mt2063.c 65.7 KB
Newer Older
1 2 3
/*
 * Driver for mt2063 Micronas tuner
 *
4
 * Copyright (c) 2011 Mauro Carvalho Chehab
5
 *
6 7 8
 * This driver came from a driver originally written by:
 *		Henry Wang <Henry.wang@AzureWave.com>
 * Made publicly available by Terratec, at:
9
 *	http://linux.terratec.de/files/TERRATEC_H7/20110323_TERRATEC_H7_Linux.tar.gz
10
 * The original driver's license is GPL, as declared with MODULE_LICENSE()
11 12 13 14 15 16 17 18 19 20 21
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation under version 2 of the License.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

22 23 24 25
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/string.h>
26
#include <linux/videodev2.h>
27 28 29

#include "mt2063.h"

30 31 32 33 34 35 36 37 38
static unsigned int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Set Verbosity level");

#define dprintk(level, fmt, arg...) do {				\
if (debug >= level)							\
	printk(KERN_DEBUG "mt2063 %s: " fmt, __func__, ## arg);	\
} while (0)

39

40
/* positive error codes used internally */
41

42
/*  Info: Unavoidable LO-related spur may be present in the output  */
43
#define MT2063_SPUR_PRESENT_ERR             (0x00800000)
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119

/*  Info: Mask of bits used for # of LO-related spurs that were avoided during tuning  */
#define MT2063_SPUR_CNT_MASK                (0x001f0000)
#define MT2063_SPUR_SHIFT                   (16)

/*  Info: Upconverter frequency is out of range (may be reason for MT_UPC_UNLOCK) */
#define MT2063_UPC_RANGE                    (0x04000000)

/*  Info: Downconverter frequency is out of range (may be reason for MT_DPC_UNLOCK) */
#define MT2063_DNC_RANGE                    (0x08000000)

/*
 *  Constant defining the version of the following structure
 *  and therefore the API for this code.
 *
 *  When compiling the tuner driver, the preprocessor will
 *  check against this version number to make sure that
 *  it matches the version that the tuner driver knows about.
 */

/* DECT Frequency Avoidance */
#define MT2063_DECT_AVOID_US_FREQS      0x00000001

#define MT2063_DECT_AVOID_EURO_FREQS    0x00000002

#define MT2063_EXCLUDE_US_DECT_FREQUENCIES(s) (((s) & MT2063_DECT_AVOID_US_FREQS) != 0)

#define MT2063_EXCLUDE_EURO_DECT_FREQUENCIES(s) (((s) & MT2063_DECT_AVOID_EURO_FREQS) != 0)

enum MT2063_DECT_Avoid_Type {
	MT2063_NO_DECT_AVOIDANCE = 0,				/* Do not create DECT exclusion zones.     */
	MT2063_AVOID_US_DECT = MT2063_DECT_AVOID_US_FREQS,	/* Avoid US DECT frequencies.              */
	MT2063_AVOID_EURO_DECT = MT2063_DECT_AVOID_EURO_FREQS,	/* Avoid European DECT frequencies.        */
	MT2063_AVOID_BOTH					/* Avoid both regions. Not typically used. */
};

#define MT2063_MAX_ZONES 48

struct MT2063_ExclZone_t {
	u32 min_;
	u32 max_;
	struct MT2063_ExclZone_t *next_;
};

/*
 *  Structure of data needed for Spur Avoidance
 */
struct MT2063_AvoidSpursData_t {
	u32 f_ref;
	u32 f_in;
	u32 f_LO1;
	u32 f_if1_Center;
	u32 f_if1_Request;
	u32 f_if1_bw;
	u32 f_LO2;
	u32 f_out;
	u32 f_out_bw;
	u32 f_LO1_Step;
	u32 f_LO2_Step;
	u32 f_LO1_FracN_Avoid;
	u32 f_LO2_FracN_Avoid;
	u32 f_zif_bw;
	u32 f_min_LO_Separation;
	u32 maxH1;
	u32 maxH2;
	enum MT2063_DECT_Avoid_Type avoidDECT;
	u32 bSpurPresent;
	u32 bSpurAvoided;
	u32 nSpursFound;
	u32 nZones;
	struct MT2063_ExclZone_t *freeZones;
	struct MT2063_ExclZone_t *usedZones;
	struct MT2063_ExclZone_t MT2063_ExclZones[MT2063_MAX_ZONES];
};

/*
120 121
 * Parameter for function MT2063_SetPowerMask that specifies the power down
 * of various sections of the MT2063.
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
 */
enum MT2063_Mask_Bits {
	MT2063_REG_SD = 0x0040,		/* Shutdown regulator                 */
	MT2063_SRO_SD = 0x0020,		/* Shutdown SRO                       */
	MT2063_AFC_SD = 0x0010,		/* Shutdown AFC A/D                   */
	MT2063_PD_SD = 0x0002,		/* Enable power detector shutdown     */
	MT2063_PDADC_SD = 0x0001,	/* Enable power detector A/D shutdown */
	MT2063_VCO_SD = 0x8000,		/* Enable VCO shutdown                */
	MT2063_LTX_SD = 0x4000,		/* Enable LTX shutdown                */
	MT2063_LT1_SD = 0x2000,		/* Enable LT1 shutdown                */
	MT2063_LNA_SD = 0x1000,		/* Enable LNA shutdown                */
	MT2063_UPC_SD = 0x0800,		/* Enable upconverter shutdown        */
	MT2063_DNC_SD = 0x0400,		/* Enable downconverter shutdown      */
	MT2063_VGA_SD = 0x0200,		/* Enable VGA shutdown                */
	MT2063_AMP_SD = 0x0100,		/* Enable AMP shutdown                */
	MT2063_ALL_SD = 0xFF73,		/* All shutdown bits for this tuner   */
	MT2063_NONE_SD = 0x0000		/* No shutdown bits                   */
};

/*
 *  Possible values for MT2063_DNC_OUTPUT
 */
enum MT2063_DNC_Output_Enable {
	MT2063_DNC_NONE = 0,
	MT2063_DNC_1,
	MT2063_DNC_2,
	MT2063_DNC_BOTH
};

/*
152 153 154
 *  Two-wire serial bus subaddresses of the tuner registers.
 *  Also known as the tuner's register addresses.
 */
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
enum MT2063_Register_Offsets {
	MT2063_REG_PART_REV = 0,	/*  0x00: Part/Rev Code         */
	MT2063_REG_LO1CQ_1,		/*  0x01: LO1C Queued Byte 1    */
	MT2063_REG_LO1CQ_2,		/*  0x02: LO1C Queued Byte 2    */
	MT2063_REG_LO2CQ_1,		/*  0x03: LO2C Queued Byte 1    */
	MT2063_REG_LO2CQ_2,		/*  0x04: LO2C Queued Byte 2    */
	MT2063_REG_LO2CQ_3,		/*  0x05: LO2C Queued Byte 3    */
	MT2063_REG_RSVD_06,		/*  0x06: Reserved              */
	MT2063_REG_LO_STATUS,		/*  0x07: LO Status             */
	MT2063_REG_FIFFC,		/*  0x08: FIFF Center           */
	MT2063_REG_CLEARTUNE,		/*  0x09: ClearTune Filter      */
	MT2063_REG_ADC_OUT,		/*  0x0A: ADC_OUT               */
	MT2063_REG_LO1C_1,		/*  0x0B: LO1C Byte 1           */
	MT2063_REG_LO1C_2,		/*  0x0C: LO1C Byte 2           */
	MT2063_REG_LO2C_1,		/*  0x0D: LO2C Byte 1           */
	MT2063_REG_LO2C_2,		/*  0x0E: LO2C Byte 2           */
	MT2063_REG_LO2C_3,		/*  0x0F: LO2C Byte 3           */
	MT2063_REG_RSVD_10,		/*  0x10: Reserved              */
	MT2063_REG_PWR_1,		/*  0x11: PWR Byte 1            */
	MT2063_REG_PWR_2,		/*  0x12: PWR Byte 2            */
	MT2063_REG_TEMP_STATUS,		/*  0x13: Temp Status           */
	MT2063_REG_XO_STATUS,		/*  0x14: Crystal Status        */
	MT2063_REG_RF_STATUS,		/*  0x15: RF Attn Status        */
	MT2063_REG_FIF_STATUS,		/*  0x16: FIF Attn Status       */
	MT2063_REG_LNA_OV,		/*  0x17: LNA Attn Override     */
	MT2063_REG_RF_OV,		/*  0x18: RF Attn Override      */
	MT2063_REG_FIF_OV,		/*  0x19: FIF Attn Override     */
	MT2063_REG_LNA_TGT,		/*  0x1A: Reserved              */
	MT2063_REG_PD1_TGT,		/*  0x1B: Pwr Det 1 Target      */
	MT2063_REG_PD2_TGT,		/*  0x1C: Pwr Det 2 Target      */
	MT2063_REG_RSVD_1D,		/*  0x1D: Reserved              */
	MT2063_REG_RSVD_1E,		/*  0x1E: Reserved              */
	MT2063_REG_RSVD_1F,		/*  0x1F: Reserved              */
	MT2063_REG_RSVD_20,		/*  0x20: Reserved              */
	MT2063_REG_BYP_CTRL,		/*  0x21: Bypass Control        */
	MT2063_REG_RSVD_22,		/*  0x22: Reserved              */
	MT2063_REG_RSVD_23,		/*  0x23: Reserved              */
	MT2063_REG_RSVD_24,		/*  0x24: Reserved              */
	MT2063_REG_RSVD_25,		/*  0x25: Reserved              */
	MT2063_REG_RSVD_26,		/*  0x26: Reserved              */
	MT2063_REG_RSVD_27,		/*  0x27: Reserved              */
	MT2063_REG_FIFF_CTRL,		/*  0x28: FIFF Control          */
	MT2063_REG_FIFF_OFFSET,		/*  0x29: FIFF Offset           */
	MT2063_REG_CTUNE_CTRL,		/*  0x2A: Reserved              */
	MT2063_REG_CTUNE_OV,		/*  0x2B: Reserved              */
	MT2063_REG_CTRL_2C,		/*  0x2C: Reserved              */
	MT2063_REG_FIFF_CTRL2,		/*  0x2D: Fiff Control          */
	MT2063_REG_RSVD_2E,		/*  0x2E: Reserved              */
	MT2063_REG_DNC_GAIN,		/*  0x2F: DNC Control           */
	MT2063_REG_VGA_GAIN,		/*  0x30: VGA Gain Ctrl         */
	MT2063_REG_RSVD_31,		/*  0x31: Reserved              */
	MT2063_REG_TEMP_SEL,		/*  0x32: Temperature Selection */
	MT2063_REG_RSVD_33,		/*  0x33: Reserved              */
	MT2063_REG_RSVD_34,		/*  0x34: Reserved              */
	MT2063_REG_RSVD_35,		/*  0x35: Reserved              */
	MT2063_REG_RSVD_36,		/*  0x36: Reserved              */
	MT2063_REG_RSVD_37,		/*  0x37: Reserved              */
	MT2063_REG_RSVD_38,		/*  0x38: Reserved              */
	MT2063_REG_RSVD_39,		/*  0x39: Reserved              */
	MT2063_REG_RSVD_3A,		/*  0x3A: Reserved              */
	MT2063_REG_RSVD_3B,		/*  0x3B: Reserved              */
	MT2063_REG_RSVD_3C,		/*  0x3C: Reserved              */
	MT2063_REG_END_REGS
};

struct mt2063_state {
	struct i2c_adapter *i2c;

223 224
	bool init;

225 226 227 228 229 230 231 232
	const struct mt2063_config *config;
	struct dvb_tuner_ops ops;
	struct dvb_frontend *frontend;

	u32 frequency;
	u32 srate;
	u32 bandwidth;
	u32 reference;
233 234 235 236 237 238 239 240 241

	u32 tuner_id;
	struct MT2063_AvoidSpursData_t AS_Data;
	u32 f_IF1_actual;
	u32 rcvr_mode;
	u32 ctfilt_sw;
	u32 CTFiltMax[31];
	u32 num_regs;
	u8 reg[MT2063_REG_END_REGS];
242
};
243

244 245 246
/*
 * mt2063_write - Write data into the I2C bus
 */
247
static int mt2063_write(struct mt2063_state *state, u8 reg, u8 *data, u32 len)
248
{
249
	struct dvb_frontend *fe = state->frontend;
250
	int ret;
251
	u8 buf[60];
252 253 254 255 256 257 258
	struct i2c_msg msg = {
		.addr = state->config->tuner_address,
		.flags = 0,
		.buf = buf,
		.len = len + 1
	};

259 260
	dprintk(2, "\n");

261
	msg.buf[0] = reg;
262 263
	memcpy(msg.buf + 1, data, len);

