {
			struct usb_string *str = (*lang)->strings;
			int id = first_id;
			for (; str->s; ++id, ++str)
				str->id = id;
		}
1729 1730 1731
	}

	ffs->gadget = cdev->gadget;
1732
	ffs_data_get(ffs);
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
	return 0;
}

static void functionfs_unbind(struct ffs_data *ffs)
{
	ENTER();

	if (!WARN_ON(!ffs->gadget)) {
		usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
		ffs->ep0req = NULL;
		ffs->gadget = NULL;
1744
		clear_bit(FFS_FL_BOUND, &ffs->flags);
1745
		ffs_data_put(ffs);
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
	}
}

static int ffs_epfiles_create(struct ffs_data *ffs)
{
	struct ffs_epfile *epfile, *epfiles;
	unsigned i, count;

	ENTER();

	count = ffs->eps_count;
1757
	epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1758 1759 1760 1761 1762 1763 1764 1765
	if (!epfiles)
		return -ENOMEM;

	epfile = epfiles;
	for (i = 1; i <= count; ++i, ++epfile) {
		epfile->ffs = ffs;
		mutex_init(&epfile->mutex);
		init_waitqueue_head(&epfile->wait);
1766
		if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1767
			sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1768
		else
1769 1770
			sprintf(epfile->name, "ep%u", i);
		epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
A
Al Viro 已提交
1771 1772 1773
						 epfile,
						 &ffs_epfile_operations);
		if (unlikely(!epfile->dentry)) {
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
			ffs_epfiles_destroy(epfiles, i - 1);
			return -ENOMEM;
		}
	}

	ffs->epfiles = epfiles;
	return 0;
}

static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
{
	struct ffs_epfile *epfile = epfiles;

	ENTER();

	for (; count; --count, ++epfile) {
		BUG_ON(mutex_is_locked(&epfile->mutex) ||
		       waitqueue_active(&epfile->wait));
		if (epfile->dentry) {
			d_delete(epfile->dentry);
			dput(epfile->dentry);
			epfile->dentry = NULL;
		}
	}

	kfree(epfiles);
}

static void ffs_func_eps_disable(struct ffs_function *func)
{
	struct ffs_ep *ep         = func->eps;
	struct ffs_epfile *epfile = func->ffs->epfiles;
	unsigned count            = func->ffs->eps_count;
	unsigned long flags;

1809
	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1810
	while (count--) {
1811 1812 1813 1814
		/* pending requests get nuked */
		if (likely(ep->ep))
			usb_ep_disable(ep->ep);
		++ep;
1815 1816

		if (epfile) {
1817 1818
			epfile->ep = NULL;
			__ffs_epfile_read_buffer_free(epfile);
1819 1820
			++epfile;
		}
1821
	}
1822
	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
}

static int ffs_func_eps_enable(struct ffs_function *func)
{
	struct ffs_data *ffs      = func->ffs;
	struct ffs_ep *ep         = func->eps;
	struct ffs_epfile *epfile = ffs->epfiles;
	unsigned count            = ffs->eps_count;
	unsigned long flags;
	int ret = 0;

	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1835
	while(count--) {
1836
		struct usb_endpoint_descriptor *ds;
1837 1838
		struct usb_ss_ep_comp_descriptor *comp_desc = NULL;
		int needs_comp_desc = false;
1839 1840
		int desc_idx;

1841
		if (ffs->gadget->speed == USB_SPEED_SUPER) {
1842
			desc_idx = 2;
1843 1844
			needs_comp_desc = true;
		} else if (ffs->gadget->speed == USB_SPEED_HIGH)
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
			desc_idx = 1;
		else
			desc_idx = 0;

		/* fall-back to lower speed if desc missing for current speed */
		do {
			ds = ep->descs[desc_idx];
		} while (!ds && --desc_idx >= 0);

		if (!ds) {
			ret = -EINVAL;
			break;
		}
1858 1859

		ep->ep->driver_data = ep;
1860
		ep->ep->desc = ds;
1861 1862 1863 1864 1865 1866 1867 1868

		comp_desc = (struct usb_ss_ep_comp_descriptor *)(ds +
				USB_DT_ENDPOINT_SIZE);
		ep->ep->maxburst = comp_desc->bMaxBurst + 1;

		if (needs_comp_desc)
			ep->ep->comp_desc = comp_desc;

1869
		ret = usb_ep_enable(ep->ep);
1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
		if (likely(!ret)) {
			epfile->ep = ep;
			epfile->in = usb_endpoint_dir_in(ds);
			epfile->isoc = usb_endpoint_xfer_isoc(ds);
		} else {
			break;
		}

		wake_up(&epfile->wait);

		++ep;
		++epfile;
1882
	}
1883 1884 1885 1886 1887 1888 1889 1890
	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);

	return ret;
}


/* Parsing and building descriptors and strings *****************************/

1891 1892
/*
 * This validates if data pointed by data is a valid USB descriptor as
1893
 * well as record how many interfaces, endpoints and strings are
1894 1895 1896
 * required by given configuration.  Returns address after the
 * descriptor or NULL if data is invalid.
 */
1897 1898 1899 1900 1901

enum ffs_entity_type {
	FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
};

1902 1903 1904 1905
enum ffs_os_desc_type {
	FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
};

1906 1907 1908 1909 1910
typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
				   u8 *valuep,
				   struct usb_descriptor_header *desc,
				   void *priv);

1911 1912 1913 1914
typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
				    struct usb_os_desc_header *h, void *data,
				    unsigned len, void *priv);

1915 1916 1917
static int __must_check ffs_do_single_desc(char *data, unsigned len,
					   ffs_entity_callback entity,
					   void *priv)
1918 1919 1920 1921 1922 1923 1924 1925 1926
{
	struct usb_descriptor_header *_ds = (void *)data;
	u8 length;
	int ret;

	ENTER();

	/* At least two bytes are required: length and type */
	if (len < 2) {
1927
		pr_vdebug("descriptor too short\n");
1928 1929 1930 1931 1932 1933
		return -EINVAL;
	}

	/* If we have at least as many bytes as the descriptor takes? */
	length = _ds->bLength;
	if (len < length) {
1934
		pr_vdebug("descriptor longer then available data\n");
1935 1936 1937 1938 1939 1940 1941
		return -EINVAL;
	}

#define __entity_check_INTERFACE(val)  1
#define __entity_check_STRING(val)     (val)
#define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
#define __entity(type, val) do {					\
1942
		pr_vdebug("entity " #type "(%02x)\n", (val));		\
1943
		if (unlikely(!__entity_check_ ##type(val))) {		\
1944
			pr_vdebug("invalid entity's value\n");		\
1945 1946 1947 1948
			return -EINVAL;					\
		}							\
		ret = entity(FFS_ ##type, &val, _ds, priv);		\
		if (unlikely(ret < 0)) {				\
1949
			pr_debug("entity " #type "(%02x); ret = %d\n",	\
1950
				 (val), ret);				\
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
			return ret;					\
		}							\
	} while (0)

	/* Parse descriptor depending on type. */
	switch (_ds->bDescriptorType) {
	case USB_DT_DEVICE:
	case USB_DT_CONFIG:
	case USB_DT_STRING:
	case USB_DT_DEVICE_QUALIFIER:
		/* function can't have any of those */
1962
		pr_vdebug("descriptor reserved for gadget: %d\n",
1963
		      _ds->bDescriptorType);
1964 1965 1966 1967
		return -EINVAL;

	case USB_DT_INTERFACE: {
		struct usb_interface_descriptor *ds = (void *)_ds;
1968
		pr_vdebug("interface descriptor\n");
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
		if (length != sizeof *ds)
			goto inv_length;