264 265
	if (fe->ops.i2c_gate_ctrl)
		fe->ops.i2c_gate_ctrl(fe, 1);
266
	ret = i2c_transfer(state->i2c, &msg, 1);
267 268
	if (fe->ops.i2c_gate_ctrl)
		fe->ops.i2c_gate_ctrl(fe, 0);
269 270

	if (ret < 0)
271
		printk(KERN_ERR "%s error ret=%d\n", __func__, ret);
272 273 274 275

	return ret;
}

276 277 278
/*
 * mt2063_write - Write register data into the I2C bus, caching the value
 */
279
static int mt2063_setreg(struct mt2063_state *state, u8 reg, u8 val)
280
{
281
	int status;
282

283 284
	dprintk(2, "\n");

285 286 287 288 289 290 291 292 293 294 295 296
	if (reg >= MT2063_REG_END_REGS)
		return -ERANGE;

	status = mt2063_write(state, reg, &val, 1);
	if (status < 0)
		return status;

	state->reg[reg] = val;

	return 0;
}

297 298 299
/*
 * mt2063_read - Read data from the I2C bus
 */
300
static int mt2063_read(struct mt2063_state *state,
301
			   u8 subAddress, u8 *pData, u32 cnt)
302
{
303
	int status = 0;	/* Status to be returned        */
304 305 306
	struct dvb_frontend *fe = state->frontend;
	u32 i = 0;

307
	dprintk(2, "addr 0x%02x, cnt %d\n", subAddress, cnt);
308

309 310
	if (fe->ops.i2c_gate_ctrl)
		fe->ops.i2c_gate_ctrl(fe, 1);
311 312

	for (i = 0; i < cnt; i++) {
313 314 315 316
		u8 b0[] = { subAddress + i };
		struct i2c_msg msg[] = {
			{
				.addr = state->config->tuner_address,
317
				.flags = 0,
318 319 320 321 322
				.buf = b0,
				.len = 1
			}, {
				.addr = state->config->tuner_address,
				.flags = I2C_M_RD,
323
				.buf = pData + i,
324 325 326 327
				.len = 1
			}
		};

328 329 330 331
		status = i2c_transfer(state->i2c, msg, 2);
		dprintk(2, "addr 0x%02x, ret = %d, val = 0x%02x\n",
			   subAddress + i, status, *(pData + i));
		if (status < 0)
332 333
			break;
	}
334 335 336
	if (fe->ops.i2c_gate_ctrl)
		fe->ops.i2c_gate_ctrl(fe, 0);

337 338 339 340
	if (status < 0)
		printk(KERN_ERR "Can't read from address 0x%02x,\n",
		       subAddress + i);

341
	return status;
342 343
}

344 345 346
/*
 * FIXME: Is this really needed?
 */
347
static int MT2063_Sleep(struct dvb_frontend *fe)
348 349
{
	/*
350
	 *  ToDo:  Add code here to implement a OS blocking
351
	 */
352
	msleep(100);
353 354

	return 0;
355 356
}

357 358 359
/*
 * Microtune spur avoidance
 */
360 361 362 363 364 365

/*  Implement ceiling, floor functions.  */
#define ceil(n, d) (((n) < 0) ? (-((-(n))/(d))) : (n)/(d) + ((n)%(d) != 0))
#define floor(n, d) (((n) < 0) ? (-((-(n))/(d))) - ((n)%(d) != 0) : (n)/(d))

struct MT2063_FIFZone_t {
366 367
	s32 min_;
	s32 max_;
368 369 370 371 372 373 374
};

static struct MT2063_ExclZone_t *InsertNode(struct MT2063_AvoidSpursData_t
					    *pAS_Info,
					    struct MT2063_ExclZone_t *pPrevNode)
{
	struct MT2063_ExclZone_t *pNode;
375 376 377

	dprintk(2, "\n");

378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
	/*  Check for a node in the free list  */
	if (pAS_Info->freeZones != NULL) {
		/*  Use one from the free list  */
		pNode = pAS_Info->freeZones;
		pAS_Info->freeZones = pNode->next_;
	} else {
		/*  Grab a node from the array  */
		pNode = &pAS_Info->MT2063_ExclZones[pAS_Info->nZones];
	}

	if (pPrevNode != NULL) {
		pNode->next_ = pPrevNode->next_;
		pPrevNode->next_ = pNode;
	} else {		/*  insert at the beginning of the list  */

		pNode->next_ = pAS_Info->usedZones;
		pAS_Info->usedZones = pNode;
	}

	pAS_Info->nZones++;
	return pNode;
}

static struct MT2063_ExclZone_t *RemoveNode(struct MT2063_AvoidSpursData_t
					    *pAS_Info,
					    struct MT2063_ExclZone_t *pPrevNode,
					    struct MT2063_ExclZone_t
					    *pNodeToRemove)
{
	struct MT2063_ExclZone_t *pNext = pNodeToRemove->next_;

409 410
	dprintk(2, "\n");

411 412 413 414 415 416 417 418 419 420 421 422 423 424
	/*  Make previous node point to the subsequent node  */
	if (pPrevNode != NULL)
		pPrevNode->next_ = pNext;

	/*  Add pNodeToRemove to the beginning of the freeZones  */
	pNodeToRemove->next_ = pAS_Info->freeZones;
	pAS_Info->freeZones = pNodeToRemove;

	/*  Decrement node count  */
	pAS_Info->nZones--;

	return pNext;
}

425 426 427 428 429 430 431 432
/*
 * MT_AddExclZone()
 *
 * Add (and merge) an exclusion zone into the list.
 * If the range (f_min, f_max) is totally outside the
 * 1st IF BW, ignore the entry.
 * If the range (f_min, f_max) is negative, ignore the entry.
 */
433
static void MT2063_AddExclZone(struct MT2063_AvoidSpursData_t *pAS_Info,
434
			       u32 f_min, u32 f_max)
435 436 437 438 439
{
	struct MT2063_ExclZone_t *pNode = pAS_Info->usedZones;
	struct MT2063_ExclZone_t *pPrev = NULL;
	struct MT2063_ExclZone_t *pNext = NULL;

440 441
	dprintk(2, "\n");

442 443 444 445 446
	/*  Check to see if this overlaps the 1st IF filter  */
	if ((f_max > (pAS_Info->f_if1_Center - (pAS_Info->f_if1_bw / 2)))
	    && (f_min < (pAS_Info->f_if1_Center + (pAS_Info->f_if1_bw / 2)))
	    && (f_min < f_max)) {
		/*
447 448 449 450 451
		 *                1        2         3      4       5        6
		 *
		 *   New entry:  |---|    |--|      |--|    |-|    |---|    |--|
		 *                or       or        or     or      or
		 *   Existing:  |--|      |--|      |--|    |---|  |-|      |--|
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
		 */

		/*  Check for our place in the list  */
		while ((pNode != NULL) && (pNode->max_ < f_min)) {
			pPrev = pNode;
			pNode = pNode->next_;
		}

		if ((pNode != NULL) && (pNode->min_ < f_max)) {
			/*  Combine me with pNode  */
			if (f_min < pNode->min_)
				pNode->min_ = f_min;
			if (f_max > pNode->max_)
				pNode->max_ = f_max;
		} else {
			pNode = InsertNode(pAS_Info, pPrev);
			pNode->min_ = f_min;
			pNode->max_ = f_max;
		}

		/*  Look for merging possibilities  */
		pNext = pNode->next_;
		while ((pNext != NULL) && (pNext->min_ < pNode->max_)) {
			if (pNext->max_ > pNode->max_)
				pNode->max_ = pNext->max_;
477 478
			/*  Remove pNext, return ptr to pNext->next  */
			pNext = RemoveNode(pAS_Info, pNode, pNext);
479 480 481 482
		}
	}
}

483
/*
484 485 486
 *  Reset all exclusion zones.
 *  Add zones to protect the PLL FracN regions near zero
 */
487 488 489 490
static void MT2063_ResetExclZones(struct MT2063_AvoidSpursData_t *pAS_Info)
{
	u32 center;

491 492
	dprintk(2, "\n");

493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
	pAS_Info->nZones = 0;	/*  this clears the used list  */
	pAS_Info->usedZones = NULL;	/*  reset ptr                  */
	pAS_Info->freeZones = NULL;	/*  reset ptr                  */

	center =
	    pAS_Info->f_ref *
	    ((pAS_Info->f_if1_Center - pAS_Info->f_if1_bw / 2 +
	      pAS_Info->f_in) / pAS_Info->f_ref) - pAS_Info->f_in;
	while (center <
	       pAS_Info->f_if1_Center + pAS_Info->f_if1_bw / 2 +
	       pAS_Info->f_LO1_FracN_Avoid) {
		/*  Exclude LO1 FracN  */
		MT2063_AddExclZone(pAS_Info,
				   center - pAS_Info->f_LO1_FracN_Avoid,
				   center - 1);
		MT2063_AddExclZone(pAS_Info, center + 1,
				   center + pAS_Info->f_LO1_FracN_Avoid);
		center += pAS_Info->f_ref;
	}

	center =
	    pAS_Info->f_ref *
	    ((pAS_Info->f_if1_Center - pAS_Info->f_if1_bw / 2 -
	      pAS_Info->f_out) / pAS_Info->f_ref) + pAS_Info->f_out;
	while (center <
	       pAS_Info->f_if1_Center + pAS_Info->f_if1_bw / 2 +
	       pAS_Info->f_LO2_FracN_Avoid) {
		/*  Exclude LO2 FracN  */
		MT2063_AddExclZone(pAS_Info,
				   center - pAS_Info->f_LO2_FracN_Avoid,
				   center - 1);
		MT2063_AddExclZone(pAS_Info, center + 1,
				   center + pAS_Info->f_LO2_FracN_Avoid);
		center += pAS_Info->f_ref;
	}

	if (MT2063_EXCLUDE_US_DECT_FREQUENCIES(pAS_Info->avoidDECT)) {
		/*  Exclude LO1 values that conflict with DECT channels */
		MT2063_AddExclZone(pAS_Info, 1920836000 - pAS_Info->f_in, 1922236000 - pAS_Info->f_in);	/* Ctr = 1921.536 */
		MT2063_AddExclZone(pAS_Info, 1922564000 - pAS_Info->f_in, 1923964000 - pAS_Info->f_in);	/* Ctr = 1923.264 */
		MT2063_AddExclZone(pAS_Info, 1924292000 - pAS_Info->f_in, 1925692000 - pAS_Info->f_in);	/* Ctr = 1924.992 */
		MT2063_AddExclZone(pAS_Info, 1926020000 - pAS_Info->f_in, 1927420000 - pAS_Info->f_in);	/* Ctr = 1926.720 */
		MT2063_AddExclZone(pAS_Info, 1927748000 - pAS_Info->f_in, 1929148000 - pAS_Info->f_in);	/* Ctr = 1928.448 */
	}

	if (MT2063_EXCLUDE_EURO_DECT_FREQUENCIES(pAS_Info->avoidDECT)) {
		MT2063_AddExclZone(pAS_Info, 1896644000 - pAS_Info->f_in, 1898044000 - pAS_Info->f_in);	/* Ctr = 1897.344 */
		MT2063_AddExclZone(pAS_Info, 1894916000 - pAS_Info->f_in, 1896316000 - pAS_Info->f_in);	/* Ctr = 1895.616 */
		MT2063_AddExclZone(pAS_Info, 1893188000 - pAS_Info->f_in, 1894588000 - pAS_Info->f_in);	/* Ctr = 1893.888 */
		MT2063_AddExclZone(pAS_Info, 1891460000 - pAS_Info->f_in, 1892860000 - pAS_Info->f_in);	/* Ctr = 1892.16  */
		MT2063_AddExclZone(pAS_Info, 1889732000 - pAS_Info->f_in, 1891132000 - pAS_Info->f_in);	/* Ctr = 1890.432 */
		MT2063_AddExclZone(pAS_Info, 1888004000 - pAS_Info->f_in, 1889404000 - pAS_Info->f_in);	/* Ctr = 1888.704 */
		MT2063_AddExclZone(pAS_Info, 1886276000 - pAS_Info->f_in, 1887676000 - pAS_Info->f_in);	/* Ctr = 1886.976 */
		MT2063_AddExclZone(pAS_Info, 1884548000 - pAS_Info->f_in, 1885948000 - pAS_Info->f_in);	/* Ctr = 1885.248 */
		MT2063_AddExclZone(pAS_Info, 1882820000 - pAS_Info->f_in, 1884220000 - pAS_Info->f_in);	/* Ctr = 1883.52  */
		MT2063_AddExclZone(pAS_Info, 1881092000 - pAS_Info->f_in, 1882492000 - pAS_Info->f_in);	/* Ctr = 1881.792 */
	}
}

552 553 554 555 556 557
/*
 * MT_ChooseFirstIF - Choose the best available 1st IF
 *                    If f_Desired is not excluded, choose that first.
 *                    Otherwise, return the value closest to f_Center that is
 *                    not excluded
 */
558
static u32 MT2063_ChooseFirstIF(struct MT2063_AvoidSpursData_t *pAS_Info)
559 560
{
	/*
561 562 563 564 565 566
	 * Update "f_Desired" to be the nearest "combinational-multiple" of
	 * "f_LO1_Step".
	 * The resulting number, F_LO1 must be a multiple of f_LO1_Step.
	 * And F_LO1 is the arithmetic sum of f_in + f_Center.
	 * Neither f_in, nor f_Center must be a multiple of f_LO1_Step.
	 * However, the sum must be.
567
	 */
568
	const u32 f_Desired =
569 570 571 572
	    pAS_Info->f_LO1_Step *
	    ((pAS_Info->f_if1_Request + pAS_Info->f_in +
	      pAS_Info->f_LO1_Step / 2) / pAS_Info->f_LO1_Step) -
	    pAS_Info->f_in;
573
	const u32 f_Step =
574 575 576
	    (pAS_Info->f_LO1_Step >
	     pAS_Info->f_LO2_Step) ? pAS_Info->f_LO1_Step : pAS_Info->
	    f_LO2_Step;
577 578 579 580 581 582 583
	u32 f_Center;
	s32 i;
	s32 j = 0;
	u32 bDesiredExcluded = 0;
	u32 bZeroExcluded = 0;
	s32 tmpMin, tmpMax;
	s32 bestDiff;
584 585 586
	struct MT2063_ExclZone_t *pNode = pAS_Info->usedZones;
	struct MT2063_FIFZone_t zones[MT2063_MAX_ZONES];

587 588
	dprintk(2, "\n");

589 590 591
	if (pAS_Info->nZones == 0)
		return f_Desired;

592 593 594 595
	/*
	 *  f_Center needs to be an integer multiple of f_Step away
	 *  from f_Desired
	 */
596 597 598 599 600 601 602 603 604 605 606 607 608
	if (pAS_Info->f_if1_Center > f_Desired)
		f_Center =
		    f_Desired +
		    f_Step *
		    ((pAS_Info->f_if1_Center - f_Desired +
		      f_Step / 2) / f_Step);
	else
		f_Center =
		    f_Desired -
		    f_Step *
		    ((f_Desired - pAS_Info->f_if1_Center +
		      f_Step / 2) / f_Step);

609 610 611 612
	/*
	 * Take MT_ExclZones, center around f_Center and change the
	 * resolution to f_Step
	 */
613 614 615
	while (pNode != NULL) {
		/*  floor function  */
		tmpMin =
616
		    floor((s32) (pNode->min_ - f_Center), (s32) f_Step);
617 618 619

		/*  ceil function  */
		tmpMax =
620
		    ceil((s32) (pNode->max_ - f_Center), (s32) f_Step);
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640

		if ((pNode->min_ < f_Desired) && (pNode->max_ > f_Desired))
			bDesiredExcluded = 1;

		if ((tmpMin < 0) && (tmpMax > 0))
			bZeroExcluded = 1;

		/*  See if this zone overlaps the previous  */
		if ((j > 0) && (tmpMin < zones[j - 1].max_))
			zones[j - 1].max_ = tmpMax;
		else {
			/*  Add new zone  */
			zones[j].min_ = tmpMin;
			zones[j].max_ = tmpMax;
			j++;
		}
		pNode = pNode->next_;
	}

	/*
641
	 *  If the desired is okay, return with it
642 643 644 645 646
	 */
	if (bDesiredExcluded == 0)
		return f_Desired;

	/*
647
	 *  If the desired is excluded and the center is okay, return with it
648 649 650 651 652 653 654 655 656 657 658 659 660 661
	 */
	if (bZeroExcluded == 0)
		return f_Center;

	/*  Find the value closest to 0 (f_Center)  */
	bestDiff = zones[0].min_;
	for (i = 0; i < j; i++) {
		if (abs(zones[i].min_) < abs(bestDiff))
			bestDiff = zones[i].min_;
		if (abs(zones[i].max_) < abs(bestDiff))
			bestDiff = zones[i].max_;
	}

	if (bestDiff < 0)
662
		return f_Center - ((u32) (-bestDiff) * f_Step);
663 664 665 666

	return f_Center + (bestDiff * f_Step);
}

667 668 669 670 671 672 673 674
/**
 * gcd() - Uses Euclid's algorithm
 *
 * @u, @v:	Unsigned values whose GCD is desired.
 *
 * Returns THE greatest common divisor of u and v, if either value is 0,
 * the other value is returned as the result.
 */
675
static u32 MT2063_gcd(u32 u, u32 v)
676
{
677
	u32 r;
678 679 680 681 682 683 684 685 686 687

	while (v != 0) {
		r = u % v;
		u = v;
		v = r;
	}

	return u;
}

688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
/**
 * IsSpurInBand() - Checks to see if a spur will be present within the IF's
 *                  bandwidth. (fIFOut +/- fIFBW, -fIFOut +/- fIFBW)
 *
 *                    ma   mb                                     mc   md
 *                  <--+-+-+-------------------+-------------------+-+-+-->
 *                     |   ^                   0                   ^   |
 *                     ^   b=-fIFOut+fIFBW/2      -b=+fIFOut-fIFBW/2   ^
 *                     a=-fIFOut-fIFBW/2              -a=+fIFOut+fIFBW/2
 *
 *                  Note that some equations are doubled to prevent round-off
 *                  problems when calculating fIFBW/2
 *
 * @pAS_Info:	Avoid Spurs information block
 * @fm:		If spur, amount f_IF1 has to move negative
 * @fp:		If spur, amount f_IF1 has to move positive
 *
 *  Returns 1 if an LO spur would be present, otherwise 0.
 */
707
static u32 IsSpurInBand(struct MT2063_AvoidSpursData_t *pAS_Info,
708
			u32 *fm, u32 * fp)
709 710 711 712
{
	/*
	 **  Calculate LO frequency settings.
	 */
713 714 715 716 717 718
	u32 n, n0;
	const u32 f_LO1 = pAS_Info->f_LO1;
	const u32 f_LO2 = pAS_Info->f_LO2;
	const u32 d = pAS_Info->f_out + pAS_Info->f_out_bw / 2;
	const u32 c = d - pAS_Info->f_out_bw;
	const u32 f = pAS_Info->f_zif_bw / 2;
719
	const u32 f_Scale = (f_LO1 / (UINT_MAX / 2 / pAS_Info->maxH1)) + 1;
720 721 722 723
	s32 f_nsLO1, f_nsLO2;
	s32 f_Spur;
	u32 ma, mb, mc, md, me, mf;
	u32 lo_gcd, gd_Scale, gc_Scale, gf_Scale, hgds, hgfs, hgcs;
724 725 726

	dprintk(2, "\n");

727 728 729 730 731 732 733 734
	*fm = 0;

	/*
	 ** For each edge (d, c & f), calculate a scale, based on the gcd
	 ** of f_LO1, f_LO2 and the edge value.  Use the larger of this
	 ** gcd-based scale factor or f_Scale.
	 */
	lo_gcd = MT2063_gcd(f_LO1, f_LO2);
735
	gd_Scale = max((u32) MT2063_gcd(lo_gcd, d), f_Scale);
736
	hgds = gd_Scale / 2;
737
	gc_Scale = max((u32) MT2063_gcd(lo_gcd, c), f_Scale);
738
	hgcs = gc_Scale / 2;
739
	gf_Scale = max((u32) MT2063_gcd(lo_gcd, f), f_Scale);
740 741
	hgfs = gf_Scale / 2;

742
	n0 = DIV_ROUND_UP(f_LO2 - d, f_LO1 - f_LO2);
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762

	/*  Check out all multiples of LO1 from n0 to m_maxLOSpurHarmonic  */
	for (n = n0; n <= pAS_Info->maxH1; ++n) {
		md = (n * ((f_LO1 + hgds) / gd_Scale) -
		      ((d + hgds) / gd_Scale)) / ((f_LO2 + hgds) / gd_Scale);

		/*  If # fLO2 harmonics > m_maxLOSpurHarmonic, then no spurs present  */
		if (md >= pAS_Info->maxH1)
			break;

		ma = (n * ((f_LO1 + hgds) / gd_Scale) +
		      ((d + hgds) / gd_Scale)) / ((f_LO2 + hgds) / gd_Scale);

		/*  If no spurs between +/- (f_out + f_IFBW/2), then try next harmonic  */
		if (md == ma)
			continue;

		mc = (n * ((f_LO1 + hgcs) / gc_Scale) -
		      ((c + hgcs) / gc_Scale)) / ((f_LO2 + hgcs) / gc_Scale);
		if (mc != md) {
763 764
			f_nsLO1 = (s32) (n * (f_LO1 / gc_Scale));
			f_nsLO2 = (s32) (mc * (f_LO2 / gc_Scale));
765 766 767 768
			f_Spur =
			    (gc_Scale * (f_nsLO1 - f_nsLO2)) +
			    n * (f_LO1 % gc_Scale) - mc * (f_LO2 % gc_Scale);

769 770
			*fp = ((f_Spur - (s32) c) / (mc - n)) + 1;
			*fm = (((s32) d - f_Spur) / (mc - n)) + 1;
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
			return 1;
		}

		/*  Location of Zero-IF-spur to be checked  */
		me = (n * ((f_LO1 + hgfs) / gf_Scale) +
		      ((f + hgfs) / gf_Scale)) / ((f_LO2 + hgfs) / gf_Scale);
		mf = (n * ((f_LO1 + hgfs) / gf_Scale) -
		      ((f + hgfs) / gf_Scale)) / ((f_LO2 + hgfs) / gf_Scale);
		if (me != mf) {
			f_nsLO1 = n * (f_LO1 / gf_Scale);
			f_nsLO2 = me * (f_LO2 / gf_Scale);
			f_Spur =
			    (gf_Scale * (f_nsLO1 - f_nsLO2)) +
			    n * (f_LO1 % gf_Scale) - me * (f_LO2 % gf_Scale);

786 787
			*fp = ((f_Spur + (s32) f) / (me - n)) + 1;
			*fm = (((s32) f - f_Spur) / (me - n)) + 1;
788 789 790 791 792 793 794 795 796 797 798 799
			return 1;
		}

		mb = (n * ((f_LO1 + hgcs) / gc_Scale) +
		      ((c + hgcs) / gc_Scale)) / ((f_LO2 + hgcs) / gc_Scale);
		if (ma != mb) {
			f_nsLO1 = n * (f_LO1 / gc_Scale);
			f_nsLO2 = ma * (f_LO2 / gc_Scale);
			f_Spur =
			    (gc_Scale * (f_nsLO1 - f_nsLO2)) +
			    n * (f_LO1 % gc_Scale) - ma * (f_LO2 % gc_Scale);

800 801
			*fp = (((s32) d + f_Spur) / (ma - n)) + 1;
			*fm = (-(f_Spur + (s32) c) / (ma - n)) + 1;
802 803 804 805 806 807 808 809
			return 1;
		}
	}

	/*  No spurs found  */
	return 0;
}

810 811 812 813 814 815
/*
 * MT_AvoidSpurs() - Main entry point to avoid spurs.
 *                   Checks for existing spurs in present LO1, LO2 freqs
 *                   and if present, chooses spur-free LO1, LO2 combination
 *                   that tunes the same input/output frequencies.
 */
816
static u32 MT2063_AvoidSpurs(struct MT2063_AvoidSpursData_t *pAS_Info)
817
{
818
	int status = 0;
819
	u32 fm, fp;		/*  restricted range on LO's        */
820 821 822
	pAS_Info->bSpurAvoided = 0;
	pAS_Info->nSpursFound = 0;

823 824
	dprintk(2, "\n");

825
	if (pAS_Info->maxH1 == 0)
826
		return 0;
827 828

	/*
829 830 831 832 833 834 835 836 837
	 * Avoid LO Generated Spurs
	 *
	 * Make sure that have no LO-related spurs within the IF output
	 * bandwidth.
	 *
	 * If there is an LO spur in this band, start at the current IF1 frequency
	 * and work out until we find a spur-free frequency or run up against the
	 * 1st IF SAW band edge.  Use temporary copies of fLO1 and fLO2 so that they
	 * will be unchanged if a spur-free setting is not found.
838 839 840
	 */
	pAS_Info->bSpurPresent = IsSpurInBand(pAS_Info, &fm, &fp);
	if (pAS_Info->bSpurPresent) {
841 842 843 844 845
		u32 zfIF1 = pAS_Info->f_LO1 - pAS_Info->f_in;	/*  current attempt at a 1st IF  */
		u32 zfLO1 = pAS_Info->f_LO1;	/*  current attempt at an LO1 freq  */
		u32 zfLO2 = pAS_Info->f_LO2;	/*  current attempt at an LO2 freq  */
		u32 delta_IF1;
		u32 new_IF1;
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871