		__entity(INTERFACE, ds->bInterfaceNumber);
		if (ds->iInterface)
			__entity(STRING, ds->iInterface);
	}
		break;

	case USB_DT_ENDPOINT: {
		struct usb_endpoint_descriptor *ds = (void *)_ds;
1980
		pr_vdebug("endpoint descriptor\n");
1981 1982 1983 1984 1985 1986 1987
		if (length != USB_DT_ENDPOINT_SIZE &&
		    length != USB_DT_ENDPOINT_AUDIO_SIZE)
			goto inv_length;
		__entity(ENDPOINT, ds->bEndpointAddress);
	}
		break;

1988 1989 1990 1991 1992 1993
	case HID_DT_HID:
		pr_vdebug("hid descriptor\n");
		if (length != sizeof(struct hid_descriptor))
			goto inv_length;
		break;

1994 1995 1996 1997 1998 1999 2000
	case USB_DT_OTG:
		if (length != sizeof(struct usb_otg_descriptor))
			goto inv_length;
		break;

	case USB_DT_INTERFACE_ASSOCIATION: {
		struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2001
		pr_vdebug("interface association descriptor\n");
2002 2003 2004 2005 2006 2007 2008
		if (length != sizeof *ds)
			goto inv_length;
		if (ds->iFunction)
			__entity(STRING, ds->iFunction);
	}
		break;

2009 2010 2011 2012 2013 2014
	case USB_DT_SS_ENDPOINT_COMP:
		pr_vdebug("EP SS companion descriptor\n");
		if (length != sizeof(struct usb_ss_ep_comp_descriptor))
			goto inv_length;
		break;

2015 2016 2017 2018 2019 2020
	case USB_DT_OTHER_SPEED_CONFIG:
	case USB_DT_INTERFACE_POWER:
	case USB_DT_DEBUG:
	case USB_DT_SECURITY:
	case USB_DT_CS_RADIO_CONTROL:
		/* TODO */
2021
		pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2022 2023 2024 2025
		return -EINVAL;

	default:
		/* We should never be here */
2026
		pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2027 2028
		return -EINVAL;

2029
inv_length:
2030
		pr_vdebug("invalid length: %d (descriptor %d)\n",
2031
			  _ds->bLength, _ds->bDescriptorType);
2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
		return -EINVAL;
	}

#undef __entity
#undef __entity_check_DESCRIPTOR
#undef __entity_check_INTERFACE
#undef __entity_check_STRING
#undef __entity_check_ENDPOINT

	return length;
}

static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
				     ffs_entity_callback entity, void *priv)
{
	const unsigned _len = len;
	unsigned long num = 0;

	ENTER();

	for (;;) {
		int ret;

		if (num == count)
			data = NULL;

2058
		/* Record "descriptor" entity */
2059 2060
		ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
		if (unlikely(ret < 0)) {
2061
			pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2062
				 num, ret);
2063 2064 2065 2066 2067 2068
			return ret;
		}

		if (!data)
			return _len - len;

2069
		ret = ffs_do_single_desc(data, len, entity, priv);
2070
		if (unlikely(ret < 0)) {
2071
			pr_debug("%s returns %d\n", __func__, ret);
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
			return ret;
		}

		len -= ret;
		data += ret;
		++num;
	}
}

static int __ffs_data_do_entity(enum ffs_entity_type type,
				u8 *valuep, struct usb_descriptor_header *desc,
				void *priv)
{
2085 2086
	struct ffs_desc_helper *helper = priv;
	struct usb_endpoint_descriptor *d;
2087 2088 2089 2090 2091 2092 2093 2094

	ENTER();

	switch (type) {
	case FFS_DESCRIPTOR:
		break;

	case FFS_INTERFACE:
2095 2096
		/*
		 * Interfaces are indexed from zero so if we
2097
		 * encountered interface "n" then there are at least
2098 2099
		 * "n+1" interfaces.
		 */
2100 2101
		if (*valuep >= helper->interfaces_count)
			helper->interfaces_count = *valuep + 1;
2102 2103 2104
		break;

	case FFS_STRING:
2105
		/*
2106 2107
		 * Strings are indexed from 1 (0 is reserved
		 * for languages list)
2108
		 */
2109 2110
		if (*valuep > helper->ffs->strings_count)
			helper->ffs->strings_count = *valuep;
2111 2112 2113
		break;

	case FFS_ENDPOINT:
2114 2115
		d = (void *)desc;
		helper->eps_count++;
2116
		if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2117 2118 2119 2120 2121 2122 2123 2124
			return -EINVAL;
		/* Check if descriptors for any speed were already parsed */
		if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
			helper->ffs->eps_addrmap[helper->eps_count] =
				d->bEndpointAddress;
		else if (helper->ffs->eps_addrmap[helper->eps_count] !=
				d->bEndpointAddress)
			return -EINVAL;
2125 2126 2127 2128 2129 2130
		break;
	}

	return 0;
}

2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
				   struct usb_os_desc_header *desc)
{
	u16 bcd_version = le16_to_cpu(desc->bcdVersion);
	u16 w_index = le16_to_cpu(desc->wIndex);

	if (bcd_version != 1) {
		pr_vdebug("unsupported os descriptors version: %d",
			  bcd_version);
		return -EINVAL;
	}
	switch (w_index) {
	case 0x4:
		*next_type = FFS_OS_DESC_EXT_COMPAT;
		break;
	case 0x5:
		*next_type = FFS_OS_DESC_EXT_PROP;
		break;
	default:
		pr_vdebug("unsupported os descriptor type: %d", w_index);
		return -EINVAL;
	}

	return sizeof(*desc);
}

/*
 * Process all extended compatibility/extended property descriptors
 * of a feature descriptor
 */
static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
					      enum ffs_os_desc_type type,
					      u16 feature_count,
					      ffs_os_desc_callback entity,
					      void *priv,
					      struct usb_os_desc_header *h)
{
	int ret;
	const unsigned _len = len;

	ENTER();

	/* loop over all ext compat/ext prop descriptors */
	while (feature_count--) {
		ret = entity(type, h, data, len, priv);
		if (unlikely(ret < 0)) {
			pr_debug("bad OS descriptor, type: %d\n", type);
			return ret;
		}
		data += ret;
		len -= ret;
	}
	return _len - len;
}

/* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
static int __must_check ffs_do_os_descs(unsigned count,
					char *data, unsigned len,
					ffs_os_desc_callback entity, void *priv)
{
	const unsigned _len = len;
	unsigned long num = 0;

	ENTER();

	for (num = 0; num < count; ++num) {
		int ret;
		enum ffs_os_desc_type type;
		u16 feature_count;
		struct usb_os_desc_header *desc = (void *)data;

		if (len < sizeof(*desc))
			return -EINVAL;

		/*
		 * Record "descriptor" entity.
		 * Process dwLength, bcdVersion, wIndex, get b/wCount.
		 * Move the data pointer to the beginning of extended
		 * compatibilities proper or extended properties proper
		 * portions of the data
		 */
		if (le32_to_cpu(desc->dwLength) > len)
			return -EINVAL;

		ret = __ffs_do_os_desc_header(&type, desc);
		if (unlikely(ret < 0)) {
			pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
				 num, ret);
			return ret;
		}
		/*
		 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
		 */
		feature_count = le16_to_cpu(desc->wCount);
		if (type == FFS_OS_DESC_EXT_COMPAT &&
		    (feature_count > 255 || desc->Reserved))
				return -EINVAL;
		len -= ret;
		data += ret;