		/*
		 **  Spur was found, attempt to find a spur-free 1st IF
		 */
		do {
			pAS_Info->nSpursFound++;

			/*  Raise f_IF1_upper, if needed  */
			MT2063_AddExclZone(pAS_Info, zfIF1 - fm, zfIF1 + fp);

			/*  Choose next IF1 that is closest to f_IF1_CENTER              */
			new_IF1 = MT2063_ChooseFirstIF(pAS_Info);

			if (new_IF1 > zfIF1) {
				pAS_Info->f_LO1 += (new_IF1 - zfIF1);
				pAS_Info->f_LO2 += (new_IF1 - zfIF1);
			} else {
				pAS_Info->f_LO1 -= (zfIF1 - new_IF1);
				pAS_Info->f_LO2 -= (zfIF1 - new_IF1);
			}
			zfIF1 = new_IF1;

			if (zfIF1 > pAS_Info->f_if1_Center)
				delta_IF1 = zfIF1 - pAS_Info->f_if1_Center;
			else
				delta_IF1 = pAS_Info->f_if1_Center - zfIF1;
872 873

			pAS_Info->bSpurPresent = IsSpurInBand(pAS_Info, &fm, &fp);
874
		/*
875 876
		 *  Continue while the new 1st IF is still within the 1st IF bandwidth
		 *  and there is a spur in the band (again)
877
		 */
878
		} while ((2 * delta_IF1 + pAS_Info->f_out_bw <= pAS_Info->f_if1_bw) && pAS_Info->bSpurPresent);
879 880

		/*
881 882 883
		 * Use the LO-spur free values found.  If the search went all
		 * the way to the 1st IF band edge and always found spurs, just
		 * leave the original choice.  It's as "good" as any other.
884 885 886 887 888 889 890 891 892 893 894 895 896
		 */
		if (pAS_Info->bSpurPresent == 1) {
			status |= MT2063_SPUR_PRESENT_ERR;
			pAS_Info->f_LO1 = zfLO1;
			pAS_Info->f_LO2 = zfLO2;
		} else
			pAS_Info->bSpurAvoided = 1;
	}

	status |=
	    ((pAS_Info->
	      nSpursFound << MT2063_SPUR_SHIFT) & MT2063_SPUR_CNT_MASK);

897
	return status;
898 899 900
}

/*
901 902
 * Constants used by the tuning algorithm
 */
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
#define MT2063_REF_FREQ          (16000000UL)	/* Reference oscillator Frequency (in Hz) */
#define MT2063_IF1_BW            (22000000UL)	/* The IF1 filter bandwidth (in Hz) */
#define MT2063_TUNE_STEP_SIZE       (50000UL)	/* Tune in steps of 50 kHz */
#define MT2063_SPUR_STEP_HZ        (250000UL)	/* Step size (in Hz) to move IF1 when avoiding spurs */
#define MT2063_ZIF_BW             (2000000UL)	/* Zero-IF spur-free bandwidth (in Hz) */
#define MT2063_MAX_HARMONICS_1         (15UL)	/* Highest intra-tuner LO Spur Harmonic to be avoided */
#define MT2063_MAX_HARMONICS_2          (5UL)	/* Highest inter-tuner LO Spur Harmonic to be avoided */
#define MT2063_MIN_LO_SEP         (1000000UL)	/* Minimum inter-tuner LO frequency separation */
#define MT2063_LO1_FRACN_AVOID          (0UL)	/* LO1 FracN numerator avoid region (in Hz) */
#define MT2063_LO2_FRACN_AVOID     (199999UL)	/* LO2 FracN numerator avoid region (in Hz) */
#define MT2063_MIN_FIN_FREQ      (44000000UL)	/* Minimum input frequency (in Hz) */
#define MT2063_MAX_FIN_FREQ    (1100000000UL)	/* Maximum input frequency (in Hz) */
#define MT2063_MIN_FOUT_FREQ     (36000000UL)	/* Minimum output frequency (in Hz) */
#define MT2063_MAX_FOUT_FREQ     (57000000UL)	/* Maximum output frequency (in Hz) */
#define MT2063_MIN_DNC_FREQ    (1293000000UL)	/* Minimum LO2 frequency (in Hz) */
#define MT2063_MAX_DNC_FREQ    (1614000000UL)	/* Maximum LO2 frequency (in Hz) */
#define MT2063_MIN_UPC_FREQ    (1396000000UL)	/* Minimum LO1 frequency (in Hz) */
#define MT2063_MAX_UPC_FREQ    (2750000000UL)	/* Maximum LO1 frequency (in Hz) */

/*
923 924
 *  Define the supported Part/Rev codes for the MT2063
 */
925 926 927 928 929
#define MT2063_B0       (0x9B)
#define MT2063_B1       (0x9C)
#define MT2063_B2       (0x9D)
#define MT2063_B3       (0x9E)

930 931 932 933 934 935 936
/**
 * mt2063_lockStatus - Checks to see if LO1 and LO2 are locked
 *
 * @state:	struct mt2063_state pointer
 *
 * This function returns 0, if no lock, 1 if locked and a value < 1 if error
 */
937
static int mt2063_lockStatus(struct mt2063_state *state)
938
{
939 940 941 942 943
	const u32 nMaxWait = 100;	/*  wait a maximum of 100 msec   */
	const u32 nPollRate = 2;	/*  poll status bits every 2 ms */
	const u32 nMaxLoops = nMaxWait / nPollRate;
	const u8 LO1LK = 0x80;
	u8 LO2LK = 0x08;
944
	int status;
945
	u32 nDelays = 0;
946

947 948
	dprintk(2, "\n");

949
	/*  LO2 Lock bit was in a different place for B0 version  */
950
	if (state->tuner_id == MT2063_B0)
951 952 953
		LO2LK = 0x40;

	do {
954 955
		status = mt2063_read(state, MT2063_REG_LO_STATUS,
				     &state->reg[MT2063_REG_LO_STATUS], 1);
956

957
		if (status < 0)
958
			return status;
959

960
		if ((state->reg[MT2063_REG_LO_STATUS] & (LO1LK | LO2LK)) ==
961
		    (LO1LK | LO2LK)) {
962
			return TUNER_STATUS_LOCKED | TUNER_STATUS_STEREO;
963
		}
964
		msleep(nPollRate);	/*  Wait between retries  */
965
	} while (++nDelays < nMaxLoops);
966

967 968 969 970
	/*
	 * Got no lock or partial lock
	 */
	return 0;
971 972
}

973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
/*
 *  Constants for setting receiver modes.
 *  (6 modes defined at this time, enumerated by mt2063_delivery_sys)
 *  (DNC1GC & DNC2GC are the values, which are used, when the specific
 *   DNC Output is selected, the other is always off)
 *
 *                enum mt2063_delivery_sys
 * -------------+----------------------------------------------
 * Mode 0 :     | MT2063_CABLE_QAM
 * Mode 1 :     | MT2063_CABLE_ANALOG
 * Mode 2 :     | MT2063_OFFAIR_COFDM
 * Mode 3 :     | MT2063_OFFAIR_COFDM_SAWLESS
 * Mode 4 :     | MT2063_OFFAIR_ANALOG
 * Mode 5 :     | MT2063_OFFAIR_8VSB
 * --------------+----------------------------------------------
 *
 *                |<----------   Mode  -------------->|
 *    Reg Field   |  0  |  1  |  2  |  3  |  4  |  5  |
 *    ------------+-----+-----+-----+-----+-----+-----+
 *    RFAGCen     | OFF | OFF | OFF | OFF | OFF | OFF
 *    LNARin      |   0 |   0 |   3 |   3 |  3  |  3
 *    FIFFQen     |   1 |   1 |   1 |   1 |  1  |  1
 *    FIFFq       |   0 |   0 |   0 |   0 |  0  |  0
 *    DNC1gc      |   0 |   0 |   0 |   0 |  0  |  0
 *    DNC2gc      |   0 |   0 |   0 |   0 |  0  |  0
 *    GCU Auto    |   1 |   1 |   1 |   1 |  1  |  1
 *    LNA max Atn |  31 |  31 |  31 |  31 | 31  | 31
 *    LNA Target  |  44 |  43 |  43 |  43 | 43  | 43
 *    ign  RF Ovl |   0 |   0 |   0 |   0 |  0  |  0
 *    RF  max Atn |  31 |  31 |  31 |  31 | 31  | 31
 *    PD1 Target  |  36 |  36 |  38 |  38 | 36  | 38
 *    ign FIF Ovl |   0 |   0 |   0 |   0 |  0  |  0
 *    FIF max Atn |   5 |   5 |   5 |   5 |  5  |  5
 *    PD2 Target  |  40 |  33 |  42 |  42 | 33  | 42
 */

enum mt2063_delivery_sys {
1010 1011 1012 1013 1014 1015
	MT2063_CABLE_QAM = 0,
	MT2063_CABLE_ANALOG,
	MT2063_OFFAIR_COFDM,
	MT2063_OFFAIR_COFDM_SAWLESS,
	MT2063_OFFAIR_ANALOG,
	MT2063_OFFAIR_8VSB,
1016 1017 1018
	MT2063_NUM_RCVR_MODES
};

1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
static const char *mt2063_mode_name[] = {
	[MT2063_CABLE_QAM]		= "digital cable",
	[MT2063_CABLE_ANALOG]		= "analog cable",
	[MT2063_OFFAIR_COFDM]		= "digital offair",
	[MT2063_OFFAIR_COFDM_SAWLESS]	= "digital offair without SAW",
	[MT2063_OFFAIR_ANALOG]		= "analog offair",
	[MT2063_OFFAIR_8VSB]		= "analog offair 8vsb",
};

static const u8 RFAGCEN[]	= {  0,  0,  0,  0,  0,  0 };
static const u8 LNARIN[]	= {  0,  0,  3,  3,  3,  3 };
static const u8 FIFFQEN[]	= {  1,  1,  1,  1,  1,  1 };
static const u8 FIFFQ[]		= {  0,  0,  0,  0,  0,  0 };
static const u8 DNC1GC[]	= {  0,  0,  0,  0,  0,  0 };
static const u8 DNC2GC[]	= {  0,  0,  0,  0,  0,  0 };
static const u8 ACLNAMAX[]	= { 31, 31, 31, 31, 31, 31 };
static const u8 LNATGT[]	= { 44, 43, 43, 43, 43, 43 };
static const u8 RFOVDIS[]	= {  0,  0,  0,  0,  0,  0 };
static const u8 ACRFMAX[]	= { 31, 31, 31, 31, 31, 31 };
static const u8 PD1TGT[]	= { 36, 36, 38, 38, 36, 38 };
static const u8 FIFOVDIS[]	= {  0,  0,  0,  0,  0,  0 };
static const u8 ACFIFMAX[]	= { 29, 29, 29, 29, 29, 29 };
static const u8 PD2TGT[]	= { 40, 33, 38, 42, 30, 38 };
1042

1043 1044 1045 1046
/*
 * mt2063_set_dnc_output_enable()
 */
static u32 mt2063_get_dnc_output_enable(struct mt2063_state *state,
1047
					enum MT2063_DNC_Output_Enable *pValue)
1048
{
1049 1050
	dprintk(2, "\n");

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
	if ((state->reg[MT2063_REG_DNC_GAIN] & 0x03) == 0x03) {	/* if DNC1 is off */
		if ((state->reg[MT2063_REG_VGA_GAIN] & 0x03) == 0x03)	/* if DNC2 is off */
			*pValue = MT2063_DNC_NONE;
		else
			*pValue = MT2063_DNC_2;
	} else {	/* DNC1 is on */
		if ((state->reg[MT2063_REG_VGA_GAIN] & 0x03) == 0x03)	/* if DNC2 is off */
			*pValue = MT2063_DNC_1;
		else
			*pValue = MT2063_DNC_BOTH;
	}
	return 0;
}
1064

1065 1066 1067 1068
/*
 * mt2063_set_dnc_output_enable()
 */
static u32 mt2063_set_dnc_output_enable(struct mt2063_state *state,
1069
					enum MT2063_DNC_Output_Enable nValue)
1070
{
1071
	int status = 0;	/* Status to be returned        */
1072
	u8 val = 0;
1073

1074 1075
	dprintk(2, "\n");

1076 1077 1078
	/* selects, which DNC output is used */
	switch (nValue) {
	case MT2063_DNC_NONE:
1079 1080 1081 1082 1083 1084 1085
		val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | 0x03;	/* Set DNC1GC=3 */
		if (state->reg[MT2063_REG_DNC_GAIN] !=
		    val)
			status |=
			    mt2063_setreg(state,
					  MT2063_REG_DNC_GAIN,
					  val);
1086