		/*
		 * Process all function/property descriptors
		 * of this Feature Descriptor
		 */
		ret = ffs_do_single_os_desc(data, len, type,
					    feature_count, entity, priv, desc);
		if (unlikely(ret < 0)) {
			pr_debug("%s returns %d\n", __func__, ret);
			return ret;
		}

		len -= ret;
		data += ret;
	}
	return _len - len;
}

/**
 * Validate contents of the buffer from userspace related to OS descriptors.
 */
static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
				 struct usb_os_desc_header *h, void *data,
				 unsigned len, void *priv)
{
	struct ffs_data *ffs = priv;
	u8 length;

	ENTER();

	switch (type) {
	case FFS_OS_DESC_EXT_COMPAT: {
		struct usb_ext_compat_desc *d = data;
		int i;

		if (len < sizeof(*d) ||
		    d->bFirstInterfaceNumber >= ffs->interfaces_count ||
2267
		    !d->Reserved1)
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
			return -EINVAL;
		for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
			if (d->Reserved2[i])
				return -EINVAL;

		length = sizeof(struct usb_ext_compat_desc);
	}
		break;
	case FFS_OS_DESC_EXT_PROP: {
		struct usb_ext_prop_desc *d = data;
		u32 type, pdl;
		u16 pnl;

		if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
			return -EINVAL;
		length = le32_to_cpu(d->dwSize);
2284 2285
		if (len < length)
			return -EINVAL;
2286 2287 2288 2289 2290 2291 2292 2293
		type = le32_to_cpu(d->dwPropertyDataType);
		if (type < USB_EXT_PROP_UNICODE ||
		    type > USB_EXT_PROP_UNICODE_MULTI) {
			pr_vdebug("unsupported os descriptor property type: %d",
				  type);
			return -EINVAL;
		}
		pnl = le16_to_cpu(d->wPropertyNameLength);
2294 2295 2296 2297 2298
		if (length < 14 + pnl) {
			pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
				  length, pnl, type);
			return -EINVAL;
		}
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
		pdl = le32_to_cpu(*(u32 *)((u8 *)data + 10 + pnl));
		if (length != 14 + pnl + pdl) {
			pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
				  length, pnl, pdl, type);
			return -EINVAL;
		}
		++ffs->ms_os_descs_ext_prop_count;
		/* property name reported to the host as "WCHAR"s */
		ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
		ffs->ms_os_descs_ext_prop_data_len += pdl;
	}
		break;
	default:
		pr_vdebug("unknown descriptor: %d\n", type);
		return -EINVAL;
	}
	return length;
}

2318 2319 2320
static int __ffs_data_got_descs(struct ffs_data *ffs,
				char *const _data, size_t len)
{
2321
	char *data = _data, *raw_descs;
2322
	unsigned os_descs_count = 0, counts[3], flags;
2323
	int ret = -EINVAL, i;
2324
	struct ffs_desc_helper helper;
2325 2326 2327

	ENTER();

2328
	if (get_unaligned_le32(data + 4) != len)
2329 2330
		goto error;

2331 2332 2333 2334 2335 2336 2337 2338
	switch (get_unaligned_le32(data)) {
	case FUNCTIONFS_DESCRIPTORS_MAGIC:
		flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
		data += 8;
		len  -= 8;
		break;
	case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
		flags = get_unaligned_le32(data + 8);
2339
		ffs->user_flags = flags;
2340 2341
		if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
			      FUNCTIONFS_HAS_HS_DESC |
2342
			      FUNCTIONFS_HAS_SS_DESC |
2343
			      FUNCTIONFS_HAS_MS_OS_DESC |
2344
			      FUNCTIONFS_VIRTUAL_ADDR |
2345
			      FUNCTIONFS_EVENTFD |
2346 2347
			      FUNCTIONFS_ALL_CTRL_RECIP |
			      FUNCTIONFS_CONFIG0_SETUP)) {
2348
			ret = -ENOSYS;
2349 2350
			goto error;
		}
2351 2352 2353 2354 2355
		data += 12;
		len  -= 12;
		break;
	default:
		goto error;
2356 2357
	}

2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
	if (flags & FUNCTIONFS_EVENTFD) {
		if (len < 4)
			goto error;
		ffs->ffs_eventfd =
			eventfd_ctx_fdget((int)get_unaligned_le32(data));
		if (IS_ERR(ffs->ffs_eventfd)) {
			ret = PTR_ERR(ffs->ffs_eventfd);
			ffs->ffs_eventfd = NULL;
			goto error;
		}
		data += 4;
		len  -= 4;
	}

2372 2373 2374 2375 2376
	/* Read fs_count, hs_count and ss_count (if present) */
	for (i = 0; i < 3; ++i) {
		if (!(flags & (1 << i))) {
			counts[i] = 0;
		} else if (len < 4) {
2377
			goto error;
2378 2379 2380 2381
		} else {
			counts[i] = get_unaligned_le32(data);
			data += 4;
			len  -= 4;
2382
		}
2383
	}
2384
	if (flags & (1 << i)) {
2385 2386 2387
		if (len < 4) {
			goto error;
		}
2388 2389 2390 2391
		os_descs_count = get_unaligned_le32(data);
		data += 4;
		len -= 4;
	};
2392

2393 2394
	/* Read descriptors */
	raw_descs = data;
2395
	helper.ffs = ffs;
2396 2397 2398
	for (i = 0; i < 3; ++i) {
		if (!counts[i])
			continue;
2399 2400
		helper.interfaces_count = 0;
		helper.eps_count = 0;
2401
		ret = ffs_do_descs(counts[i], data, len,
2402
				   __ffs_data_do_entity, &helper);
2403
		if (ret < 0)
2404
			goto error;
2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
		if (!ffs->eps_count && !ffs->interfaces_count) {
			ffs->eps_count = helper.eps_count;
			ffs->interfaces_count = helper.interfaces_count;
		} else {
			if (ffs->eps_count != helper.eps_count) {
				ret = -EINVAL;
				goto error;
			}
			if (ffs->interfaces_count != helper.interfaces_count) {
				ret = -EINVAL;
				goto error;
			}
		}
2418 2419
		data += ret;
		len  -= ret;
2420
	}
2421 2422 2423 2424 2425 2426 2427 2428
	if (os_descs_count) {
		ret = ffs_do_os_descs(os_descs_count, data, len,
				      __ffs_data_do_os_desc, ffs);
		if (ret < 0)
			goto error;
		data += ret;
		len -= ret;
	}
2429

2430 2431 2432 2433
	if (raw_descs == data || len) {
		ret = -EINVAL;
		goto error;
	}
2434

2435 2436 2437 2438 2439 2440
	ffs->raw_descs_data	= _data;
	ffs->raw_descs		= raw_descs;
	ffs->raw_descs_length	= data - raw_descs;
	ffs->fs_descs_count	= counts[0];
	ffs->hs_descs_count	= counts[1];
	ffs->ss_descs_count	= counts[2];
2441
	ffs->ms_os_descs_count	= os_descs_count;
2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455

	return 0;

error:
	kfree(_data);
	return ret;
}

static int __ffs_data_got_strings(struct ffs_data *ffs,
				  char *const _data, size_t len)
{
	u32 str_count, needed_count, lang_count;
	struct usb_gadget_strings **stringtabs, *t;
	const char *data = _data;
2456
	struct usb_string *s;
2457 2458 2459

	ENTER();

2460 2461
	if (unlikely(len < 16 ||
		     get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
		     get_unaligned_le32(data + 4) != len))
		goto error;
	str_count  = get_unaligned_le32(data + 8);
	lang_count = get_unaligned_le32(data + 12);

	/* if one is zero the other must be zero */
	if (unlikely(!str_count != !lang_count))
		goto error;

	/* Do we have at least as many strings as descriptors need? */
	needed_count = ffs->strings_count;
	if (unlikely(str_count < needed_count))
		goto error;

2476 2477 2478 2479
	/*
	 * If we don't need any strings just return and free all
	 * memory.
	 */
2480 2481 2482 2483 2484
	if (!needed_count) {
		kfree(_data);
		return 0;
	}

2485
	/* Allocate everything in one chunk so there's less maintenance. */
2486 2487
	{
		unsigned i = 0;
2488 2489 2490 2491 2492 2493
		vla_group(d);
		vla_item(d, struct usb_gadget_strings *, stringtabs,
			lang_count + 1);
		vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
		vla_item(d, struct usb_string, strings,
			lang_count*(needed_count+1));
2494

2495 2496 2497
		char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);

		if (unlikely(!vlabuf)) {
2498 2499 2500 2501
			kfree(_data);
			return -ENOMEM;
		}

2502 2503 2504
		/* Initialize the VLA pointers */
		stringtabs = vla_ptr(vlabuf, d, stringtabs);
		t = vla_ptr(vlabuf, d, stringtab);
2505 2506 2507 2508 2509 2510
		i = lang_count;
		do {
			*stringtabs++ = t++;
		} while (--i);
		*stringtabs = NULL;

2511 2512 2513 2514
		/* stringtabs = vlabuf = d_stringtabs for later kfree */
		stringtabs = vla_ptr(vlabuf, d, stringtabs);
		t = vla_ptr(vlabuf, d, stringtab);
		s = vla_ptr(vlabuf, d, strings);
2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
	}

	/* For each language */
	data += 16;
	len -= 16;

	do { /* lang_count > 0 so we can use do-while */
		unsigned needed = needed_count;

		if (unlikely(len < 3))
			goto error_free;
		t->language = get_unaligned_le16(data);
		t->strings  = s;
		++t;

		data += 2;
		len -= 2;

		/* For each string */
		do { /* str_count > 0 so we can use do-while */
			size_t length = strnlen(data, len);

			if (unlikely(length == len))
				goto error_free;

2540 2541 2542 2543 2544
			/*
			 * User may provide more strings then we need,
			 * if that's the case we simply ignore the
			 * rest
			 */
2545
			if (likely(needed)) {
2546 2547
				/*
				 * s->id will be set while adding
2548
				 * function to configuration so for
2549 2550
				 * now just leave garbage here.
				 */
2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
				s->s = data;
				--needed;
				++s;
			}

			data += length + 1;
			len -= length + 1;
		} while (--str_count);

		s->id = 0;   /* terminator */
		s->s = NULL;
		++s;

	} while (--lang_count);

	/* Some garbage left? */
	if (unlikely(len))
		goto error_free;

	/* Done! */
	ffs->stringtabs = stringtabs;
	ffs->raw_strings = _data;

	return 0;

error_free:
	kfree(stringtabs);
error:
	kfree(_data);
	return -EINVAL;
}


/* Events handling and management *******************************************/

static void __ffs_event_add(struct ffs_data *ffs,
			    enum usb_functionfs_event_type type)
{
	enum usb_functionfs_event_type rem_type1, rem_type2 = type;
	int neg = 0;

2592 2593 2594 2595
	/*
	 * Abort any unhandled setup
	 *
	 * We do not need to worry about some cmpxchg() changing value
2596 2597
	 * of ffs->setup_state without holding the lock because when
	 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2598 2599
	 * the source does nothing.
	 */
2600
	if (ffs->setup_state == FFS_SETUP_PENDING)
2601
		ffs->setup_state = FFS_SETUP_CANCELLED;
2602

2603 2604 2605 2606 2607 2608 2609
	/*
	 * Logic of this function guarantees that there are at most four pending
	 * evens on ffs->ev.types queue.  This is important because the queue
	 * has space for four elements only and __ffs_ep0_read_events function
	 * depends on that limit as well.  If more event types are added, those
	 * limits have to be revisited or guaranteed to still hold.
	 */
2610 2611 2612
	switch (type) {
	case FUNCTIONFS_RESUME:
		rem_type2 = FUNCTIONFS_SUSPEND;
2613
		/* FALL THROUGH */
2614 2615 2616
	case FUNCTIONFS_SUSPEND:
	case FUNCTIONFS_SETUP:
		rem_type1 = type;
2617
		/* Discard all similar events */
2618 2619 2620 2621 2622 2623
		break;

	case FUNCTIONFS_BIND:
	case FUNCTIONFS_UNBIND:
	case FUNCTIONFS_DISABLE:
	case FUNCTIONFS_ENABLE:
2624
		/* Discard everything other then power management. */
2625 2626 2627 2628 2629 2630
		rem_type1 = FUNCTIONFS_SUSPEND;
		rem_type2 = FUNCTIONFS_RESUME;
		neg = 1;
		break;

	default:
2631 2632
		WARN(1, "%d: unknown event, this should not happen\n", type);
		return;
2633 2634 2635 2636 2637 2638 2639 2640 2641
	}

	{
		u8 *ev  = ffs->ev.types, *out = ev;
		unsigned n = ffs->ev.count;
		for (; n; --n, ++ev)
			if ((*ev == rem_type1 || *ev == rem_type2) == neg)
				*out++ = *ev;
			else
2642
				pr_vdebug("purging event %d\n", *ev);
2643 2644 2645
		ffs->ev.count = out - ffs->ev.types;
	}

2646
	pr_vdebug("adding event %d\n", type);
2647 2648
	ffs->ev.types[ffs->ev.count++] = type;
	wake_up_locked(&ffs->ev.waitq);
2649 2650
	if (ffs->ffs_eventfd)
		eventfd_signal(ffs->ffs_eventfd, 1);
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
}

static void ffs_event_add(struct ffs_data *ffs,
			  enum usb_functionfs_event_type type)
{
	unsigned long flags;
	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
	__ffs_event_add(ffs, type);
	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
}

/* Bind/unbind USB function hooks *******************************************/

2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
{
	int i;

	for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
		if (ffs->eps_addrmap[i] == endpoint_address)
			return i;
	return -ENOENT;
}

2674 2675 2676 2677 2678 2679 2680
static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
				    struct usb_descriptor_header *desc,
				    void *priv)
{
	struct usb_endpoint_descriptor *ds = (void *)desc;
	struct ffs_function *func = priv;
	struct ffs_ep *ffs_ep;
2681 2682
	unsigned ep_desc_id;
	int idx;
2683
	static const char *speed_names[] = { "full", "high", "super" };
2684 2685 2686 2687

	if (type != FFS_DESCRIPTOR)
		return 0;

2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
	/*
	 * If ss_descriptors is not NULL, we are reading super speed
	 * descriptors; if hs_descriptors is not NULL, we are reading high
	 * speed descriptors; otherwise, we are reading full speed
	 * descriptors.
	 */
	if (func->function.ss_descriptors) {
		ep_desc_id = 2;
		func->function.ss_descriptors[(long)valuep] = desc;
	} else if (func->function.hs_descriptors) {
		ep_desc_id = 1;
2699
		func->function.hs_descriptors[(long)valuep] = desc;
2700 2701
	} else {
		ep_desc_id = 0;
2702
		func->function.fs_descriptors[(long)valuep]    = desc;
2703
	}
2704 2705 2706 2707

	if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
		return 0;

2708 2709 2710 2711
	idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
	if (idx < 0)
		return idx;

2712 2713
	ffs_ep = func->eps + idx;

2714 2715 2716
	if (unlikely(ffs_ep->descs[ep_desc_id])) {
		pr_err("two %sspeed descriptors for EP %d\n",
			  speed_names[ep_desc_id],
2717
			  ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2718 2719
		return -EINVAL;
	}
2720
	ffs_ep->descs[ep_desc_id] = ds;
2721 2722 2723 2724 2725 2726 2727 2728 2729

	ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
	if (ffs_ep->ep) {
		ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
		if (!ds->wMaxPacketSize)
			ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
	} else {
		struct usb_request *req;
		struct usb_ep *ep;
2730
		u8 bEndpointAddress;
2731

2732 2733 2734 2735 2736
		/*
		 * We back up bEndpointAddress because autoconfig overwrites
		 * it with physical endpoint address.
		 */
		bEndpointAddress = ds->bEndpointAddress;
2737
		pr_vdebug("autoconfig\n");
2738 2739 2740
		ep = usb_ep_autoconfig(func->gadget, ds);
		if (unlikely(!ep))
			return -ENOTSUPP;
2741
		ep->driver_data = func->eps + idx;
2742 2743 2744 2745 2746 2747 2748 2749 2750

		req = usb_ep_alloc_request(ep, GFP_KERNEL);
		if (unlikely(!req))
			return -ENOMEM;

		ffs_ep->ep  = ep;
		ffs_ep->req = req;
		func->eps_revmap[ds->bEndpointAddress &
				 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2751 2752 2753 2754 2755 2756
		/*
		 * If we use virtual address mapping, we restore
		 * original bEndpointAddress value.
		 */
		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
			ds->bEndpointAddress = bEndpointAddress;
2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
	}
	ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);

	return 0;
}

static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
				   struct usb_descriptor_header *desc,
				   void *priv)
{
	struct ffs_function *func = priv;
	unsigned idx;
	u8 newValue;

	switch (type) {
	default:
	case FFS_DESCRIPTOR:
		/* Handled in previous pass by __ffs_func_bind_do_descs() */
		return 0;

	case FFS_INTERFACE:
		idx = *valuep;
		if (func->interfaces_nums[idx] < 0) {
			int id = usb_interface_id(func->conf, &func->function);
			if (unlikely(id < 0))
				return id;
			func->interfaces_nums[idx] = id;
		}
		newValue = func->interfaces_nums[idx];
		break;

	case FFS_STRING:
		/* String' IDs are allocated when fsf_data is bound to cdev */
		newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
		break;

	case FFS_ENDPOINT:
2794 2795 2796 2797
		/*
		 * USB_DT_ENDPOINT are handled in
		 * __ffs_func_bind_do_descs().
		 */
2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812
		if (desc->bDescriptorType == USB_DT_ENDPOINT)
			return 0;

		idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
		if (unlikely(!func->eps[idx].ep))
			return -EINVAL;

		{
			struct usb_endpoint_descriptor **descs;
			descs = func->eps[idx].descs;
			newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
		}
		break;
	}

2813
	pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2814 2815 2816 2817
	*valuep = newValue;
	return 0;
}

2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
				      struct usb_os_desc_header *h, void *data,
				      unsigned len, void *priv)
{
	struct ffs_function *func = priv;
	u8 length = 0;

	switch (type) {
	case FFS_OS_DESC_EXT_COMPAT: {
		struct usb_ext_compat_desc *desc = data;
		struct usb_os_desc_table *t;

		t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
		t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
		memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
		       ARRAY_SIZE(desc->CompatibleID) +
		       ARRAY_SIZE(desc->SubCompatibleID));
		length = sizeof(*desc);
	}
		break;
	case FFS_OS_DESC_EXT_PROP: {
		struct usb_ext_prop_desc *desc = data;
		struct usb_os_desc_table *t;
		struct usb_os_desc_ext_prop *ext_prop;
		char *ext_prop_name;
		char *ext_prop_data;

		t = &func->function.os_desc_table[h->interface];
		t->if_id = func->interfaces_nums[h->interface];

		ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
		func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);

		ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
		ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
		ext_prop->data_len = le32_to_cpu(*(u32 *)
			usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
		length = ext_prop->name_len + ext_prop->data_len + 14;

		ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
		func->ffs->ms_os_descs_ext_prop_name_avail +=
			ext_prop->name_len;

		ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
		func->ffs->ms_os_descs_ext_prop_data_avail +=
			ext_prop->data_len;
		memcpy(ext_prop_data,
		       usb_ext_prop_data_ptr(data, ext_prop->name_len),
		       ext_prop->data_len);
		/* unicode data reported to the host as "WCHAR"s */
		switch (ext_prop->type) {
		case USB_EXT_PROP_UNICODE:
		case USB_EXT_PROP_UNICODE_ENV:
		case USB_EXT_PROP_UNICODE_LINK:
		case USB_EXT_PROP_UNICODE_MULTI:
			ext_prop->data_len *= 2;
			break;
		}
		ext_prop->data = ext_prop_data;

		memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
		       ext_prop->name_len);
		/* property name reported to the host as "WCHAR"s */
		ext_prop->name_len *= 2;
		ext_prop->name = ext_prop_name;

		t->os_desc->ext_prop_len +=
			ext_prop->name_len + ext_prop->data_len + 14;
		++t->os_desc->ext_prop_count;
		list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
	}
		break;
	default:
		pr_vdebug("unknown descriptor: %d\n", type);
	}

	return length;
}

2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
						struct usb_configuration *c)
{
	struct ffs_function *func = ffs_func_from_usb(f);
	struct f_fs_opts *ffs_opts =
		container_of(f->fi, struct f_fs_opts, func_inst);
	int ret;

	ENTER();

	/*
	 * Legacy gadget triggers binding in functionfs_ready_callback,
	 * which already uses locking; taking the same lock here would
	 * cause a deadlock.
	 *
	 * Configfs-enabled gadgets however do need ffs_dev_lock.
	 */
	if (!ffs_opts->no_configfs)
		ffs_dev_lock();
	ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
	func->ffs = ffs_opts->dev->ffs_data;
	if (!ffs_opts->no_configfs)
		ffs_dev_unlock();
	if (ret)
		return ERR_PTR(ret);

	func->conf = c;
	func->gadget = c->cdev->gadget;

	/*
	 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
	 * configurations are bound in sequence with list_for_each_entry,
	 * in each configuration its functions are bound in sequence
	 * with list_for_each_entry, so we assume no race condition
	 * with regard to ffs_opts->bound access
	 */
	if (!ffs_opts->refcnt) {
		ret = functionfs_bind(func->ffs, c->cdev);
		if (ret)
			return ERR_PTR(ret);
	}
	ffs_opts->refcnt++;
	func->function.strings = func->ffs->stringtabs;

	return ffs_opts;
}

static int _ffs_func_bind(struct usb_configuration *c,
			  struct usb_function *f)
2946 2947 2948 2949 2950 2951 2952
{
	struct ffs_function *func = ffs_func_from_usb(f);
	struct ffs_data *ffs = func->ffs;

	const int full = !!func->ffs->fs_descs_count;
	const int high = gadget_is_dualspeed(func->gadget) &&
		func->ffs->hs_descs_count;
2953 2954
	const int super = gadget_is_superspeed(func->gadget) &&
		func->ffs->ss_descs_count;
2955

2956
	int fs_len, hs_len, ss_len, ret, i;
2957
	struct ffs_ep *eps_ptr;
2958 2959

	/* Make it a single chunk, less management later on */
2960 2961 2962 2963 2964 2965
	vla_group(d);
	vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
	vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
		full ? ffs->fs_descs_count + 1 : 0);
	vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
		high ? ffs->hs_descs_count + 1 : 0);
2966 2967
	vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
		super ? ffs->ss_descs_count + 1 : 0);
2968
	vla_item_with_sz(d, short, inums, ffs->interfaces_count);
2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980
	vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
	vla_item_with_sz(d, char[16], ext_compat,
			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
	vla_item_with_sz(d, struct usb_os_desc, os_desc,
			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
	vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
			 ffs->ms_os_descs_ext_prop_count);
	vla_item_with_sz(d, char, ext_prop_name,
			 ffs->ms_os_descs_ext_prop_name_len);
	vla_item_with_sz(d, char, ext_prop_data,
			 ffs->ms_os_descs_ext_prop_data_len);
2981
	vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
2982
	char *vlabuf;
2983 2984 2985