1087 1088 1089 1090 1091 1092 1093
		val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | 0x03;	/* Set DNC2GC=3 */
		if (state->reg[MT2063_REG_VGA_GAIN] !=
		    val)
			status |=
			    mt2063_setreg(state,
					  MT2063_REG_VGA_GAIN,
					  val);
1094

1095 1096 1097 1098 1099 1100 1101
		val = (state->reg[MT2063_REG_RSVD_20] & ~0x40);	/* Set PD2MUX=0 */
		if (state->reg[MT2063_REG_RSVD_20] !=
		    val)
			status |=
			    mt2063_setreg(state,
					  MT2063_REG_RSVD_20,
					  val);
1102

1103
		break;
1104
	case MT2063_DNC_1:
1105 1106 1107 1108 1109 1110 1111
		val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | (DNC1GC[state->rcvr_mode] & 0x03);	/* Set DNC1GC=x */
		if (state->reg[MT2063_REG_DNC_GAIN] !=
		    val)
			status |=
			    mt2063_setreg(state,
					  MT2063_REG_DNC_GAIN,
					  val);
1112

1113 1114 1115 1116 1117 1118 1119
		val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | 0x03;	/* Set DNC2GC=3 */
		if (state->reg[MT2063_REG_VGA_GAIN] !=
		    val)
			status |=
			    mt2063_setreg(state,
					  MT2063_REG_VGA_GAIN,
					  val);
1120

1121 1122 1123 1124 1125 1126 1127
		val = (state->reg[MT2063_REG_RSVD_20] & ~0x40);	/* Set PD2MUX=0 */
		if (state->reg[MT2063_REG_RSVD_20] !=
		    val)
			status |=
			    mt2063_setreg(state,
					  MT2063_REG_RSVD_20,
					  val);
1128

1129
		break;
1130
	case MT2063_DNC_2:
1131 1132 1133 1134 1135 1136 1137
		val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | 0x03;	/* Set DNC1GC=3 */
		if (state->reg[MT2063_REG_DNC_GAIN] !=
		    val)
			status |=
			    mt2063_setreg(state,
					  MT2063_REG_DNC_GAIN,
					  val);
1138

1139 1140 1141 1142 1143 1144 1145
		val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | (DNC2GC[state->rcvr_mode] & 0x03);	/* Set DNC2GC=x */
		if (state->reg[MT2063_REG_VGA_GAIN] !=
		    val)
			status |=
			    mt2063_setreg(state,
					  MT2063_REG_VGA_GAIN,
					  val);
1146

1147 1148 1149 1150 1151 1152 1153
		val = (state->reg[MT2063_REG_RSVD_20] | 0x40);	/* Set PD2MUX=1 */
		if (state->reg[MT2063_REG_RSVD_20] !=
		    val)
			status |=
			    mt2063_setreg(state,
					  MT2063_REG_RSVD_20,
					  val);
1154

1155
		break;
1156
	case MT2063_DNC_BOTH:
1157 1158 1159 1160 1161 1162 1163
		val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | (DNC1GC[state->rcvr_mode] & 0x03);	/* Set DNC1GC=x */
		if (state->reg[MT2063_REG_DNC_GAIN] !=
		    val)
			status |=
			    mt2063_setreg(state,
					  MT2063_REG_DNC_GAIN,
					  val);
1164

1165 1166 1167 1168 1169 1170 1171
		val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | (DNC2GC[state->rcvr_mode] & 0x03);	/* Set DNC2GC=x */
		if (state->reg[MT2063_REG_VGA_GAIN] !=
		    val)
			status |=
			    mt2063_setreg(state,
					  MT2063_REG_VGA_GAIN,
					  val);
1172

1173 1174 1175 1176 1177 1178 1179
		val = (state->reg[MT2063_REG_RSVD_20] | 0x40);	/* Set PD2MUX=1 */
		if (state->reg[MT2063_REG_RSVD_20] !=
		    val)
			status |=
			    mt2063_setreg(state,
					  MT2063_REG_RSVD_20,
					  val);
1180

1181
		break;
1182
	default:
1183
		break;
1184
	}
1185

1186
	return status;
1187 1188
}

1189
/*
1190 1191 1192
 * MT2063_SetReceiverMode() - Set the MT2063 receiver mode, according with
 * 			      the selected enum mt2063_delivery_sys type.
 *
1193 1194 1195 1196
 *  (DNC1GC & DNC2GC are the values, which are used, when the specific
 *   DNC Output is selected, the other is always off)
 *
 * @state:	ptr to mt2063_state structure
1197
 * @Mode:	desired receiver delivery system
1198 1199 1200 1201
 *
 * Note: Register cache must be valid for it to work
 */

1202
static u32 MT2063_SetReceiverMode(struct mt2063_state *state,
1203
				  enum mt2063_delivery_sys Mode)
1204
{
1205
	int status = 0;	/* Status to be returned        */
1206 1207
	u8 val;
	u32 longval;
1208

1209 1210
	dprintk(2, "\n");

1211
	if (Mode >= MT2063_NUM_RCVR_MODES)
1212
		status = -ERANGE;
1213 1214

	/* RFAGCen */
1215
	if (status >= 0) {
1216
		val =
1217
		    (state->
1218
		     reg[MT2063_REG_PD1_TGT] & ~0x40) | (RFAGCEN[Mode]
1219 1220
								   ? 0x40 :
								   0x00);
1221
		if (state->reg[MT2063_REG_PD1_TGT] != val)
1222
			status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val);
1223 1224 1225
	}

	/* LNARin */
1226
	if (status >= 0) {
1227
		u8 val = (state->reg[MT2063_REG_CTRL_2C] & ~0x03) |
1228 1229
			 (LNARIN[Mode] & 0x03);
		if (state->reg[MT2063_REG_CTRL_2C] != val)
1230
			status |= mt2063_setreg(state, MT2063_REG_CTRL_2C, val);
1231 1232 1233
	}

	/* FIFFQEN and FIFFQ */
1234
	if (status >= 0) {
1235
		val =
1236
		    (state->
1237
		     reg[MT2063_REG_FIFF_CTRL2] & ~0xF0) |
1238
		    (FIFFQEN[Mode] << 7) | (FIFFQ[Mode] << 4);
1239
		if (state->reg[MT2063_REG_FIFF_CTRL2] != val) {
1240
			status |=
1241
			    mt2063_setreg(state, MT2063_REG_FIFF_CTRL2, val);
1242 1243
			/* trigger FIFF calibration, needed after changing FIFFQ */
			val =
1244
			    (state->reg[MT2063_REG_FIFF_CTRL] | 0x01);
1245
			status |=
1246
			    mt2063_setreg(state, MT2063_REG_FIFF_CTRL, val);
1247
			val =
1248
			    (state->
1249
			     reg[MT2063_REG_FIFF_CTRL] & ~0x01);
1250
			status |=
1251
			    mt2063_setreg(state, MT2063_REG_FIFF_CTRL, val);
1252 1253 1254 1255
		}
	}

	/* DNC1GC & DNC2GC */
1256 1257
	status |= mt2063_get_dnc_output_enable(state, &longval);
	status |= mt2063_set_dnc_output_enable(state, longval);
1258 1259

	/* acLNAmax */
1260
	if (status >= 0) {
1261
		u8 val = (state->reg[MT2063_REG_LNA_OV] & ~0x1F) |
1262 1263
			 (ACLNAMAX[Mode] & 0x1F);
		if (state->reg[MT2063_REG_LNA_OV] != val)
1264
			status |= mt2063_setreg(state, MT2063_REG_LNA_OV, val);
1265 1266 1267
	}

	/* LNATGT */
1268
	if (status >= 0) {
1269
		u8 val = (state->reg[MT2063_REG_LNA_TGT] & ~0x3F) |
1270 1271
			 (LNATGT[Mode] & 0x3F);
		if (state->reg[MT2063_REG_LNA_TGT] != val)
1272
			status |= mt2063_setreg(state, MT2063_REG_LNA_TGT, val);
1273 1274 1275
	}

	/* ACRF */
1276
	if (status >= 0) {
1277
		u8 val = (state->reg[MT2063_REG_RF_OV] & ~0x1F) |
1278
			 (ACRFMAX[Mode] & 0x1F);
1279
		if (state->reg[MT2063_REG_RF_OV] != val)
1280
			status |= mt2063_setreg(state, MT2063_REG_RF_OV, val);
1281 1282 1283
	}

	/* PD1TGT */
1284
	if (status >= 0) {
1285
		u8 val = (state->reg[MT2063_REG_PD1_TGT] & ~0x3F) |
1286 1287
			 (PD1TGT[Mode] & 0x3F);
		if (state->reg[MT2063_REG_PD1_TGT] != val)
1288
			status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val);
1289 1290 1291
	}

	/* FIFATN */
1292
	if (status >= 0) {
1293 1294 1295
		u8 val = ACFIFMAX[Mode];
		if (state->reg[MT2063_REG_PART_REV] != MT2063_B3 && val > 5)
			val = 5;
1296
		val = (state->reg[MT2063_REG_FIF_OV] & ~0x1F) |
1297
		      (val & 0x1F);
1298
		if (state->reg[MT2063_REG_FIF_OV] != val)
1299
			status |= mt2063_setreg(state, MT2063_REG_FIF_OV, val);
1300 1301 1302
	}

	/* PD2TGT */
1303
	if (status >= 0) {
1304
		u8 val = (state->reg[MT2063_REG_PD2_TGT] & ~0x3F) |
1305 1306
		    (PD2TGT[Mode] & 0x3F);
		if (state->reg[MT2063_REG_PD2_TGT] != val)
1307
			status |= mt2063_setreg(state, MT2063_REG_PD2_TGT, val);
1308 1309 1310
	}

	/* Ignore ATN Overload */
1311
	if (status >= 0) {
1312
		val = (state->reg[MT2063_REG_LNA_TGT] & ~0x80) |
1313 1314
		      (RFOVDIS[Mode] ? 0x80 : 0x00);
		if (state->reg[MT2063_REG_LNA_TGT] != val)
1315
			status |= mt2063_setreg(state, MT2063_REG_LNA_TGT, val);
1316 1317 1318
	}

	/* Ignore FIF Overload */
1319
	if (status >= 0) {
1320
		val = (state->reg[MT2063_REG_PD1_TGT] & ~0x80) |
1321 1322
		      (FIFOVDIS[Mode] ? 0x80 : 0x00);
		if (state->reg[MT2063_REG_PD1_TGT] != val)
1323
			status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val);
1324 1325
	}

1326
	if (status >= 0) {
1327
		state->rcvr_mode = Mode;
1328 1329 1330
		dprintk(1, "mt2063 mode changed to %s\n",
			mt2063_mode_name[state->rcvr_mode]);
	}
1331

1332
	return status;
1333 1334
}

1335 1336 1337 1338 1339 1340 1341 1342 1343
/*
 * MT2063_ClearPowerMaskBits () - Clears the power-down mask bits for various
 *				  sections of the MT2063
 *
 * @Bits:		Mask bits to be cleared.
 *
 * See definition of MT2063_Mask_Bits type for description
 * of each of the power bits.
 */
1344 1345
static u32 MT2063_ClearPowerMaskBits(struct mt2063_state *state,
				     enum MT2063_Mask_Bits Bits)
1346
{
1347
	int status = 0;
1348

1349
	dprintk(2, "\n");
1350 1351
	Bits = (enum MT2063_Mask_Bits)(Bits & MT2063_ALL_SD);	/* Only valid bits for this tuner */
	if ((Bits & 0xFF00) != 0) {
1352
		state->reg[MT2063_REG_PWR_2] &= ~(u8) (Bits >> 8);
1353
		status |=
1354
		    mt2063_write(state,
1355
				    MT2063_REG_PWR_2,
1356
				    &state->reg[MT2063_REG_PWR_2], 1);
1357 1358
	}
	if ((Bits & 0xFF) != 0) {
1359
		state->reg[MT2063_REG_PWR_1] &= ~(u8) (Bits & 0xFF);
1360
		status |=
1361
		    mt2063_write(state,
1362
				    MT2063_REG_PWR_1,
1363
				    &state->reg[MT2063_REG_PWR_1], 1);
1364 1365
	}

1366
	return status;
1367 1368
}

1369 1370 1371 1372 1373
/*
 * MT2063_SoftwareShutdown() - Enables or disables software shutdown function.
 *			       When Shutdown is 1, any section whose power
 *			       mask is set will be shutdown.
 */
1374
static u32 MT2063_SoftwareShutdown(struct mt2063_state *state, u8 Shutdown)
1375
{
1376
	int status;
1377

1378
	dprintk(2, "\n");
1379
	if (Shutdown == 1)
1380
		state->reg[MT2063_REG_PWR_1] |= 0x04;
1381
	else
1382
		state->reg[MT2063_REG_PWR_1] &= ~0x04;
1383