	ENTER();

2986 2987
	/* Has descriptors only for speeds gadget does not support */
	if (unlikely(!(full | high | super)))
2988 2989
		return -ENOTSUPP;

2990
	/* Allocate a single chunk, less management later on */
2991
	vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
2992
	if (unlikely(!vlabuf))
2993 2994
		return -ENOMEM;

2995 2996 2997 2998 2999 3000
	ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
	ffs->ms_os_descs_ext_prop_name_avail =
		vla_ptr(vlabuf, d, ext_prop_name);
	ffs->ms_os_descs_ext_prop_data_avail =
		vla_ptr(vlabuf, d, ext_prop_data);

3001 3002 3003
	/* Copy descriptors  */
	memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
	       ffs->raw_descs_length);
3004

3005
	memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3006 3007 3008
	eps_ptr = vla_ptr(vlabuf, d, eps);
	for (i = 0; i < ffs->eps_count; i++)
		eps_ptr[i].num = -1;
3009

3010 3011 3012 3013 3014
	/* Save pointers
	 * d_eps == vlabuf, func->eps used to kfree vlabuf later
	*/
	func->eps             = vla_ptr(vlabuf, d, eps);
	func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3015

3016 3017
	/*
	 * Go through all the endpoint descriptors and allocate
3018
	 * endpoints first, so that later we can rewrite the endpoint
3019 3020
	 * numbers without worrying that it may be described later on.
	 */
3021
	if (likely(full)) {
3022
		func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3023 3024 3025 3026 3027 3028
		fs_len = ffs_do_descs(ffs->fs_descs_count,
				      vla_ptr(vlabuf, d, raw_descs),
				      d_raw_descs__sz,
				      __ffs_func_bind_do_descs, func);
		if (unlikely(fs_len < 0)) {
			ret = fs_len;
3029
			goto error;
3030
		}
3031
	} else {
3032
		fs_len = 0;
3033 3034 3035
	}

	if (likely(high)) {
3036
		func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050
		hs_len = ffs_do_descs(ffs->hs_descs_count,
				      vla_ptr(vlabuf, d, raw_descs) + fs_len,
				      d_raw_descs__sz - fs_len,
				      __ffs_func_bind_do_descs, func);
		if (unlikely(hs_len < 0)) {
			ret = hs_len;
			goto error;
		}
	} else {
		hs_len = 0;
	}

	if (likely(super)) {
		func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs);
3051
		ss_len = ffs_do_descs(ffs->ss_descs_count,
3052 3053 3054
				vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
				d_raw_descs__sz - fs_len - hs_len,
				__ffs_func_bind_do_descs, func);
3055 3056
		if (unlikely(ss_len < 0)) {
			ret = ss_len;
3057
			goto error;
3058 3059 3060
		}
	} else {
		ss_len = 0;
3061 3062
	}

3063 3064 3065 3066 3067
	/*
	 * Now handle interface numbers allocation and interface and
	 * endpoint numbers rewriting.  We can do that in one go
	 * now.
	 */
3068
	ret = ffs_do_descs(ffs->fs_descs_count +
3069 3070
			   (high ? ffs->hs_descs_count : 0) +
			   (super ? ffs->ss_descs_count : 0),
3071
			   vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3072 3073 3074 3075
			   __ffs_func_bind_do_nums, func);
	if (unlikely(ret < 0))
		goto error;

3076
	func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3077
	if (c->cdev->use_os_string) {
3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
		for (i = 0; i < ffs->interfaces_count; ++i) {
			struct usb_os_desc *desc;

			desc = func->function.os_desc_table[i].os_desc =
				vla_ptr(vlabuf, d, os_desc) +
				i * sizeof(struct usb_os_desc);
			desc->ext_compat_id =
				vla_ptr(vlabuf, d, ext_compat) + i * 16;
			INIT_LIST_HEAD(&desc->ext_prop);
		}
3088 3089 3090 3091 3092 3093 3094 3095 3096
		ret = ffs_do_os_descs(ffs->ms_os_descs_count,
				      vla_ptr(vlabuf, d, raw_descs) +
				      fs_len + hs_len + ss_len,
				      d_raw_descs__sz - fs_len - hs_len -
				      ss_len,
				      __ffs_func_bind_do_os_desc, func);
		if (unlikely(ret < 0))
			goto error;
	}
3097 3098 3099
	func->function.os_desc_n =
		c->cdev->use_os_string ? ffs->interfaces_count : 0;

3100 3101 3102 3103 3104 3105 3106 3107 3108
	/* And we're done */
	ffs_event_add(ffs, FUNCTIONFS_BIND);
	return 0;

error:
	/* XXX Do we need to release all claimed endpoints here? */
	return ret;
}

3109 3110 3111 3112
static int ffs_func_bind(struct usb_configuration *c,
			 struct usb_function *f)
{
	struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3113 3114
	struct ffs_function *func = ffs_func_from_usb(f);
	int ret;
3115 3116 3117 3118

	if (IS_ERR(ffs_opts))
		return PTR_ERR(ffs_opts);

3119 3120 3121 3122 3123
	ret = _ffs_func_bind(c, f);
	if (ret && !--ffs_opts->refcnt)
		functionfs_unbind(func->ffs);

	return ret;
3124 3125
}

3126 3127 3128

/* Other USB function hooks *************************************************/

3129 3130 3131 3132 3133 3134 3135
static void ffs_reset_work(struct work_struct *work)
{
	struct ffs_data *ffs = container_of(work,
		struct ffs_data, reset_work);
	ffs_data_reset(ffs);
}

3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
static int ffs_func_set_alt(struct usb_function *f,
			    unsigned interface, unsigned alt)
{
	struct ffs_function *func = ffs_func_from_usb(f);
	struct ffs_data *ffs = func->ffs;
	int ret = 0, intf;

	if (alt != (unsigned)-1) {
		intf = ffs_func_revmap_intf(func, interface);
		if (unlikely(intf < 0))
			return intf;
	}

	if (ffs->func)
		ffs_func_eps_disable(ffs->func);

3152 3153 3154 3155 3156 3157 3158
	if (ffs->state == FFS_DEACTIVATED) {
		ffs->state = FFS_CLOSING;
		INIT_WORK(&ffs->reset_work, ffs_reset_work);
		schedule_work(&ffs->reset_work);
		return -ENODEV;
	}

3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189
	if (ffs->state != FFS_ACTIVE)
		return -ENODEV;

	if (alt == (unsigned)-1) {
		ffs->func = NULL;
		ffs_event_add(ffs, FUNCTIONFS_DISABLE);
		return 0;
	}

	ffs->func = func;
	ret = ffs_func_eps_enable(func);
	if (likely(ret >= 0))
		ffs_event_add(ffs, FUNCTIONFS_ENABLE);
	return ret;
}

static void ffs_func_disable(struct usb_function *f)
{
	ffs_func_set_alt(f, 0, (unsigned)-1);
}

static int ffs_func_setup(struct usb_function *f,
			  const struct usb_ctrlrequest *creq)
{
	struct ffs_function *func = ffs_func_from_usb(f);
	struct ffs_data *ffs = func->ffs;
	unsigned long flags;
	int ret;

	ENTER();

3190 3191 3192 3193 3194
	pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
	pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
	pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
	pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
	pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3195