1384
	status = mt2063_write(state,
1385
			    MT2063_REG_PWR_1,
1386
			    &state->reg[MT2063_REG_PWR_1], 1);
1387 1388

	if (Shutdown != 1) {
1389 1390
		state->reg[MT2063_REG_BYP_CTRL] =
		    (state->reg[MT2063_REG_BYP_CTRL] & 0x9F) | 0x40;
1391
		status |=
1392
		    mt2063_write(state,
1393
				    MT2063_REG_BYP_CTRL,
1394
				    &state->reg[MT2063_REG_BYP_CTRL],
1395
				    1);
1396 1397
		state->reg[MT2063_REG_BYP_CTRL] =
		    (state->reg[MT2063_REG_BYP_CTRL] & 0x9F);
1398
		status |=
1399
		    mt2063_write(state,
1400
				    MT2063_REG_BYP_CTRL,
1401
				    &state->reg[MT2063_REG_BYP_CTRL],
1402
				    1);
1403 1404
	}

1405
	return status;
1406 1407
}

1408
static u32 MT2063_Round_fLO(u32 f_LO, u32 f_LO_Step, u32 f_ref)
1409 1410 1411 1412 1413
{
	return f_ref * (f_LO / f_ref)
	    + f_LO_Step * (((f_LO % f_ref) + (f_LO_Step / 2)) / f_LO_Step);
}

1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
/**
 * fLO_FractionalTerm() - Calculates the portion contributed by FracN / denom.
 *                        This function preserves maximum precision without
 *                        risk of overflow.  It accurately calculates
 *                        f_ref * num / denom to within 1 HZ with fixed math.
 *
 * @num :	Fractional portion of the multiplier
 * @denom:	denominator portion of the ratio
 * @f_Ref:	SRO frequency.
 *
 * This calculation handles f_ref as two separate 14-bit fields.
 * Therefore, a maximum value of 2^28-1 may safely be used for f_ref.
 * This is the genesis of the magic number "14" and the magic mask value of
 * 0x03FFF.
 *
 * This routine successfully handles denom values up to and including 2^18.
 *  Returns:        f_ref * num / denom
 */
1432
static u32 MT2063_fLO_FractionalTerm(u32 f_ref, u32 num, u32 denom)
1433
{
1434 1435 1436 1437
	u32 t1 = (f_ref >> 14) * num;
	u32 term1 = t1 / denom;
	u32 loss = t1 % denom;
	u32 term2 =
1438
	    (((f_ref & 0x00003FFF) * num + (loss << 14)) + (denom / 2)) / denom;
1439
	return (term1 << 14) + term2;
1440 1441
}

1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
/*
 * CalcLO1Mult()- Calculates Integer divider value and the numerator
 *                value for a FracN PLL.
 *
 *                This function assumes that the f_LO and f_Ref are
 *                evenly divisible by f_LO_Step.
 *
 * @Div:	OUTPUT: Whole number portion of the multiplier
 * @FracN:	OUTPUT: Fractional portion of the multiplier
 * @f_LO:	desired LO frequency.
 * @f_LO_Step:	Minimum step size for the LO (in Hz).
 * @f_Ref:	SRO frequency.
 * @f_Avoid:	Range of PLL frequencies to avoid near integer multiples
 *		of f_Ref (in Hz).
 *
 * Returns:        Recalculated LO frequency.
 */
1459 1460
static u32 MT2063_CalcLO1Mult(u32 *Div,
			      u32 *FracN,
1461 1462
			      u32 f_LO,
			      u32 f_LO_Step, u32 f_Ref)
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
{
	/*  Calculate the whole number portion of the divider */
	*Div = f_LO / f_Ref;

	/*  Calculate the numerator value (round to nearest f_LO_Step) */
	*FracN =
	    (64 * (((f_LO % f_Ref) + (f_LO_Step / 2)) / f_LO_Step) +
	     (f_Ref / f_LO_Step / 2)) / (f_Ref / f_LO_Step);

	return (f_Ref * (*Div)) + MT2063_fLO_FractionalTerm(f_Ref, *FracN, 64);
}

1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
/**
 * CalcLO2Mult() - Calculates Integer divider value and the numerator
 *                 value for a FracN PLL.
 *
 *                  This function assumes that the f_LO and f_Ref are
 *                  evenly divisible by f_LO_Step.
 *
 * @Div:	OUTPUT: Whole number portion of the multiplier
 * @FracN:	OUTPUT: Fractional portion of the multiplier
 * @f_LO:	desired LO frequency.
 * @f_LO_Step:	Minimum step size for the LO (in Hz).
 * @f_Ref:	SRO frequency.
 * @f_Avoid:	Range of PLL frequencies to avoid near
 *		integer multiples of f_Ref (in Hz).
 *
 * Returns: Recalculated LO frequency.
 */
1492 1493
static u32 MT2063_CalcLO2Mult(u32 *Div,
			      u32 *FracN,
1494 1495
			      u32 f_LO,
			      u32 f_LO_Step, u32 f_Ref)
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
{
	/*  Calculate the whole number portion of the divider */
	*Div = f_LO / f_Ref;

	/*  Calculate the numerator value (round to nearest f_LO_Step) */
	*FracN =
	    (8191 * (((f_LO % f_Ref) + (f_LO_Step / 2)) / f_LO_Step) +
	     (f_Ref / f_LO_Step / 2)) / (f_Ref / f_LO_Step);

	return (f_Ref * (*Div)) + MT2063_fLO_FractionalTerm(f_Ref, *FracN,
							    8191);
}

1509 1510 1511 1512 1513 1514 1515 1516 1517
/*
 * FindClearTuneFilter() - Calculate the corrrect ClearTune filter to be
 *			   used for a given input frequency.
 *
 * @state:	ptr to tuner data structure
 * @f_in:	RF input center frequency (in Hz).
 *
 * Returns: ClearTune filter number (0-31)
 */
1518
static u32 FindClearTuneFilter(struct mt2063_state *state, u32 f_in)
1519
{
1520 1521
	u32 RFBand;
	u32 idx;		/*  index loop                      */
1522 1523 1524 1525 1526 1527

	/*
	 **  Find RF Band setting
	 */
	RFBand = 31;		/*  def when f_in > all    */
	for (idx = 0; idx < 31; ++idx) {
1528
		if (state->CTFiltMax[idx] >= f_in) {
1529 1530 1531 1532
			RFBand = idx;
			break;
		}
	}
1533
	return RFBand;
1534 1535
}

1536 1537 1538
/*
 * MT2063_Tune() - Change the tuner's tuned frequency to RFin.
 */
1539
static u32 MT2063_Tune(struct mt2063_state *state, u32 f_in)
1540 1541
{				/* RF input center frequency   */

1542
	int status = 0;
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
	u32 LO1;		/*  1st LO register value           */
	u32 Num1;		/*  Numerator for LO1 reg. value    */
	u32 f_IF1;		/*  1st IF requested                */
	u32 LO2;		/*  2nd LO register value           */
	u32 Num2;		/*  Numerator for LO2 reg. value    */
	u32 ofLO1, ofLO2;	/*  last time's LO frequencies      */
	u8 fiffc = 0x80;	/*  FIFF center freq from tuner     */
	u32 fiffof;		/*  Offset from FIFF center freq    */
	const u8 LO1LK = 0x80;	/*  Mask for LO1 Lock bit           */
	u8 LO2LK = 0x08;	/*  Mask for LO2 Lock bit           */
	u8 val;
	u32 RFBand;
1555

1556
	dprintk(2, "\n");
1557 1558
	/*  Check the input and output frequency ranges                   */
	if ((f_in < MT2063_MIN_FIN_FREQ) || (f_in > MT2063_MAX_FIN_FREQ))
1559
		return -EINVAL;
1560

1561 1562
	if ((state->AS_Data.f_out < MT2063_MIN_FOUT_FREQ)
	    || (state->AS_Data.f_out > MT2063_MAX_FOUT_FREQ))
1563
		return -EINVAL;
1564 1565

	/*
1566
	 * Save original LO1 and LO2 register values
1567
	 */
1568
	ofLO1 = state->AS_Data.f_LO1;
1569
	ofLO2 = state->AS_Data.f_LO2; 
1570 1571

	/*
1572
	 * Find and set RF Band setting
1573
	 */
1574 1575 1576
	if (state->ctfilt_sw == 1) {
		val = (state->reg[MT2063_REG_CTUNE_CTRL] | 0x08);
		if (state->reg[MT2063_REG_CTUNE_CTRL] != val) {
1577
			status |=
1578
			    mt2063_setreg(state, MT2063_REG_CTUNE_CTRL, val);
1579
		}
1580 1581 1582 1583
		val = state->reg[MT2063_REG_CTUNE_OV];
		RFBand = FindClearTuneFilter(state, f_in);
		state->reg[MT2063_REG_CTUNE_OV] =
		    (u8) ((state->reg[MT2063_REG_CTUNE_OV] & ~0x1F)
1584
			      | RFBand);
1585
		if (state->reg[MT2063_REG_CTUNE_OV] != val) {
1586
			status |=
1587
			    mt2063_setreg(state, MT2063_REG_CTUNE_OV, val);
1588 1589 1590 1591
		}
	}

	/*
1592
	 * Read the FIFF Center Frequency from the tuner
1593
	 */
1594
	if (status >= 0) {
1595
		status |=
1596
		    mt2063_read(state,
1597
				   MT2063_REG_FIFFC,
1598 1599
				   &state->reg[MT2063_REG_FIFFC], 1);
		fiffc = state->reg[MT2063_REG_FIFFC];
1600 1601
	}
	/*
1602
	 * Assign in the requested values
1603
	 */
1604
	state->AS_Data.f_in = f_in;
1605
	/*  Request a 1st IF such that LO1 is on a step size */
1606 1607 1608 1609
	state->AS_Data.f_if1_Request =
	    MT2063_Round_fLO(state->AS_Data.f_if1_Request + f_in,
			     state->AS_Data.f_LO1_Step,
			     state->AS_Data.f_ref) - f_in;
1610 1611

	/*
1612 1613
	 * Calculate frequency settings.  f_IF1_FREQ + f_in is the
	 * desired LO1 frequency
1614
	 */
1615
	MT2063_ResetExclZones(&state->AS_Data);
1616

1617
	f_IF1 = MT2063_ChooseFirstIF(&state->AS_Data);
1618

1619 1620 1621
	state->AS_Data.f_LO1 =
	    MT2063_Round_fLO(f_IF1 + f_in, state->AS_Data.f_LO1_Step,
			     state->AS_Data.f_ref);
1622

1623 1624 1625
	state->AS_Data.f_LO2 =
	    MT2063_Round_fLO(state->AS_Data.f_LO1 - state->AS_Data.f_out - f_in,
			     state->AS_Data.f_LO2_Step, state->AS_Data.f_ref);
1626 1627

	/*
1628 1629
	 * Check for any LO spurs in the output bandwidth and adjust
	 * the LO settings to avoid them if needed
1630
	 */
1631
	status |= MT2063_AvoidSpurs(&state->AS_Data);
1632
	/*
1633 1634 1635
	 * MT_AvoidSpurs spurs may have changed the LO1 & LO2 values.
	 * Recalculate the LO frequencies and the values to be placed
	 * in the tuning registers.
1636
	 */
1637 1638 1639 1640 1641 1642 1643 1644 1645
	state->AS_Data.f_LO1 =
	    MT2063_CalcLO1Mult(&LO1, &Num1, state->AS_Data.f_LO1,
			       state->AS_Data.f_LO1_Step, state->AS_Data.f_ref);
	state->AS_Data.f_LO2 =
	    MT2063_Round_fLO(state->AS_Data.f_LO1 - state->AS_Data.f_out - f_in,
			     state->AS_Data.f_LO2_Step, state->AS_Data.f_ref);
	state->AS_Data.f_LO2 =
	    MT2063_CalcLO2Mult(&LO2, &Num2, state->AS_Data.f_LO2,
			       state->AS_Data.f_LO2_Step, state->AS_Data.f_ref);
1646 1647

	/*
1648
	 *  Check the upconverter and downconverter frequency ranges
1649
	 */
1650 1651
	if ((state->AS_Data.f_LO1 < MT2063_MIN_UPC_FREQ)
	    || (state->AS_Data.f_LO1 > MT2063_MAX_UPC_FREQ))
1652
		status |= MT2063_UPC_RANGE;
1653 1654
	if ((state->AS_Data.f_LO2 < MT2063_MIN_DNC_FREQ)
	    || (state->AS_Data.f_LO2 > MT2063_MAX_DNC_FREQ))
1655 1656
		status |= MT2063_DNC_RANGE;
	/*  LO2 Lock bit was in a different place for B0 version  */
1657
	if (state->tuner_id == MT2063_B0)
1658 1659 1660
		LO2LK = 0x40;

	/*
1661 1662
	 *  If we have the same LO frequencies and we're already locked,
	 *  then skip re-programming the LO registers.
1663
	 */
1664 1665 1666
	if ((ofLO1 != state->AS_Data.f_LO1)
	    || (ofLO2 != state->AS_Data.f_LO2)
	    || ((state->reg[MT2063_REG_LO_STATUS] & (LO1LK | LO2LK)) !=
1667 1668
		(LO1LK | LO2LK))) {
		/*
1669 1670 1671 1672 1673
		 * Calculate the FIFFOF register value
		 *
		 *           IF1_Actual
		 * FIFFOF = ------------ - 8 * FIFFC - 4992
		 *            f_ref/64
1674 1675
		 */
		fiffof =
1676 1677
		    (state->AS_Data.f_LO1 -
		     f_in) / (state->AS_Data.f_ref / 64) - 8 * (u32) fiffc -
1678 1679 1680 1681 1682
		    4992;
		if (fiffof > 0xFF)
			fiffof = 0xFF;

		/*
1683 1684
		 * Place all of the calculated values into the local tuner
		 * register fields.
1685
		 */
1686
		if (status >= 0) {
1687 1688 1689
			state->reg[MT2063_REG_LO1CQ_1] = (u8) (LO1 & 0xFF);	/* DIV1q */
			state->reg[MT2063_REG_LO1CQ_2] = (u8) (Num1 & 0x3F);	/* NUM1q */
			state->reg[MT2063_REG_LO2CQ_1] = (u8) (((LO2 & 0x7F) << 1)	/* DIV2q */
1690
								   |(Num2 >> 12));	/* NUM2q (hi) */
1691 1692
			state->reg[MT2063_REG_LO2CQ_2] = (u8) ((Num2 & 0x0FF0) >> 4);	/* NUM2q (mid) */
			state->reg[MT2063_REG_LO2CQ_3] = (u8) (0xE0 | (Num2 & 0x000F));	/* NUM2q (lo) */
1693 1694

			/*
1695 1696 1697
			 * Now write out the computed register values
			 * IMPORTANT: There is a required order for writing
			 *            (0x05 must follow all the others).
1698
			 */
1699
			status |= mt2063_write(state, MT2063_REG_LO1CQ_1, &state->reg[MT2063_REG_LO1CQ_1], 5);	/* 0x01 - 0x05 */
1700
			if (state->tuner_id == MT2063_B0) {
1701
				/* Re-write the one-shot bits to trigger the tune operation */
1702
				status |= mt2063_write(state, MT2063_REG_LO2CQ_3, &state->reg[MT2063_REG_LO2CQ_3], 1);	/* 0x05 */
1703 1704
			}
			/* Write out the FIFF offset only if it's changing */
1705
			if (state->reg[MT2063_REG_FIFF_OFFSET] !=
1706
			    (u8) fiffof) {
1707
				state->reg[MT2063_REG_FIFF_OFFSET] =
1708
				    (u8) fiffof;
1709
				status |=
1710
				    mt2063_write(state,
1711
						    MT2063_REG_FIFF_OFFSET,
1712
						    &state->
1713 1714 1715 1716 1717 1718
						    reg[MT2063_REG_FIFF_OFFSET],
						    1);
			}
		}

		/*
1719
		 * Check for LO's locking
1720 1721
		 */

1722 1723 1724 1725 1726 1727 1728 1729 1730
		if (status < 0)
			return status;

		status = mt2063_lockStatus(state);
		if (status < 0)
			return status;
		if (!status)
			return -EINVAL;		/* Couldn't lock */

1731
		/*
1732
		 * If we locked OK, assign calculated data to mt2063_state structure
1733
		 */
1734
		state->f_IF1_actual = state->AS_Data.f_LO1 - f_in;
1735 1736
	}

1737
	return status;
1738 1739
}

1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
static const u8 MT2063B0_defaults[] = {
	/* Reg,  Value */
	0x19, 0x05,
	0x1B, 0x1D,
	0x1C, 0x1F,
	0x1D, 0x0F,
	0x1E, 0x3F,
	0x1F, 0x0F,
	0x20, 0x3F,
	0x22, 0x21,
	0x23, 0x3F,
	0x24, 0x20,
	0x25, 0x3F,
	0x27, 0xEE,
	0x2C, 0x27,	/*  bit at 0x20 is cleared below  */
	0x30, 0x03,
	0x2C, 0x07,	/*  bit at 0x20 is cleared here   */
	0x2D, 0x87,
	0x2E, 0xAA,
	0x28, 0xE1,	/*  Set the FIFCrst bit here      */
	0x28, 0xE0,	/*  Clear the FIFCrst bit here    */
	0x00
};

/* writing 0x05 0xf0 sw-resets all registers, so we write only needed changes */
static const u8 MT2063B1_defaults[] = {
	/* Reg,  Value */
	0x05, 0xF0,
	0x11, 0x10,	/* New Enable AFCsd */
	0x19, 0x05,
	0x1A, 0x6C,
	0x1B, 0x24,
	0x1C, 0x28,
	0x1D, 0x8F,
	0x1E, 0x14,
	0x1F, 0x8F,
	0x20, 0x57,
	0x22, 0x21,	/* New - ver 1.03 */
	0x23, 0x3C,	/* New - ver 1.10 */
	0x24, 0x20,	/* New - ver 1.03 */
	0x2C, 0x24,	/*  bit at 0x20 is cleared below  */
	0x2D, 0x87,	/*  FIFFQ=0  */
	0x2F, 0xF3,
	0x30, 0x0C,	/* New - ver 1.11 */
	0x31, 0x1B,	/* New - ver 1.11 */
	0x2C, 0x04,	/*  bit at 0x20 is cleared here  */
	0x28, 0xE1,	/*  Set the FIFCrst bit here      */
	0x28, 0xE0,	/*  Clear the FIFCrst bit here    */
	0x00
};

/* writing 0x05 0xf0 sw-resets all registers, so we write only needed changes */
static const u8 MT2063B3_defaults[] = {
	/* Reg,  Value */
	0x05, 0xF0,
	0x19, 0x3D,
	0x2C, 0x24,	/*  bit at 0x20 is cleared below  */
	0x2C, 0x04,	/*  bit at 0x20 is cleared here  */
	0x28, 0xE1,	/*  Set the FIFCrst bit here      */
	0x28, 0xE0,	/*  Clear the FIFCrst bit here    */
	0x00
};

1803 1804
static int mt2063_init(struct dvb_frontend *fe)
{
1805
	int status;
1806
	struct mt2063_state *state = fe->tuner_priv;
1807 1808
	u8 all_resets = 0xF0;	/* reset/load bits */
	const u8 *def = NULL;
1809
	char *step;
1810 1811 1812 1813 1814
	u32 FCRUN;
	s32 maxReads;
	u32 fcu_osc;
	u32 i;

1815 1816
	dprintk(2, "\n");

1817 1818 1819
	state->rcvr_mode = MT2063_CABLE_QAM;

	/*  Read the Part/Rev code from the tuner */
1820 1821
	status = mt2063_read(state, MT2063_REG_PART_REV,
			     &state->reg[MT2063_REG_PART_REV], 1);
1822 1823
	if (status < 0) {
		printk(KERN_ERR "Can't read mt2063 part ID\n");
1824
		return status;
1825
	}
1826 1827

	/* Check the part/rev code */
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
	switch (state->reg[MT2063_REG_PART_REV]) {
	case MT2063_B0:
		step = "B0";
		break;
	case MT2063_B1:
		step = "B1";
		break;
	case MT2063_B2:
		step = "B2";
		break;
	case MT2063_B3:
		step = "B3";
		break;
	default:
		printk(KERN_ERR "mt2063: Unknown mt2063 device ID (0x%02x)\n",
		       state->reg[MT2063_REG_PART_REV]);
1844
		return -ENODEV;	/*  Wrong tuner Part/Rev code */
1845
	}
1846

1847 1848 1849
	/*  Check the 2nd byte of the Part/Rev code from the tuner */
	status = mt2063_read(state, MT2063_REG_RSVD_3B,
			     &state->reg[MT2063_REG_RSVD_3B], 1);
1850

1851
	/* b7 != 0 ==> NOT MT2063 */
1852
	if (status < 0 || ((state->reg[MT2063_REG_RSVD_3B] & 0x80) != 0x00)) {
1853 1854 1855
		printk(KERN_ERR "mt2063: Unknown part ID (0x%02x%02x)\n",
		       state->reg[MT2063_REG_PART_REV],
		       state->reg[MT2063_REG_RSVD_3B]);
1856
		return -ENODEV;	/*  Wrong tuner Part/Rev code */
1857
	}
1858

1859
	printk(KERN_INFO "mt2063: detected a mt2063 %s\n", step);
1860

1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
	/*  Reset the tuner  */
	status = mt2063_write(state, MT2063_REG_LO2CQ_3, &all_resets, 1);
	if (status < 0)
		return status;

	/* change all of the default values that vary from the HW reset values */
	/*  def = (state->reg[PART_REV] == MT2063_B0) ? MT2063B0_defaults : MT2063B1_defaults; */
	switch (state->reg[MT2063_REG_PART_REV]) {
	case MT2063_B3:
		def = MT2063B3_defaults;
		break;

	case MT2063_B1:
		def = MT2063B1_defaults;
		break;

	case MT2063_B0:
		def = MT2063B0_defaults;
		break;

	default:
		return -ENODEV;
		break;
1884 1885
	}

1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
	while (status >= 0 && *def) {
		u8 reg = *def++;
		u8 val = *def++;
		status = mt2063_write(state, reg, &val, 1);
	}
	if (status < 0)
		return status;

	/*  Wait for FIFF location to complete.  */
	FCRUN = 1;
	maxReads = 10;
	while (status >= 0 && (FCRUN != 0) && (maxReads-- > 0)) {
		msleep(2);
		status = mt2063_read(state,
					 MT2063_REG_XO_STATUS,
					 &state->
					 reg[MT2063_REG_XO_STATUS], 1);
		FCRUN = (state->reg[MT2063_REG_XO_STATUS] & 0x40) >> 6;
	}

	if (FCRUN != 0 || status < 0)
		return -ENODEV;

	status = mt2063_read(state,
			   MT2063_REG_FIFFC,
			   &state->reg[MT2063_REG_FIFFC], 1);
	if (status < 0)
		return status;

	/* Read back all the registers from the tuner */
	status = mt2063_read(state,
				MT2063_REG_PART_REV,
				state->reg, MT2063_REG_END_REGS);
	if (status < 0)
		return status;

	/*  Initialize the tuner state.  */
	state->tuner_id = state->reg[MT2063_REG_PART_REV];
	state->AS_Data.f_ref = MT2063_REF_FREQ;
	state->AS_Data.f_if1_Center = (state->AS_Data.f_ref / 8) *
				      ((u32) state->reg[MT2063_REG_FIFFC] + 640);
	state->AS_Data.f_if1_bw = MT2063_IF1_BW;
	state->AS_Data.f_out = 43750000UL;
	state->AS_Data.f_out_bw = 6750000UL;
	state->AS_Data.f_zif_bw = MT2063_ZIF_BW;
	state->AS_Data.f_LO1_Step = state->AS_Data.f_ref / 64;
	state->AS_Data.f_LO2_Step = MT2063_TUNE_STEP_SIZE;
	state->AS_Data.maxH1 = MT2063_MAX_HARMONICS_1;
	state->AS_Data.maxH2 = MT2063_MAX_HARMONICS_2;
	state->AS_Data.f_min_LO_Separation = MT2063_MIN_LO_SEP;
	state->AS_Data.f_if1_Request = state->AS_Data.f_if1_Center;
	state->AS_Data.f_LO1 = 2181000000UL;
	state->AS_Data.f_LO2 = 1486249786UL;
	state->f_IF1_actual = state->AS_Data.f_if1_Center;
	state->AS_Data.f_in = state->AS_Data.f_LO1 - state->f_IF1_actual;
	state->AS_Data.f_LO1_FracN_Avoid = MT2063_LO1_FRACN_AVOID;
	state->AS_Data.f_LO2_FracN_Avoid = MT2063_LO2_FRACN_AVOID;
	state->num_regs = MT2063_REG_END_REGS;
	state->AS_Data.avoidDECT = MT2063_AVOID_BOTH;
	state->ctfilt_sw = 0;

	state->CTFiltMax[0] = 69230000;
	state->CTFiltMax[1] = 105770000;
	state->CTFiltMax[2] = 140350000;
	state->CTFiltMax[3] = 177110000;
	state->CTFiltMax[4] = 212860000;
	state->CTFiltMax[5] = 241130000;
	state->CTFiltMax[6] = 274370000;
	state->CTFiltMax[7] = 309820000;
	state->CTFiltMax[8] = 342450000;
	state->CTFiltMax[9] = 378870000;
	state->CTFiltMax[10] = 416210000;
	state->CTFiltMax[11] = 456500000;
	state->CTFiltMax[12] = 495790000;
	state->CTFiltMax[13] = 534530000;
	state->CTFiltMax[14] = 572610000;
	state->CTFiltMax[15] = 598970000;
	state->CTFiltMax[16] = 635910000;
	state->CTFiltMax[17] = 672130000;
	state->CTFiltMax[18] = 714840000;
	state->CTFiltMax[19] = 739660000;
	state->CTFiltMax[20] = 770410000;
	state->CTFiltMax[21] = 814660000;
	state->CTFiltMax[22] = 846950000;
	state->CTFiltMax[23] = 867820000;
	state->CTFiltMax[24] = 915980000;
	state->CTFiltMax[25] = 947450000;
	state->CTFiltMax[26] = 983110000;
	state->CTFiltMax[27] = 1021630000;
	state->CTFiltMax[28] = 1061870000;
	state->CTFiltMax[29] = 1098330000;
	state->CTFiltMax[30] = 1138990000;