3196 3197
	/*
	 * Most requests directed to interface go through here
3198 3199 3200 3201
	 * (notable exceptions are set/get interface) so we need to
	 * handle them.  All other either handled by composite or
	 * passed to usb_configuration->setup() (if one is set).  No
	 * matter, we will handle requests directed to endpoint here
3202 3203 3204
	 * as well (as it's straightforward).  Other request recipient
	 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
	 * is being used.
3205
	 */
3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219
	if (ffs->state != FFS_ACTIVE)
		return -ENODEV;

	switch (creq->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_INTERFACE:
		ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
		if (unlikely(ret < 0))
			return ret;
		break;

	case USB_RECIP_ENDPOINT:
		ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
		if (unlikely(ret < 0))
			return ret;
3220 3221
		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
			ret = func->ffs->eps_addrmap[ret];
3222 3223 3224
		break;

	default:
3225 3226 3227 3228
		if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
			ret = le16_to_cpu(creq->wIndex);
		else
			return -EOPNOTSUPP;
3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239
	}

	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
	ffs->ev.setup = *creq;
	ffs->ev.setup.wIndex = cpu_to_le16(ret);
	__ffs_event_add(ffs, FUNCTIONFS_SETUP);
	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);

	return 0;
}

3240
static bool ffs_func_req_match(struct usb_function *f,
3241 3242
			       const struct usb_ctrlrequest *creq,
			       bool config0)
3243 3244 3245
{
	struct ffs_function *func = ffs_func_from_usb(f);

3246
	if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3247 3248
		return false;

3249 3250
	switch (creq->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_INTERFACE:
3251 3252
		return (ffs_func_revmap_intf(func,
					     le16_to_cpu(creq->wIndex)) >= 0);
3253
	case USB_RECIP_ENDPOINT:
3254 3255
		return (ffs_func_revmap_ep(func,
					   le16_to_cpu(creq->wIndex)) >= 0);
3256 3257 3258 3259 3260 3261
	default:
		return (bool) (func->ffs->user_flags &
			       FUNCTIONFS_ALL_CTRL_RECIP);
	}
}

3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274
static void ffs_func_suspend(struct usb_function *f)
{
	ENTER();
	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
}

static void ffs_func_resume(struct usb_function *f)
{
	ENTER();
	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
}


3275
/* Endpoint and interface numbers reverse mapping ***************************/
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296

static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
{
	num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
	return num ? num : -EDOM;
}

static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
{
	short *nums = func->interfaces_nums;
	unsigned count = func->ffs->interfaces_count;

	for (; count; --count, ++nums) {
		if (*nums >= 0 && *nums == intf)
			return nums - func->interfaces_nums;
	}

	return -EDOM;
}


3297 3298 3299 3300
/* Devices management *******************************************************/

static LIST_HEAD(ffs_devices);

3301
static struct ffs_dev *_ffs_do_find_dev(const char *name)
3302 3303 3304 3305 3306 3307 3308 3309 3310
{
	struct ffs_dev *dev;

	list_for_each_entry(dev, &ffs_devices, entry) {
		if (!dev->name || !name)
			continue;
		if (strcmp(dev->name, name) == 0)
			return dev;
	}
3311

3312 3313 3314 3315 3316 3317
	return NULL;
}

/*
 * ffs_lock must be taken by the caller of this function
 */
3318
static struct ffs_dev *_ffs_get_single_dev(void)
3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333
{
	struct ffs_dev *dev;

	if (list_is_singular(&ffs_devices)) {
		dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
		if (dev->single)
			return dev;
	}

	return NULL;
}

/*
 * ffs_lock must be taken by the caller of this function
 */
3334
static struct ffs_dev *_ffs_find_dev(const char *name)
3335 3336 3337
{
	struct ffs_dev *dev;

3338
	dev = _ffs_get_single_dev();
3339 3340 3341
	if (dev)
		return dev;

3342
	return _ffs_do_find_dev(name);
3343 3344
}

3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369
/* Configfs support *********************************************************/

static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
{
	return container_of(to_config_group(item), struct f_fs_opts,
			    func_inst.group);
}

static void ffs_attr_release(struct config_item *item)
{
	struct f_fs_opts *opts = to_ffs_opts(item);

	usb_put_function_instance(&opts->func_inst);
}

static struct configfs_item_operations ffs_item_ops = {
	.release	= ffs_attr_release,
};

static struct config_item_type ffs_func_type = {
	.ct_item_ops	= &ffs_item_ops,
	.ct_owner	= THIS_MODULE,
};


3370 3371 3372 3373 3374 3375 3376 3377
/* Function registration interface ******************************************/

static void ffs_free_inst(struct usb_function_instance *f)
{
	struct f_fs_opts *opts;

	opts = to_f_fs_opts(f);
	ffs_dev_lock();
3378
	_ffs_free_dev(opts->dev);
3379 3380 3381 3382
	ffs_dev_unlock();
	kfree(opts);
}

3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420
#define MAX_INST_NAME_LEN	40

static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
{
	struct f_fs_opts *opts;
	char *ptr;
	const char *tmp;
	int name_len, ret;

	name_len = strlen(name) + 1;
	if (name_len > MAX_INST_NAME_LEN)
		return -ENAMETOOLONG;

	ptr = kstrndup(name, name_len, GFP_KERNEL);
	if (!ptr)
		return -ENOMEM;

	opts = to_f_fs_opts(fi);
	tmp = NULL;

	ffs_dev_lock();

	tmp = opts->dev->name_allocated ? opts->dev->name : NULL;
	ret = _ffs_name_dev(opts->dev, ptr);
	if (ret) {
		kfree(ptr);
		ffs_dev_unlock();
		return ret;
	}
	opts->dev->name_allocated = true;

	ffs_dev_unlock();

	kfree(tmp);

	return 0;
}

3421 3422 3423 3424 3425 3426 3427 3428 3429
static struct usb_function_instance *ffs_alloc_inst(void)
{
	struct f_fs_opts *opts;
	struct ffs_dev *dev;

	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
	if (!opts)
		return ERR_PTR(-ENOMEM);

3430
	opts->func_inst.set_inst_name = ffs_set_inst_name;
3431 3432
	opts->func_inst.free_func_inst = ffs_free_inst;
	ffs_dev_lock();
3433
	dev = _ffs_alloc_dev();
3434 3435 3436 3437 3438 3439
	ffs_dev_unlock();
	if (IS_ERR(dev)) {
		kfree(opts);
		return ERR_CAST(dev);
	}
	opts->dev = dev;
3440
	dev->opts = opts;
3441

3442 3443
	config_group_init_type_name(&opts->func_inst.group, "",
				    &ffs_func_type);
3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473
	return &opts->func_inst;
}

static void ffs_free(struct usb_function *f)
{
	kfree(ffs_func_from_usb(f));
}

static void ffs_func_unbind(struct usb_configuration *c,
			    struct usb_function *f)
{
	struct ffs_function *func = ffs_func_from_usb(f);
	struct ffs_data *ffs = func->ffs;
	struct f_fs_opts *opts =
		container_of(f->fi, struct f_fs_opts, func_inst);
	struct ffs_ep *ep = func->eps;
	unsigned count = ffs->eps_count;
	unsigned long flags;

	ENTER();
	if (ffs->func == func) {
		ffs_func_eps_disable(func);
		ffs->func = NULL;
	}

	if (!--opts->refcnt)
		functionfs_unbind(ffs);