	/*
	 **   Fetch the FCU osc value and use it and the fRef value to
	 **   scale all of the Band Max values
	 */

	state->reg[MT2063_REG_CTUNE_CTRL] = 0x0A;
	status = mt2063_write(state, MT2063_REG_CTUNE_CTRL,
			      &state->reg[MT2063_REG_CTUNE_CTRL], 1);
	if (status < 0)
		return status;

	/*  Read the ClearTune filter calibration value  */
	status = mt2063_read(state, MT2063_REG_FIFFC,
			     &state->reg[MT2063_REG_FIFFC], 1);
	if (status < 0)
		return status;

	fcu_osc = state->reg[MT2063_REG_FIFFC];

	state->reg[MT2063_REG_CTUNE_CTRL] = 0x00;
	status = mt2063_write(state, MT2063_REG_CTUNE_CTRL,
			      &state->reg[MT2063_REG_CTUNE_CTRL], 1);
	if (status < 0)
		return status;

	/*  Adjust each of the values in the ClearTune filter cross-over table  */
	for (i = 0; i < 31; i++)
2006
		state->CTFiltMax[i] = (state->CTFiltMax[i] / 768) * (fcu_osc + 640);
2007 2008 2009 2010 2011 2012 2013 2014

	status = MT2063_SoftwareShutdown(state, 1);
	if (status < 0)
		return status;
	status = MT2063_ClearPowerMaskBits(state, MT2063_ALL_SD);
	if (status < 0)
		return status;

2015 2016
	state->init = true;

2017 2018 2019
	return 0;
}

2020
static int mt2063_get_status(struct dvb_frontend *fe, u32 *tuner_status)
2021
{
2022 2023
	struct mt2063_state *state = fe->tuner_priv;
	int status;
2024

2025 2026
	dprintk(2, "\n");

2027 2028 2029
	if (!state->init)
		return -ENODEV;

2030 2031 2032 2033 2034
	*tuner_status = 0;
	status = mt2063_lockStatus(state);
	if (status < 0)
		return status;
	if (status)
2035
		*tuner_status = TUNER_STATUS_LOCKED;
2036

2037 2038
	dprintk(1, "Tuner status: %d", *tuner_status);

2039
	return 0;
2040
}
2041

2042
static int mt2063_release(struct dvb_frontend *fe)
2043
{
2044
	struct mt2063_state *state = fe->tuner_priv;
2045

2046 2047
	dprintk(2, "\n");

2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
	fe->tuner_priv = NULL;
	kfree(state);

	return 0;
}

static int mt2063_set_analog_params(struct dvb_frontend *fe,
				    struct analog_parameters *params)
{
	struct mt2063_state *state = fe->tuner_priv;
2058 2059 2060 2061 2062
	s32 pict_car;
	s32 pict2chanb_vsb;
	s32 ch_bw;
	s32 if_mid;
	s32 rcvr_mode;
2063 2064
	int status;

2065 2066
	dprintk(2, "\n");

2067 2068 2069 2070 2071 2072
	if (!state->init) {
		status = mt2063_init(fe);
		if (status < 0)
			return status;
	}

2073 2074 2075 2076 2077 2078
	switch (params->mode) {
	case V4L2_TUNER_RADIO:
		pict_car = 38900000;
		ch_bw = 8000000;
		pict2chanb_vsb = -(ch_bw / 2);
		rcvr_mode = MT2063_OFFAIR_ANALOG;
2079
		break;
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
	case V4L2_TUNER_ANALOG_TV:
		rcvr_mode = MT2063_CABLE_ANALOG;
		if (params->std & ~V4L2_STD_MN) {
			pict_car = 38900000;
			ch_bw = 6000000;
			pict2chanb_vsb = -1250000;
		} else if (params->std & V4L2_STD_PAL_G) {
			pict_car = 38900000;
			ch_bw = 7000000;
			pict2chanb_vsb = -1250000;
2090
		} else {		/* PAL/SECAM standards */
2091 2092 2093 2094
			pict_car = 38900000;
			ch_bw = 8000000;
			pict2chanb_vsb = -1250000;
		}
2095
		break;
2096 2097
	default:
		return -EINVAL;
2098
	}
2099 2100 2101 2102 2103 2104 2105 2106 2107
	if_mid = pict_car - (pict2chanb_vsb + (ch_bw / 2));

	state->AS_Data.f_LO2_Step = 125000;	/* FIXME: probably 5000 for FM */
	state->AS_Data.f_out = if_mid;
	state->AS_Data.f_out_bw = ch_bw + 750000;
	status = MT2063_SetReceiverMode(state, rcvr_mode);
	if (status < 0)
		return status;

2108 2109 2110
	dprintk(1, "Tuning to frequency: %d, bandwidth %d, foffset %d\n",
		params->frequency, ch_bw, pict2chanb_vsb);

2111 2112 2113
	status = MT2063_Tune(state, (params->frequency + (pict2chanb_vsb + (ch_bw / 2))));
	if (status < 0)
		return status;
2114

2115 2116
	state->frequency = params->frequency;
	return 0;
2117 2118
}

2119 2120
/*
 * As defined on EN 300 429, the DVB-C roll-off factor is 0.15.
2121
 * So, the amount of the needed bandwidth is given by:
2122
 *	Bw = Symbol_rate * (1 + 0.15)
2123 2124 2125 2126 2127
 * As such, the maximum symbol rate supported by 6 MHz is given by:
 *	max_symbol_rate = 6 MHz / 1.15 = 5217391 Bauds
 */
#define MAX_SYMBOL_RATE_6MHz	5217391

2128
static int mt2063_set_params(struct dvb_frontend *fe)
2129
{
2130
	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
2131
	struct mt2063_state *state = fe->tuner_priv;
2132
	int status;
2133 2134 2135 2136 2137
	s32 pict_car;
	s32 pict2chanb_vsb;
	s32 ch_bw;
	s32 if_mid;
	s32 rcvr_mode;
2138

2139 2140 2141 2142 2143 2144
	if (!state->init) {
		status = mt2063_init(fe);
		if (status < 0)
			return status;
	}

2145 2146
	dprintk(2, "\n");

2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
	if (c->bandwidth_hz == 0)
		return -EINVAL;
	if (c->bandwidth_hz <= 6000000)
		ch_bw = 6000000;
	else if (c->bandwidth_hz <= 7000000)
		ch_bw = 7000000;
	else
		ch_bw = 8000000;

	switch (c->delivery_system) {
	case SYS_DVBT:
2158 2159 2160
		rcvr_mode = MT2063_OFFAIR_COFDM;
		pict_car = 36125000;
		pict2chanb_vsb = -(ch_bw / 2);
2161
		break;
2162 2163
	case SYS_DVBC_ANNEX_A:
	case SYS_DVBC_ANNEX_C:
2164 2165 2166
		rcvr_mode = MT2063_CABLE_QAM;
		pict_car = 36125000;
		pict2chanb_vsb = -(ch_bw / 2);
2167
		break;
2168
	default:
2169
		return -EINVAL;
2170
	}
2171 2172 2173 2174 2175 2176 2177 2178 2179
	if_mid = pict_car - (pict2chanb_vsb + (ch_bw / 2));

	state->AS_Data.f_LO2_Step = 125000;	/* FIXME: probably 5000 for FM */
	state->AS_Data.f_out = if_mid;
	state->AS_Data.f_out_bw = ch_bw + 750000;
	status = MT2063_SetReceiverMode(state, rcvr_mode);
	if (status < 0)
		return status;

2180 2181 2182
	dprintk(1, "Tuning to frequency: %d, bandwidth %d, foffset %d\n",
		c->frequency, ch_bw, pict2chanb_vsb);

2183
	status = MT2063_Tune(state, (c->frequency + (pict2chanb_vsb + (ch_bw / 2))));
2184 2185

	if (status < 0)
2186
		return status;
2187

2188
	state->frequency = c->frequency;
2189
	return 0;
2190 2191
}

2192
static int mt2063_get_if_frequency(struct dvb_frontend *fe, u32 *freq)
2193
{
2194
	struct mt2063_state *state = fe->tuner_priv;
2195

2196 2197
	dprintk(2, "\n");

2198 2199 2200
	if (!state->init)
		return -ENODEV;

2201
	*freq = state->AS_Data.f_out;
2202

2203
	dprintk(1, "IF frequency: %d\n", *freq);
2204

2205 2206 2207 2208 2209 2210
	return 0;
}

static int mt2063_get_bandwidth(struct dvb_frontend *fe, u32 *bw)
{
	struct mt2063_state *state = fe->tuner_priv;
2211

2212 2213
	dprintk(2, "\n");

2214 2215 2216
	if (!state->init)
		return -ENODEV;

2217
	*bw = state->AS_Data.f_out_bw - 750000;
2218 2219 2220

	dprintk(1, "bandwidth: %d\n", *bw);

2221
	return 0;
2222 2223 2224
}

static struct dvb_tuner_ops mt2063_ops = {
2225
	.info = {
2226 2227
		 .name = "MT2063 Silicon Tuner",
		 .frequency_min = 45000000,
2228
		 .frequency_max = 865000000,
2229 2230 2231 2232
		 .frequency_step = 0,
		 },

	.init = mt2063_init,
2233
	.sleep = MT2063_Sleep,
2234
	.get_status = mt2063_get_status,
2235 2236
	.set_analog_params = mt2063_set_analog_params,
	.set_params    = mt2063_set_params,
2237
	.get_if_frequency = mt2063_get_if_frequency,
2238 2239
	.get_bandwidth = mt2063_get_bandwidth,
	.release = mt2063_release,
2240 2241
};

2242 2243 2244
struct dvb_frontend *mt2063_attach(struct dvb_frontend *fe,
				   struct mt2063_config *config,
				   struct i2c_adapter *i2c)
2245
{
2246
	struct mt2063_state *state = NULL;
2247

2248 2249
	dprintk(2, "\n");

2250
	state = kzalloc(sizeof(struct mt2063_state), GFP_KERNEL);
2251 2252
	if (!state)
		return NULL;
2253

2254 2255 2256 2257 2258 2259
	state->config = config;
	state->i2c = i2c;
	state->frontend = fe;
	state->reference = config->refclock / 1000;	/* kHz */
	fe->tuner_priv = state;
	fe->ops.tuner_ops = mt2063_ops;
2260

2261
	printk(KERN_INFO "%s: Attaching MT2063\n", __func__);
2262 2263
	return fe;
}
2264
EXPORT_SYMBOL_GPL(mt2063_attach);
2265

2266
#if 0
2267 2268 2269 2270
/*
 * Ancillary routines visible outside mt2063
 * FIXME: Remove them in favor of using standard tuner callbacks
 */
2271
static int tuner_MT2063_SoftwareShutdown(struct dvb_frontend *fe)
2272 2273 2274 2275
{
	struct mt2063_state *state = fe->tuner_priv;
	int err = 0;

2276 2277
	dprintk(2, "\n");

2278 2279 2280 2281 2282 2283 2284
	err = MT2063_SoftwareShutdown(state, 1);
	if (err < 0)
		printk(KERN_ERR "%s: Couldn't shutdown\n", __func__);

	return err;
}

2285
static int tuner_MT2063_ClearPowerMaskBits(struct dvb_frontend *fe)
2286 2287 2288 2289
{
	struct mt2063_state *state = fe->tuner_priv;
	int err = 0;

2290 2291
	dprintk(2, "\n");

2292 2293 2294 2295 2296 2297
	err = MT2063_ClearPowerMaskBits(state, MT2063_ALL_SD);
	if (err < 0)
		printk(KERN_ERR "%s: Invalid parameter\n", __func__);

	return err;
}
2298
#endif
2299

2300
MODULE_AUTHOR("Mauro Carvalho Chehab");
2301 2302
MODULE_DESCRIPTION("MT2063 Silicon tuner");
MODULE_LICENSE("GPL");