	/* cleanup after autoconfig */
	spin_lock_irqsave(&func->ffs->eps_lock, flags);
3474
	while (count--) {
3475 3476 3477 3478
		if (ep->ep && ep->req)
			usb_ep_free_request(ep->ep, ep->req);
		ep->req = NULL;
		++ep;
3479
	}
3480 3481 3482 3483 3484 3485 3486 3487 3488
	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
	kfree(func->eps);
	func->eps = NULL;
	/*
	 * eps, descriptors and interfaces_nums are allocated in the
	 * same chunk so only one free is required.
	 */
	func->function.fs_descriptors = NULL;
	func->function.hs_descriptors = NULL;
3489
	func->function.ss_descriptors = NULL;
3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511
	func->interfaces_nums = NULL;

	ffs_event_add(ffs, FUNCTIONFS_UNBIND);
}

static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
{
	struct ffs_function *func;

	ENTER();

	func = kzalloc(sizeof(*func), GFP_KERNEL);
	if (unlikely(!func))
		return ERR_PTR(-ENOMEM);

	func->function.name    = "Function FS Gadget";

	func->function.bind    = ffs_func_bind;
	func->function.unbind  = ffs_func_unbind;
	func->function.set_alt = ffs_func_set_alt;
	func->function.disable = ffs_func_disable;
	func->function.setup   = ffs_func_setup;
3512
	func->function.req_match = ffs_func_req_match;
3513 3514 3515 3516 3517 3518 3519
	func->function.suspend = ffs_func_suspend;
	func->function.resume  = ffs_func_resume;
	func->function.free_func = ffs_free;

	return &func->function;
}

3520 3521 3522
/*
 * ffs_lock must be taken by the caller of this function
 */
3523
static struct ffs_dev *_ffs_alloc_dev(void)
3524 3525 3526 3527
{
	struct ffs_dev *dev;
	int ret;

3528
	if (_ffs_get_single_dev())
3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555
			return ERR_PTR(-EBUSY);

	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
	if (!dev)
		return ERR_PTR(-ENOMEM);

	if (list_empty(&ffs_devices)) {
		ret = functionfs_init();
		if (ret) {
			kfree(dev);
			return ERR_PTR(ret);
		}
	}

	list_add(&dev->entry, &ffs_devices);

	return dev;
}

/*
 * ffs_lock must be taken by the caller of this function
 * The caller is responsible for "name" being available whenever f_fs needs it
 */
static int _ffs_name_dev(struct ffs_dev *dev, const char *name)
{
	struct ffs_dev *existing;

3556
	existing = _ffs_do_find_dev(name);
3557 3558
	if (existing)
		return -EBUSY;
3559

3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577
	dev->name = name;

	return 0;
}

/*
 * The caller is responsible for "name" being available whenever f_fs needs it
 */
int ffs_name_dev(struct ffs_dev *dev, const char *name)
{
	int ret;

	ffs_dev_lock();
	ret = _ffs_name_dev(dev, name);
	ffs_dev_unlock();

	return ret;
}
3578
EXPORT_SYMBOL_GPL(ffs_name_dev);
3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594

int ffs_single_dev(struct ffs_dev *dev)
{
	int ret;

	ret = 0;
	ffs_dev_lock();

	if (!list_is_singular(&ffs_devices))
		ret = -EBUSY;
	else
		dev->single = true;

	ffs_dev_unlock();
	return ret;
}
3595
EXPORT_SYMBOL_GPL(ffs_single_dev);
3596 3597 3598 3599

/*
 * ffs_lock must be taken by the caller of this function
 */
3600
static void _ffs_free_dev(struct ffs_dev *dev)
3601 3602
{
	list_del(&dev->entry);
3603 3604
	if (dev->name_allocated)
		kfree(dev->name);
3605 3606 3607 3608 3609

	/* Clear the private_data pointer to stop incorrect dev access */
	if (dev->ffs_data)
		dev->ffs_data->private_data = NULL;

3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621
	kfree(dev);
	if (list_empty(&ffs_devices))
		functionfs_cleanup();
}

static void *ffs_acquire_dev(const char *dev_name)
{
	struct ffs_dev *ffs_dev;

	ENTER();
	ffs_dev_lock();

3622
	ffs_dev = _ffs_find_dev(dev_name);
3623
	if (!ffs_dev)
3624
		ffs_dev = ERR_PTR(-ENOENT);
3625 3626
	else if (ffs_dev->mounted)
		ffs_dev = ERR_PTR(-EBUSY);
3627 3628
	else if (ffs_dev->ffs_acquire_dev_callback &&
	    ffs_dev->ffs_acquire_dev_callback(ffs_dev))
3629
		ffs_dev = ERR_PTR(-ENOENT);
3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644
	else
		ffs_dev->mounted = true;

	ffs_dev_unlock();
	return ffs_dev;
}

static void ffs_release_dev(struct ffs_data *ffs_data)
{
	struct ffs_dev *ffs_dev;

	ENTER();
	ffs_dev_lock();

	ffs_dev = ffs_data->private_data;
3645
	if (ffs_dev) {
3646
		ffs_dev->mounted = false;
3647 3648 3649 3650

		if (ffs_dev->ffs_release_dev_callback)
			ffs_dev->ffs_release_dev_callback(ffs_dev);
	}
3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675

	ffs_dev_unlock();
}

static int ffs_ready(struct ffs_data *ffs)
{
	struct ffs_dev *ffs_obj;
	int ret = 0;

	ENTER();
	ffs_dev_lock();

	ffs_obj = ffs->private_data;
	if (!ffs_obj) {
		ret = -EINVAL;
		goto done;
	}
	if (WARN_ON(ffs_obj->desc_ready)) {
		ret = -EBUSY;
		goto done;
	}

	ffs_obj->desc_ready = true;
	ffs_obj->ffs_data = ffs;

3676
	if (ffs_obj->ffs_ready_callback) {
3677
		ret = ffs_obj->ffs_ready_callback(ffs);
3678 3679 3680
		if (ret)
			goto done;
	}
3681

3682
	set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3683 3684 3685 3686 3687 3688 3689 3690
done:
	ffs_dev_unlock();
	return ret;
}

static void ffs_closed(struct ffs_data *ffs)
{
	struct ffs_dev *ffs_obj;
3691
	struct f_fs_opts *opts;
3692
	struct config_item *ci;
3693 3694 3695 3696 3697 3698 3699 3700 3701 3702

	ENTER();
	ffs_dev_lock();

	ffs_obj = ffs->private_data;
	if (!ffs_obj)
		goto done;

	ffs_obj->desc_ready = false;

3703 3704
	if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
	    ffs_obj->ffs_closed_callback)
3705
		ffs_obj->ffs_closed_callback(ffs);
3706

3707 3708 3709 3710 3711 3712
	if (ffs_obj->opts)
		opts = ffs_obj->opts;
	else
		goto done;

	if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3713
	    || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
3714 3715
		goto done;

3716 3717 3718 3719 3720
	ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
	ffs_dev_unlock();

	unregister_gadget_item(ci);
	return;
3721 3722 3723 3724
done:
	ffs_dev_unlock();
}

3725 3726 3727 3728 3729 3730 3731 3732 3733
/* Misc helper functions ****************************************************/

static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
{
	return nonblock
		? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
		: mutex_lock_interruptible(mutex);
}

A
Al Viro 已提交
3734
static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3735 3736 3737 3738 3739 3740 3741 3742 3743 3744
{
	char *data;

	if (unlikely(!len))
		return NULL;

	data = kmalloc(len, GFP_KERNEL);
	if (unlikely(!data))
		return ERR_PTR(-ENOMEM);

3745
	if (unlikely(copy_from_user(data, buf, len))) {
3746 3747 3748 3749
		kfree(data);
		return ERR_PTR(-EFAULT);
	}

3750
	pr_vdebug("Buffer from user space:\n");
3751 3752 3753 3754
	ffs_dump_mem("", data, len);

	return data;
}
3755 3756 3757 3758

DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Michal Nazarewicz");